The Growing Web of Oil and Gas Pipelines

Although the vast majority of scientists agree that we must rapidly move away from fossil fuels to avoid a human-caused climate catastrophe by the end of this century, pipeline construction remains a big business.

Pipelines are the backbone of domestic fossil fuel use and for delivering fuels to terminals for international export. Yet aside from a few high-profile pipeline controversies that show up in the media, few Americans are aware of the vast network of pipelines that transport oil and gas products from sources of extraction to industry and end-use consumers.

The United States is crisscrossed by over 1.63 million miles of fossil fuel pipelines. This includes:

Many of the country’s pipelines have been built within the last few decades, and in recent years, construction of more has been spurred on by the fracking boom. The total mile count of crude oil pipelines (currently 79,000) has increased over 60% between 2004 and 2017.  Natural gas distribution and estimated service pipeline miles increased 72% between 1984 and 2017 (Figure 1).

Figure 1. Miles of natural gas distribution (1,296,157 miles) and estimated service (
927,052 miles) pipelines in the U.S., 1984-2017

Although total mileage for transmission pipelines slightly dropped between 2004 and 2017 (according to the Pipeline and Hazardous Materials Safety Administration), total mileage for Hazardous Liquids pipelines jumped 33% during that same period (Figures 2 and 3).

Figure 2 (above). Total miles of Hazardous Liquid pipelines in the U.S., 2004-2017
Figure 3 (below). Break down of Hazardous Liquid pipeline miles in the U.S by what they’re transporting, 2004-2017

Exporting natural gas

When natural gas is imported or exported, it’s transported in a liquefied form. The product occupies much less space as a liquefied natural gas (LNG) than it does in its gaseous form, making it easier to transport.

For many years, the United States was an importer of natural gas, until 2007, when this trend quickly reversed, coinciding with the “fracking boom” in the Marcellus Shale, as well as several other shale plays in Texas, Wyoming, and elsewhere.

Figure 4. U.S. imports of natural gas, which is transported as liquefied natural gas (LNG)

LNG facilities store and process natural gas to help move it between markets. Between 2010 and 2017, the number of LNG facilities increased from 122 to 152 (includes LNG storage facilities). This nearly 25% increase reflects the surplus of natural gas in the lower 48 states.

The U.S. began exporting LNG in 2016, especially to Europe and China, where demand is high. According to the United States Energy Information Administration (EIA), LNG exports doubled between 2016 and 2017 (Figure 5).

Figure 5. U.S. LNG exports between January, 2016 and October, 2017, are shown in the blue bars

Exports are again expected to double over 2018 levels by the end of 2019, reaching a storage capacity of 9.6 billion cubic feet per day. The US is now the third largest exporter of LNG, after Australia and Qatar.

The breakdown of LNG terminals —existing and future— according to FERC is shown below. These terminals receive LNG imports or ship out LNG for export. The shift from LNG import to export activity over time is quite striking. No new import facilities are currently in the planning phase, yet there are 19 export facilities proposed and another 10 already approved.  

Table 1. Import and Export LNG Terminals in the US: Current, Approved, and Proposed.

  Import Export
Current 12: Everett, MA; Cove Point, MD; Elba Island, GA; Lake Charles, LA; offshore Boston, MA (2); Freeport, TX; Sabine, LA; Hackberry, LA; Sabine Pass, LA; Pascagoula, MS; Peñuelas, PR) 3: (Cove Point, MD; Sabine, LA; Kenai, AK)
Approved 3: Corpus Christi, TX; Gulf of Mexico (2) 10: Hackberry, LA (2); Freeport, TX; Corpus Christi, TX; Sabine Pass, LA (2); Elba Island, GA; Lake Charles, LA (2); Gulf of Mexico
Proposed None 19: Pascagoula, MS;  Cameron Parish, LA (2); Brownsville, TX (3); Port Arthur, TX; Jacksonville, FL; Plaquemines Parish, LA (2); Calcasieu Parish, LA; Nikiski, AK; Freeport, TX; Coos Bay, OR; Corpus Christi, TX; La Fourche Parish, LA; Sabine Pass, LA; Galveston Bay, TX

The challenge of keeping up

One of the challenges in working on oil and gas-related environmental advocacy is that from week to week, there are always changes in pipeline status. New pipelines are announced, others are delayed, others are postponed, and in some cases, projects are cancelled or defeated. Pipelines that have been under construction for years go on line. Listings are piece-meal, sometimes very vague, and sometimes reported by third and fourth party sources.

FracTracker is committed to sorting through this information, and providing a window into the expansion of oil and gas infrastructure. We have mapped and assembled information on over 60,000 miles of new and proposed oil and gas transmission pipelines and mapped over 250 projects since 2017.

Of these 60,000 pipeline miles, almost 9,800 have been completed and/or are operating. Close to 7,500 miles were cancelled or defeated. This leaves another 42,700 miles of pipeline that are currently in the replacement, reversal, planning or construction stages. 

In the interactive map below, against a background of existing pipelines, we show the newest pipelines that have come “on the radar” since 2017. In addition we show LNG terminals, one of the main destinations for the gas that flows through the pipelines to the export market.

Updated U.S. pipeline and LNG terminal map

View Map Full Screen | How Our Maps Work

Our mapping process

FracTracker is dedicated to bringing transparency to the landscape of oil and gas development. We use mapping tools such as GIS (geographic information systems) to illuminate developments in oil and gas infrastructure expansion.

Where do we get our data?

We draw our information from new listings by the United States Energy Information Administration (EIA) and Sierra Club for natural gas projects. In addition, we find announcements about new crude oil and gas pipeline projects on RBN Energy’s website. 

After we create a composite list of pipelines, the research begins. We search the internet for references to each pipeline, looking for industry announcements, descriptions, news articles, and, most importantly, the docket listings of the Federal Energy Regulatory Commission (FERC).

FERC may release detailed maps of pipeline routes from the company’s Environmental Impact Statement (EIS), filed after operators have progressed past the initial phases of planning. On occasion, we’ll stumble across links to Google Earth files that grassroots groups have ground-truthed. We can convert these .kml files into our ArcGIS mapping software directly.

Digital cartography

How do we go from online pictures of maps to data that we can use in our interactive maps? For the most part, we use a process called georeferencing, also known in some circles as “rubber-sheeting”. One of the beauties of digital cartography and GIS is that through the magic of computing, we can add information about location to mapped information. This allows us to add different features to a map, such as roads or rivers, and ensure that they line up correctly.

Let’s say I have a .jpg (image) file of a pipeline map that crosses four counties in Indiana. The .jpg shows both the pipeline and the county boundaries. I can open my GIS program and add a reference basemap of the United States, which is similar to what you see when you open Google Maps. I can zoom in to Indiana and add a second GIS layer of Indiana’s counties (already built with coordinates in the digital information), and voila! It drops right into where Indiana is on my base map. Can I do this with the pipeline .jpg? Not yet!

I have to use the clues on the pipeline image to place it in the correct location on the GIS map. Luckily, my pipeline map has county boundaries on it, so I can line up the corners (or other shapes) on the pipeline image to where they are on my map that is “smart” about location using ground control points.

Once I’m satisfied that the map I’ve added is in the correct location, I carefully trace the path of the pipeline, saving it as a GIS layer. Because it’s drawn with its own location data included, it will always appear in future maps in the same place relative to the rest of Indiana.

That’s our process in a nutshell.

Want to see this done as a demo? Here’s a nice 10-minute YouTube video:


By Karen Edelstein, Eastern Program Coordinator

Well Pad

Sow Love and Hope with FracTracker

FracTracker Alliance celebrates February, the “month of love,” as we do most months – by striving to help people and the planet. A few weeks ago, we sent checks to four organizations who were recipients of our December “spreading the cheer initiative,” receiving half our online donations that month in honor of the four winners of the 2018 Community Sentinel Award.  The beneficiaries included Redeemer Community Partnership (Los Angeles, CA), SkyTruth (Shepherdstown, WV), League of Oil and Gas Impacted Coloradans (Erie, CO), and Clean Air Council (Philadelphia, PA). Thanks to our December donors for providing a total of $860 to these important groups.

Our care extends beyond our nonprofit brethren to directly address Mother Earth. Less than 120 miles north of my office, Pine Creek flows to the Susquehanna River, draining nearly 1,000 square miles and encompassing one of the highest concentrations of exceptional value and high quality streams anywhere in the Keystone state. The creek’s breathtaking 47-mile gorge is known as the Grand Canyon of Pennsylvania.

Photo of Pine Creek Gorge by Nicholas Tonelli, Flickr

Unfortunately, the Pine Creek watershed has been inundated by hundreds of unconventional and conventional natural gas wells and the pipelines, compressor stations, impoundments and access roads that accompany oil and gas development.  It is estimated that in the watershed’s Tiadaghton State Forest, more than 1,000 acres have already been disturbed by gas operations.  Much of this degradation has occurred in the last 10 years. With wilderness in the balance, FracTracker – with support from the Foundation for Pennsylvania Watersheds – is examining what a decade of drilling means for this treasured landscape and its beloved woods and waters.

Over the next few months, we aim to construct a digital atlas – ripe with vivid, detailed maps and data – to tell the story of the changes in this emblematic place. The capstone will be an extensive field documentation tour using staff and volunteers deployed with cameras and the FracTracker mobile app. With the help of groups like the Pennsylvania chapter of the Sierra Club, Save Pennsylvania Forests Coalition, Responsible Drilling Alliance, Middle Susquehanna RiverKeeper, LightHawk, and others, images from the ground and air will be collected and included in the atlas project. The final product will be an invaluable tool to educate diverse audiences about the risks of natural gas development on Pine Creek, the Susquehanna watershed, and our public lands.

Near and far – for people, the planet, and precious watersheds like Pine Creek – there’s so much to do. Please consider becoming a FracTracker recurring monthly donor. Your gesture warms our hearts, nurtures our work, and sows hope –with invaluable information, tenacious solidarity, and the unstoppable spirit of love.

By Brook Lenker, Executive Director, FracTracker Alliance

destroyed home following pipeline explosion in San Bruno, CA

Unnatural Disasters

Guest blog by Meryl Compton, policy associate with Frontier Group

Roughly half of the homes in America use gas for providing heat, hot water or powering appliances. If you use gas in your home, you know that leaks are bad – they waste money, they pollute the air, and, if exposed to a spark, they could spell disaster.

Our homes, however, are only the end point of a vast production and transportation system that brings gas through a network of pipelines all the way from the wellhead to our kitchens. There are opportunities for wasteful and often dangerous leaks all along the way – leaks that threaten the public’s health and safety and contribute to climate change.

How frequent are gas leaks?

Between January 2010 and November 2018, there were a reported 1,888 incidents that involved a serious injury, fatality or major financial loss related to gas leaks in the production, transmission and distribution system, according to data from the Pipeline and Hazardous Materials Safety Administration. These incidents caused 86 deaths, 487 injuries and over $1 billion in costs.

When gas lines leak, rupture, or are otherwise damaged, the gas released can explode, sometimes right in our own backyards. Roughly one in seven of the incidents referenced above – 260 in total – involved an explosion.

In September 2018, for example, a series of explosions in three Massachusetts communities caused one death, numerous injuries and the destruction of as many as 80 homes. And there are many more stories like it from communities across the U.S. From the 2010 pipeline rupture and explosion in San Bruno, California, that killed eight people and destroyed almost 40 homes to the 2014 disaster in New York City that destroyed two five-story buildings and killed eight people, these events serve as a powerful reminder of the danger posed by gas.

The financial and environmental costs

Gas leaks are also a sheer waste of resources. While some gas is released deliberately in the gas production process, large amounts are released unintentionally due to malfunctioning equipment, corrosion and natural causes like flooding. The U.S. Energy Information Administration estimates that 123,692 million cubic feet of gas were lost in 2017 alone, enough to power over 1 million homes for an entire year. That amount is likely an underestimate. On top of the major leaks reported to the government agency in charge of pipeline safety, many of our cities’ aging gas systems are riddled with smaller leaks, making it tricky to quantify just how much gas is lost from leaks in our nation’s gas system.

Leaks also threaten the stability of our climate because they release large amounts of methane, the main component of gas and a potent greenhouse gas. Gas is not the “cleaner” alternative to coal that the industry often makes it out to be. The amount of methane released during production and distribution is enough to reduce or even negate its greenhouse gas advantage over coal. The total estimated methane emissions from U.S. gas systems have roughly the same global warming impact over a 20-year period as all the carbon dioxide emissions from U.S. coal plants in 2015 – and methane emissions are likely higher than this amount, which is self-reported by the industry.

In most states, there is no strong incentive for gas companies to reduce the amount of leaked gas because they can still charge customers for it through “purchased gas adjustment clauses.” These costs to consumers are far from trivial. Between 2001 and 2011, Americans paid at least $20 billion for gas that never made it to their homes.

These and other dangers of gas leaks are described in a recent fact sheet by U.S. PIRG Education Fund and Frontier Group. At a time when climate change is focusing attention on our energy system, it is critical that communities understand the full range of problems with gas – including the ever-present risk of leaks in the extensive network of infrastructure that brings gas from the well to our homes.

The alternative

We should not be using a fuel that endangers the public’s safety and threatens the stability of our climate. Luckily, we don’t have to. Switching to electric home heating and hot water systems and appliances powered by renewable energy would allow us to move toward eliminating carbon emissions from homes. Electric heat pumps are twice as efficient as gas systems in providing heat and hot water, making them a viable and commonsense replacement. Similarly, as the cost of wind and solar keep falling, they will continue to undercut gas prices in many regions.

It’s time to move beyond gas and create a cleaner, safer energy system.

By Meryl Compton, policy associate with Frontier Group, a non-profit think tank part of The Public Interest Network. She is based in Denver, Colorado.

Feature image at top of page shows San Bruno, California, following the 2010 pipeline explosion