JOSHUA DOUBEK / WIKIMEDIA COMMONS

Groundwater risks in Colorado due to Safe Drinking Water Act exemptions

Oil and gas operators are polluting groundwater in Colorado, and the state and U.S. EPA are granting them permission with exemptions from the Safe Drinking Water Act.

FracTracker Alliance’s newest analysis attempts to identify groundwater risks in Colorado groundwater from the injection of oil and gas waste. Specifically, we look at groundwater monitoring data near Class II underground injection control (UIC) disposal wells and in areas that have been granted aquifer exemptions from the underground source of drinking water rules of the Safe Drinking Water Act (SDWA). Momentum to remove amend the SDWA and remove these exemption.

Learn more about Class II injection wells.

Aquifer exemptions are granted to allow corporations to inject hazardous wastewater into groundwater aquifers. The majority, two-thirds, of these injection wells are Class II, specifically for oil and gas wastes.

What exactly are aquifer exemptions?

The results of this assessment provide insight into high-risk issues with aquifer exemptions and Class II UIC well permitting standards in Colorado. We identify areas where aquifer exemptions have been granted in high quality groundwater formations, and where deep underground aquifers are at risk or have become contaminated from Class II disposal wells that may have failed.

Of note: On March 23, 2016, NRDC submitted a formal petition urging the EPA to repeal or amend the aquifer exemption rules to protect drinking water sources and uphold the Safe Drinking Water Act. Learn more

Research shows injection wells do fail

co_classiiwellexplosion

Class II injection well in Colorado explodes and catches fire. Photo by Kelsey Brunner for the Greeley Tribune.

Disposal of oil and gas wastewater by underground injection has not yet been specifically researched as a source of systemic groundwater contamination nationally or on a state level. Regardless, this issue is particularly pertinent to Colorado, since there are about 3,300 aquifer exemptions in the US (view map), and the majority of these are located in Montana, Wyoming, and Colorado. There is both a physical risk of danger as well as the risk of groundwater contamination. The picture to the right shows an explosion of a Class II injection well in Greeley, CO, for example.

Applicable and existing research on injection wells shows that a risk of groundwater contamination of – not wastewater – but migrated methane due to a leak from an injection well was estimated to be between 0.12 percent of all the water wells in the Colorado region, and was measured at 4.5 percent of the water wells that were tested in the study.

A recent article by ProPublica quoted Mario Salazar, an engineer who worked for 25 years as a technical expert with the EPA’s underground injection program in Washington:

In 10 to 100 years we are going to find out that most of our groundwater is polluted … A lot of people are going to get sick, and a lot of people may die.

Also in the ProPublic article was a study by Abrahm Lustgarten, wherein he reviewed well records and data from more than 220,000 oil and gas well inspections, and found:

  1. Structural failures inside injection wells are routine.
  2. Between 2007-2010, one in six injection wells received a well integrity violation.
  3. More than 7,000 production and injection wells showed signs of well casing failures and leakage.

This means disposal wells can and do fail regularly, putting groundwater at risk. According to Chester Rail, noted groundwater contamination textbook author:

…groundwater contamination problems related to the subsurface disposal of liquid wastes by deep-well injection have been reviewed in the literature since 1950 (Morganwalp, 1993) and groundwater contamination accordingly is a serious problem.

According to his textbook, a 1974 U.S. EPA report specifically warns of the risk of corrosion by oil and gas waste brines on handling equipment and within the wells. The potential effects of injection wells on groundwater can even be reviewed in the U.S. EPA publications (1976, 1996, 1997).

As early as 1969, researchers Evans and Bradford, who reported on the dangers that could occur from earthquakes on injection wells near Denver in 1966, had warned that deep well injection techniques offered temporary and not long-term safety from the permanent toxic wastes injected.

Will existing Class II wells fail?

For those that might consider data and literature on wells from the 1960’s as being unrepresentative of activities occurring today, of the 587 wells reported by the Colorado’s oil and gas regulatory body, COGCC, as “injecting,” 161 of those wells were drilled prior to 1980. And 104 were drilled prior to 1960!

Wells drilled prior to 1980 are most likely to use engineering standards that result in “single-point-of-failure” well casings. As outlined in the recent report from researchers at Harvard on underground natural gas storage wells, these single-point-of-failure wells are at a higher risk of leaking.

It is also important to note that the U.S. EPA reports only 569 injection wells for Colorado, 373 of which may be disposal wells. This is a discrepancy from the number of injection wells reported by the COGCC.

Aquifer Exemptions in Colorado

According to COGCC, prior to granting a permit for a Class II injection well, an aquifer exemption is required if the aquifer’s groundwater test shows total dissolved solids (TDS) is between 3,000 and 10,000 milligrams per liter (mg/l). For those aquifer exemptions that are simply deeper than the majority of current groundwater wells, the right conditions, such as drought, or the needs of the future may require drilling deeper or treating high TDS waters for drinking and irrigation. How the state of Colorado or the U.S. EPA accounts for economic viability is therefore ill-conceived.

Data Note: The data for the following analysis came by way of FOIA request by Clean Water Action focused on the aquifer exemption permitting process. The FOIA returned additional data not reported by the US EPA in the public dataset. That dataset contained target formation sampling data that included TDS values. The FOIA documents were attached to the EPA dataset using GIS techniques. These GIS files can be found for download in the link at the bottom of this page.

Map 1. Aquifer exemptions in Colorado


View map fullscreen | How FracTracker maps work

Map 1 above shows the locations of aquifer exemptions in Colorado, as well as the locations of Class II injection wells. These sites are overlaid on a spatial assessment of groundwater quality (a map of the groundwater’s quality), which was generated for the entire state. The changing colors on the map’s background show spatial trends of TDS values, a general indicator of overall groundwater quality.

In Map 1 above, we see that the majority of Class II injection wells and aquifer exemptions are located in regions with higher quality water. This is a common trend across the state, and needs to be addressed.

Our review of aquifer exemption data in Colorado shows that aquifer exemption applications were granted for areas reporting TDS values less than 3,000 mg/l, which contradicts the information reported by the COGCC as permitting guidelines. Additionally, of the 175 granted aquifer exemptions for which the FOIA returned data, 141 were formations with groundwater samples reported at less than 10,000 mg/l TDS. This is half of the total number (283) of aquifer exemptions in the state of Colorado.

When we mapped where class II injection wells are permitted, a total of 587 class II wells were identified in Colorado, outside of an aquifer exemption area. Of the UIC-approved injection wells identified specifically as disposal wells, at least 21 were permitted outside aquifer exemptions and were drilled into formations that were not hydrocarbon producing. Why these injection wells are allowed to operate outside of an aquifer exemption is unknown – a question for regulators.

You can see in the map that most of the aquifer exemptions and injection wells in Colorado are located in areas with lower TDS values. We then used GIS to conduct a spatial analysis that selected groundwater wells within five miles of the 21 that were permitted outside aquifer exemptions. Results show that groundwater wells near these sites had consistently low-TDS values, meaning good water quality. In Colorado, where groundwater is an important commodity for a booming agricultural industry and growing cities that need to prioritize municipal sources, permitting a Class II disposal well in areas with high quality groundwater is irresponsible.

Groundwater Monitoring Data Maps

Map 2. Water quality and depths of groundwater wells in Colorado
Groundwater risks in Colorado - Map 2
View live map | How FracTracker maps work

In Map 2, above, the locations of groundwater wells in Colorado are shown. The colors of the dots represent the concentration of TDS on the right and well depth on the left side of the screen. By sliding the bar on the map, users can visualize both. This feature allows people to explore where deep wells also are characterized by high levels of TDS. Users can also see that areas with high quality low TDS groundwater are the same areas that are the most developed with oil and gas production wells and Class II injection wells, shown in gradients of purple.

Statistical analysis of this spatial data gives a clearer picture of which regions are of particular concern; see below in Map 3.

Map 3. Spatial “hot-spot” analysis of groundwater quality and depth of groundwater wells in Colorado
Groundwater risks in Colorado - Map 3
View live map | How FracTracker maps work

In Map 3, above, the data visualized in Map 2 were input into a hot-spots analysis, highlighting where high and low values of TDS and depth differ significantly from the rest of the data. The region of the Front Range near Denver has significantly deeper wells, as a result of population density and the need to drill municipal groundwater wells.

The Front Range is, therefore, a high-risk region for the development of oil and gas, particularly from Class II injection wells that are necessary to support development.

Methods Notes: The COGCC publishes groundwater monitoring data for the state of Colorado, and groundwater data is also compiled nationally by the Advisory Committee on Water Information (ACWI). (Data from the National Groundwater Monitoring Network is sponsored by the ACWI Subcommittee on Ground Water.) These datasets were cleaned, combined, revised, and queried to develop FracTracker’s dataset of Colorado groundwater wells. We cleaned the data by removing sites without coordinates. Duplicates in the data set were removed by selecting for the deepest well sample. Our dataset of water wells consisted of 5,620 wells. Depth data was reported for 3,925 wells. We combined this dataset with groundwater data exported from ACWI. Final count for total wells with TDS data was 11,754 wells. Depth data was reported for 7,984 wells. The GIS files can be downloaded in the compressed folder at the bottom of this page.

Site Assessments – Exploring Specific Regions

Particular regions were further investigated for impacts to groundwater, and to identify areas that may be at a high risk of contamination. There are numerous ways that groundwater wells can be contaminated from other underground activity, such as hydrocarbon exploration and production or waste injection and disposal. Contamination could be from hydraulic fracturing fluids, methane, other hydrocarbons, or from formation brines.

From the literature, brines and methane are the most common contaminants. This analysis focuses on potential contamination events from brines, which can be detected by measuring TDS, a general measure for the mixture of minerals, salts, metals and other ions dissolved in waters. Brines from hydrocarbon-producing formations may include heavy metals, radionuclides, and small amounts of organic matter.

Wells with high or increasing levels of TDS are a red flag for potential contamination events.

Methods

Groundwater wells at deep depths with high TDS readings are, therefore, the focus of this assessment. Using GIS methods we screened our dataset of groundwater wells to only identify those located within a buffer zone of five miles from Class II injection wells. This distance was chosen based on a conservative model for groundwater contamination events, as well as the number of returned sample groundwater wells and the time and resources necessary for analysis. We then filtered the groundwater wells dataset for high TDS values and deep well depths to assess for potential impacts that already exist. We, of course, explored the data as we explored the spatial relationships. We prioritized areas that suggested trends in high TDS readings, and then identified individual wells in these areas. The data initially visualized were the most recent sampling events. For the wells prioritized, prior sampling events were pulled from the data. The results were graphed to see how the groundwater quality has changed over time.

Case of Increasing TDS Readings

If you zoom to the southwest section of Colorado in Map 2, you can see that groundwater wells located near the injection well 1 Fasset SWD (EPA) (05-067-08397) by Operator Elm Ridge Exploration Company LLC were disproportionately high (common). Groundwater wells located near this injection well were selected for, and longitudinal TDS readings were plotted to look for trends in time. (Figure 1.)

The graphs in Figure 1, below, show a consistent increase of TDS values in wells near the injection activity. While the trends are apparent, the data is limited by low numbers of repeated samples at each well, and the majority of these groundwater wells have not been sampled in the last 10 years. With the increased use of well stimulation and enhanced oil recovery techniques over the course of the last 10 years, the volumes of injected wastewater has also increased. The impacts may, therefore, be greater than documented here.

This area deserves additional sampling and monitoring to assess whether contamination has occurred.


Figures 1a and 1b. The graphs above show increasing TDS values in samples from groundwater wells in close proximity to the 1 Fassett SWD wellsite, between the years 2004-2015. Each well is labeled with a different color. The data for the USGS well in the graph on the right was not included with the other groundwater wells due to the difference in magnitude of TDS values (it would have been off the chart).

Groundwater Contamination Case in 2007

We also uncovered a situation where a disposal well caused groundwater contamination. Well records for Class II injection wells in the southeast corner of Colorado were reviewed in response to significantly high readings of TDS values in groundwater wells surrounding the Mckinley #1-20-WD disposal well.

When the disposal well was first permitted, farmers and ranchers neighboring the well site petitioned to block the permit. Language in the grant application is shown below in Figure 2. The petitioners identified the target formation as their source of water for drinking, watering livestock, and irrigation. Regardless of this petition, the injection well was approved. Figure 3 shows the language used by the operator Energy Alliance Company (EAC) for the permit approval, which directly contradicts the information provided by the community surrounding the wellsite. Nevertheless, the Class II disposal well was approved, and failed and leaked in 2007, leading to the high TDS readings in the groundwater in this region.

co_classiipetition

Figure 2. Petition by local landowners opposing the use of their drinking water source formation for the site of a Class II injection disposal well.

 

co_eac_uicpermit

Figure 3. The oil and gas operation EAC claims the Glorietta formation is not a viable fresh water source, directly contradicting the neighboring farmers and ranchers who rely on it.

co_fieldinspectionreport_leak

Figure 4. The COGCC well log report shows a casing failure, and as a result a leak that contaminated groundwater in the region.

Areas where lack of data restricted analyses

In other areas of Colorado, the lack of recent sampling data and longitudinal sampling schemes made it even more difficult to track potential contamination events. For these regions, FracTracker recommends more thorough sampling by the regulatory agencies COGCC and USGS. This includes much of the state, as described below.

Southeastern Colorado

Our review of the groundwater data in southeastern Colorado showed a risk of contamination considering the overlap of injection well depths with the depths of drinking water wells. Oil and gas extraction and Class II injections are permitted where the aquifers include the Raton formation, Vermejo Formation, Poison Canyon Formation and Trinidad Sandstone. Groundwater samples were taken at depths up to 2,200 ft with a TDS value of 385 mg/l. At shallower depths, TDS values in these formations reached as high as 6,000 mg/l, and 15 disposal wells are permitted in aquifer exemptions in this region. Injections in this area start at around 4,200 ft.

In Southwestern Colorado, groundwater wells in the San Jose Formation are drilled to documented depths of up to 6,000 feet with TDS values near 2,000 mg/l. Injection wells in this region begin at 565 feet, and those used specifically for disposal begin at below 5,000 feet in areas with aquifer exemptions. There are also four disposal wells outside of aquifer exemptions injecting at 5,844 feet, two of which are not injecting into active production zones at depths of 7,600 and 9,100 feet.

Western Colorado

In western Colorado well Number 1-32D VANETA (05-057-06467) by Operator Sandridge Exploration and Production LLC’s North Park Horizontal Niobara Field in the Dakota-Lokota Formation has an aquifer exemption. The sampling data from two groundwater wells to the southeast, near Coalmont, CO, were reviewed, but we can’t get a good picture due to the lack of repeat sampling.

Northwestern Colorado

http://digital.denverlibrary.org/cdm/ref/collection/p16079coll32/id/346073

A crew from Bonanza Creek repairs an existing well in the McCallum oil field. Photo by Ken Papaleo / Rocky Mountain News

In Northwestern Colorado near Walden, CO and the McCallum oil field, two groundwater wells with TDS above 10,000 ppm were selected for review. There are 21 injection wells in the McCallum field to the northwest. Beyond the McCallum field is the Battleship field with two wastewater disposal wells with an aquifer exemption. West of Grover, Colorado, there are several wells with high TDS values reported for shallow wells. Similar trends can be seen near Vernon. The data on these wells and wells from along the northern section of the Front Range, which includes the communities of Fort Collins, Greeley, and Longmont, suffered from the same issue. Lack of deep groundwater well data coupled with the lack of repeat samples, as well as recent sampling inhibited the ability to thoroughly investigate the threat of contamination.

Trends and Future Development

Current trends in exploration and development of unconventional resources show the industry branching southwest of Weld County towards Fort Collins, Longmont, Broomfield and Boulder, CO.

These regions are more densely populated than the Front Range county of Weld, and as can be seen in the maps, the drinking water wells that access groundwaters in these regions are some of the deepest in the state.

This analysis shows where Class II injection has already contaminated groundwater resources in Colorado. The region where the contamination has occurred is not unique; the drinking water wells are not particularly deep, and the density of Class II wells is far from the highest in the state.

Well casing failures and other injection issues are not exactly predictable due to the variety of conditions that can lead to a well casing failure or blow-out scenario, but they are systemic. The result is a hazardous scenario where it is currently difficult to mitigate risk after the injection wells are drilled.

Allowing Class II wells to expand into Front Range communities that rely on deep wells for municipal supplies is irresponsible and dangerous.

The encroachment of extraction into these regions, coupled with the support of Class II injection wells to handle the wastewater, would put these groundwater wells at particular risk of contamination. Based on this analysis, we recommend that regulators take extra care to avoid permitting Class II wells in these regions as the oil and gas industry expands into new areas of the Front Range, particularly in areas with dense populations.


Feature Image: Joshua Doubek / WIKIMEDIA COMMONS

Article by: Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

 

October 31, 2017 Edit: This post originally cited the Clean Water Act instead of the Safe Drinking Water Act as the source that EPA uses to grant aquifer exemptions.

Northeast Ohio Class II injection wells taken via FracTracker's mobile app, May 2015

What are aquifer exemptions? Permitted exemptions from the Safe Drinking Water Act

We’d like to give our readers a bit of background on aquifer exemptions, because we’re going to be covering this topic in a few upcoming blog posts. Stay tuned!

Liquid Waste Disposal

Drilling for oil and gas produces both liquid and solid waste that must be disposed of. The liquid waste from this industry is considered a “Class II waste” according to the US EPA. Aquifers are places underground capable of holding or transmitting groundwater. To dispose of Class II waste, operators are granted aquifer exemptions, by the EPA based on the state’s recommendations. The term “exemption,” specifically, refers to the Safe Drinking Water Act, which protects underground sources of drinking water (USDWs).

Therefore, these exemptions grant oil and gas operators the right to contaminate groundwaters, albeit many of the groundwater formations used for disposal in Class II wells are very deep.

Learn more about disposal well classes and aquifer exemptions on this story map by the US EPA

Aquifer Exemption Criteria

There are several qualifiers for a USDW to be granted exempt from the Safe Drinking Water Act. Aquifer exemptions are granted for underground formations that are not currently used as a source of drinking water and meet one of the following criteria:

  • The formation contains commercially producible minerals or hydrocarbons;
  • The formation is so deep that recovery of water for drinking water purposes is economically or technologically impractical; or,
  • The formation is so contaminated that it would be economically or technologically impractical to render the water fit for human consumption.
  • In some states, aquifer exemptions are not approved for formations with Total Dissolved Solids (TDS*) equal to or less than 3,000 mg/l TDS.

If an underground formation qualifies for an exemption, it does not mean that groundwater cannot be used for drinking water, just that it is not currently a source of drinking water. The most precarious criteria requirement, therefore, is the determination that a USDW is simply not “economically viable” or it is “technologically impractical,” meaning that the cost of drilling a groundwater well to the depth of the aquifer (under the condition of the current need for water) may make the investment impractical. In the near future, this water may be needed and highly valued, however.

TDS = Total dissolved solids are inorganic salts (e.g. calcium, magnesium, potassium, sodium, bicarbonates, chlorides, and sulfates), as well as some organic matter, dissolved in water.

The Lay of the Land

Below, we have put together a map of aquifer exemptions in the U.S. Click on the dots and shaded areas to learn more about a particular aquifer.

Map of all aquifer exemptions in the U.S.

View map fullscreen | How FracTracker maps work


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Help us in addressing pressing energy issues

Help us investigate pressing energy issues by donating to FracTracker’s Annual Fund

Dear Friends,

David Braun discussing pressing energy issues

David Braun, FracTracker’s Honorary Annual Fund Chair, at a climate revolution rally in Los Angeles – Photo by Bryan Giardinelli

I’ve been fighting fracking for many years, in fact, it seems like a lifetime. I helped win the fracking ban in New York, organize coalitions like Americans Against Fracking and Californians Against Fracking, and, more recently, coordinate a major campaign called Oil Money Out – aimed at getting California politicians and Governor Jerry Brown to reject campaign contributions from the oil and gas industry, and instead prioritize public health. The work never stops, but we’re making critical headway.

Less than a year ago, I joined the board of FracTracker Alliance. Their maps, data, and insights are invaluable in my advocacy and in the efforts of so many other organizations addressing pressing energy issues. The FracTracker mobile app is a powerful tool to document the harms occurring in too many communities. Their small but mighty staff is passionate about what they do, and they’re good at it. They’re well-versed in the concerns and threats emblematic of oil and gas development.

As a vocal front-line advocate for better energy, FracTracker’s often behind-the-scenes work may not seem congruent with my methods, but the organization is an ally – a group who understands the synergy of collaboration. They work with people across the country on pressing issues: pipelines, sand mines, injection wells, ethane crackers. The list goes on.

Like other groups, they need ample resources to continue informing the public and serving the movement. I’m proud to be their honorary annual fund chair for the current fiscal year.

We need your help in reaching our goal of raising $25,000.

We know there are many worthy efforts competing for your donations, but every contribution to FracTracker – big or small  – means a lot and gets us closer to our goal.

FracTracker seeks and treats donors respectfully. You won’t get nagged, but you will be rewarded with their hard work. Just check out their website and bear witness to their reach and impact. Please donate today.

If I need the best data or a provocative map, I go to FracTracker. If I need a photo to hit home a point, I can find one on the FracTracker image library. The testimonials from my peers pushing back on extreme energy attest: FracTracker is a force we can depend on.

Please help sustain their work with a personal donation.

“The times they are a changing” because of people like you who care. Thanks for fueling the momentum. Together, we’ll change the world.

In solidarity and appreciation,
David Braun

Donate Online

Please make a donation to FracTracker’s Annual Fund today

Life expectancy of the Marcellus Shale - Map of PA basins and plays

What is the Life Expectancy of the Marcellus Shale?

How long will unconventional oil and gas production from PA’s Marcellus Shale continue? The number of active wells may give us a clue.

 

We have recently updated the PA Shale Viewer, our map of unconventional wells in Pennsylvania. As I updated the statistics to reflect the updated data, I noticed that the number of wells with an active status ticked downward, just as it had for the previous update.

Pennsylvania Shale Viewer


View map fullscreen | How FracTracker maps work | Data Sources Listed Below

Wells on this map are shown in purple when zoomed out, but are organized by status as you continue to zoom in. The various statuses are shown below, as defined by the Pennsylvania Department of Environmental Protection (DEP).

  • Active – permit has been issued and well may or may not have been drilled or producing, but has not been plugged.
  • Proposed but Never Materialized – permit was issued, but expired prior to the commencement of drilling.
  • Plugged OG Well – permit issued and well has been plugged by well operator.
  • Operator Reported Not Drilled – permit issued, but operator reported to DEP that they never drilled the well.
  • DEP Abandoned List – an abandoned well that has been inspected by DEP.
  • DEP Orphan List – A well abandoned prior to April 18, 1985, that has not been affected or operated by the present owner or operator and from which the present owner, operator or lessee has received no economic benefit other than as a land.
  • DEP Plugged – a DEP Abandoned or DEP Orphan well that has been plugged by DEP,
  • Regulatory Inactive Status – a well status that is requested by well operator and has been granted by DEP. Well is capable of producing, but is temporarily shut in. Granted for initial 5 years and must be renewed yearly after first 5 years.
  • Abandoned – a well that has not been used to produce, extract or inject any gas, petroleum or other liquid within the preceding 12 months; for which equipment necessary for production, extraction or injection has been removed; or considered dry and not equipped for production.

Life Expectancy Stats

Summary of PA unconventional wells by status.

Table 1: Unconventional well locations in Pennsylvania by status. The determination of drilled locations was made by the presence of a spud date in the DEP dataset.

Currently, there are 10,586 well locations with an active status, 9,218 of which have been drilled. There 19,617 unconventional well locations in Pennsylvania when considering all status types, 10,652 of which have been drilled. The drill status was determined by whether or not there was an associated spud date in the dataset. The 13 plugged wells that lack spud dates likely represent some minor data entry errors of one sort or another, as a well would logically need to be drilled prior to being plugged.

Using the available data, we can see that 6.5% of drilled unconventional wells have been plugged, and an additional 6.9% have a regulatory inactive status, more commonly known as “shut-in” wells, leaving 86.5% of the drilled wells with an active status. Three wells are classified as abandoned, including two in Washington County attributed to Atlas Resources, LLC, and one operated by EQT Production Co. in Jefferson County. EQT submitted a request to convert the status of this latter well to inactive status in February 2016, but DEP has not made a decision on the application as of yet.

This chart shows the current status of unconventional wells in Pennsylvania, arranged by the year the well was drilled. Note that there are two abandoned wells in 2009 and one more in 2014, although those totals are not visible at this scale.

Chart 1: This chart shows the current status of unconventional wells in Pennsylvania, arranged by the year the well was drilled. Note that there are two abandoned wells in 2009 and one more in 2014, although those totals are not visible at this scale.

The top, solid blue line in Chart 1 shows the total number of unconventional wells drilled in Pennsylvania, which is based on the available spud date in the dataset. Focusing on this line for a moment, we can see a huge spike in the number of wells drilled in the early part of this decade. In fact, over 46% of the unconventional wells in the state were drilled between 2010 and 2012, and over 70% were drilled between 2010 and 2014. The 504 unconventional wells drilled in 2016 represents just over one quarter the total from 2011, when 1,959 wells were drilled. The 2017 totals are already slightly higher than 2016, with two months left to go in the year, but will not approach the totals from 2010 to 2014.

This drop-off in drilling since the 2011 peak is usually attributed to the glut of natural gas that these wells produced, and the Marcellus remains a highly productive formation, despite the considerable decline in new wells. Eventually, however, the entire formation will go into decline, which is already happening to the Barnett Shale in Texas and Haynesville Shale, among others, where peak production was several years ago in each case.

While all of three of these formations still produce significant quantities of gas, it is worth remembering that production is only half of the equation. In the Marcellus region, average costs were $6.6 million in 2014, which was projected to decrease to $6.1 million per well in 2015 according to a 2016 EIA document.

With the supply in the northeast outpacing demand, the gas prices stay low, and therefore production per well needs to be considerable to make a given well worthwhile.

Plugging Trends

Chart 2: Average days between spud date and plug date for unconventional wells in PA. Regulatory Inactive wells also include a plug date, and are included here.

Chart 2: Average days between spud date and plug date for unconventional wells in PA. Regulatory Inactive wells also include a plug date, and are included here.

Chart 2 shows the average number of days between the spud date and the plug date for wells that currently have either a plugged (n=694) or regulatory inactive (n=737) status. The regulatory inactive wells are relatively consistent in the days between when the well is drilled and temporarily plugged, which makes sense, as the operators of these wells typically intend for these wells to be shut-in upon completion.

However, it is interesting to note that wells are being plugged much more rapidly than they had been in the early part of the Marcellus boom.

Plugged unconventional wells that were drilled in 2005 (n=6) had an average of 3,081 days between these dates, while those drilled in 2016 (n=2) had and average span of 213 days.

The left (orange) axis represents the percentage of wells drilled in each year that are currently drilled. The right (blue) axis marks the total number of wells drilled in each year that are currently drilled.

The left (orange) axis represents the percentage of wells drilled in each year that are currently drilled. The right (blue) axis marks the total number of wells drilled in each year that are currently drilled.

Obviously there would be no way for a well drilled in 2016 to have been online for 3,081 days before being plugged. However, each of the six plugged wells drilled in 2005 were active for at least 1,899 days before being sealed, which is over five years of activity. In contrast, 99 of the 4,966 unconventional wells drilled in the previous 1,899 days have already been plugged, representing 5.2% of the total wells drilled during that time. This means that we are seeing more “misses” at this point in the formation’s history, where the amount of gas being produced doesn’t justify keeping the well open and offsetting the $6 million or more that it cost to drill the well.

We can also see that the rate of plugged wells increases dramatically after about ten years in operation. Forty-four out of 114 (39%) of unconventional wells that were drilled in 2007 are now plugged. That ratio grows two thirds of the nine wells drilled in 2005. In the industry’s boom period of 2010 to 2010, the raw number of plugged wells are elevated, peaking at 206 in 2011, but the percentage of plugged wells during those years remains proportional to the rest of the trend. The overall trend shows that an unconventional well in Pennsylvania that lasts 11 or more years is unusual.

The data show that older Marcellus wells in Pennsylvania are certainly in a state of decline, and are rapidly being plugged. While the overall production of the field remains high, it remains to be seen what will happen as the boom cycle wells drilled from 2010 to 2012 start to go offline in considerable numbers. Given that more and more wells are being drilled with very short production lives, will it continue to make sense for the industry to drill expensive wells in a formation where a return on investment is increasingly questionable? This course is difficult to predict, but economic models that take plentiful natural gas supplies for granted should consider taking a second look.


PA Shale Viewer Data Sources

Unconventional Violations
Source: PADEP
Date Range: 1-1-2000 through 10-2-2017
Notes: For the original data, follow link above to “Oil and Gas Compliance Report”. Latitude and longitude data obtained by matching with permits data (see below). There are 7,655 rows of violations data, including 6,576 distinct Violation IDs issued to 2,253 distinct unconventional wells. Due to the large number of records, this layer isn’t visible until users zoom in to 1:500,000, or about the size of a small county.

Unconventional Wells and Permits
Source: PADEP Open Data Portal
Date Range: 1-1-2000 through 10-2-2017
Notes: This data layer contains unconventional well data in Pennsylvania. However, not all of these wells have been drilled yet. This layer is categorized by well status, which includes Abandoned, Active, Operator Reported Not Drilled, Plugged OG Well, Proposed but Never Materialized, and Regulatory Inactive Status. To determine whether the well has been permitted, drilled, or plugged, look for the presence of an entry in the Permit Date, Spud Date, and Plug Date field, respectively. Altogether, there are 19,617 wells in this inventory, of which 10,586 currently have an active status. Due to the large number of records, this layer isn’t visible until users zoom in to 1:500,000, or about the size of a small county.

SkyTruth Pits (2013)
Source: SkyTruth
Date Range: 2013
Notes: Prior to December 2014, this map contained a layer of pits that were contained in Oil and Gas Locations file available on PASDA. However, that layer was far from complete – for example, it included only one pit in Washington County at a time which news reports mentioned that seven pits in the county were scheduled to be closed. Therefore, we have opted to include this crowdsourced layer developed by SkyTruth, where volunteers analyzed state aerial imagery data from 2013. SkyTruth’s methodology for developing the dataset is detailed in the link above. 529 pits have been identified through this effort.

Compressors and Processors (2016)
Source: EDF, CATF, Earthworks, FracTracker Alliance, EPA, PADEP, EIA
Date: 2016
Notes: This layer is based off of publicly available data, but is not published by any agency as a dataset. It is the result of a collaborative effort, and the data first appeared in map format on the Oil and Gas Threat Map (oilandgasthreatmap.com). Original sources include PADEP, US EPA, and US EIA. Compiling, processing, and geocoding by Environmental Defense Fund, Clean Air Task Force, Earthworks, and FracTracker Alliance. Contact Matt Kelso for more information: kelso [at] fractracker.org.

Environmental Justice Areas
Source: PADEP, via PASDA
Date: 2015
Notes: Environmental Justice (EJ) areas are Census Tracts where over 20 percent of the population is in poverty, or over 30 percent of the population is non-white. The program is designed to monitor whether there is a fair distribution of environmental benefits and burdens. In Pennsylvania, EJ areas tend to be clustered in urbanized areas, particularly near Philadelphia and Pittsburgh.

Counties
Source: US Census Bureau, FracTracker Alliance
Date Range: 2011
Notes: This file was created by dissolving the Municipalities layer (below) to the county level. This method allows for greater detail than selecting the Pennsylvania counties from a national file.

Municipalities
Source: US Census Bureau
Date Published: 2011
Notes: Viewer must be zoomed into scales of 1:1,500,000 (several counties) or larger to access.

Watersheds – Large
Source: USDA/USGS
Date Published: 2008
Notes: Clipped to outline of Pennsylvania.

Watersheds – Small
Source: USDA/USGS
Date Published: 2008
Notes: Clipped to outline of Pennsylvania. Viewer must be zoomed into scales of 1:1,500,000 (several counties) or larger to access.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Indian Creek - Part of Bears Ears National Monument

Nationally treasured federal lands face threats by oil, gas, and other extractive uses

Should public, federal lands be opened up even further for extracting minerals, oil, and gas for private ventures? FracTracker’s Karen Edelstein discusses the past, present, and potential future of many of America’s cherished natural resources and wonders.

The United States is blessed with some of the most diverse natural landscapes in the world. Through foresight of great leaders over the decades, starting in 1906 — Theodore Roosevelt, Franklin Roosevelt, Benjamin Harrison, and Jimmy Carter – to name just a few — well over a half billion acres of wilderness have been set aside as national parks, refuges, monuments, and roadless areas. Some of the most famous of these protected areas include the Grand Canyon, Acadia, and Grand Tetons National Parks. In all, the federal government owns 28% of the 2.27 billion acres of land that the United States comprises. These federal lands are administered by the Bureau of Land Management (BLM): 248.3 million acres, the US Forest Service: 192.9 million acres, US Fish and Wildlife Service: 89.1 million acres, and National Park Service: 78.9 million acres. In addition, the US Department of Defense administers 11.4 million acres.

Why are federal lands at risk?

While most people assume that federal wild lands are forever protected from development and commercial exploitation, quite the opposite is true. For most of the past century, federal lands have hunted, fished, logged and grazed by private individuals and enterprises. In addition, and in the cross-hairs of discussion here, is the practice of leasing lands to industrial interests for the purpose of extracting minerals, oil, and gas from these public lands.

Provisions for land conservation and restrictions on oil and gas extraction, in particular, became more stringent since the inception of the Environmental Protection Agency (EPA) in 1970. However, environmentalists have watched in horror as the current administration in Washington has gutted the EPA, and installed climate change-deniers and corporate executives in high levels of office throughout a range of federal agencies. Notable is the appointment of Ryan Zinke as US Secretary of the Interior. Zinke, a former businessman, has a long record of opposing environmental viewpoints around extraction of oil, coal, and gas and cutting regulations. The League of Conservation Voters gives his voting record a lifetime score of 4 percent on environmental issues. As recently as this week, Joel Clement–one of Zinke’s senior advisors–resigned his post, citing, Zinke’s poor leadership, wasting of tax-payer dollars, and denial of climate change science.

Early in his tenure as Secretary of the Interior, Zinke initiated a review of 27 national monuments, a move that environmentalists feared could lead to the unraveling of protections on millions of acres of federal land, and also relaxed regulations on oil and gas exploration in those areas. Public comment on the plans to review these national monuments was intense; when the public comment period closed on July 10, 2017, the Interior Department had received over 2.4 million comments, the vast majority of which supported keeping the existing boundaries and restrictions as they are.

Federal lands under threat by Trump Administration


View map fullscreen | How FracTracker maps work

The above map shows which sites are under consideration for oil, gas, or coal extraction, or face boundary reduction of up to 88%. Click here to view this map full-screen with a legend, zoom in and click on areas of interest, etc.

Who should be allowed to use these resources?

Ranchers, loggers, and recreational hunters and anglers felt that the 1906 Antiquities Act had been over-interpreted, and therefore advocated for Zinke’s proposal. (The Act was the first U.S. law to provide protection for any general kind of cultural or natural resource.)

However, environmental advocates such as the National Parks Conservation Association (NPCA), the Natural Resources Defense Council (NRDC), and others were adamantly opposed to opening up federal lands resources for extraction, citing the need for environmental protection, public access, and, importantly, concerns that the lands would be more easily transferred to state, local, or private interests. Environmentalists also argue that the revenue generated by tourism at these pristine sites would far exceed that generated by extractive resource activities. Attorneys and staff from NPCA and NRDC argued legislation in effect since the 1970s requires role for Congress in changing the boundaries of existing monuments. The President or his cabinet do not have that sole authority.

The Wilderness Society estimates that already, 90% of the land in the US West, owned by the Bureau of Land Management, is open for oil and gas leasing, while only 10% is set aside for other uses (Figure 2). According to information from Sourcewatch, in 2013, these lands included 12 National Monuments, Parks, Recreation Areas, and Preserves that had active drilling, and another 31 that might see possible drilling in the future.

Source: The Wilderness Society

Figure 2. Percent of land already available for oil and gas leasing in the West. Source: The Wilderness Society

What Zinke has Proposed

True to expectation, in August of 2017, Zinke issued a recommendation to shrink the boundaries of several national monuments to allow coal mining and other “traditional uses” — which appear to include large-scale timbering, as well as potentially oil and gas drilling. Sites include Bears Ears and Grand Staircase-Escalante in Utah (encompassing more than 3.2 million acres in lands considered sacred to Dine/Navajo people), Cascade-Siskiyou in Oregon, and Gold Butte in Nevada. According to Zinke’s report, Grand Staircase-Escalante contains “an estimated several billion tons of coal and large oil deposits”. Zinke lifted Obama-era restrictions on coal leasing on federal lands this past March, 2017. However, just last week, a federal judge ruled that the current Administration’s efforts to suspend methane emission restrictions from pipelines crossing public lands were illegal. These are merely a few of the Obama-era environmental protections that Zinke is attempting to gut.

Zinke has proposed decreasing the size of Bears Ears National Monument from the current 1.35 million acres to a mere 160,000, a reduction of 88%. The Bears Ears Inter-Tribal Coalition, made up of thirty Native American tribes, condemned the recommendation as a “slap in the face to the members of our Tribes and an affront to Indian people all across the country.” The Navajo Nation intends to sue the President’s administration if this reduction at Bears Ears is enacted.

Bears Ears National Monument, designated by President Barack Obama, contains tens of thousands of cultural artifacts, and is facing not only a threat of boundary shrinkage, but also a relaxing use restrictions within the Monument area. The current President has referred to Obama’s designation of the monument as “an egregious abuse of power.” Grand Staircase-Escalante was designated by President Bill Clinton, and the Cascade-Siskiyou National Monument was designated by Clinton and expanded by President Obama.

The recommendation details were not made public in August, however, and only came to light in September through a leaked memo, published in The Washington Post. In the memo, Secretary Zinke noted that the existing boundaries were “arbitrary or likely politically motivated or boundaries could not be supported by science or reasons of resource management.” The memo goes on to say that “[i]t appears that certain monuments were designated to prevent economic activity such as grazing, mining and timber production rather than to protect specific objects.” In addition, Zinke is advocating for the modification for commercial fishing uses of two marine national monuments: the Pacific Remote Islands, and Rose Atoll.

Lacking Specificity

According to the Washingon Post, Zinke:

… plans to leave six designations in place: Colorado’s Canyons of the Ancients; Idaho’s Craters of the Moon; Washington’s Hanford Reach; Arizona’s Grand Canyon-Parashant; Montana’s Upper Missouri River Breaks; and California’s Sand to Snow.

Perplexingly, the report is silent on 11 of the 27 monuments named in the initial proposal. One of which is the Papahanaumokuakea Marine National Monument — over 725,000 square miles of ocean — in the northwestern Hawaiian Islands.

The report also requests tribal co-management of “cultural resources”  at Bears Ears, Rio Grande del Norte, and Organ Mountain-Desert Peaks. While one could imagine that greater involvement of indigenous people in the federal government’s management of the sacred landscapes to be a potentially positive improvement, the report is silent on the details. More information on tribal co-management and other options can be gleaned from a series of position papers written by the Property and Environment Research Center.

Of other note: Zinke is also suggesting the establishment of three new national monuments, including the 130,000-acre Badger-Two Medicine area in Montana, a sacred site of the Blackfeet Nation. Badger-Two Medicine was the site of a more than 30-year battle to retire 32,000 acres of oil and gas leases. The tribe prevailed, and the leases were canceled in November, 2016.

With potential lawsuits pending about boundary changes, galvanized push-back from environmental and tribal interests on resource management definitions for the targeted monuments, and general unpredictability on policy details and staffing in Washington, the trajectory of how this story will play out remains uncertain. FracTracker will continue to monitor for updates, and provide additional links in this story as they unfold.

Check out National Geographic’s bird’s eye view of these protected areas for a stunning montage, descriptions, and more maps of the monuments under consideration.


Federal Lands Map Data Sources

National Monuments under consideration for change by Secretary Zinke:
Accessed from ArcGIS Online by FracTracker Alliance, 28 August 2017. Data apparently from federal sources, such as BLM, NPS, etc. Dataset developed by Kira Minehart, GIS intern with Natural Resources Defense Council.0=not currently targeted for policy or boundary change1= targeted for expanded resource use, such as logging, fishing, etc. 2=targeted for shrinkage of borders, and expanded resource use.

National Park Service lands with current or potential oil and gas drilling:
Downloaded by FracTracker Alliance on 9 November 2016, from National Park Service.  Drilling information from here. List of sites threatened by oil and gas drilling from here (23 January 2013).

Badger-Two Medicine potential Monument:
Shapefile downloaded from USGS by FracTracker Alliance on 28 August 2017. This map layer consists of federally owned or administered lands of the United States, Puerto Rico, and the U.S. Virgin Islands. For the most part, only areas of 320 acres or more are included; some smaller areas deemed to be important or significant are also included. There may be private inholdings within the boundaries of Federal lands in this map layer. Some established Federal lands which are larger than 320 acres are not included in this map layer, because their boundaries were not available from the owning or administering agency. Complete metadata available here.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance
Community Sentinel Award for Environmental Stewardship

2017 Community Sentinel Award for Environmental Stewardship Recipients

Award to be presented to three environmental stewards addressing oil and gas impacts at reception held in Pittsburgh, PA, November 18th

WASHINGTON, DC – October 5, 2017 – Three community advocates were recently selected by a panel of judges to receive the 2017 Community Sentinel Award for Environmental Stewardship, presented this year by Americans Against Fracking, Earthworks, FracTracker Alliance, Halt the Harm Network, and Stop the Frack Attack – sponsored by the 11th Hour Project. Award recipients were chosen because of their steadfast determination to highlight and address the impacts of the oil and gas industry in communities across the United States. The 2017 Community Sentinel Award winners are:

  • Ranjana Bhandari – Arlington, Texas
  • Frank Finan – Hop Bottom, Pennsylvania
  • Ray Kemble – Montrose, Pennsylvania

This year’s recipients, nominated by their peers, have lead campaigns to prevent wastewater injection wells from being permitted near drinking water reservoirs; documented fugitive air emissions using their own personal FLIR cameras; and fought cancer and legal attacks from oil and gas companies simultaneously.

These awardees truly represent the heart of local heroes working tirelessly to safeguard their communities from fracking and its collateral impacts, while at the same time encouraging a national transition to safer, renewable forms of energy…

… remarked Brook Lenker, Executive Director of FracTracker Alliance, the organizer of the award partnership.

Recipients were selected by a committee of community defense leaders: Bill Hughes of Wetzel County Action Group, West Virginia; Pat Popple of Save the Hills Alliance, Wisconsin; Sierra Shamer of Shalefield Organizing Committee, Pennsylvania; Dante Swinton of Energy Justice, Maryland; and Niki Wong of Redeemer Community Partnership, California.

The three recipients will each be awarded $1,000 for their efforts and recognized at an evening reception at the Omni William Penn Hotel in Pittsburgh, Pennsylvania on Saturday, November 18, 2017 during the People vs. Oil and Gas Infrastructure Summit.

Learn more about the third annual Community Sentinel Award for Environmental Stewardship, or purchase tickets to the reception for $40 (includes award ceremony and reception, heavy hors d’oeuvres, and a drink).

# # #

About FracTracker Alliance

FracTracker Alliance is a national organization with regional offices in Pennsylvania, New York, Ohio, Washington DC, and California. The organization’s mission is to study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation. Learn more at fractracker.org.