The Mississippi Fracking Fight: Saving Forests, Woodpeckers, and the Climate

By Wendy Park, senior attorney with the Center for Biological Diversity

 

If the Bureau of Land Management (BLM) gets its way, large areas of Mississippi’s Bienville and Homochitto national forests will be opened up to destructive fracking. This would harm one of the last strongholds for the rare and beautiful red-cockaded woodpecker, create a new source of climate pollution, and fragment our public forests with roads, drilling pads and industrial equipment. That’s why we’re fighting back.

My colleagues and I at the Center for Biological Diversity believe that all species, great and small, must be preserved to ensure a healthy and diverse planet. Through science, law and media, we defend endangered animals and plants, and the land air, water, and climate they need. As an attorney with the Center’s Public Lands Program, I am helping to grow the “Keep It in the Ground” movement, calling on President Obama to halt new leases on federal lands for fracking, mining, and drilling that only benefit private corporations.

That step, which the president can take without congressional approval, would align U.S. energy policies with its climate goals and keep up to 450 billion tons of greenhouse gas pollution from entering the atmosphere. Already leased federal fossil fuels will last far beyond the point when the world will exceed the carbon pollution limits set out in the Paris Agreement, which seeks to limit warming to 1.5 °C above pre-industrial levels. That limit is expected to be exceeded in a little over four years. We simply cannot afford any more new leases.

Fracking Will Threaten Prime Woodpecker Habitat

In Mississippi, our concerns over the impact of fracking on the rare red-cockaded woodpecker and other species led us to administratively protest the proposed BLM auction of more than 4,200 acres of public land for oil and gas leases the Homochitto and Bienville national forests. The red-cockaded woodpecker is already in trouble. Loss of habitat and other pressures have shrunk its population to about 1% of its historic levels, or roughly 12,000 birds. In approving the auction of leases to oil and gas companies, BLM failed to meet its obligation to protect these and other species by relying on outdated forest plans, ignoring the impact of habitat fragmentation, not considering the effects of fracking on the woodpecker, and ignoring the potential greenhouse gas emissions from oil and gas taken from these public lands. The public was also not adequately notified of BLM’s plans.

 

Mississippi National Forests, Potential BLM Oil & Gas Leasing Parcels, and Red Cockaded Woodpecker Sightings


View map fullscreenHow FracTracker maps work

Fracking Consequences Ignored

According to the National Forest Service’s 2014 Forest Plan Environmental Impact Statement, core populations of the red-cockaded woodpecker live in both the Bienville and Homochitto national forests, which provide some of the most important habitat for the species in the state. The Bienville district contains the state’s largest population of these birds and is largely untouched by oil and gas development. The current woodpecker population is far below the target set by the U.S. Fish and Wildlife Service’s recovery plan. A healthy and fully recovered population will require large areas of mature forest. But the destruction of habitat caused by clearing land for drilling pads, roads, and pipelines will fragment the forest, undermining the species’ survival and recovery.

red-cockaded_woodpecker_insertNew leasing will likely result in hydraulic fracturing and horizontal drilling. In their environmental reviews, BLM and the Forest Service entirely ignore the potential for hydraulic fracturing and horizontal drilling to be used in the Bienville and Homochitto national forests and their effects on the red-cockaded woodpecker. Fracking would have far worse environmental consequences than conventional drilling. Effects include increased pollution from larger rigs; risks of spills and contamination from transporting fracking chemicals and storing at the well pad; concentrated air pollution from housing multiple wells on a single well pad; greater waste generation; increased risks of endocrine disruption, birth defects, and cardiology hospitalization; and the risk of earthquakes caused by wastewater injection and the hydraulic fracturing process (as is evident in recent earthquakes in Oklahoma and other heavily fracked areas).

Greenhouse Gas Emissions and Climate Change

Oil and gas development also results in significant greenhouse gas emissions from construction, operating fossil-fuel powered equipment during production, reclamation, transportation, processing and refining, and combustion of the extracted product. But BLM and the Forest Service have refused to analyze potential emissions or climate change effects from new leasing. Climate change is expected to worsen conditions for the woodpecker, compounding the harms of destructive drilling practices. Extreme weather events will become more frequent in the Southeast U.S. as temperatures rise. Hurricane Katrina resulted in significant losses of woodpecker habitat and birds in the Mississippi national forests. The Forest Service should be redoubling its efforts to restore and preserve habitat, but instead it is turning a blind eye to climate change threats.

At a time when world leaders are meeting in Morocco to discuss the climate crisis and scientists tell us we already have enough oil and gas fields operating to push us past dangerous warming thresholds, it’s deeply disturbing that the Obama administration continues to push for even more oil and gas leases on America’s public lands. The BLM’s refusal to acknowledge and analyze the effects of fracking on the climate, at-risk species, and their habitat, is not only inexcusable it is illegal. The science is clear: The best way to address catastrophic warming — and protect wildlife — is to keep fossil fuels in the ground.

Photographs for this article were sourced from the U.S. Department of Agriculture fair-use photostream.

Oil and gas production on public lands

Interactive maps show nearness of oil and gas wells to communities in 5 states

As an American, you are part owner of 640 million acres of our nation’s shared public lands managed by the federal government. And chances are, you’ve enjoyed a few of these lands on family picnics, weekend hikes or summer camping trips. But did you know that some of your lands may also be leading to toxic air pollution and poor health for you or your neighbors, especially in 5 western states that have high oil and gas drilling activity?

A set of new interactive maps created by FracTracker, The Wilderness Society, and partner groups show the threatened populations who live within a half mile of  federal oil and gas wells – people who may be breathing in toxic pollution on a regular basis.

Altogether, air pollution from oil and gas development on public lands threatens at least 73,900 people in the 5 western states we examined. The states, all of which are heavy oil and gas leasing areas, include ColoradoNew MexicoNorth DakotaUtah and Wyoming.

Close up of threat map in Colorado

Figure 1. Close up of threat map in Colorado

In each state, the data show populations living near heavy concentrations of wells. For example just northeast of Denver, Colorado, in the heavily populated Weld County, at least 11,000 people are threatened by oil and gas development on public lands (Figure 1).

Western cities, like Farmington, New Mexico; Gillette, Wyoming; and Grand Junction, Colorado are at highest risk of exposure from air pollution. In New Mexico, especially, concentrated oil and gas activity disproportionately affects the disadvantaged and minorities. Many wells can be found near population centers, neighborhoods and even schools.

Colorado: Wells concentrated on Western Slope, Front Range

Note: The threatened population in states are a conservative estimate. It is likely that the numbers affected by air pollution are higher.

In 2014, Colorado became the first state in the nation to try to curb methane pollution from oil and gas operations through comprehensive regulations that included inspections of oil and gas operations and an upgrade in oil and gas infrastructure technology. Colorado’s new regulations are already showing both environmental and financial benefits.

But nearly 16,000 people – the majority living in the northwestern and northeastern part of the state – are still threatened by pollution from oil and gas on public lands.

Many of the people whose health is endangered from pollution are concentrated in the fossil-fuel rich area of the Western Slope, near Grand Junction. In that area, three counties make up 65% of the total area in Colorado threatened by oil and gas development.

In Weld County, just northeast of Denver, more than 11,000 residents are threatened by air pollution from oil and gas production on federal lands. But what’s even more alarming is that five schools are within a half mile radius of wells, putting children at risk on a daily basis of breathing in toxins that are known to increase asthma attacks. Recent studies have shown children miss 500,000 days of school nationally each year due to smog related to oil and gas production.

State regulations in Colorado have helped improve air quality, reduce methane emissions and promote worker care and safety in the past two years, but federal regulations expected by the end of 2016 will have a broader impact by regulating pollution from all states.

New Mexico: Pollution seen from space threatens 50,000 people

With more than 30,000 wells covering 4.6 million acres, New Mexico is one of the top states for oil and gas wells on public lands. Emissions from oil and gas infrastructure in the Four Corners region are so great, they have formed a methane hot spot that has been extensively studied by NASA and is clearly visible from space.

Nearly 50,000 people in northwestern New Mexico – 40% of the population in San Juan County – live within a half mile of a well. 

Dangerous emissions from those wells in San Juan County disproportionately affect minorities and disadvantaged populations, with about 20% Hispanic, almost 40% Native American, and over 20% living in poverty.

Another hot spot of oil and activity is in southeastern New Mexico stretching from the lands surrounding Roswell to the southern border with Texas. Wells in this region also cover the lands outside of Carlsbad Caverns National Park, potentially affecting the air quality and visibility for park visitors. Although less densely populated, another 4,000 people in two counties – with around 50% of the population Hispanic – are threatened by toxic air pollution.

Wyoming: Oil and gas emissions add to coal mining pollution

Pollution from oil and gas development in Wyoming, which has about as many wells as New Mexico, is focused in the Powder River Basin. This region in the northeast of the state provides 40% of the coal produced in the United States.

Oil and gas pollution threatens approximately 4,000 people in this region where scarred landscapes and polluted waterways are also prevalent from coal mining. 

With the Obama administration’s current pause on federal coal leasing and a review of the federal coal program underway, stopping pollution from oil and gas on public lands in Wyoming would be a major step in achieving climate goals and preserving the health of local communities.

Utah: Air quality far below federal standards

Utah has almost 9,000 active wells on public lands. Oil and gas activity in Utah has created air quality below federal standards in one-third of Utah’s counties, heightening the risk of asthma and respiratory illnesses. Especially in the Uintah Basin in northeastern Utah – where the majority of oil and development occurs – a 2014 NOAA-led study found oil and gas activity can lead to high levels of ozone in the wintertime that exceed federal standards.

North Dakota: Dark skies threatened by oil and gas activity

The geology of western North Dakota includes the Bakken Formation, one of the largest deposits of oil and gas in the United States. As a result, high oil and gas production occurs on both private and public lands in the western part of the state.

Nearly 650 wells on public lands are clustered together here, directly impacting popular recreational lands like Theodore Roosevelt National Park.

The 70,000-plus-acre park – named after our president who first visited in 1883 and fell in love with the incredible western landscape – is completely surrounded by high oil and gas activity. Although drilling is not allowed in the park, nearby private and public lands are filled with active wells, producing pollution, traffic and noise that can be experienced from the park. Due to its remote location, the park is known for its incredible night sky, but oil and gas development increases air and light pollution, threatening visibility of the Milky Way and other astronomical wonders.

You own public lands, but they may be hurting you

Pollution from oil and gas wells on public lands is only a part of a larger problem. Toxic emissions from oil and gas development on both public and private lands threaten 12.4 million people living within a half mile of wells, according to an oil and gas threat map created by FracTracker for a project by Earthworks and the Clean Air Task Force.

Now that we can see how many thousands of people are threatened by harmful emissions from our public lands, it is more important than ever that we finalize strong federal regulations that will help curb the main pollutant of natural gas – methane – from being leaked, vented, and flared from oil and gas infrastructure on public lands.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

We need to clean up our air now

With U.S. public lands accounting for 1/5 of the greenhouse gas footprint in the United States, we need better regulations to reduce polluting methane emissions from the 96,000 active oil and gas wells on public lands.

Right now, the Bureau of Land Management is finalizing federal regulations that are expected by the end of 2016. These regulations are expected to curb emissions from existing sources – wells already in production – that are a significant source of methane pollution on public lands. This is crucial, since by 2018, it is estimated that nearly 90% of methane emissions will come from sources that existed in 2011.

Federal regulations by the BLM should also help decrease the risk to communities living near oil and gas wells and helping cut methane emissions by 40 to 45% by 2025 to meet climate change reduction goals.

Final regulations from the Bureau of Land Management will also add to other regulations from the EPA and guidance from the Obama administration to modernize energy development on public lands for the benefit of the American people, landscapes and the climate. In the face of a changing climate, we need to continue to monitor fossil fuel development on public lands and continue to push the government towards better protections for land, air, wildlife and local communities.


By The Wilderness Society – The Wilderness Society is the leading conservation organization working to protect wilderness and inspire Americans to care for our wild places. Founded in 1935, and now with more than 700,000 members and supporters, The Wilderness Society has led the effort to permanently protect 109 million acres of wilderness and to ensure sound management of our shared national lands.

Photo by David Nix 2015

Documenting Oil and Gas Industry Damage in North Dakota

North Dakota is now in its third oil boom due to the drilling technologies of horizontal drilling and hydraulic fracturing that have made once-inaccessible oil accessible. The Bakken formation covers western North Dakota, eastern Montana, and parts of Manitoba and Saskatchewan. At the height of the boom in 2014, just under 12,000 wells were active across the west, extracting 1.1 million barrels (bbl) of oil per day and flaring at 32%. The boom has bumped North Dakota to the second largest oil and gas producing state, second only to Texas.

Dakota Resource Council (DRC) is a member-led, grassroots organization that has been working in extraction-impacted communities in North Dakota since 1978. DRC’s members work on oil and gas campaigns that aim to eliminate impacts to land, air, water, and livelihoods of the citizens of North Dakota. Campaign issues on oil and gas industry damage include: flaring, pipelines, radioactive/oilfield waste, state accountability, and oil-by-rail.

The following photos from DRC show impacts of current and legacy oil and gas extraction in western North Dakota – an area in the heart of the Bakken that is historically a rich agricultural and ranching region. The vast contrast between the two industries are not complementary.

Bear Den Bay Incident

Fort Berthold Indian Reservation is the epicenter of fracking in the Bakken. On July 8, 2014 a wastewater pipeline rupture was accidentally discovered in rural Mandaree on the reservation. The pipeline is owned by Crestwood Midstream, LLC – a Texas-based company.

An estimated 1 million gallons of toxic saltwater ran down a ravine, ending up in the tributary of Bear Den Bay, which is located ¼ mile from the city of Mandaree’s water intake. The spill was contained, but the state doesn’t know exactly how much waste went into the bay. Tribal administration released a statement that beaver dams prevented the fluids from reaching the lake.

Weeks after the incident Crestwood released a statement saying:

… while assessment of the effect is ongoing, examination and testing to date show that an area of grass, brush and trees about 200 yards long sustained damage. Some produced water ran down a ravine into natural pools in a small stream at the bottom, but it appears that the produced water stopped there… The impact on fish and wildlife appears to have been minimal, in fact beavers, turtles, frogs, deer and pelicans have been seen returning to and re-inhabiting the impacted area.

To date, there has been no penalty for the damage that has been done to the land and reclamation is ongoing. Below are photos documenting the incident’s effects:

The Legacy of North Dakota Oil Booms

Western North Dakota has weathered through two previous oil booms in the early 1950’s and 1980’s. Previous booms left behind infrastructure that sits abandoned today. Due to hydraulic fracking technology, once-inaccessible oil is now accessible. These pre-existing wells are called legacy wells, that produce roughly 5% of North Dakota’s 1.2 million barrels per day.

Much of these wells contain infrastructure that has been in place for over 60 years. Pipelines have not been mapped or regulated in North Dakota until recently. Farmers are finding underground tanks and pipelines filled with toxic sludge. Just like previous oil booms, North Dakota was not prepared for the cost of extraction. Scroll through the following gallery showing a variety of legacy sites in ND.


By Nicole Donaghy, Dakota Resource Council

Brook Lenker, Executive Director, FracTracker

Staff Spotlight: Brook Lenker

As the last article in our staff spotlight series, learn more about Executive Director, Brook Lenker, and how his early environmental work in Pennsylvania brought him to FracTracker Alliance.

Time with FracTracker: 5 years

Education: I graduated from Towson University near Baltimore in 1989 with a degree in geography and environmental planning. I loved the course of study so much that I enrolled in the graduate school and worked on my master’s degree in the same field.

Office Location: Camp Hill, PA

Title: Executive Director

What do you actually do in that role?

From my office in Camp Hill, I lead a wonderful, talented team of eight staff working from five locations around the country. My role is to make sure FracTracker has the strategic direction, staff capacity, financial resources, and board leadership to be effective, impactful.

Previous Positions and Organizations

YBWA cleanup 2013 Brook on creek

Brook during a creek cleanup

While I was evening commuting to Maryland, I served as program director for a county recreation department in Central Pennsylvania. Later, I landed a position with the Alliance for the Chesapeake Bay, eventually becoming the Director of Watershed Stewardship. The activities we coordinated – river sojourns, stream and habitat restoration, stormwater education, and more – took me around the multi-state watershed even though I was based in Harrisburg.

My next stop was the Pennsylvania Department of Conservation and Natural Resources where for over seven years I served as the Manager of Education and Outreach. My responsibilities included community relations and promoting ecological awareness and stewardship. A program called iConservePA was a focal point. My colleagues and I used creative communications strategies to encourage Pennsylvanians to “Take Conservation Personally.” This and other agency initiatives suffered when fracking began to boom.

How did you first get involved working on oil and gas issues / fracking?

As I became demoralized by the degradation I witnessed and read about, I was given the chance to direct FracTracker. I took the reins in late 2011 as the website transitioned out of the University of Pittsburgh. By the summer of 2012, we formed the nonprofit FracTracker Alliance, and I became its executive director. Sometimes things happen for a reason.

It’s hard to believe I’ve been at the helm of FracTracker for nearly five years. Knowing that we’re a helpful force in the fight against the harms of extraction is rewarding. The projects and the people with whom I interact are inspiring. While the challenges facing our planet are daunting and, at times, depressing, I’m lucky to be able to exercise my convictions in the workplace.

What is one of the most impactful projects that you have been involved in with FracTracker?

Brook Lenker in Argentina

Brook Lenker in Argentina

It’s been an unforgettable journey so far. I’ve learned so much and met so many great people – from different states and different countries. Perhaps my greatest experience to date was a tour to Argentina in May 2015. Alongside reps from Ecologic Institute and Earthworks, we presented to hundreds of people at different venues including the senate of Argentina. As I spoke of the insights of FracTracker and other researchers, an interpreter put my words into Spanish. I felt overwhelmingly humble and grateful.

Environmental injustice knows no bounds, but good people everywhere make a profound difference.

Screenshot from Vulnerable Populations Map

Sensitive Receptors near Fracked Oil & Gas Wells

EnvironmentAmerica_reportcover

Cover of Dangerous and Close report. Click to view report

FracTracker Alliance has been working with the Frontier Group and Environment America on a nationwide assessment of “fracked” oil and gas wells. The report is titled Dangerous and Close, Fracking Puts the Nation’s Most Vulnerable People at Risk. The assessment analyzed the locations of fracked wells and identified where the fracking has occurred near locations where sensitive populations are commonly located. These sensitive sites include schools and daycare facilities because they house children, hospitals because the sick are not able to fight off pollution as effectively, and nursing homes where the elderly need and deserve clean environments so that they can be healthy, as well. The analysis used data on fracked wells from regulatory agencies and FracFocus in nine states. Maps of these nine states, as well as a full national map are shown below.

No one deserves to suffer the environmental degradation that can accompany oil and gas development – particularly “fracking” – in their neighborhoods. Fracked oil and gas wells are shown to have contaminated drinking water, degrade air quality, and sicken both aquatic and terrestrial ecosystems. Additionally, everybody responds differently to environmental pollutants, and some people are much more sensitive than others. In fact, certain sects of the population are known to be more sensitive in general, and exposure to pollution is much more dangerous for them. These communities and populations need to be protected from the burdens of industries, such as fracking for oil and gas, that have a negative effect on their environment. Commonly identified sensitive groups or “receptors” include children, the immuno-compromised and ill, and the elderly.  These groups are the focus of this new research.

 

National Map

National interactive map of sensitive receptors near fracked wells


View Map Fullscreen | How Our Maps Work

State-By-State Maps in Dangerous and Close Report

Click to view interactive maps associated with each state

Colonial Pipeline and site of Sept 2016 leak in Alabama

A Proper Picture of the Colonial Pipeline’s Past

On September 9, 2016 a pipeline leak was detected from the Colonial Pipeline by a mine inspector in Shelby County, Alabama. It is estimated to have spilled ~336,000 gallons of gasoline, resulting in the shutdown of a major part of America’s gasoline distribution system. As such, we thought it timely to provide some data and a map on the Colonial Pipeline Project.

Figure 1. Dynamic map of Colonial Pipeline route and related infrastructure

View Map Fullscreen | How Our Maps Work | The Sept. 2016 leak occurred in Shelby County, Alabama

Pipeline History

The Colonial Pipeline was built in 1963, with some segments dating back to at least 1954. Colonial carries gasoline and other refined petroleum projects throughout the South and Eastern U.S. – originating at Houston, Texas and terminating at the Port of New York and New Jersey. This ~5,000-mile pipeline travels through 12 states and the Gulf of Mexico at one point. According to available data, prior to the September 2016 incident for which the cause is still not known, roughly 113,382 gallons had been released from the Colonial Pipeline in 125 separate incidents since 2010 (Table 1).

Table 1. Reported Colonial Pipeline incident impacts by state, between 3/24/10 and 7/25/16

State Incidents (#) Barrels* Released Total Cost ($)
AL 10 91.49 2,718,683
GA 11 132.38 1,283,406
LA 23 86.05 1,002,379
MD 6 4.43 27,862
MS 6 27.36 299,738
NC 15 382.76 3,453,298
NJ 7 7.81 255,124
NY 2 27.71 88,426
PA 1 0.88 28,075
SC 9 1639.26 4,779,536
TN 2 90.2 1,326,300
TX 19 74.34 1,398,513
VA 14 134.89 15,153,471
Total** 125 2699.56 31,814,811
*1 Barrel = 42 U.S. Gallons

** The total amount of petroleum products spilled from the Colonial Pipeline in this time frame equates to roughly 113,382 gallons. This figure does not include the September 2016 spill of ~336,000 gallons.

Data source: PHMSA

Unfortunately, the Colonial Pipeline has also been the source of South Carolina’s largest pipeline spill. The incident occurred in 1996 near Fork Shoals, South Carolina and spilled nearly 1 million gallons of fuel into the Reedy River. The September 2016 spill has not reached any major waterways or protected ecological areas, to-date.

Additional Details

Owners of the pipeline include Koch Industries, South Korea’s National Pension Service and Kohlberg Kravis Roberts, Caisse de dépôt et placement du Québec, Royal Dutch Shell, and Industry Funds Management.

For more details about the Colonial Pipeline, see Table 2.

Table 2. Specifications of the Colonial and/or Intercontinental pipeline

Pipeline Segments 1,1118
Mileage (mi.)
Avg. Length 4.3
Max. Length 206
Total Length 4,774
Segment Flow Direction (# Segments)
Null 657
East 33
North 59
Northeast 202
Northwest 68
South 20
Southeast 30
Southwest 14
West 35
Segment Bi-Directional (# Segments)
Null 643
No 429
Yes 46
Segment Location
State Number Total Mileage Avg. Mileage Long Avg. PSI Avg. Diameter (in.)
Alabama 11 782 71 206 794 35
Georgia 8 266 33 75 772 27
Gulf of Mexico 437 522 1.2 77 50 1.4
Louisiana 189 737 3.9 27 413 11
Maryland 11 68 6.2 9 781 30
Mississippi 63 56 0.9 15 784 29
North Carolina 13 146 11.2 23 812 27
New Jersey 65 314 4.8 28 785 28
New York 2 6.4 3.2 6.4 800 26
Pennsylvania 72 415 5.8 17 925 22
South Carolina 6 119 19.9 55 783 28
Texas 209 1,004 4.8 33 429 10
Virginia 32 340 10.6 22 795 27
PSI = Pounds per square inch (pressure)

Data source: US EIA


By Sam Rubright, Ted Auch, and Matt Kelso – FracTracker Alliance

Chieftain Sands - Chetek WI Mine North

Frac Sand Photos Available on FracTracker.org

With the advent of hydraulic fracturing to increase production of oil and gas from tight geologic formations, such as shale, the demand for fracking sand (frac sand, or frack sand) has increased drastically in recent years. What does this process look like, you might ask. To help you understand this subsidiary of the oil and gas industry, we’ve compiled all of our frac sand photos into three albums on the topic.

Frac Sand Mining Photo Album

This album contains all of the photos we have amassed of frac sand mining and transportation operations – both from the ground and the sky.


Flyover Tours

We have also been fortunate enough to receive two flyover tours of frac sand mining taking place in 2013 and 2016 by LightHawk.


View All Albums

All of these frac sand photos, and more, can also be found on our Energy Imagery page, organized by topic and also location.

If you have photos or videos that you would like to contribute to this growing collection of publicly available information, just email us at info@fractracker.org, along with where and when the imagery was taken, and by whom.

Wastewater Disposal Facility in Colorado

Groundwater Threats in Colorado

FracTracker has been increasingly looking at oil and gas drilling in Colorado, and we’re finding some interesting and concerning issues to highlight. Firstly, operators in Colorado are not required to report volumes of water use or freshwater sources. Additionally, this analysis looked at how wastewater in Colorado is injected, and found that the majority is injected into Class II disposal wells (85%) while recycling wastewater is not common. Open-air pits for evaporation and percolation of wastewater is still a common practice. Colorado has at least 340 zones granted aquifer exemptions from the Clean Water Act for injecting wastewater into groundwater. The analysis also found that Weld County produces the most oil and gas in the state, while Rio Blanco and Las Animas counties produce more wastewater. And finally, Rio Blanco injects the most wastewater of all Colorado counties. Learn more about groundwater threats in Colorado below:

Introduction

Working directly with communities in Weld County, Colorado the FracTracker Alliance has identified issues concerning oil and gas exploration and production in Colorado that are of particular concern to community stakeholder groups. The issues include air quality degradation, environmental justice concerns for communities most impacted by oil and gas extraction, and leasing of federal mineral estates. Analysis of data for Colorado’s Front Range has identified areas where setback regulations are not followed or are inadequate to provide sufficient protections for individuals and communities and our analysis of floodplains shows where oil and gas operations pose a significant risk to watersheds. In this article we focus on the specific threat to groundwater resources as a result of particular waste disposal methods, namely underground injection and land application in disposal pits and sumps. We also focus on the sources of the immense amount of water necessary for fracking and other extraction processes.

Groundwater Threats

Numerous threats to groundwater are associated with oil and gas drilling, including hydraulic fracturing. Research from other regions shows that the majority of groundwater contamination events actually occur from on-site spills and poor management and disposal of wastes. Disposal and storage sites and spill events can allow the liquid and solid wastes to leach and seep into groundwater sources. There have been many groundwater contamination events documented to have occurred in this manner. For example, in 2013, flooding in Colorado inundated a main center of the state’s drilling industry causing over 37,380 gallons of oil to be spilled from ruptured pipelines and damaged storage tanks that were located in flood-prone areas. There are serious concerns that the oil-laced floodwaters have permanently contaminated groundwater, soil, and rivers.

Waste Management

In Colorado, wastes are managed several ways. If the wastewater is not recycled and used again in other production processes such as hydraulic fracturing, drilling fluids disposal must follow one of three rules:

  1. Treated at commercial facilities and discharged to surface water,
  2. Injected in Class II injection wells, or
  3. Stored and applied to the land and disposal pits at centralized exploration and production waste management facilities.

Additionally the wastes can be dried and buried in additional drilling pits, with restrictions for crop land. For oily wastes, those containing crude oil, condensate or other “hydrocarbon-containing exploration and production waste,” there are additional land application restrictions that mostly require prior removal of free oil. These various sites and facilities are mapped below, along with aquifer exemptions and other map layers related to water quality.

Figure 1. Interactive map of groundwater threats in Colorado


View Map Fullscreen | How Our Maps Work

Injection Wells

In 2015, Colorado injected a total of 649,370,514 barrels of oil and gas wastewater back into the ground. That is 27,273,561,588 gallons, which would fill over 41,000 Olympic sized swimming pools. Injected into the ground in deep formations, this water is forever removed from the water cycle.

Allowable injection fluids include a variety of things you do not want to drink:

  • Produced Water
  • Drilling Fluids
  • Spent Well Treatment or Stimulation Fluids
  • Pigging (Pipeline Cleaning) Wastes
  • Rig Wash
  • Gas Plant Wastes such as:
    • Amine
    • Cooling Tower Blowdown
    • Tank Bottoms

This means that federal exemptions to Underground Injection Control (UIC) regulations for oil and gas exploration and production have nothing to do with environmental chemistry and risk, and only consider fluid source.

Why the concern?

Why are we concerned about these wastes? To quote the regulation, “it is possible for an exempt waste and a non-exempt hazardous waste to be chemically very similar” (RCRA). Since oil and gas development is considered part of the United State’s strategic energy policy, the entire industry is exempt from many federal regulations, such as the Safe Drinking Water Act (SDWA), which protects underground sources of drinking water (USDW).

The Colorado Oil and Gas Conservation Commission has primacy over the UIC permits and the Colorado Department of Public Health and Environment (CDPHE) administers the environmental protection laws related to air quality, waste discharge to surface water, and commercial disposal facilities. Under the UIC program, operators are legally allowed to inject wastewater containing heavy metals, hydrocarbons, radioactive elements, and other toxic and carcinogenic chemicals into groundwater aquifers.

The State of CO Injection Wells

According to the COGCC production reports for the year 2015, there are 9,591 active injection wells with volumes reported to the regulatory agency. Additionally, there are of course distinctions within the UIC rules for different types of injection wells, although the COGCC does not provide comprehensive data to distinguish between these types.

Injecting into the same geological formation or “zone” as producing wells is typically considered EOR, although some of the injected water will ultimately remain in the ground. Injecting into a producing formation is an immediate qualification for receiving an aquifer exemption.

EOR operations require considerably more energy and resources than conventional wells, and therefore have a higher water carbon footprint. If the wastewater is “recycled” as hydraulic fracturing fluid, the injections are exempt from all UIC regulations regardless. These are two options for the elimination of produced wastewater, although much of it will return to the surface in the future along with other formation waters. When the produced waters reach a certain level of salinity the fluid can no longer be used in enhanced recovery or stimulation, so final disposal of wastewater is typically necessary. These liquid wastes may then go to UIC Class II Disposal Wells.

Class II Injection Wells

The wells injecting into non-producing formations are therefore disposal wells, since they are not “enhancing production.” Of the almost 10,000 active injection wells in Colorado there are OVER 670 class II disposal well facilities; 402 facilities are listed as currently active. These facilities may or may not host multiple wells. By filtering the COGCC production and injection well database by target formation, we find that there are over 1,070 wells injecting into non-producing formations. These disposal wells injected at least 66,193,874 barrels (2,780,142,708 gallons) of wastewater in 2015 alone.

Where is the waste going?

A simple life-cycle assessment of wastewater in Colorado shows that the majority of produced water is injected back underground into class II disposal and EOR wells. The percentage of injected produced waters has been increasing since 2012, and in 2015 85% of the total volume of produced water in 2015 was injected.

If we assume that all the volume injected was produced wastewater, this still leaves 60 million barrels of produced water unaccounted for. Some of this volume may have been recycled and used for hydraulic fracturing, but this is rarely the case. Other options for disposal include commercial oilfield wastewater disposal facilities (COWDF) that use wastewater sumps (pits) for evaporation and percolation, as well as land application, to dilute the solid and liquid wastes by mixing them into soil.

Centralized Exploration and Production Waste Management Facilities

Photo by COGCC

Figure 2. Chevron Wastewater Land Application and Pit “Disposal” Facility. Photo by COGCC

According to the COGCC, there are 40 active and 71 total “centralized exploration and production waste management facilities” in Colorado. These facilities, mapped in Figure 1 above, are mostly open-air pits used for storage or disposal, or land-application sites.

As can be seen in the Figure 2 to the right, land application sites are little more than farms that don’t grow anything, where wastewater is mixed with soil. Groundwater monitoring wells around these sites measure the levels of some contaminants. Inspection reports show that sampling of the wastewater is not usually – if ever – conducted. The only regulatory requirement is that oil is not visibly noticeable as a sheen on the wastewater fluids in impoundments, such as the one in Figure 3 below, operated by Linn Operating Inc., which is covered in an oily sheen.

In most other hydrocarbon producing states, open-air pits or sumps are not allowed for a variety of reasons. At FracTracker, we have covered this issue in other states, as well. In New Mexico, for example, the regulatory agency outlawed the use of pits after finding cased where 369 pits were documented to have contaminated groundwater. California is another state that still uses above ground pits for disposal. At sites in California, plumes of contaminants are being monitored as they spread from the facilities into surrounding regions of groundwater. Additionally, these wastewater pit disposal sites present hazards for birds and wildlife. There have been a number of papers documenting bird deaths in pits, and the risk for migratory bird species is of high concern. Other states like California are struggling with the issue of closing these types of open-air pit facilities. Closing these facilities means that more wastewater will be injected in Class II disposal wells.

Linnoilypit

Figure 3. Linn energy oily wastewater disposal pit

Production and Injection Volumes

The data published by the COGCC for well production and injection volumes shows some unique trends. An analysis of injection and production well volumes shows Class II Injection is tightly connected to exploration and production activities. This finding is not surprising. Class II injection wells are considered a support operation for the production wells, and therefore should be expected to be similarly related. Wastewater injection wells are needed where oil and gas extraction is occurring, particularly during the exploration and drilling phases.

Looking at the graphs in Figures 4-6 below, it is obvious that injection volumes have been consistently tied to production of wastewater. It is also clear that the trend since 2012 shows that an increasingly larger percentage of wastewater is being injected each year. This trend follows the sharp increase in high volume hydraulic fracturing activity that occurred in 2012. During this boom in exploration and drilling activity, recycling of flowback for additional hydraulic fracturing activities most likely accounts for some of the discrepancy in accounting for the fact that 200% more wastewater was produced than was injected in 2012.

When Figure 4 (below) is compared to the graphs in Figures 5 and 6 (further below) it is also interesting to note that produced water volumes in 2015 are at a 5-year low as of 2015, while production volumes of both natural gas and oil are at a 5-year high. Wastewater volumes are linked to production volumes, but there are many other factors, including geological conditions and types of extraction technologies being used, that have a massive affect on wastewater volumes.

CO wastewater Volumes by year

Figure 4. Colorado wastewater volumes by year (barrels)

The graphs in Figures 5 and 6 below show different trends. Gas production in Colorado has remained relatively constant over the last five years with a sharp increase in 2015, while oil production volumes have been continually increasing, with the largest increase of 49% from 2014 to 2015, and 46% the year prior.

Figures 5-6

Colorado’s Front Range, specifically Weld County, is increasing oil production at a fast rate. New multi-well well-pads are being permitted in neighborhoods and urban and suburban communities without consideration for even elementary schools. Weld County currently has 2,169 new wells permitted within the county. The figure is higher than the next 9 counties combined. The other top three counties with the most well permits are 2. Garfield (1,130) and 3. Rio Blanco (189), for perspective. Additionally, 74% of pending permits for new wells are located in Weld County.

How Counties Compare

The top 10 counties for oil production are very similar to the top 10 counties for both produced and injected volumes, although there are some inconsistencies (Table 1). For example, Las Animas County produces the second largest amount of produced wastewater, but is not in the top 10 of oil producing counties. This is because the majority of wells in Las Animas County produce natural gas. Natural gas wells do not typically produce as much wastewater as oil wells. The counties and areas with the most oil and gas production are also the regions with the most injection and surface waste disposal, and therefore surface water and groundwater degradation.

Table 1. Top 10 CO counties for gas production, oil production, wastewater production, and injection volumes in 2015.

Gas Production Oil Production Wastewater Production Injection Volumes
Rank County Gas1 County Oil2 County Water2 County Water2
1 Weld 568,919,168 Weld 112,898,400 Rio Blanco 113,132,037 Rio Blanco 138,502,742
2 Garfield 556,855,359 Rio Blanco 4,412,578 Las Animas 45,868,907 Weld 50,360,796
3 La Plata 322,029,940 Gardield 1,744,900 Weld 37,665,571 Garfield 29,022,147
4 Las Animas 78,947,042 Araahoe 1,661,204 Garfield 34,704,673 La Plata 23,211,646
5 Rio Blanco 57,284,876 Lincoln 1,194,435 Washington 25,075,998 Washington 15,105,886
6 Mesa 32,200,936 Cheyenne 1,192,162 La Plata 23,352,861 Las Animas 13,706,555
7 Yuma 25,960,947 Adams 664,530 Cheyenne 9,326,944 Cheyenne 10,309,413
8 Archuleta 13,648,006 Moffat 419,893 Moffat 7,712,323 Logan 5,930,937
9 Moffat 13,610,219 Washington 413,603 Logan 5,606,828 Mesa 5,611,075
10 Gunnison 4,805,541 Jackson 407,537 Morgan 4,197,849 La Plata 4,992,391
1. Units are in MCF = Thousand cubic feet of natural gas;
2. Units are in Barrels

Aquifer Exemptions

Operators are given permission by the U.S. EPA to inject wastewater into groundwater aquifers in certain locations where groundwater formations are particularly degraded or when operators are granted aquifer exemptions. Aquifer exemptions are not regions where the groundwater is not suitable for use as drinking water. Quite the contrary, as any aquifer with groundwaters above a 10,000 ppm total dissolved solids (TDS) threshold are fast-tracked for injection permits. When the TDS is below 10,000 ppm operators can apply for an exemption from SDWA (safe drinking water act) for USDWs (underground sources of drinking water), which otherwise protects these groundwater sources. An exemption can be granted for any of the following three reasons. The formation is:

  • hydrocarbon producing,
  • too deep to economically access, or
  • too “contaminated” to economically treat.

Since the first requirement is enough to satisfy an exemption, most class II wells are located within oil and gas fields. Other considerations include approval of mineral owners’ permissions within ¼ mile of the well. On the map above, you can see the ¼ mile buffers around active injection wells. If you live in Colorado, and suspect you live within the ¼ mile buffer of an injection well, you can input an address into the search field in the top-right corner of the map to fly to that location.

Sources of Water

The economic driver for increasing wastewater recycling is mostly influenced by two factors. First, states with many class II disposal wells, like Colorado, have much lower costs for wastewater disposal than states like Pennsylvania, for example. Additionally, the cost of water in drought-stricken states makes re-use more economically advantageous.

These two factors are not weighted evenly, though. On the Colorado front range, water scarcity should make recycling and reuse of treated wastewater a common practice. The stress of sourcing fresh water has not yet become a finanacial restraint for exploration and production. Water scarcity is an issue, but not enough to motivate operators to recycle. According to an article by Small, Xochitl T (2015) “Geologic factors that impact cost, such as water quality and availability of disposal methods, have a greater impact on decisions to recycle wastewater from hydraulic fracturing than water scarcity.” As long as it is cheaper to permit new injection wells and contaminate potential USDW’s than to treat the wastewater, recycling practices will be largely ignored. Even in Colorado’s arid Front Range where the demand for freshwater frequently outpaces supply, recycling is still not common.

Fresh Water Use

The majority of water used for hydraulic fracturing is freshwater, and much of it is supplied from municipal water systems. There are several proposals for engineering projects in Colorado to redirect flows from rivers to the specific municipalities that are selling water to oil and gas operators. These projects will divert more water from the already stressed watersheds, and permanently remove it from the water cycle.

The Windy Gap Firming Project, for example, plans to dam the Upper Colorado River to divert almost 10 billion gallons to six Front Range cities including Loveland, Longmont, and Greeley. These three cities have sold water to operators for fracking operations. Greeley in particular began selling 1,500 acre-feet (500 million gallons) to operators in 2011 and that has only increased . The same thing is happening in Fort Lupton, Frederick, Firestone, and in other communities. Additionally, the Northern Integrated Supply Project proposes to drain an additional 40,000 acre feet/year (13 billion gallons) out of the Cache la Poudre River northwest of Fort Collins. The Seaman Reservoir Project by the City of Greeley on the North Fork of the Cache la Poudre River proposes to drain several thousand acre feet of water out of the North Fork and the main stem of the Cache la Poudre. And finally, the Flaming Gorge Pipeline would take up to 250,000 acre feet/year (81 billion gallons) out of the Green and Colorado Rivers systems, among others.

Other Water Sources

Unfortunately, not much more is known about sources and amounts of water for used for fracking or other oil and gas development operations. Such a data gap seems ridiculous considering the strain on freshwater sources in eastern Colorado and the Front Range, but regulators do not require operators to obtain permits or even report the sources of water they use. Legislative efforts to require such reporting were unsuccessful in 2012.

Now that development and fracking operations are continuously moving into urban and residential areas and neighborhoods, sourcing water will be as easy as going to the nearest fire hydrant. Allowing oil and gas operators to use municipal water sources raises concerns of conflicts of interest and governmental corruption considering public water systems are subsidized by local taxpayers, not well sites.

Conclusions

In Colorado, exploration and drilling for oil and natural gas continues to increase at a fast pace, while the increase in oil production is quite staggering. As this trend continues, the waste stream will continue to grow with production. This means more Class II injection wells and other treatment and disposal options will be necessary.

While other states are working to end the practices that have a track record of surface water and groundwater contamination, Colorado is issuing new permits. Colorado has issued 7 permits for CEPWMF’s in 2016 alone, some of them renewals. While there aren’t any eco-friendly methods of dealing with all the wastewater, the use of pits and land application presents high risk for shallow groundwater aquifers. In addition, sacrificing deep groundwater aquifers with aquifer exemptions is not a sustainable solution. These are important considerations beyond the obvious contribution of carbon dioxide and methane to the issue of climate change when considering the many reasons why hydrocarbon fuels need to be eliminated in favor of clean energy alternatives.


By Kyle Ferrar, Western Program Coordinator & Kirk Jalbert, Manager of Community Based Research & Engagement, FracTracker Alliance

Cover photo by COGCC

Energy-related story maps

Energy-Related Story Maps for Grades 6-10

Over the past half year, FracTracker staffer Karen Edelstein has been working with a New York State middle school teacher, Laurie Van Vleet, to develop a series of interdisciplinary, multimedia story maps addressing energy issues. The project is titled “Energy Decisions: Problem-Based Learning for Enhancing Student Motivation and Critical Thinking in Middle and High School Science.” It uses a combination of interactive maps generated by FracTracker, as well as websites, dynamic graphics, and video clips that challenge students to become both more informed about energy issues and climate change and more critical consumers of science media.

Edelstein and VanVleet have designed energy-related story maps on a range of topics. They are targeted at 6th through 8th grade general science, and also earth science students in the 8th and 10th grades. Story map modules include between 10 and 20 pages in the story map. Each module also includes additional student resources and worksheets for students that help direct their learning routes through the story maps. Topics range from a basic introduction to energy use, fossil fuels, renewable energy options, and climate change.

The modules are keyed to the New York State Intermediate Level Science Standards. VanVleet is partnering with Ithaca College-based Project Look Sharp in the development of materials that support media literacy and critical thinking in the classroom.

Explore each of the energy-related story maps using the links below:

Energy-related story maps

Screenshot from Energy Basics story map – Click to explore the live story map

This unique partnership between FracTracker, Project Look Sharp, and the Ithaca City School District received generous support from IPEI, the Ithaca Public Education Imitative. VanVleet will be piloting the materials this fall at Dewitt and Boynton Middle Schools in Ithaca, NY. After evaluating responses to the materials, they will be promoted throughout the district and beyond.

Zoning in SW PA map

Oil & Gas Zoning in Southwestern Pennsylvania