Pittsburgh Post-Gazette Pipeline and FracTracker Collaboration

We are proud to announce an exciting collaboration between FracTracker and a project run by the Pittsburgh Post-Gazette – called Pipeline. The collaboration will help to inform the PG’s expansive readership about the diverse issues surrounding natural gas drilling in the Marcellus Shale region – especially in Washington County. For this project, FracTracker’s DataTool will provide a platform for data collection and map creation.

Visit Pipeline | Learn More

Updated Pennsylvania Marcellus Shale Production Information

Updated Marcellus Shale well production data for the period between July 1, 2010 and December 31, 2010 is now available on the DEP website and FracTracker’s DataTool. This data is self-reported by the drilling operators, and includes production in the following categories:

  • Natural Gas: Production in thousands of cubic feet (Mcf)
  • Condensate: Production in barrels
  • Oil: Production in barrels

Let’s take a look at some of the numbers.

Gas Production and Well Status

Table 1: Production notes and values for Pennsylvania Marcellus Shale wells, July 1 2009 to June 30, 2010

Table 2: Production notes and values for Pennsylvania Marcellus Shale wells, July 1 2010 to December 31, 2010

Although gas production is the focus of the six month production report, there is enough useful data to learn a few other things about the industry as well:

  • As with the waste report, there is more production reported in the last half of 2010 than the entire preceding year. Although there are more producing wells, my suspicion is that the real reason is poor reporting for the July 2009 to June 2010 report.
  • As corroborating evidence of poor reporting, the earlier report includes significant production from wells that are “Not yet drilled”. This issue has been corrected for the last half of 2010.
  • Only 26 Marcellus Shale wells are reported as plugged. This is fairly impressive, as the earliest Marcellus well in Pennsylvania was from 2006.
  • Over half of the Marcellus Shale wells which have been permitted in Pennsylvania have not yet been drilled. Almost all of these are horizontal wells.

Gas, Condensate, and Oil Production

Table 3: Gas, condensate, and oil production values for Pennsylvania Marcellus Shale wells, July 1 2009 to June 30, 2010

Table 4: Gas, condensate, and oil production values for Pennsylvania Marcellus Shale wells, July 1 2010 to December 31, 2010

The Marcellus Shale is well known as a gas producing black shale formation, but condensate and oil are also produced from these wells in Pennsylvania. There are a couple of trends of note here as well:

  • Although the more recent report is for only half the length of time as the older one, this cannot account for the tenfold decrease in oil production.
  • The amount of condensate nearly doubled, despite the fact that the reporting period was only half as long.
  • Almost all oil and condensate production now comes from horizontal wells.

Location

Now let’s take a look at the geographical distribution of this data. Here, in rapid succession, are the data in table, chart, and map formats:

Table 5: Pennsylvania Marcellus Shale production by county, July 1, 2010 to December 31, 2010

Chart 1: Pennsylvania Marcellus Shale gas production by county, July 1, 2010 to December 31, 2010


PA Marcellus Shale Oil, Gas, and Condensate Production, July 1, 2010 to December 31, 2010. Please click the gray compass rose and double carat (^) to hide those menus.

There are a couple of key points about the location information as well:

  • Although Washington county is one of several major producers of natural gas, the vast majority of the Marcellus Shale oil and condensate production in the Commonwealth comes from that county.
  • The leading producers in the state by county are (percentage of statewide total in parentheses):
    1. Bradford (25.7%)
    2. Susquehanna (23.7%)
    3. Washington (14.2%)
    4. Greene(12.3%)
    5. Tioga (8.8%)


Marcellus Shale natural gas, condensate, and oil production in Southwestern Pennsylvania, July 1, 2010 to December 31, 2010

Production by Operator

Table 6: Natural gas produced by operator in Pennsylvania’s Marcellus Shale formation, 7-1-10 to 12-31-10.

Chart 2: Natural gas produced by operator in Pennsylvania’s Marcellus Shale formation, 7-1-10 to 12-31-10.

The leading producers in the state by operator are (percentage of statewide total in parentheses):

  1. Chesapeake Appalachia Llc (18.8%)
  2. Talisman Energy Usa Inc (18.1%)
  3. Cabot Oil & Gas Corp (15.3%)
  4. Range Resources Appalachia Llc (12.6%)
  5. Atlas Resources Llc (5.6%)

Hitting Close to Home – Gas Pad Fire in Avella, PA

By Samantha Malone, MPH, CPH – Communications Specialist, Center for Healthy Environments and Communities (CHEC), University of Pittsburgh Graduate School of Public Health (GSPH); Doctoral Student, GSPH

Shale Gas Violations near Avella, PA (small)
Natural gas industry violations since 2007.
Avella, PA can be found by clicking on the image
and then zooming in on the patch of violations
in the center of the map.
Map created using FracTracker’s DataTool.

On February 23, 2011 a section of a natural gas drilling site in Avella, PA caught fire. Luckily only three workers were injured, but the issue still hits close to home – literally. Avella is my hometown. This quiet, farming area is located roughly 35 miles southwest of Pittsburgh in Washington County, PA. (See the map to the right.) It has a large school district geographically, with a tiny population. Known primarily for its rolling hills, farmland, and a historic landsite called Meadowcroft, Avella very rarely makes the headlines in Pittsburgh. That very fact is what peaked my concern when a TV news program mentioned that an incident had occurred on a Chesapeake Energy well site there.

The PA Department of Environmental Protection is currently investigating the fire. Initial reports indicate that volatile vapors that escaped while workers were flow-testing (part of which involves separating the flowback fluid from the natural gas), ignited and then caught nearby tanks on fire.  Volatile vapors can include a number of constituents, such as propane and benzene, which is a known human carcinogen. While there is little evidence to suggest that water contamination occurred as a result of the accident (like the 2009 spill near Cross Creek lake), air quality was most definitely affected. The smell of chemicals burning during the fire was even reported by some nearby residents. Thankfully, based on witness and on-site reports, the cooperation between the various emergency responders meant that the fire only burned for about three hours.

On a side note, I find it interesting that Chesapeake immediately refuted reports that hydraulic fracturing was the cause of the fire. Hydraulic fracturing, a process that breaks apart the shale layer under the ground to release the gas, had apparently been completed on the site. However, the volatile vapors originated from condensate, a result of hydraulic fracturing. Semantics.

Video Update: 3/1/11

Reflections: Homage to Dunkard Creek

 

Art Competition

Postmark Deadline Entry: March 15, 2011

Extent of 2009 Dunkard Creek Fish Kill

It is said that the living can freely move on only when they have helped the newly dead rest in peace. Reflections is a collaborative installation by more than 100 artists to commemorate the lives of the 116 species who perished in Dunkard Creek during the warm days of late summer 2009. The creek literally died when a fatal combination of chemical mine wastes and low water, exacerbated by “frac” drilling water withdrawals, set off the bloom of an alien toxic algae, suffocating an estimated 18,000-22,000 animals.

The forty-three mile Dunkard Creek meanders across the Pennsylvania and West Virginia state lines before it flows into the Monongahela River, recently listed as one of America’s 10 most endangered rivers. The Monongahela River supplies drinking water to 850,000 people.

Water is an age-old symbol for purity, clarity, and calm. The artists participating in Reflections are united by a common body of water, the Monongahela Watershed. To honor the tragedy that befell this watershed, each artist will ‘adopt’ and memorialize one of the 116 species of animals who perished, to celebrate the life of that species with an original work of art.

Eligibility

Reflections is open to practicing artists over 18 years of age living on, near, or connected to the Monongahela River Watershed (the area where the water under it or draining off of it goes into the Monongahela River).

Media

Open to traditional or non-traditional media (e.g. painting, drawing, print, collage, etc., but no photography) applied to a 7”x10.25” sheet of 140 lbs Arches hot press paper mounted with archival gel to a hardboard panel (provided by organizer).

To Enter

Completed applications, a brief bio, and $25 entry fee must be received no later than March 15, 2011. Upon application, artists will be randomly matched to a species. (Species cannot be reassigned.) The application process will close when all 116 species have been assigned. Completed work must be submitted by August 1, 2011.

To request the application form or if you have questions, please contact Ann Payne at 304.292.7673 or Paynestake@frontier.com.

Updated Pennsylvania Marcellus Shale Waste Information

Total Waste Produced by Marcellus Shale Well (small)Mixed total of waste produced by Marcellus Shale gas wells between July 1 and December 31, 2010. For more information on specific wells, click the blue “i” button, then click on one of the purple dots.

Self reported Marcellus Shale waste data for the period between July 1 and December 31, 2010 is now available on the DEP website and FracTracker’s DataTool in the following categories:

  • Basic Sediment (in barrels): Sludge that collects at the bottom of storage tanks and pits
  • Brine (in barrels): These are naturally occurring pockets of saltwater that are encountered in the drilling process.
  • Drill Cuttings (in tons): This is composed of the layers of earth that the drill passes through on the way to the target formation.
  • Drilling (in barrels): The main function of drilling fluid is to maintain the proper pressure in the well
  • Frac Fluid (in Barrels): This is what is injected into the well during the hydraulic fracturing process, much of which tends to flow back out.
  • Servicing Fluid (in Barrels): Waste produced by one of a variety of post-production services performed on a well.
  • Spent Lubricant (in Barrels): This lubricates the drill bit

I have also pivoted the data to establish how much waste is transported to the various disposal locations.


Locations accepting Pennsylvania’s Marcellus Shale waste. Please click on the gray compass rose and double carat (^) to hide those menus.

I have a few initial observations about the waste production data:

  • The totals for waste production in every category except Basic Sediment are higher for the six month period from than they were for the one year period ending on June 30, 2010. This increase almost certainly reflects better reporting rather than a dramatic increase in waste production in the last half of 2010.
  • There are some obvious inaccuracies in the map of the facilities receiving Pennsylvania’s Marcellus Shale waste. There is no reason that this waste would be shipped to Texas or Alabama, for example. Those locations are most likely corporate addresses of the waste facilities.
  • Despite the fact that companies are supposed to report both addresses and latitude and longitude of the receiving facilities, not all of the facilities receiving waste are on this map. The list of addresses appeared to be more complete, so that is what was used for mapping purposes. If you download the full dataset, addresses in Pennsylvania, New York, Ohio, West Virinia, Maryland, and New Jersey are given as recipients of Pennsylvania’s Marcellus Shale waste.

EPA Announces Hydraulic Fracturing Webinar

 

 

On Wednesday March 2, 2011, the US Environmental Protection Agency will be hosting a webinar regarding its hydraulic fracturing drinking water study plan from 7:00 to 8:00 PM, Eastern Standard Time. If you are interested, you should register for the online event now, as space is limited to 1,000 participants.

This is a part of the public comment period before the draft of the study plan is reviewed by the Science Review Board, which is a group of independent scientists that works with EPA in an advisory capacity.

PA Fish and Boat Commission Targets Gas Extraction as Resource Threat

Archived

This article has been archived and is provided for reference purposes only.


Wastewater Facilities Accepting Marcellus Shale Brine and Major Drainage Basins. Click the map for a larger, dynamic view.

By Conrad Dan Volz, DrPH, MPH.
Director and Principal Investigator of the Center for Healthy Environments and Communities

Management Plans by the Pennsylvania Fish and Boat Commission (PFBC) have been released for public comment for the 3 major drainages in Pennsylvania:

Public meetings on each of these draft plans are underway and dates and times and places of future meetings for each basin are now available on the PFBC website.

The PFBC has as its goal of these management plans – to protect, conserve and enhance the aquatic resources of and provide fishing and boating opportunities. The PFBC also has an important role in investigating releases of brine water from oil and gas extraction operations. Mr. John Arway the Executive Director of the PFBC just published in the January / February Edition of Pennsylvania Angler and Boater a very sobering assessment of water withdrawals and permitted pollution of Pennsylvania waterways by NPDES permit holders. He states that end users of municipal water are paying increased costs for water purification because of companies that are allowed to pollute receiving waters. This is a very courageous statement and I concur wholly with him on this. His complete statement can be found here.

Below are presented excerpts from the PFBC Draft Three Rivers Management Plan that pertains to Marcellus Shale gas extraction. Most important is their statement in the draft plan that in 2008, several wastewater treatment plants located along the Monongahela River were accepting frac-flowback water from multiple sources. Unable to completely treat this water, plant outflows caused a temporary spike in conductivity (readings as high as 1,200 μS/cm) and total dissolved solids (TDS readings as high as 900 mg/L) in the Monongahela River during October and November 2008. Other passages related to Marcellus are:

  • “In June 2010, the Monongahela River was named number nine of the top ten America’s Most Endangered Rivers by American Rivers primarily because of continuing threats from water pollution impacts from natural gas extraction activities in the Marcellus Shale.”
  • “Since 2008, PADEP Southwest Regional Office in Pittsburgh has directed a comprehensive
    water quality monitoring investigation of the Monongahela River related to impacts from disposal of contaminated frac-flowback water from Marcellus Shale drilling sites. This office has also surveyed fish, mussel, and invertebrate assemblages of the Allegheny and Monongahela Rivers as well as collected water quality and sediment quality samples and evaluated riparian and instream habitats for the U.S. Environmental Protection Agency’s (USEPA) Environmental
    Monitoring and Assessment Program for Great Rivers Ecosystems (EMAP-GRE). PADEP will
    provide PFBC information and results of Allegheny and Monongahela EMAP-GRE when the
    project is complete (in 2011).”
  • “Marcellus Shale is a unit of Devonian-age sedimentary rock found throughout the Appalachian
    Plateau. Named for a distinctive outcrop located near the village of Marcellus, New York,
    Marcellus Shale contains a massive and largely untapped natural gas reserve, which has high
    economic potential (trillions of dollars) given its proximity to high-demand markets in the eastern United States. Using horizontal drilling and hydraulic fracturing techniques, numerous Marcellus Shale wells have been installed within the upper Ohio River basin for exploitation of natural gas.”
  • “With any resource extraction operation, there are environmental consequences. For Marcellus
    Shale drilling, most issues involve the transport, treatment, and disposal of contaminated frac flowback water, a byproduct of hydraulic fracturing. In 2008, several wastewater treatment
    plants located along the Monongahela River were accepting frac-flowback water from multiple
    sources. Unable to completely treat this water, plant outflows caused a temporary spike in
    conductivity (readings as high as 1,200 μS/cm) and total dissolved solids (TDS readings as high
    as 900 mg/L) in the Monongahela River during October and November 2008.”
  • “Some Monongahela River tributaries continue to be disturbed by modern industries, such as longwall mining and Marcellus Shale drilling, including Dunkard Creek and Tenmile Creek. Major tributary streams of the upper Ohio River include Chartiers Creek (one of the most disturbed streams in the basin from numerous perturbations), Raccoon Creek (a recovering stream), and the Beaver River system.”

Pennsylvania’s DCNR Shale Thickness Datasets Added to DataTool

Three Belt Thickness of Devonian Black Shales in PA (small)Three Belt Thickness of Devonian Black Shales. Click image for a larger dynamic view.
Three datasets from the Pennsylvania Department of Conservation and Natural Resources (DCNR) have been added to FracTracker’s DataTool.  Each dataset indicates the thickness of a major carbon-rich black shale layer from the Devonian Period in Pennsylvania, including the Marcellus, Rhinestreet, and Huron.


The thickness in feet of the Marcellus Shale. Click the gray compass rose and double carat (^) to hide those menus.


The thickness in feet of the Rhinestreet Shale. Click the gray compass rose and double carat (^) to hide those menus.

  • Thickness of the Huron (Ohio) Shale. The Huron Shale is an Upper Devonian black shale that is more recent (and less deep) than the Rhinestreet Shale. It is a widespread formation ranging over several states, but in Pennsylvania, it is only present in the extreme northwest corner.


The thickness in feet of the Huron Shale. Click the gray compass rose and double carat (^) to hide those menus.

For an interesting cross-section view of Northwestern Pennsylvania rock formations visit this link from the DCNR website.

Data Accessibility and Usability Index

While anyone with a registered user account can put data up on FractTracker’s DataTool, sometimes finding and collecting relevant data in a usable form is more difficult than it should be. I have examined datasets from a wide variety of places (1) and agencies, and after encountering numerous issues, I have devised a grading scheme to reflect the quality of the data being distributed, to be known as the Data Accessibility and Usability Index (DAUI).

System

The DAUI considers variables in the following seven categories:

  • Accessibility (20 points): How easy is the data to obtain?
  • Usability (20 points): How much preparation is required to be able to analyze the data?
  • Completeness (15 points): Is there anything missing from the data that would interfere with analysis or mapping?
  • Metadata (15 points): Are the data column descriptions and data source information readily available?
  • Responsiveness (10 points): Has the agency been helpful with information requests? (2)
  • Accuracy (10 points): Are there errors in the data? (3)
  • Cost (10 points): Is the data free? (4)


Data Accessibility and Usability Index grading scheme, 100 total points. Scroll to the right to see additional categories.

Grading Examples

It is important to note that each grade given represents only one specific dataset at one point in time. On occasion, certain aspects of any given dataset are updated by the agency controlling the data, hopefully for the better.

One recent example is the Pennsylvania drilled wells (spuds) database. Until recently, this was published on HTML tables on a monthly basis, but 2011 data is now available in a single Excel file. In addition, this year’s wells have location information, which was missing from previous years data. Although PASDA maintains a list of about 125,000 oil and gas locations in the Commonwealth directly from the DEP, there were still thousands of wells that didn’t match in the years between 1998 and 2010.

Since the new dataset in Pennsylvania only covers 2011 wells so far, it is appropriate to grade both datasets separately. This will also serve as a functional example on how the DAUI works.


Grades for PA DEP’s Drilled Wells Dataset. Scroll to the right for additional grades and total scores.

As you can see, the two changes that they have made have bumped the PA DEP’s grade up from a D- to a solid A. And in fact, the D- might have been generous. Several of our DataTool users have suggested that there might be significant omissions in the older report, but I have never been able to conclusively establish that as a fact. If it is true, the Accuracy rating would fall from 10 to 0, leaving a total score of 50 for that database.

Let’s look at another example, Wells in Quebec near the St. Lawrence, published by Quebec’s bureau d’audiences publiques sur l’environnement. To get the data up on FracTracker, the data had to translated to English (not a demerit, just a step in the process), copied from the PDF file to Excel and pasted so that each column of data fit on one cell. Then the data could be distributed using the space (“ “) as a delimiter, at which point the cells needed to be manually aligned to allow for proper concatenation. Once all of that was done, it was necessary to change the location information from Degree Minute Second format to Decimal Degree to be able to map the data. Finally, the units of measure for depth were mixed, including both meters and feet, which should be consistent. In short, not a very satisfactory experience with the data. Here’s how it grades, based on that experience:


Grade for Quebec’s bureau d’audiences publiques sur l’environnement Wells in Quebec near the St. Lawrence dataset. Scroll to the right for more grades and total score.

Despite my frustrations with this data, the information is published on the agency’s website, appears to be complete, and is well explained. The issue of publishing this dataset on a PDF (which cannot directly be analyzed) was the main result for the agency’s C grade.

Here’s the grade for a dataset that I can’t post: The Railroad Commission (RRC) of Texas’ Newark East (Barnett Shale) gas wells.

Clearly, the RRC is in possession of a tremendous amount of data. You can click on the “Well log” link and see dozens of pages of scanned original documents. However, there are a couple of problems with this data which makes in unusable for FracTracker. First of all, there are over 8,000 records, but it is impossible to view more than 100 at a time. Those would have to be copied and pasted manually from the HTML tables. While that is possible to do, it isn’t worth the effort, because there is no location information. Knowing that they must be able to produce an Excel sheet with some basic data about their drilled wells, I contacted the RRC, and was told that what I wanted could be obtained…for a cost. In my opinion, the RRC is being stubborn on this. They have terrific data, and yet they do everything they can to be (politely) difficult. As I did not elect to purchase data at this time, I will only grade what is available online.


Grade for the Railroad Commission of Texas’ Newark East (Barnett Shale) Drilled Wells dataset. Scroll to the right for more grades and the total score.

Because they elected not to release the data upon request, the RRC earned a failing grade. Had the RRC simply created and sent the proper Excel file from their database, they might have earned 90 points on the DAUI. If they had decided that well location information was a basic thing that citizens might want to know, and posted a downloadable link on their website, they could have full marks. If the for-cost version of the data has everything that is desired, it would have a maximum score of 80, because it was not free and had to be requested.

These three examples show how the DAUI system works. In the near future, I will grade all relevant oil and gas datasets against the same metric. Hopefully, a comprehensive picture of the various agencies that control oil and gas data will emerge.

Scoring 100 points on the DAUI should be attainable, almost 100 percent of the time. If governmental agencies really do not have data on wells, permits, violations, and production, then they are failing their respective citizens, whose lives are affeted by the oil and gas industry, often quite profoundly. If the agencies that control the data simply are in the habit of making it difficult to access, then I must remain hopeful that they will be pressured to realize that is an unacceptable strategy for the 21st century.

  1. This list includes Pennsylvania, West Virginia, Ohio, Arkansas, Texas, Utah, North Dakota, New Mexico, Colorado, and Quebec. Not all of the datasets have been complete enough to post on FracTracker, a frustration which contributed significantly to the creation of this grading scheme.
  2. If no requests have been made regarding a given dataset, or if the data simply does not exist in a desired format, full credit should be given in this category.
  3. Accuracy issues can be very difficult to verify. Also, if certain data doesn’t exist, that is accounted for elsewhere. As with Responsiveness, the agency is afforded the benefit of the doubt here.
  4. I have seen numerous datasets available from state agencies that cost money, with costs ranging from about $10 to well over $1,000. This is often explained as “recovering costs” of data distribution. In my opinion, this is unacceptable. While maintaining accurate data is undoubtedly expensive, it is an obligation of the overseeing agency to do so, and making the data available to the public is really a minimal component of that process. If it is a genuine budgetary constraint, then the agency should merely charge more for permit fees, etc., so that they are adequately able to perform their job.

PA DEP Upgrades Drilled Well Data Distribution

The Pennsylvania DEP now has a linkto download all of the drilled wells from the Spud Report in Excel file format (1). This is a major upgrade over their previous system of posting online tables for each month, not only for the ease of access, but also because it contains complete location information, which previously had to be obtained elsewhere by matching the American Petroleum Institute (API) number with an external dataset; an imperfect system which resulted in thousands of wells between 1998 and 2010 for which location information could not be found.



Drilled wells in Pennsylvania in 2011. Click the gray compass rose and double carat (^) tabs for a complete view.

In addition, it utilizes the full API number. For example, in well number 37-005-30663-01-01, the initial 37 is the state code for Pennsylvania, and the 005 is the county code for Armstrong County.

  1. The Spud Date is the day that drilling begins on a particular well.
  2. API county codes, as well as a variety of other codes used by the PA DEP are explained here.