Mess is near Stone Lantz pad, WV. - Photo by Bill Hughes

Stream Crossings – Oil and water don’t mix

By Bill Hughes, WV Community Liaison, FracTracker Alliance

West Virginia has generously allowed the shale gas industry to occupy parts of our private land (for profit), namely the Lewis Wetzel Wildlife Management Area (LWWMA). This area is known for 13,500 acres of slopes, trails and forests, providing its inhabitants with great opportunities to hunt, fish, hike and camp.

The state of West Virginia does not own the mineral rights for the LWWMA, and the citizens of West Virginia can only manage so much; therefore, it is the responsibility of the Department of Natural Resources, on behalf of all WV citizens, to care for and manage public lands like LWWMA. With much surprise, the DNR has not only allowed oil and gas occupation of LWWMA, but has not been permitted to impose any regulation, supervision, or any other type of state-initiated enforcements. This approach is primarily due to the lack — or absence of inspectors in the Office of Oil and Gas — division of the Department of Environmental Protection. Often the inspectors that are available are simply playing catch up since the industry and market made some unexpected changes, according to DEP spokeswoman, Kathy Cosco.

Where is the reclamation?

I have been of the impression that once drilling and fracturing is done and the wells are put into production, that some form of reclamation must occur. To my dismay, no part of the drilling industry has taken responsibility for stream crossings, and clearly has no intention in doing so. Everybody has ostensibly packed their bags and gone home, leaving a mess of abandoned stream crossings behind. It is very apparent that no improvements will be done voluntarily by the companies that have created all the well pads in the area. Now the question remains: are we stuck with the stream crossings the way they are now? Or can the state order that these abandoned, inadequate stream crossings be removed?

How Not to Do Stream Crossings

The four photos below depict the deplorable, unacceptable, and disgraceful conditions of the stream crossings left behind by the drilling industry. The DNR and the State of WV have known about these conditions for years, yet have not required that any improvements to be made. Click on each poor stream crossing image to enlarge it:

Near Dry Ridge, API 47-103-02433. All of the water is flowing around the pipes.

Near Dry Ridge, WV. API 47-103-02433

Near Sees Run at Buffalo Run, WV

Near Sees Run at Buffalo Run, WV

Stone Energy well pad on Buffalo Run near Lantz Farm and LWWMA

Stone Energy well pad on Buffalo Run near Lantz Farm & LWWMA

Mess is near Stone Lantz pad, WV

Stream crossing mess near Stone Lantz pad, WV

These examples might be why some folks are more than just a little incredulous when the DNR said that it was going to lease public lands under the river for drillers to take advantage of, promising and assuring that they protect the Ohio River from any drilling-related problems. If the DNR cannot handle the size of the stream water flow, or find a better way to enforce responsible behavior from the drillers, then the Ohio River and the citizens of West Virginia are surely in trouble.

In Need of Higher Standards

The picture below is a depiction of a good stream crossing, installed by someone other than a drilling company. Is there any hope that we will ever expect drillers to do this quality of reclamation to the places we cherish and call home? From an enforcement standpoint, it is clear that these actions will not be voluntary. West Virginia’s DEP has several divisions that focus on land reclamation, environmental remediation and land restoration; however, all of these encourage voluntary action, something we don’t expect to see from drilling companies in the near future.

Buffalo Run crossing going to the William WGGS compressor station. This is what all the permanent stream crossings should look like.

Buffalo Run crossing going to the William WGGS compressor station. This is what all the permanent stream crossings should look like.

Washington Co. Production Layout

A Closer Look at PA’s Unconventional Production Data

By Matt Kelso, Manager of Data and Technology

Twice per year, the Pennsylvania Department of Environmental Protection (PADEP) releases its unconventional oil and gas production and waste reports, which is a good opportunity to check on what’s happening with the industry as a whole. In the past, FracTracker has analyzed this data as soon as it became available. That strategy proved to be a mistake, however, as it is common for some of the operators to release data after the deadline, meaning that early versions of the report can be incomplete. To mitigate the effects of late reporting, the data in this analysis was downloaded from the PADEP on March 10, 2015, several weeks after the reports were first published.

While the production and waste reports are released together, and appear together on the same map below, the FracTracker Alliance will analyze the data from these two reports in separate blogs, with this one focusing on PA’s unconventional production data.


PA Unconventional O&G Production and Waste – July 1, 2014 to December 31, 2014. Click here to access the full screen map, with legend, details, and additional controls.

Producing Wells

The production report lists the amount of gas produced per well in thousands of cubic feet (Mcf), as well as oil and condensate totals in 42 gallon barrels. Also included are the spud date and the number of days that each well produced in each of the three categories. This allows us to take a look at how the age of the well factors into its daily production rates:

Average daily production values for PA unconventional wells between July and December 2014, sorted by year well was spudded.

Figure 1: Average daily production values for PA unconventional wells between July and December 2014, sorted by year well was spudded.

The average daily production values in Figure 1 were calculated from all wells reporting production for the given commodity type. For example, of the 1,467 wells on the report with a spud date in 2010, 1,221 (83.2%) of those produced some gas in the latest reporting period, and the average daily production of that group is 1,300 Mcf. Only 102 wells spudded that same year reported condensate production, averaging 6 barrels per day, and 35 wells produced oil, also averaging 6 barrels per day. It’s also worth pointing out that the majority of wells drilled last year were not yet in production for the reporting period.

Wells drilled in 2013 produced 38% less gas than wells those drilled in 2014, and the newer wells are producing 4.4 times as much as wells drilled in 2010.

Average daily production (Mcf) for unconventional wells in PA between July and December 2014, sorted by spud year.

Figure 2: Average daily production (Mcf) for unconventional wells in PA between July and December 2014, sorted by spud year.

In Pennsylvania, gas production amounts are quite high, while liquid hydrocarbon returns are fairly modest. In this six month period, operators reported 2.13 trillion cubic feet of gas production, 2.1 million barrels of condensate, and 171 thousand barrels of oil. Over 71% of all oil was produced in Washington County in Southwestern Pennsylvania, while other counties in the western part of the state made up the rest of the production. Washington County also accounts for 94% of all condensate produced from the state’s unconventional wells.

FracTracker wanted to see if there were any liquid production trends when we sorted the data by operator. Of the 1,146 active wells on the report in Washington County, 769 (67%) are operated by Range Resources Appalachia, LLC. Their wells produced 1,955,302 barrels (97%) of the condensate in the county, meaning that the remaining 377 wells from other operators produced a combined 50,915 barrels of condensate.

At first, it seems a bit anomalous that all of the other producers in the county should have such low a total for condensate. Some of this is likely attributable to defining the difference between condensate and oil. The way the data are presented, it seems as if they are two separate liquid hydrocarbon products. However, the difference really amounts to the liquid’s density, with heavier, thicker fluids considered to be oil, while condensates occupy the lighter, less viscous end of the spectrum. Condensate is also legal to export, while crude oil is not.

Oil and condensate production in Washington County from July to December 2014, by operator.

Figure 3: Oil and condensate production in Washington County from July to December 2014, by operator.

With this in mind, when we look at the liquid production in Washington County over the six month period, it seems likely that what Range Resources considered to be condensate was classified as oil by Chesapeake. The complete lack of liquid hydrocarbon production by any of the 259 wells operated by CNX, Rice, or EQT in the county does seem curious at first, but none of the three operators are active in any of the six municipalities reporting 100,000 or more barrels of liquids. Unconventional liquid hydrocarbon production in Washington County – and PA for that matter – is limited geographically, with the highest returns limited to a handful of municipalities close to the northern panhandle of West Virginia.


Unconventional wells reporting liquid production in Washington County from July to December 2014. Among unconventional wells in Pennsylvania, those in Washington County accounts for over 71% of oil production and 94% of condensate production.

Non-Producing Wells

Spudded PA Unconventional wells not producing - July to December 2014

Figure 4: Spudded PA Unconventional wells not producing – July to December 2014

Altogether, there are 2,351 wells on the production report that are listed as spudded but are not producing any of the three commodity types. The report includes a section for operators to explain why there is no production, as well as data about the well’s status. The reason that the majority of these wells are not producing are relatively straightforward; they are either plugged, have an inactive status, are not yet complete, or are shut-in, awaiting a pipeline connection.

In prior discussions with PADEP, active wells were described to us as those that had been spudded and not yet permanently plugged. There are also some conditions that can put the well into an inactive status at the operator’s request, for up to five years.

Figure 5: Operators with the most unconventional active wells that are not in production – excluding observation wells, those that were not completed during the reporting period, or those that are shut-in, awaiting additional infrastructure.

Still, there are a number of active wells that don’t fall into any of these categories, leaving us with no clear idea as to why they are not producing. The 10 operators with with the most active wells not in production – excluding observation, incomplete, and shut-in wells – are listed in Figure 5: Chevron, Chief, Southwestern, Cabot, and Anadarko.

Included in the statewide totals are three wells listed as having the incorrect operator, 32 wells where the reason for no production is listed as “Plugged well” but the well status is active, and 339 wells with active statuses where the reason for no production was left blank. Two operators, Chevron Appalachia and Chief Oil & Gas, account for 46% of these wells where the reason for non-production is uncertain.

 

Responses to the Rash of Oil Train Incidents

By Kyle Ferrar and Samantha Malone

Throughout the U.S. more crude was spilled from rail incidents in 2013 than the prior four decades combined. Recently, in a period of three weeks, there were four* derailments of crude oil trains carrying Bakken and other Canadian crudes resulting in fire and explosions, with multiple cars rupturing and set ablaze.1 One of the most recent incidents occurred on March 5th in Galena, Illinois, just north of Chicago (video below). The fires resulting from crude derailments blaze so hot that emergency responders and firefighters are not able to get close enough to extinguish them.  The only option is to let the fire burn out. This process can take days, during which local communities are subject to impaired air quality if not evacuated.2

*This number was revised 4/19/15.

Here we explore how regulators are responding to this public health risk and the new rules being put in place.

Oil Train Incidents Prior to August 2014


Derailments and accidents that occurred prior to August 1, 2014. Click here to view map fullscreen3

Regulatory Responses

Local Bakken Oil and Oil Train Resolutions

In response to these incidents and concerns, at least 50 cities and counties around the country have enacted or proposed resolutions regarding oil trains and Bakken oil. Some of these resolutions ask for direct action while others simply express concern publicly about the risks that the transportation of volatile crude oil by rail poses within their communities.

Resolutions Passed By Local Jurisdictions in California

While we have not collected all of these repossess, a good sample is shown below by state:

STATE TYPE
California
Berkeley, CA Resolution no. 66516
California State Senate Safety provisions in budget
Davis, CA Resolution
Martinez, CA Resolution No. 106-14
Moorpark, CA Letter
Oakland, CA Resolution no. 85054
Richmond, CA Resolution no. 26-14
Sacramento Area Council of Governments Letter
San Jose, CA Letter
San Luis Obispo, CA Letter
Santa Cruz County, CA Letter
Simi Valley, CA Letter
Illinois
Barrington/Chicago, IL Commission letter to President Obama
New York
Clinton County, NY Proposed taskforce
Hyde Park, NY Resolution no. 9:8 – 2 OF 2014
Newburg, NY Resolution no. 230-2014
New York State NY Governor letter to President Obama
Philipstown, NY Resolution
Rockland County, NY Meeting plus resolution
Oregon
Hood River, OR Resolution 2014-22
Columbia River Gorge Commission, OR/WA Resolution
Pennsylvania
Harrisburg, PA Proposed
Philadelphia, PA Resolution no. 150129-A01
Washington
Aberdeen, WA Resolution no. 2014
Anacortes, WA Resolution no. 1889
Auburn, WA Resolution no. 5050
Bainbridge Island, WA Resolution no. 2014 – 18
Bellingham, WA Resolution no. 2014-03
Chehalis, WA Resolution
Columbia River Gorge Commission, OR/WA Resolution
Edmonds, WA Resolutions no. 1317 & no. 1280
Elma, WA Resolution
Hoquiam, WA Resolution no. 2014-10
Kent, WA Proposed resolution
King County, WA Resolution 2014-0164
Montesano, WA Resolution
Mount Vernon, WA Resolution no. 879
Mukilteo, WA Resolution no. 2014-12
Ocean Shores, WA Resolution no. 727
Olympia, WA Resolution no. M-1812
Port of Olympia, WA Resolution no. 2014-07
Quinault Indian Nation Issued opinion
Seattle, WA Resolution no. 31504
Safe Energy Leadership Alliance SELA letter to DOT and WA Governor
Spokane, WA Resolution
Stevenson, WA Resolution no. 2014-279
Vancouver, WA Policy resolution 5b
Washington State Council of Firefighters Resolution no. 14-33
Washougal, WA Resolution no. 1048
Whatcom County, WA Resolution no. 2014-001

If any of the PDF’s linked to above do not load, refresh your browser.

Thank you to the many groups and individuals who have helped to compile this list above, such as Audubon Washington and Forest Ethics.

If you would like to recommend additions to this oil trains local actions list, please do so using the comment form at the bottom of this page.

Federal and National Responses

In an official request, the federal Department of Transportation ordered rail companies to provide the shipping details only to state emergency response officials. Due to the health and safety implications of crude by rail, groups like Earth Justice say the public has the right to know what is going through their backyards.4 The National Transportation Safety Board (NTSB) and a working group for the state of New York both found numerous deficiencies in the regulation of rail safety. The Working Group found that there are serious risks throughout the state from oil by rail in addition to significant gaps in local emergency response capabilities.5, 6

To reduce the actual intensity of these incidents, federal regulations establishing “vapor-pressure cap” rules go into effect this April. This specific regulation puts a limit on the amount of explosive gas allowed in the tanker cars. Crudes with greater amounts of short chain hydrocarbons are more volatile (lighter) and therefore more explosive. Bakken crude is considered “light” and “sweet” (more volatile short chain hydrocarbons) and therefore is more flammable/explosive than other crudes.7 Oil producers will have to measure the actual vapor pressure of the crude. The current practice is to calculate the vapor pressure using standards that are not specific enough for the lighter Bakken crude. Measuring the vapor pressure of each tank using an established protocol (i.e. regulatory standards) is therefore necessary to ensure an accurate knowledge of vapor pressure.8

The new standards for North Dakota crude will require operators to filter the crude in order to bring the vapor pressure down to 13.7 psi, a level comparable to the 13.5 psi standard for most automobile gasoline. The North Dakota Petroleum Council criticized the regulations, saying the explosive components of the Bakken crude are what give it such high value. NDPC also criticized the standards for temperature and pressure as being unnecessary.9 The recent West Virginia train that derailed and exploded would have violated this rule according to the testing conducted in North Dakota before departure. Crude involved in the Lac-Mégantic disaster was far below this standard, with an estimated vapor pressure of 9.3.10

Canadian Pacific Railway, the second largest rail company in Canada, wants the authority to refuse to haul crude oil and other hazardous materials due to liability concerns. This change would require an overhaul of the Canada Transportation Act that requires railways to haul any and all legal goods in rail cars that meet safety standards. The Board of Directors asked, “‘What kind of exposure do we have and what kind of exposure are we [exposing] the public to by hauling some of these commodities?” The U.S. railway BNSF, owned by Warren Buffet’s Berkshire Hathaway, has also protested against a similar U.S. federal regulation.11

Are the recent regulations enough?

The most destructive incident to-date was the Lac-Mégantic, Quebec derailment that killed 47 people on July 6, 2013. Following the Lac-Mégantic explosion, U.S. regulators issued an emergency directive that trains carrying hazardous materials could no longer be left unattended with the engines running unless they first received approval from the Federal Railroad Administration (FRA). The actual implementation of the rule only requires the railroad operators to prepare a plan for such activity and have it on file. There is no requirement for approval from the FRA.3

Other more substantive regulations are slowly coming into effect; for example, by 2017 the weaker DOT-111 oil tanker cars will be retired and all crude will be transported in safer Model CPC-1232 tank cars. Of note, however, is the fact that all five of these recent incidents have involved the safer, reinforced Model 1232 tank cars. A video of the recent derailment outside of Chicago can be seen below.


Galena, Illinois oil train derails with safer model CP-1232 tank cars that had been retrofitted with protective shields.

Data Transparency and Information

Not much detailed information is known publicly about the amount of crude being shipped by railway, the source of the crude, or which routes will be used, but research by the FracTracker Alliance has identified the expansion of crude shipments in communities throughout New York State. In the City of Buffalo, 33% of residents live within the ½ mile blast zone of a railway with crude oil tanker shipments, for example.12 Additional work by groups such as ours and Oil Change International has identified gaps in oversight that may not be possible for state or federal regulations to address. Because the nature of shipping by rail involves long distances and periods of time with infrequent cargo checks, any type of oil spill that goes immediately unnoticed may make it impossible to issue an effective response. Such is the case of a spill in Washington State, shown in the map below.12

In order to preserve the confidentiality of this information, the BNSF and other rail carriers have claimed trade secret exemptions to keep the information and data from being released to the public. The U.S. Department of Transportation has found the oil shipments by rail to “constitute an imminent hazard” and has required that carriers notify the State Emergency Response Commission (SERC) in each state that it operates trains transporting 1,000,000 gallons (23,809.5 barrels) or more of Bakken crude. This information has not been released to the public due to security concerns, however.13

References

  1. Wikipedia. List of Rail Accidents. (http://en.wikipedia.org/wiki/List_of_rail_accidents_%282010%E2%80%93present%29#2015). Accessed 4/19/15.
  2. Stern, Marcus; Jones, Sebastian. U.S. Crackdown on Oil Trains – Less Than Meets the Eye. 12/8/2014. Inside Climate News. Accessed 3/10/15.
  3. Kelso, Matt. 2014. North American Petroleum Transportation by Rail. FracTracker Alliance. Accessed 3/10/15.
  4. Bizjak, Tony. Tate, Curtis. 10/7/2014. Details about Crude Oil Rail Shipments Shrouded in secrecy. The Sacramento Bee. Accessed 3/10/15.
  5. 1/23/14. Safety Recommendation R-14-1. Accessed 3/5/15.
  6. State of New York. 4/30/14. Transporting Crude Oil in New York State: A Review of Incident Prevention and Response Capacity. Accessed 3/10/15.
  7. Pipeline and Hazardous Materials Safety Administration. 2014. Operation Safe Delivery Update. U.S. Department of Transportation. Accessed 3/12/15.
  8. Pichler, Hannes, and Josef Lutz. 2014. Why Crude Oil Vapor Pressure Should Be Tested Prior to Rail Transport. Advances in Petroleum Exploration and Development2.
  9. Scheyder, Ernest. 12/9/2014. North Dakota to require every barrel of crude oil be filtered. Reuters. Accessed 3/10/15.
  10. Gold, Russel. 3/2/15. Crude on Derailed Train Contained High Levels of Gas. Wall Street Journal. Accessed 3/10/15.
  11. Eric Atkins. 3/4/2015. Canadian Pacific wants to limit shipments of dangerous goods. The Globe and Mail. Accessed 3/12/15.
  12. Kelso, Matt. 1/29/15. Regulatory Gaps for Train Spills?. FracTracker Alliance. Accessed 3/14/15.
  13. S. DOT. 5/7/2014. Emergency Order. Docket No. DOT-OST-2014-0067. Accessed 3/10/15

Population Near Railroads in Allegheny County, PA

By Matt Kelso, Manager of Data and Technology

In a joint project with PennEnvironment earlier this month, we analyzed the number of people who live within a half-mile of active rail lines in Pennsylvania and are therefore potentially at risk of an oil train explosion similar to the recent ones in Lac-Mégantic, Quebec; Lynchburg, Virginia; and Mount Carbon, West Virginia. To take that project one step further, we have taken a closer look at the population near railroads in Allegheny County, the second most populous county in PA with over 1.2 million inhabitants. Of the various figures, we found that Pittsburgh has over 183,000 people that live with half-mile mile of an active rail line.

In Philadelphia, the city’s boundary takes up the entire county of the same name, but in Allegheny County, the municipal boundaries are considerably more fractured. In fact, Pittsburgh is just one of 130 municipalities in Allegheny County; its 305,704 inhabitants represent just 25% of the residents in the county, and 13% of the metropolitan area. For the sake of simplicity, residents from the various cities, boroughs, and townships in the county will often say they are from Pittsburgh when speaking with people from outside the region, although they might actually live in Blawnox, McKees Rocks, or Swissvale, for example.


Estimated population within a half-mile of active rail lines in Allegheny County, PA. Click here to access the legend and other map tools.

Here is a list of the top ten municipalities with the largest estimated population in the at-risk zone:

Municipalities in Allegheny County with the largest estimated population within a half-mile of railroads.

Municipalities in Allegheny County with the largest estimated population within a half-mile of railroads.

Not surprisingly, the most at-risk municipality in Allegheny County is Pittsburgh, with over 183,000 people living within a half-mile of an active rail line. During any given workday, when individuals flock into the city, even more individuals would theoretically be at risk of an oil train disaster. Following Pittsburgh, Baldwin, West Mifflin, and Shaler all share similar numbers at risk, with Baldwin seeing the greatest percentage of its population at risk of the three. While Castle Shannon and Carnegie have lower populations than the other municipalities, a significant proportion of their residents (93-95%) are near rail lines.

What can violations data tell us?

By Samantha Malone, MPH, CPH – Manager of Education, Communications, & Partnerships

The rate of violations by fracking companies has been of significant interest to many groups including our own. But why? What can violations data tell us about oil and gas safety that a news article about a particular incident cannot?

When companies do not follow regulatory standards and protocols – and either self report the issue or are caught – they may be issued a citation of some sort by the state regulatory agency where the violation occurred. While data of this kind is not always readily available, we can gain key insights into the environment of a particular company and the related state agency by reviewing these violations more closely.

The Stories Behind the Data

Violation trends can be indicators of environmental and public health risks, by looking into spills or illegal air emissions. The degree of transparency both within the oil and gas industry, as well as in the state regulatory agency, can be gleaned based on the quality and quantity of data available about company violations. And of course, the degree to which a company complies with our state and federal laws says a lot about their corporate environment and safety protocols.

In Pennsylvania, for example, we have seen a decline in violations per well over time (Figure 1, below). At first glance, this trend appears to be a step in the right direction. There could be several reasons behind this change, however, including but not limited to:

  • Improved compliance among operators – Great!
  • Decreased regulatory inspections – Not so great
  • Decreased regulatory reporting of violations during those inspections – Not so great
  • Changes in what qualifies as a “violation” or how violations data is collected/shared
  • Less self reporting by the companies when something goes wrong – Not so great
  • Larger, more established operators with better safety protocols have bought out smaller, resource-limited companies
  • Improved control technologies or infrastructure (throughputs) – Great!
  • More public pressure to comply with regulations – Great!
VpW PA Over Time

Figure 1. Violations per well drilled in PA 2005-2014. Data source

Two Recent Violations Data Reports

With the insight that can be acquired by analyzing violations (and other types of data), it is not uncommon to see an increase in the organizations and researchers digging into the data.

On January 27th, for example, Environment America released a report detailing the top oil and gas violators in the United States. Among their many findings…

Houston-based Cabot Oil, a prime Halliburton contractor, committed the most total violations with 265 across the study period. Chesapeake Energy was close behind. Pittsburgh-based Atlas was guilty of the most breaches for every well drilled, while Mieka, part of Dallas-based Vadda Energy, was responsible for the most infractions per well operated. Learn more

A report that we wrote last year finally made its way through peer review and was published in the Journal of Environmental Science and Health, Part A on Tuesday last week1. We did not focus specifically on the operators committing violations like Environment America did, but on the state of the data that is or should be available to the public about these operations from state regulatory agencies. Unfortunately, we found that many states often do not release violations data – especially not in a publicly accessible manner. Learn more about this study through an article I wrote for the Sunlight Foundation’s blog or check out the abstract.

A third violations report is due out soon, so keep your eyes peeled! UPDATE: As of April 2, 2015 – The Natural Resources Defense Council report is available.

Endnotes

1. The other publications in the special issue, Facing the Challenges – Research on Shale Gas Extraction, are listed below:

Foreword
John F. Stolz Professor, Duquesne University
Pages: 433-433

Current perspectives on unconventional shale gas extraction in the Appalachian Basin
David J. Lampe & John F. Stolz
Pages: 434-446

Long-term impacts of unconventional drilling operations on human and animal health
Michelle Bamberger & Robert E. Oswald
Pages: 447-459

Human exposure to unconventional natural gas development: A public health demonstration of periodic high exposure to chemical mixtures in ambient air
David R. Brown, Celia Lewis & Beth I. Weinberger
Pages: 460-472

Reported health conditions in animals residing near natural gas wells in southwestern Pennsylvania
I. B. Slizovskiy, L. A. Conti, S. J. Trufan, J. S. Reif, V. T. Lamers, M. H. Stowe, J. Dziura & P. M. Rabinowitz
Pages: 473-481

Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania
Christopher J. Grant, Alexander B. Weimer, Nicole K. Marks, Elliott S. Perow, Jacob M. Oster, Kristen M. Brubaker, Ryan V. Trexler, Caroline M. Solomon, & Regina Lamendella
Pages: 482-500

Data inconsistencies from states with unconventional oil and gas activity
Samantha Malone, Matthew Kelso, Ted Auch, Karen Edelstein, Kyle Ferrar, & Kirk Jalbert
Pages: 501-510

Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products
Leong Ying, Frank O’Connor, & John F. Stolz
Pages: 511-515

Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction
Shyama K. Alawattegama, Tetiana Kondratyuk, Renee Krynock, Matthew Bricker, Jennifer K. Rutter, Daniel J. Bain, & John F. Stolz
Pages: 516-528

Organic farms near drilling activity in the U.S. and Ohio

The US Food, Energy, Water Interface Examined
By Ted Auch, Great Lakes Program Coordinator

With the emergence of concerns about the Food, Energy, Water (FEW) intersection as it relates to oil and gas (O&G) expansion, we thought it was time to dig into the numbers and ask some very simple questions about organic farms near drilling. Below is an analysis of the location and quantity of organic farms with heavy drilling activity in Ohio and nationally. Organic farms rely heavily on the inherent/historical quality of their soils and water, so we wanted to understand whether and how these businesses closest to O&G drilling are being affected.

Key Findings:

  1. Currently 11% of US organic farms are within US O&G Regions of Concern (ROC). However, this number has the potential to balloon to 15-31% if our respective shale plays and basins are exploitated, either partially or in full,
  2. 68-74% of these farms produce crops in states like California, Ohio, Michigan, Pennsylvania, and Texas,
  3. Issues such as soil quality, watershed resilience, and water rights are likely to worsen over time with additional drilling.

Methods

To answer this broad question, we divided organic farms in the United States into three categories, depending on whether they were within the:

  1. Core (O&G Wells < 1 mile from each other),
  2. Intermediate (1-3 miles between O&G Wells), or
  3. Periphery (3-5 miles between O&G Wells) of current activity or Regions of Concern (ROC).1

Additionally, from our experience looking at O&G water withdrawal stresses within the largely agrarian Muskingum River Watershed in OH we decided to add to the ROCs. To this end we worked to identify which sub-watersheds (5-10 miles between O&G Wells) and watersheds (10-20 miles between O&G Wells) might be affected by O&G development.

Together, distance from wells and density of development within particular watersheds make up the 5 Regions of Concern (ROCs) (Table 1).

Table 1. Five ROCs under this investigation and what they look like from a mapping perspective

Label Distance Between Wells Mapping Visual
Core < 1 mi  Table1_1
Intermediate 1-3 mi
Periphery 3-5 mi  Table1_2
Sub-Watershed 5-10 mi  Table1_3
Watershed 10-20 mi

We generated a dataset of 19,515 US organic farms from the USDA National Organic Program (NOP) by using the Geocode Address function in ArcGIS 10.2, which resulted in a 100% match for all farms.2

We also extracted soil order polygons within the above 5 ROCs using the NRCS’ STATSGO Derived Soil Order3 dataset made available to us by Sharon Whitmoyer at the USDA-NRCS-NSSC-Geospatial Research Unit and West Virginia University. For those not familiar with soil classification, soil orders are analogous to the kingdom level within the hierarchy of biological classification. Although, in the case of soils there are 12 soil orders compared to the 6 kingdoms of biology.

The National Organic Farms Map

This map shows organic farms across the U.S. that are located within the aforementioned ROCs. Data include certifying agent, whether or not the farm produces livestock, crops, or wild crops along with contact information, farm name, physical address, and specific products produced. View map fullscreen

National Numbers

Figure 1. Total and incremental number of US organic farms in the 5 O&G ROCs.

Figure 1. Total and incremental number of US organic farms in the 5 O&G ROCs.

Nationally, the number of organic farms near drilling activity within specific regions of concern are as follows (as shown in Figure 1):

  • Watershed O&G ROC – 2,140 organic farms (11% of North American organic farms)
  • Sub-Watershed O&G ROC – 1,319
  • Periphery O&G ROC – 752
  • Intermediate O&G ROC – 455
  • Core O&G ROC – 183

Ohio’s Organic Farms Near Drilling

The following key statistics stood out among the analyses for OH’s 703 (3.6% of US total) organic farms. Figures 2 & 3 show how many farms are near drilling activity and injection (disposal) wells in OH. Click the images to view fullsize graphics:

 Figure 2. OH Organic Farms Proximity to Drilling Activity

Figure 2. OH Organic Farms Proximity to Drilling Activity

 Figure 3. OH Organic Farms Proximity to Injection (Disposal) Wells

Figure 3. OH Organic Farms Proximity to Injection Wells

Potential Trends

If oil and gas extraction continues along the same path that we have seen to-date, it is reasonable to expect that we could see an increase in the number of organic farms near this industrial activity. A few figures that we have worked up are shown below:

  • 2,912 Organic Farms in the US Shale Plays (15% of total organic farms)
    • 2,044 Crop Producers, 918 Livestock operations, 41 Wild Crops
  • 6,179 in US Shale Basins (31%)
    • California, 1,334; Colorado 297; Illinois 286; Indiana 334; Iowa 239; Michigan 504; Missouri 118; New York 834; Ohio 510; Pennsylvania 449; Texas 394; Wisconsin 271
    • 4,100 Crop Producers, 1,386 Livestock operations, 61 Wild Crops
  • 1,346 in US Tight Gas Plays (7%)
    • 948 Crop Producers, 434 Livestock operations, 22 Wild Crops
  • 2,754 in US Tight Gas Basins (14%)
    • 2,010 Crop Producers, 875 Livestock operations, 48 Wild Crops

Soils at Risk Due To Shale Activity

Another way to look at these five ROCs when asking how shale gas build-out will interact with and/or influence organic farming is to look at the soils beneath these ROCs. What types of activity do they currently support? The productivity of organic farms, as well as their ability to be labeled “organic,” are reliant upon the health of their soils even more so than conventional farms. Organic farms cannot rely on synthetic fertilizers, pesticides, herbicides, or related soil amendments to increase productivity. Soil manipulation is prohibitive from a cost and options perspective. Thus, knowing what types of soils the shale industry has used and is moving towards is critical to understanding how the FEW dynamic will play out in the long-term. There is no more important variable to the organic farmer sans freshwater than soil quality and diversity.

The soils of most concern under this analysis are the Prairie-Forest Transition soils of the Great Lakes and Plains, commonly referred to as Alfisols, and the Carbon-Rich Grasslands or Mollisols (Figure 4 & 5). The latter is proposed by some as a soil order worthy of protection given our historical reliance on its exceptional soil fertility and support for the once ubiquitous Tall Grass Prairies. Both soils face a second potential wave of O&G development, with a combined 18,660 square miles having come under the influence of the O&G industry within the Core ROC and an additional 58-108,000 square miles in the Intermediate and Periphery ROCs. If the watersheds within these soils and O&G co-habitat were to come under development, total potential Alfisol and Mollisol alteration could reach 273,200 square miles. This collection of soils currently accounts for 43-47% of the Core and Intermediate O&G ROCs and would “stabilize” at 50-51% of O&G development if the watersheds they reside in were to see significant O&G exploration.

Figure 4. Prairie-Forest Transition soil - Courtesy EarthOnlineMedia

Figure 4. Prairie-Forest Transition soil – Courtesy EarthOnlineMedia

Figure 5. Carbon-Rich Grasslands soil - Courtesy USDA’s NRCS

Figure 5. Carbon-Rich Grasslands soil – Courtesy USDA’s NRCS

Figure6_BakkenSoils

Figure 6. The five soil orders within the Bakken Shale formation in Montana and North Dakota.

These same soils sit beneath or have been cleared for much of our wheat, corn, and soybean fields – not to mention much of the Bakken Shale exploration to date (Figure 6, above)

The three forest soil orders (i.e., Spodosol, Ultisol, and Andisol shown in Figures 7-9) account for 9,680-20,529 square miles of the Core and Intermediate O&G ROCs, which is 22 and 17% of those ROC’s, respectively. If we assume future exploration into the Periphery and Watershed ROC we see that forest soils will become less of a concern, dropping to 14-15% of these outlying potential plays, with the same being true for the two Miscellaneous soil types. The latter will decline from 28% to 25% of potential O&G ROCs.

Figure 7. Ultisol, - Courtesy of the University of Georgia

Figure 7. Ultisol – Courtesy of the University of Georgia

Figure 8. Spodosol - Courtesy of the Hubbard Brook Experimental Forest

Figure 8. Spodosol – Courtesy of the Hubbard Brook Experimental Forest

Figure 9. Andisol – Courtesy of USDA’s NRCS

Figure 9. Andisol – Courtesy of USDA’s NRCS

Figure 10. Histosol, - Courtesy of Michigan State University

Figure 10. Histosol, – Courtesy of Michigan State University

If peripheral exploration were to be realized, another soil type will have to fill this gap. Our analysis demonstrates this gap would be filled by either Organic Wetlands or Histosols, which currently constitute <200 and 529 square miles of the Core and Intermediate ROCs, respectively (Figure 10). For so many reasons wetland soils are crucial to the maintenance and enhancement of ecosystem services, wildlife migration, agricultural productivity, and the capture and storage of greenhouse gases. However, if O&G exploration does expand to the Periphery ROC and beyond we would see reliance on wetland soils increase nearly 15 fold (i.e., 16% of Lower 48 wetland soil acreage).

The quality of these wetlands is certainly up for debate. However, what is fact is that these wetlands would be altered beyond even the best reclamation techniques. We know from the reclamation literature that the myriad difficulties associated with reassembling prior plant wetland communities. Finally, it is worth noting that a similar uptick in O&G reliance on arid (i.e., extremely unproductive but unstable) soils is may occur with future industry expansion. These soils will, as a percent of all ROCs, increase from 7% to 9% (i.e. 10-11% of all lower 48 arid soil acreage).

What do these changes mean for the agriculture industry in OH?

If these future O&G exploration scenarios were to play out, we estimate 20-22% of Southern Acidic Forest, Prairie-Forest Transition, Miscellaneous Recent Origin, and Carbon-Rich Grassland soils will have been effected or dramatically altered due to O&G land-use/land-cover (LULC) change nationally (Figure 11). This decline in productivity is likely familiar to communities currently grappling with how to manage a dramatically different landscape post-shale introduction in counties like Bradford in PA and Carroll in OH. The effects that such alteration has had and will have on landscape productivity, wildlife habitat fragmentation, and hydrological cycles is unknown but worthy of significant inquiry.

These questions are important enough to have received a session at Ohio Ecological Food and Farming Association’s (OEFFA) 2015 conference in Granville last month and were deemed worthy of a significant grant to The FracTracker Alliance from the Hoover Foundation aimed at quantifying the total LULC footprint of the shale gas industry across three agrarian OH counties. Early results indicate that every acre of well-pad requires 5.3 acres of gathering lines along with nearly 14 miles of buried pipelines – most of which are beneath high quality wetlands. This study speaks to the potential for 20-30% of the state’s Core Utica Region – or 10-15% of the Expanded Utica Region4 – being altered by shale gas activity.

Figure 11. National distribution of soil types within the 5 ROCs under consideration: 1) Forest Soils, 2) Prairie/Agriculture soils, 3) Organic Wetlands, 4) Miscellaneous soils, 5) Dry Soils.

Figure 11. National distribution of soil types within the 5 ROCs under consideration: 1) Forest Soils, 2) Prairie/Agriculture soils, 3) Organic Wetlands, 4) Miscellaneous soils, 5) Dry Soils.

Figure 11 Description:

  • Forest Soils – Northern and Southern Acidic Forests, Volcanic Forests,
  • Prairie/Agriculture – Prairie-Forest Transition and Carbon-Rich Grasslands,
  • Organic Wetlands
  • Miscellaneous – Recent and Intermediate Origins,
  • Dry Soils – Dry Calcium Carbonite and Clay-Rich Shrink/Swell Clays

Conclusion

The current and potential interaction(s) between the O&G and organic farming industries is nontrivial. Currently 11% of US organic farms are within what we are calling O&G ROCs. However, this number has the potential to balloon to 15-31% if our respective shale plays and basins are exploited, either partially or in full. Most of these (68-74%) are crop producers in states like California, Ohio, Michigan, Pennsylvania, and Texas.

Issues such as soil quality – specifically Prairie-Forest, Carbon Rich Grasslands, and Wetland soils – watershed resilience, and water rights are likely to become of more acute regional concern as the FEW interactions become increasingly coupled. How and when this will play out is anyone’s guess, but its play out is indisputable. Agriculture is going to face many staunch challenges in the coming years, as the National Science Foundation5 wrote:

The security of the global food supply is under ever-increasing stress due to rises in both human population and standards of living world-wide. By the end of this century, the world’s population is expected to exceed 10 billion, about 30% higher than today. Further, as standards of living increase globally, the demand for meat is increasing, which places more demand on agricultural resources than production of vegetables or grains. Growing energy use, which is connected to water availability and climate change, places additional stress on agriculture. It is clear that scientific and technological breakthroughs are needed to produce food more efficiently from “farm to fork” to meet the challenge of ensuring a secure, affordable food supply.

References and Endnotes

  1. The above regions were determined by generalizing a compilation of Oil & Gas wells generated by FracTracker’s Matt Kelso last March: Over 1.1 Million Active Oil and Gas Wells in the US.
  2. An additional 69 organic farms were geo-referenced in Canada and 7,524 across the globe for a similar global analysis to come.
  3. Description of STATSGO2 Database and associated metadata here.
  4. Core Utica Regions include any county that has ≥10 Utica permits to date and Expanded Utica Region includes any county that has 1 or more Utica permits.
  5. By the Mathematical and Physical Sciences Advisory Committee – Subcommittee on Food Systems in “Food, Energy and Water: Transformative Research Opportunities in the Mathematical and Physical Sciences”

11% of organic farms near drilling in US, potentially 31% in future

By Juliana Henao & Samantha Malone, FracTracker Alliance

Currently, 11% (2,140 of 19,515 total) of all U.S. organic farms share a watershed with active O&G drilling. Additionally, this percentage could rise up to 31% if unconventional O&G drilling continues to grow.

Organic farms represent something pure for citizens around the world. They produce food that gives people more certainty about consuming chemical-free nutrients in a culture that is so accustomed to using pesticides, fertilizers, and herbicides in order to keep up with booming demand. Among their many benefits, organic farms produce food that is high in nutritional value, use less water, replenish soil fertility, and do not use pesticides or other toxic chemicals that may get into our food supply. To maintain their integrity, however, organic farms have an array of regulations and an extensive accreditation process.

What does it mean to be an organic farm?

The accreditation process for an organic farm is quite extensive. USDA organic regulations include:

  • The producer must manage plant and animal materials to maintain or improve soil organic matter content in a manner that does not contribute to contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of prohibited substance.
  • No prohibited substances can be applied to the farm for a period of 3 years immediately preceding harvest of a crop
  • The farm must have distinct, defined boundaries and buffer zones, such as runoff diversions to prevent the unintended application of a prohibited substance to the crop or contact with a prohibited substance applied by adjoining land that is not under organic management.

There are additional regulations that pertain to crop pest, weed, and disease standards; soil fertility and crop nutrient management standards; seeds and planting stock practice standards; and wild-crop harvesting practice standards, to name a few. A violation of any one of these USDA regulations can mean a hold on the accreditation of an organic farm.

The full list of regulations and requirements can be found here.

Threats Posed by Oil & Gas

Nearby oil and gas drilling is one of many threats to organic farms and their crop integrity. With a steady expansion of wells, the O&G industry is using more and more land, requiring significant quantities of fresh water, and emitting air and water pollution from sites (both in permitted and unpermitted cases). O&G activity could not only affect the quality of the produce from these farms, but also their ability to meet the USDA’s organic standards.

To see how organic farms and the businesses surrounding wells are being affected, Ted Auch analyzed certain dynamics of organic farms near drilling activity in the United States, and generated some key findings. His results showcase how many organic farms are at risk now and in the future if O&G drilling expands. Below we describe a few of his key findings, but you can also read the entire article here.

Key Findings – Organic Farms Near Oil & Gas Activity

Explore this dynamic map of the U.S. organic farms (2,140) within 20 miles of oil & gas drilling. To view the legend and see the map fullscreen, click here.

Of the 19,515 U.S. organic farms in the U.S., 2,140 (11%) share a watershed with oil and gas activity – with up to 31% in the path of future wells in shale areas. Why look at oil and gas activity at the watershed level? Watersheds are key areas from which O&G companies pull their resources or into which they emit pollution. For unconventional drilling, hydraulic fracturing companies need to obtain fresh water from somewhere in order to frack the wells, and often the local watershed serves as that source. Spills can and do occur on site and in the process of transporting the well pad’s products, posing risks to soils and waterways, as well.

Figure 1, below, demonstrates the number of organic farms near active oil & gas wells in the U.S. – broken down by five location-based Regions of Concern (ROC).

Farm-Chart1

Figure 1: Total and incremental numbers of US organic farms in the 5 O&G Regions of Concern (ROC).

The most at-risk farms are located in five states: California, Ohio, Michigan, Texas and Pennsylvania. Learn more about the breakdown of the types of organic farms that fall within these ROCs, including what they produce.

Out of Ohio’s 703 organic farms, 220 organic farms are near drilling activity, and 105 are near injection (waste disposal) wells.

Conclusion

More and more O&G drilling is being permitted to operate near organic farms in the United States. The ability for municipalities to zone out O&G varies by state, but there is currently no national restriction that specifically protects organic farms from this industrial activity. As the O&G industry expands and continues to operate at such close proximities to organic farms in the US, there are a variety of potential impacts that we could see in the near future. The following list and more is explained in further detail in Auch’s research paper:

  • A complete alteration in soil composition and quality,
  • A need to restore wetland soils that are altered beyond the best reclamation techniques,
  • A dramatic decline in organic farm and land productivity,
  • A changing landscape,
  • Wildlife habitat fragmentation, and
  • Watershed resilience … to name a few.

PA feature image taken by Sara Gillooly, 2013

Danger Around the Bend

The Threat of Oil Trains in Pennsylvania

A PennEnvironment Report – Read Full Report (PDF)

On the heels of the West Virginia oil train explosion, this new study and interactive map show populations living in the evacuation zone of a potential oil train crash.

PA Oil Train Routes Map


This dynamic map shows the population estimates in Pennsylvania that are within a half-mile of train tracks – the recommended evacuation distance in the event of a crude oil rail car explosion. Zoom in for further detail or view fullscreen.

Danger Around the Bend Summary

The increasingly common practice of transporting Bakken Formation crude oil by rail from North Dakota to points across the nation—including Pennsylvania—poses a significant risk to the health, well-being, and safety of our communities.

This risk is due to a confluence of dangerous factors including, but not limited to:

  1. Bakken Formation crude oil is far more volatile and combustible than typical crude, making it an incredibly dangerous commodity to transport, especially over the nation’s antiquated rail lines.
  2. The routes for these trains often travel through highly populated cities, counties and neighborhoods — as well as near major drinking water sources.
  3. Bakken Formation crude is often shipped in massive amounts — often more than 100 cars, or over 3 million gallons per train.
  4. The nation’s existing laws to protect and inform the public, first responders, and decision makers are woefully inadequate to avert derailments and worst-case accidents from occurring.
Lac-Mégantic derailment. Source: http://en.wikipedia.org/wiki/Lac-M%C3%A9gantic_derailment

Lac-Mégantic derailment, July 2013. Source

In the past few years, production of Bakken crude oil has dramatically increased, resulting in greater quantities of this dangerous fuel being transported through our communities and across the nation every day. This increase has led to more derailments, accidents, and disasters involving oil trains and putting local com- munities at risk. In the past 2 years, there have been major disasters in Casselton, North Dakota; Lynchburg, Virginia; Pickens County, Alabama; and most recently, Mount Carbon, West Virginia. The worst of these was the town of Lac-Mégantic, in Canada’s Quebec Province. This catastrophic oil train accident took place on July 6, 2013, killing 47 people and leveling half the town.

Oil train accidents have not just taken place in other states, they have also happened closer to home. Pennsylvania has had three near misses in the last two years alone — one near Pittsburgh and two in Philadelphia. In all three cases, trains carrying this highly volatile Bakken crude derailed in densely populated areas, and in the derailment outside of Pittsburgh, 10,000 gallons of crude oil spilled. Fortunately these oil train accidents did not lead to explosions or fires.

All of these incidents point to one fact: that unless we take action to curb the growing threat of oil trains, the next time a derailment occurs an unsuspecting community may not be so lucky.

Bakken oil train routes often travel through high-density cities and neighborhoods, increasing the risk of a catastrophic accident for Pennsylvania’s residents. Reviewing GIS data and statewide rail routes from Oak Ridge National Laboratory, research by FracTracker and PennEnvironment show that millions of Pennsylvanians live within the potential evacuation zone (typically a half-mile radius around the train explosion ). Our findings include:

  • Over 3.9 million Pennsylvania residents live within a possible evacuation zone for an oil train accident.
  • These trains travel near homes, schools, and day cares, putting Pennsylvania’s youngest residents at risk. All told, more than 860,000 Pennsylvania children under the age of 18 live within the 1⁄2 mile potential evacuation zone for an oil train accident.
  • Philadelphia County has the highest at-risk population — Almost 710,000 people live within the half-mile evacuation zone. These areas include neighborhoods from the suburbs to Center City.
  • 16 of the 25 zip codes with the most people at risk — the top percentile in the state — are located in the city of Philadelphia.
  • The top five Pennsylvania cities with the most residents at risk are:
    • Philadelphia (709869, residents),
    • Pittsburgh (183,456 residents),
    • Reading (70,012 residents),
    • Scranton (61,004 residents), and
    • Erie (over 51,058 residents).

 

Bakken Crude Oil

How we get it and why we ship it

Bakken crude oil comes from drilling in the Bakken Formation, located in North Dakota. It contains deposits of both oil and natural gas, which can be accessed by hydraulic fracturing, or “fracking.” Until recent technological developments, the oil contained in the formation was too difficult to access to yield large production. But advances in this extraction technology since 2007 have transformed the area into a major oil producer — North Dakota now ranks second in the U.S. for oil production. The vast expansion of wells over the last 4 years (from 470 wells to over 3,300 today) means that there is more oil to transport to the market, both domestically and abroad. This increase is especially concerning considering that the U.S. Department of Transportation stated in early 2014 that Bakken crude oil may be more flammable than traditional crude, therefore making it more dangerous to transport by rail.

For More Information