“Taking” Wildlife in PA, OH, WV

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

 

In an apparent move to step around compliance with comprehensive regulations outlined in the Endangered Species Act (ESA), a coalition of nine oil and gas corporations has filed a draft plan entitled the Oil & Gas Coalition Multi-State Habitat Conservation Plan (O&G HCP). The proposed plan, which would relax regulations on five species of bats, is unprecedented in scope in the eastern United States, both temporally and spatially. If approved, it would be in effect for 50 years, and cover oil and gas operations throughout the states of Ohio, Pennsylvania, and West Virginia—covering over 110,000 square miles. The oil and gas companies see the plan as a means of “streamlining” the permit processes associated with oil and gas exploration, production, and maintenance activities. Others outside of industry may wonder whether the requested permit is a broad over-reach of an existing loophole in the ESA.

Habitat fragmentation, air, and noise pollution that comes with oil and gas extraction and fossil fuel delivery activities have the potential to incidentally injure or kill bat species in the three-State plan area that are currently protected by the Endangered Species Act (ESA) of 1973. In essence, the requested “incidental take permit”, or ITP, would acknowledge that these companies would not be held to the same comprehensive regulations that are designed to safeguard the environment, particularly the flora and fauna at most risk to extirpation. Rather, they would simply be asked to insure that their impacts are “minimized and mitigated to the maximum extent practicable.”

Section 10(a)(2)(B) of the ESA contains provisions for issuing an ITP to a non-Federal entity for the take of endangered and threatened species, provided the following criteria are met:

  • The taking will be incidental
  • The applicant will, to the maximum extent practicable, minimize and mitigate the impact of such taking
  • The applicant will develop an HCP and ensure that adequate funding for the plan will be provided
  • The taking will not appreciably reduce the likelihood of survival and recovery of the species in the wild
  • The applicant will carry out any other measures that the Secretary may require as being necessary or appropriate for the purposes of the HCP

What activities would be involved?

n_long-eared_bat

The Northern Long-eared Bat is a federally-listed threatened species, also included in the ITP

The proposed plan, which would seek to exempt both upstream development activities (oil & gas wells) and midstream development activities (pipelines). Upstream activities include the creation of access roads, staging areas, seismic operations, land clearing, explosives; the development and construction of well fields, including drilling, well pad construction, disposal wells, water impoundments, communication towers; and other operations, including gas flaring and soil disturbance; and decommissioning and reclamation activities, including more land moving and excavation.

Midstream activities include the construction of gathering, transmission, and distribution pipeline, including land grading and stream construction, construction of compressor stations, meter stations, electric substations, storage facilities, and processing plants, and installation of roads, culverts, and ditches, to name just a few.

Companies involved in the proposed “Conservation Plan” represent the major players in fossil fuel extraction, refinement, and delivery in the region, and include:

  • Antero Resources Corporation
  • Ascent Resources, LLC
  • Chesapeake Energy Corporation
  • EnLink Midstream L.P.
  • EQT Corporation
  • MarkWest Energy Partners, L.P., MPLX L.P., and Marathon Petroleum Corporation (all part of same corporate enterprise)
  • Rice Energy, Inc.
  • Southwestern Energy Company
  • The Williams Companies, Inc.

Focal species of the request

Populations of federally endangered Indiana Bats could be impacted by the proposed Incidental Take Permit (ITP)

Populations of federally-endangered Indiana Bats could be impacted by the proposed Incidental Take Permit (ITP)

The five species listed in the ITP include the Indiana Bat (a federally-listed endangered species) and Northern Long-eared Bat (a federally-listed threatened species), the Eastern Small-footed Bat (a threatened species protected under Pennsylvania’s Game and Wildlife Code), as well as the Little Brown Bat and Tri-colored Bat. Populations of all five species are already under dire threats due to white-nose syndrome, a devastating disease that, since 2008, has killed an estimated 5.7 million bats in North America. In some cases, entire local populations have succumbed to this deadly disease. Because bats already have a naturally low birthrate, bat populations that do survive this epidemic will be slow to rebound. Only recently, wildlife biologists have begun to see hope for a treatment in a beneficial bacterium that may save affected bats. However, production and deployment details of this treatment are still under development. Best summarized in a recent article in the Pittsburgh Post-Gazette:

This [ITP] would be a huge deal because we are dealing with species in a precipitous decline,” said Jared Margolis, an attorney with the Center for Biological Diversity, a national nonprofit conservation organization headquartered in Tucson, Ariz. “I don’t see how it could be biologically defensible. Even without the drilling and energy development we don’t know if these species will survive.

In 2012, Bat Conservation International produced a report for Delaware Riverkeeper, entitled Impacts of Shale Gas Development on Bat Populations in the Northeastern United States. The report focuses on landscape scale impacts that range from water quality threats, to disruption of winter hibernacula, the locations where bats hibernate during the winter, en masse. In addition, because bats have strong site fidelity to roosting trees or groups of trees, forest clearing for pipelines, well pads or other facilities may disproportionately impact local populations.

The below map, developed by FracTracker Alliance, shows the population ranges of all five bat species, as well as the current areas impacted by existing development by the oil and gas industry through well sites, pipelines, and other facilities.

View map fullscreenHow FracTracker maps work

 

To learn more details about the extensive oil and gas development in each of the impacted states, follow these links:

  • Oil and gas threat map for Pennsylvania. Currently, there are ~104,000 oil and gas wells, compressors, and other related facilities here.
  •  Oil and gas threat map for Ohio. Currently, there are ~90,000 oil and gas wells, compressors, and other related facilities here.
  • Oil and gas threat map for West Virginia. Currently, there are ~16,000 oil and gas wells, compressors, and other related facilities here.

Public input options

The U.S. Fish and Wildlife Service (USFWS) announced in the Federal Register in late November 2016 its intent to prepare an environmental impact statement (EIS) and hold five public scoping sessions about the permit, as well as an informational webinar.  In keeping with the parameters of an environmental impact statement, USFWS is particularly interested in input and information about:

  • Aspects of the human environment that warrant examination such as baseline information that could inform the analyses.
  • Information concerning the range, distribution, population size, and population trends concerning the covered species in the plan area.
  • Additional biological information concerning the covered species or other federally listed species that occur in the plan area.
  • Direct, indirect, and/or cumulative impacts that implementation of the proposed action (i.e., covered activities) will have on the covered species or other federally listed species.
  • Information about measures that can be implemented to avoid, minimize, and mitigate impacts to the covered species.
  • Other possible alternatives to the proposed action that the Service should consider.
  • Whether there are connected, similar, or reasonably foreseeable cumulative actions (i.e., current or planned activities) and their potential impacts on covered species or other federally listed species in the plan area.
  • The presence of archaeological sites, buildings and structures, historic events, sacred and traditional areas, and other historic preservation concerns within the plan area that are required to be considered in project planning by the National Historic Preservation Act.
  • Any other environmental issues that should be considered with regard to the proposed HCP and potential permit issuance.

The public comment period ends on December 27, 2016. Links to more information about locations of the public hearings, as well as instructions about how to sign up for the December 20, 2016 informational webinar can be found at this website. In addition, you can electronically submit comments about the “conservation plan” by following this link.

The Dakota Access Pipeline: An Uncertain Future

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance
Eliza Czolowski, Program Associate, PSE Healthy Energy

 

Since April 2016, demonstrators in North Dakota have been protesting a section of the Dakota Access Pipeline (DAPL) being built by Dakota Access LLC, a construction subsidiary of Energy Transfer Partners LP. The proposed pipeline passes just 1.5 miles north of the Standing Rock Sioux Tribal Lands, where it is planned to cross Lake Oahe, the largest Army Corps of Engineers reservoir created on the Missouri River. The tribe argues that the project will not only threaten their environmental and economic well-being, but will also cut through land that is sacred.

Given how quickly circumstances have changed on the ground, we have received numerous requests to post an overview on the issue. This article examines the technical aspects of the DAPL proposal and details the current status of protests at Standing Rock. It includes a discussion of what the Army Corps’ recent denial of DAPL’s permits means for the project as well as looks towards the impacts of incoming Trump administration. We have also created the below map to contextualize DAPL and protest activities that have occurred at Standing Rock.

Standing Rock Protest Map


View map fullscreen | How FracTracker maps work

Background

DAPL is a $3.78 billion dollar project that was initially slated for completion on January 1, 2017. The DAPL is a joint venture of Phillips 66, Sunoco Logistics, and other smaller fossil fuel companies including Marathon Petroleum Corporation, and Enbridge Energy Partners. Numerous banks and investment firms are supporting the project and financing the related infrastructure growth, including Citi Bank, JP Morgan Chase, HSBC, PNC, Community Trust, Bank of America, Morgan Stanley, ING, Tokyo-Mitsubishi, Goldman Sachs, Wells Fargo, SunTrust, Us Bank, UBS, Compass and others.

Its route travels from Northwestern North Dakota, south of Bismarck, and crosses the waterway made up of the Missouri River and Lake Oahe just upriver of the Standing Rock Sioux Tribal Area. From North Dakota the pipeline continues 1,172 miles to an oil tank farm in Pakota, Illinois. DAPL would carry 470,000 barrels per day (75,000 m3/d) of Bakken crude oil with a maximum capacity up to 570,000 barrels per day. That’s the CO2 equivalent of 30 average sized coal fired power plants.

As documented by the NY Times map, in addition to the Missouri River and Lake Oahe, the pipeline crosses 22 other waterways that also require the pipeline to be drilled deep under these bodies of water. But Standing Rock portion is the only section disputed and as of yet unfinished. Now the pipeline project, known by the protesters as “the black snake,” is over 95% complete, despite having no official easement to cross the body of water created by the Missouri River and Lake Oahe. The easement is required for any domestic pipeline to cross a major waterway and because the land on either side of the Army Corps Lake Oahe project is managed by the Army Corps (shown in the protest map). An easement would allow Dakota Access LLC to drill a tunnel for the pipeline under the federally owned lands, including the lake and river.

Safety & Environmental Racism

Proponents of the project tout the opinion that pipelines are the safest method of moving oil large distances. Trucking oil in tankers on highways has the highest accident and spill rates, whereas moving oil by railways presents a major explosive hazard when incidents do occur. Pipeline spills are therefore considered the “safe” alternative. On November 11, Kelcy Warren was interviewed on CBS News, claiming Dakota Access, LLC takes every precaution to reduce leaks and that the likelihood of a leak is highly unlikely. The problem with comparing the risk for each of these transportation methods is that rates of incidence are the only comparison. The resulting hazard and impact is ignored. When pipelines rupture, they present a much larger hazard than trucks and trains. Large volumes of spilled oil result in much greater water and soil contamination.

We know that pipelines do rupture, and quite often. An analysis by the U.S. DOT Pipeline and Hazardous Materials Safety Administration in 2012 shows that there have been 201 major incidents (with volumes over 1,000 gallons) related to liquid leaks in the U.S. over the last ten years that were reported to the Department of Transportation. The “average” pipeline therefore has a 57% probability of experiencing a major leak, with consequences over the $1 million range, in a ten-year period. FracTracker’s recent analysis of PHMSA data shows the systemic issue of pipeline spills: there have been 4,215 pipeline spill incidents just since 2010 resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion! The recent (December 12) spill of 176,000 gallons of crude oil into a stream just 150 miles from the Standing Rock protest site highlights the Tribes’ concerns.

A previously proposed route for the DAPL would have put Bismarck—a city that is 92% white—just downriver of its Missouri River crossing. This initial route was rejected due to its potential threat to Bismarck’s water supply, according to the Army Corps. In addition to being located upriver of Bismarck’s water intake, the route would have been 11 miles longer and would have passed through “wellhead source water protection” areas that are avoided to protect municipal water supply wells. Passing through this “high consequence area” would have required further actions and additional safety measures on the part of Dakota Access LLC. The route would also have been more difficult to stay at least 500 feet away from homes, as required by the North Dakota Public Service Commission. The route was changed and pushed as close to Sioux County as possible, the location of the Standing Rock Indian Reservation.

Protests: The Water Protectors

The Standing Rock Sioux Tribe has taken an active stance against Bakken Oil Development in the past. In 2007, the Reservation passed a resolution to prevent any oil and gas development or pipelines on the Tribal Lands. However, deep concerns about the safety of DAPL led protesters to begin demonstrations at Standing Rock in April, 2016. The Standing Rock Sioux Tribe then sued the Army Corps in July, after the pipeline was granted most of the final permits over objections of three other federal agencies. Construction of it, they say, will “destroy our burial sites, prayer sites and culturally significant artifacts.” A timeline of The Standing Rock Sioux Tribe’s litigation addressing DAPL through this period can be found on the EARTHJUSTICE website.

Photo by Derrick Broze

Photo by Derrick Broze/cc

In August, a group organized on the Standing Rock Indian Reservation called ReZpect Our Water brought a petition to the Army Corps in Washington, D.C. stating that DAPL interferes with their ancestral land and water rights. The Tribe sued for an injunction citing the endangerment of water and soil, cultural resources, and the improper use of eminent domain. The suit argued that the pipeline presents a risk to Sioux Tribe communities who live near or downstream of the pipeline. The Missouri River is the main water source for the Standing Rock Sioux Tribe. In September, members of the Standing Rock Sioux tribe in North Dakota finally made headlines.

Federal Injunction

On September 9, District Judge James Boasberg denied the Standing Rock Sioux Tribes preliminary injunction request to prevent the Army Corps from granting the easement. The Judge ordered Dakota Access to stop work only on the section of pipeline nearest the Missouri river until the Army Corps granted the crossing easement. The excavation of Standing Rock burial grounds and other sacred sites, where direct action demonstrators were clashing with Dakota Access security and guard dogs, was allowed to continue. Later that same day, a joint statement was released by the U.S. Department of Justice, the Department of the Interior, and the U.S. Army:

“We request that the pipeline company voluntarily pause all construction activity within 20 miles east or west of Lake Oahe.”

In the map above the 20-mile buffer zone is shown in light green. Regardless of the request from the three federal agencies to pause construction, Dakota Access’s parent company Energy Transfer Partners LP ignored requests to voluntarily halt construction. Dakota Access LLC has also disregarded the instructions of the federal judge. The Army Corps declared Dakota Access LLC would not receive the easement required to cross the waterway until after 2016, but that has not stopped the company from pushing forward without the necessary permits. The pipeline has been built across all of Cannonball Ranch right up to Lake Oahe and the Missouri River, which can be seen in the map above and in drone footage taken November 2, 2016 showing the well pad for the drill rig has been built.

On November 4 the Army Corps requested Dakota Access LLC voluntarily halt construction for 30 days; then on November 8 (Election Day), Dakota Access ignored the request and announced they would begin horizontally drilling under the waterway within weeks. On November 14 Dakota Access filed a lawsuit against the Army Corps arguing that permits are not legally required. Later that day, the Army Corps responded with a statement that said any construction on or under Corps land bordering Lake Oahe cannot occur because the Army has not made a final decision on whether to grant an easement. In the issued statement, Assistant Secretary of the Army Jo-Ellen Darcy said “in light of the history of the Great Sioux Nation’s dispossession of lands [and] the importance of Lake Oahe to the Tribe,” the Standing Rock Sioux tribe would be consulted to help develop a timetable for future construction plans. The Army Corps has since denied the easement entirely.

Violence Against Protesters

Law enforcement has used physical violence to disrupt demonstrations on public lands and to prevent direct action activities as protesters aim to shut down construction on private land held by Energy Transfer Partners LP. Since September 4, law enforcement agencies led by the Morton County Sheriff’s Department have maintained jurisdiction over the protests. Officers from other counties and states have also been brought in to assist. Morton County and the State of North Dakota do not have the jurisdiction to evict protesters from the camps located on Army Corps land. Well over 500 activists have been arrested.

The majority of clashes with law enforcement have occurred on the roadways exiting the Army Corps lands, or at the access points to the privately owned Cannonball Ranch (shown on the map). Morton County has spent more than $8 million keeping direct action protesters from shutting down excavation and construction activities along the path of the pipeline. Meanwhile, the state of North Dakota has spent over $10 million on additional law enforcement officials to provide assistance to Morton County.

DAPL protests from in-depth documentations at: https://vimeo.com/189249968

DAPL protests from video by UnicornRiot/cc

The first violent confrontation occurred on September 3 after Dakota Access bulldozed an area of Cannonball Ranch identified by the Tribe as a sacred site hosting burial grounds. At that time, the site was actively being contested in court and rulings still had not been made. The Tribe was seeking a restraining order, known as a “preliminary injunction” to protect their cultural heritage. Direct action demonstrators put themselves in the way of bulldozers to stop the destructive construction. In response, Dakota Access LLC security personnel assaulted protesters with pepper spray and attack dogs. The encounter was documented by Democracy Now reporter Amy Goodman.

October 27, the Morton County Sheriff’s Department reinforced with 300 police from neighboring counties and states, raided the frontline camp site making mass arrests. In response, demonstrators reinforced a blockade of the 1806 bridge, shown in the map above. The most violent clash was witnessed on public lands on November 20, 2016 at this bridge, which demarcates Army Corps land. The Police forces’ use of “non-lethal” bean bag rounds, rubber bullets, tear gas, pepper spray, water hoses, LRAD, and explosive flash grenades on peaceful demonstrators has been criticized by many groups. Fire hoses were used on protesters in freezing conditions resulting in dozens of demonstrators needing treatment for hypothermia. In total 300 people were injured according to a release from the standing rock medic and healer council.

Most recently, the Army Corps has targeted the Standing Rock Demonstration by determining that it is no longer safe to stay at the Sacred Stone and Oceti Sakowin camps located on Army Corps property. North Dakota Governor Jack Dalrymple has frequently blasted the Army Corps for not removing the protesters.

As of December 5th, federal authorities consider the protesters to be trespassing on federal lands, leaving protesters vulnerable to various citations and possible arrest. The Army Corps has also said that emergency services may no longer be provided in the evacuation area. The Army Corps has jurisdiction on Army Corps lands, and only federal authorities can remove the protesters from federal lands. There are now more than 5,000 activists demonstrating at Standing Rock, and an additional 2,000 U.S. veterans joined the protest this past week for an action of solidarity. Nevertheless, U.S. authorities have said that there are no plans to forcibly remove activists, despite telling them to leave.

Victory and an Uncertain Future

Perhaps as a result of this mass outcry, the Army Corps announced on December 4th—only a day before trespassing claims would be imposed—that Dakota Access LLC’s permit application to cross under the Missouri River and Lake Oahe had been denied. Jo-Ellen Darcy, the Army’s Assistant Secretary for Civil Works, announced:

“Although we have had continuing discussion and exchanges of new information with the Standing Rock Sioux and Dakota Access, it’s clear that there’s more work to do…The best way to complete that work responsibly and expeditiously is to explore alternate routes for the pipeline crossing.”

To determine alternate routes, the Army Corps has announced it will undertake an environmental impact statement which could take years to complete. While this is a major victory for the “water protectors” demonstrating at Standing Rock, it is not a complete victory. Following the Army Corps’ announcement, the two main pipeline investors, Energy Transfer Partners LP and Sunoco Logistics, responded that they:

“…are fully committed to ensuring that this vital project is brought to completion and fully expect to complete construction of the pipeline without any additional rerouting in and around Lake Oahe. Nothing this Administration has done today changes that in any way.”

In fact, prior to the Army Corps denying the easement, numerous democrats in congress called for President Obama to shut down the pipeline. While President Obama has not heeded these calls to shut down the project entirely, he also has not given the green light for the project either. Instead the President stated that the situation needed to be handled carefully and urged the Army Corps to consider rerouting the pipeline. “We’re monitoring this closely and I think, as a general rule, my view is that there’s a way for us to accommodate sacred lands of Native Americans…. I think right now the Army Corps is examining whether there are ways to reroute this pipeline,” the President said.

trump keystone

The Corps decision to conduct a lengthy environmental impact statement is encouraging but, ultimately, the Trump administration may have the final say on the DAPL easement. President-elect Trump has voiced support for the easement in the past, and on December 5th, just one day following the Army Corps’ decision, Trump spokesman Jason Miller commented:

“That’s something we support construction of, and we will review the full situation in the White House and make an appropriate determination at that time.”

Energy Transfer Partners LP CEO Kelcy Warren donated $103,000 to the Trump campaign and the President-elect has investments in Energy Transfer Partners LP totaling up to $1 million according to campaign financial disclosures. President-elect Trump has made it clear that pipeline projects, specifically the Keystone Access Pipeline rejected by President Obama, will be allowed to move forward along with additional fossil fuel extraction projects.

If the construction company, Dakota Access LLC, continues building the pipeline they are liable to be fined. It is not yet clear whether Dakota Access LLC will “eat” the fine to continue building and drilling, or whether the Army Corps will forcefully stop DAPL. Analysts say the expense of changing the route, such as to the south of the tribal lands, would make the economics of the pipeline a total loss. It is cheaper for Dakota Access LLC to continue to fight the protest despite overwhelming disapproval of the project.

Meanwhile, protestors have refused to leave Standing Rock in fear that the Army Corp will reverse its decision and allow DAPL to proceed, despite requests by the chairman of the Sioux Tribe that demonstrators go home. Many are hopeful that, by stalling the project past January 1st—the deadline by which Energy Transfer Partners LP promised oil companies it would complete construction—the possibility exists that contracts will expire and DAPL loses support from investors.

Other Mapping Resources

This web map shows the current construction progress of the pipeline.

The New York Times website is hosting a map focusing on the many water crossings of the pipeline route.

The Guardian has a static map on their website similar to our interactive map.

Header photograph by Joe Brusky/flickr/cc

Woody Biomass & Waste-To-Energy

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

While solar and wind energy gets much of the attention in renewable energy debates, various states are also leaning more and more on burning biomass and waste to reach renewable energy targets and mandates. As is the case with all sources of energy, these so-called “renewable energy” projects present a unique set of environmental and socioeconomic justice issues, as well as environmental costs and benefits. In an effort to document the geography of these active and proposed future projects, this article offers some analysis and a new map of waste and woody biomass-to-energy infrastructure across the U.S. with the maximum capacities of each facility.

 

Map of U.S. Facilities Generating Energy from Biomass and Waste

View map full screen to see map legend, additional layers, and bookmarks
How FracTracker maps work

Woody Biomass-to-Energy

To illustrate the problems of woody biomass-to-energy projects, one only needs to look at Michigan. Michigan’s growing practice of generating energy from the wood biomass relies on ten facilities that currently produce roughly 209 Megawatts (an average of 21 MW per facility) from 1.86 million tons of wood biomass (an average of 309,167 tons per facility). Based on our initial analysis this is equivalent to 71% of the wood and paper waste produced in Michigan.

Making matters worse, these ten facilities rely disproportionately on clearcutting 60-120 years old late successional northern Michigan hardwood and red pine forests. These parcels are often replanted with red pine and grown in highly managed, homogeneous 20-30 year rotations. Reliance on this type of feedstock stands in sharp contrast to many biomass-to-energy facilities nationally, which tend to utilize woody waste from urban centers. Although, to provide context to their needs, the area of forest required to service Michigan’s 1.86 million-ton demand is roughly 920 mi2. This is 1.65 times the area of Chicago, Milwaukee, Detroit, Cleveland, Buffalo, and Toronto combined.

 

Panorama of the Sunset Trail Road 30 Acre Biomass Clearcut, Kalkaska Conty, Michigan

 

Based on an analysis of 128 U.S. facilities, the typical woody biomass energy facility produces 0.01-0.58 kW, or an average of 0.13 kW per ton of woody biomass. A few examples of facilities in Michigan include Grayling Generating Station, Grayling County (36.2 MW Capacity and 400,000 TPY), Viking Energy of McBain, Missaukee County (17 MW Capacity and 225,000 TPY), and Cadillac Renewable Energy, Wexford County (34 MW Capacity and 400,000 TPY).

 

The relationship between wood processed and energy generated across all U.S. landfill waste-to-energy operations is represented in the figure below (note: data was log transformed to generate this relationship).

 

Waste-To-Energy

Dr. Jim Stewart at the University of the West in Rosemead, California, recently summarized the Greenhouse Gas (GHG) costs of waste landfill energy projects and a recent collaboration between the Sierra Club and International Brotherhood of Teamsters explored the dangers of privatizing waste-to-energy given that two companies, Waste Management and Republic Services/Allied Waste, are now a duopoly controlling all remaining U.S. landfill capacity (an additional Landfill Gas Fact Sheet from Energy Justice can be found here).

Their combined analysis tells us that, by harnessing and combusting landfill methane, the current inventory of ninety-three U.S. waste-to-energy facilities generate 5.3 MW of electricity per facility. Expanded exploitation of existing landfills could bring an additional 500 MW online and alleviate 21.12 million metric tons of CO2 pollution (based on reduction in fugitive methane, a potent greenhouse gas). Looking at this capacity from a different angle, approximately 0.027 MW of electricity is generated per ton of waste processed, or 1.64 MW per acre. If we assume the average American produces 4.4 pounds of waste per day, we have the potential to produce roughly 6.9 million MW of energy from our annual waste outputs, or the equivalent energy demand created by 10.28 million Americans.

 

The relationship between waste processed per day and energy generated across all U.S. landfill waste-to-energy operations is represented in the figure below.

 

Conclusion

Waste burning and woody biomass-to-energy “renewable energy”projects come with their own sets of problems and benefits. FracTracker saw this firsthand when visiting Kalkaska County, Michigan, this past summer. There, the forestry industry has rebounded in response to several wood biomass-to-energy projects. While these projects may provide local economic opportunity, the industry has relied disproportionately on clearcutting, such as is seen in the below photograph of a 30-acre clearcut along Sunset Trail Road:

 

As states diversify their energy sources away from fossil fuels and seek to increase energy efficiency per unit of economic productivity, we will likely see more and more reliance on the above practices as “bridge fuel” energy sources. However, the term “renewable” needs parameterization in order to understand the true costs and benefits of the varying energy sources it presently encompasses. The sustainability of clearcutting practices in rural areas—and the analogous waste-to-energy projects in largely urban areas—deserves further scrutiny by forest health and other environmental experts. This will require additional mapping similar to what is offered in this article, as well as land-use analysis and the quantification of how these energy generation industries enhance or degrade ecosystem services. Of equal importance will be providing a better picture of whether or not these practices actually produce sustainable and well-paid jobs, as well as their water, waste, and land-use footprints relative to fossil fuels unconventional or otherwise.

 

Relevant Data

All US Waste-to-Energy Operations along with waste processed and energy produced (MW)

All US Woody Biomass-to-Energy Operations along with waste processed and energy produced (MW)

The Mississippi Fracking Fight: Saving Forests, Woodpeckers, and the Climate

By Wendy Park, senior attorney with the Center for Biological Diversity

 

If the Bureau of Land Management (BLM) gets its way, large areas of Mississippi’s Bienville and Homochitto national forests will be opened up to destructive fracking. This would harm one of the last strongholds for the rare and beautiful red-cockaded woodpecker, create a new source of climate pollution, and fragment our public forests with roads, drilling pads and industrial equipment. That’s why we’re fighting back.

My colleagues and I at the Center for Biological Diversity believe that all species, great and small, must be preserved to ensure a healthy and diverse planet. Through science, law and media, we defend endangered animals and plants, and the land air, water, and climate they need. As an attorney with the Center’s Public Lands Program, I am helping to grow the “Keep It in the Ground” movement, calling on President Obama to halt new leases on federal lands for fracking, mining, and drilling that only benefit private corporations.

That step, which the president can take without congressional approval, would align U.S. energy policies with its climate goals and keep up to 450 billion tons of greenhouse gas pollution from entering the atmosphere. Already leased federal fossil fuels will last far beyond the point when the world will exceed the carbon pollution limits set out in the Paris Agreement, which seeks to limit warming to 1.5 °C above pre-industrial levels. That limit is expected to be exceeded in a little over four years. We simply cannot afford any more new leases.

Fracking Will Threaten Prime Woodpecker Habitat

In Mississippi, our concerns over the impact of fracking on the rare red-cockaded woodpecker and other species led us to administratively protest the proposed BLM auction of more than 4,200 acres of public land for oil and gas leases the Homochitto and Bienville national forests. The red-cockaded woodpecker is already in trouble. Loss of habitat and other pressures have shrunk its population to about 1% of its historic levels, or roughly 12,000 birds. In approving the auction of leases to oil and gas companies, BLM failed to meet its obligation to protect these and other species by relying on outdated forest plans, ignoring the impact of habitat fragmentation, not considering the effects of fracking on the woodpecker, and ignoring the potential greenhouse gas emissions from oil and gas taken from these public lands. The public was also not adequately notified of BLM’s plans.

 

Mississippi National Forests, Potential BLM Oil & Gas Leasing Parcels, and Red Cockaded Woodpecker Sightings


View map fullscreenHow FracTracker maps work

Fracking Consequences Ignored

According to the National Forest Service’s 2014 Forest Plan Environmental Impact Statement, core populations of the red-cockaded woodpecker live in both the Bienville and Homochitto national forests, which provide some of the most important habitat for the species in the state. The Bienville district contains the state’s largest population of these birds and is largely untouched by oil and gas development. The current woodpecker population is far below the target set by the U.S. Fish and Wildlife Service’s recovery plan. A healthy and fully recovered population will require large areas of mature forest. But the destruction of habitat caused by clearing land for drilling pads, roads, and pipelines will fragment the forest, undermining the species’ survival and recovery.

red-cockaded_woodpecker_insertNew leasing will likely result in hydraulic fracturing and horizontal drilling. In their environmental reviews, BLM and the Forest Service entirely ignore the potential for hydraulic fracturing and horizontal drilling to be used in the Bienville and Homochitto national forests and their effects on the red-cockaded woodpecker. Fracking would have far worse environmental consequences than conventional drilling. Effects include increased pollution from larger rigs; risks of spills and contamination from transporting fracking chemicals and storing at the well pad; concentrated air pollution from housing multiple wells on a single well pad; greater waste generation; increased risks of endocrine disruption, birth defects, and cardiology hospitalization; and the risk of earthquakes caused by wastewater injection and the hydraulic fracturing process (as is evident in recent earthquakes in Oklahoma and other heavily fracked areas).

Greenhouse Gas Emissions and Climate Change

Oil and gas development also results in significant greenhouse gas emissions from construction, operating fossil-fuel powered equipment during production, reclamation, transportation, processing and refining, and combustion of the extracted product. But BLM and the Forest Service have refused to analyze potential emissions or climate change effects from new leasing. Climate change is expected to worsen conditions for the woodpecker, compounding the harms of destructive drilling practices. Extreme weather events will become more frequent in the Southeast U.S. as temperatures rise. Hurricane Katrina resulted in significant losses of woodpecker habitat and birds in the Mississippi national forests. The Forest Service should be redoubling its efforts to restore and preserve habitat, but instead it is turning a blind eye to climate change threats.

At a time when world leaders are meeting in Morocco to discuss the climate crisis and scientists tell us we already have enough oil and gas fields operating to push us past dangerous warming thresholds, it’s deeply disturbing that the Obama administration continues to push for even more oil and gas leases on America’s public lands. The BLM’s refusal to acknowledge and analyze the effects of fracking on the climate, at-risk species, and their habitat, is not only inexcusable it is illegal. The science is clear: The best way to address catastrophic warming — and protect wildlife — is to keep fossil fuels in the ground.

Photographs for this article were sourced from the U.S. Department of Agriculture fair-use photostream.

The Water-Energy Nexus in Ohio, Part II

OH Utica Production, Water Usage, and Waste Disposal by County
Part II of a Multi-part Series
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

In this part of our ongoing “Water-Energy Nexus” series focusing on Water and Water Use, we are looking at how counties in Ohio differ between how much oil and gas are produced, as well as the amount of water used and waste produced. This analysis also highlights how the OH DNR’s initial Utica projections differ dramatically from the current state of affairs. In the first article in this series, we conducted an analysis of OH’s water-energy nexus showing that Utica wells are using an ave. of 5 million gallons/well. As lateral well lengths increase, so does water use. In this analysis we demonstrate that:

  1. Drillers have to use more water, at higher pressures, to extract the same unit of oil or gas that they did years ago,
  2. Where production is relatively high, water usage is lower,
  3. As fracking operations move to the perimeter of a marginally productive play – and smaller LLCs and MLPs become a larger component of the landscape – operators are finding minimal returns on $6-8 million in well pad development costs,
  4. Market forces and Muskingum Watershed Conservancy District (MWCD) policy has allowed industry to exploit OH’s freshwater resources at bargain basement prices relative to commonly agreed upon water pricing schemes.

At current prices1, the shale gas industry is allocating < 0.27% of total well pad costs to current – and growing – freshwater requirements. It stands to reason that this multi-part series could be a jumping off point for a more holistic discussion of how we price our “endless” freshwater resources here in OH.

In an effort to better understand the inter-county differences in water usage, waste production, and hydrocarbon productivity across OH’s 19 Utica Shale counties we compiled a data-set for 500+ Utica wells which was previously used to look at differenced in these metrics across the state’s primary industry players. The results from Table 1 below are discussed in detail in the subsequent sections.

Table 1. Hydrocarbon production totals and per day values with top three producers in bold

County

# Wells

Total

Per Day

Oil

Gas

Brine

Production

Days

Oil

Gas

Brine

Ashland

1

0

0

23,598

102

0

0

231

Belmont

32

55,017

39,564,446

450,134

4,667

20

8,578

125

Carroll

256

3,715,771

121,812,758

2,432,022

66,935

67

2,092

58

Columbiana

26

165,316

9,759,353

189,140

6,093

20

2,178

65

Coshocton

1

949

0

23,953

66

14

0

363

Guernsey

29

726,149

7,495,066

275,617

7,060

147

1,413

49

Harrison

74

2,200,863

31,256,851

1,082,239

17,335

136

1,840

118

Jefferson

14

8,396

9,102,302

79,428

2,819

2

2,447

147

Knox

1

0

0

9,078

44

0

0

206

Mahoning

3

2,562

0

4,124

287

9

0

14

Medina

1

0

0

20,217

75

0

0

270

Monroe

12

28,683

13,077,480

165,424

2,045

22

7,348

130

Muskingum

1

18,298

89,689

14,073

455

40

197

31

Noble

39

1,326,326

18,251,742

390,791

7,731

268

3,379

267

Portage

2

2,369

75,749

10,442

245

19

168

228

Stark

1

17,271

166,592

14,285

602

29

277

24

Trumbull

8

48,802

742,164

127,222

1,320

36

566

100

Tuscarawas

1

9,219

77,234

2,117

369

25

209

6

Washington

3

18,976

372,885

67,768

368

59

1,268

192

Production

Total

It will come as no surprise to the reader that OH’s Utica oil and gas production is being led by Carroll County, followed distantly by Harrison, Noble, Belmont, Guernsey and Columbiana counties. Carroll has produced 3.7 million barrels of oil to date, while the latter have combined to produce an additional 4.5 million barrels. Carroll wells have been in production for nearly 67,000 days2, while the aforementioned county wells have been producing for 42,886 days. The remaining counties are home to 49 wells that have been in production for nearly 8,800 days or 7% of total production days in Ohio.

Combined with the state’s remaining 49 producing wells spread across 13 counties, OH’s Utica Shale has produced 8.3 million barrels of oil as well as 251,844,311 Mcf3 of natural gas and 5.4 million barrels of brine. Oil and natural gas together have an estimated value of $2.99 billion ($213 million per quarter)4 assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively.

Potential Revenue at Different Severance Tax Rates:

  • Current production tax, 0.5-0.8%: $19 million ($1.4 Million Per Quarter (MPQ). At this rate it would take the oil and gas industry 35 years to generate the $4.6 billion in tax revenue they proposed would be generated by 2020.
  • Proposed, 1% gas and 4% oil: At Governor Kasich’s proposed tax rate, $2.99 billion translates into $54 million ($3.9 MPQ). It would still take 21 years to return the aforementioned $4.6 billion to the state’s coffers.
  • Proposed, 5-7%: Even at the proposed rate of 5-7% by Policy Matters OH and northeastern OH Democrats, the industry would only have generated $179 million ($12.8 MPQ) to date. It would take 11 years to generate the remaining $4.42 billion in tax revenue promised by OH Oil and Gas Association’s (OOGA) partners at IHS “Energy Oil & Gas Industry Solutions” (NYSE: IHS).5

The bottom-line is that a production tax of 11-25% or more ($24-53 MPQ) would be necessary to generate the kind of tax revenue proposed by the end of 2020. This type of O&G taxation regime is employed in the states of Alaska and Oklahoma.

From an outreach and monitoring perspective, effects on air and water quality are two of the biggest gaps in our understanding of shale gas from a socioeconomic, health, and environmental perspective. Pulling out a mere 1% from any of these tax regimes would generate what we’ll call an “Environmental Monitoring Fee.” Available monitoring funds would range between $194,261 and $1.8 million ($16 million at 55%). These monies would be used to purchase 2-21 mobile air quality devices and 10-97 stream quantity/quality gauges to be deployed throughout the state’s primary shale counties to fill in the aforementioned data gaps.

Per-Day Production

On a per-day oil production basis, Belmont and Columbiana (20 barrels per day (BPD)) are overshadowed by Washington (59 BPD) and Muskingum (40 BPD) counties’ four giant Utica wells. Carroll is able to maintain such a high level of production relative to the other 15 counties by shear volume of producing wells; Noble (268 BPD), Guernsey (147 BPD), and Harrison (136 BPD) counties exceed Carroll’s production on a per-day basis. The bottom of the league table includes three oil-free wells in Ashland, Knox, and Medina, as well as seventeen <10 BPD wells in Jefferson and Mahoning counties.

With respect to natural gas, Harrison (1,840 Mcf per day (MPD)) and Guernsey counties are replaced by Monroe (7,348 MPD) and Jefferson (2,447 MPD) counties’ 26 Utica wells. The range of production rates for natural gas is represented by the king of natural gas producers, Belmont County, producing 8,578 MPD on the high end and Mahoning and Coshocton counties in addition to the aforementioned oil dry counties on the low end. Four of the five oil- or gas-dry counties produce the least amount of brine each day (BrPD). Coshocton, Medina, and Noble county Utica wells are currently generating 267-363 barrels of BrPD, with an additional seven counties generating 100-200 BrPD. Only four counties – 1.2% of OH Utica wells – are home to unconventional wells that generate ≤ 30 BrPD.

Water Usage

Freshwater is needed for the hydraulic fracturing process during well stimulation. For counties where we had compiled a respectable sample size we found that Monroe and Noble counties are home to the Utica wells requiring the greatest amount of freshwater to obtain acceptable levels of productivity (Figure 1). Monroe and Noble wells are using 10.6 and 8.8 million gallons (MGs) of water per well. Coshocton is home to a well that required 10.8 MGs, while Muskingum and Washington counties are home to wells that have utilized 10.2 and 9.5 MGs, respectively. Belmont, Guernsey, and Harrison reflect the current average state of freshwater usage by the Utica Shale industry in OH, with average requirements of 6.4, 6.9, and 7.2 MGs per well. Wells in eight other counties have used an average of 3.8 (Mahoning) to 5.4 MGs (Tuscarawas). The counties of Ashland, Knox, and Medina are home to wells requiring the least amount of freshwater in the range of 2.2-2.9 MGs. Overall freshwater demand on a per well basis is increasing by 220,500-333,300 gallons per quarter in Ohio with percent recycled water actually declining by 00.54% from an already trivial average of 6-7% in 2011 (Figure 2).

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale.

Figure 1. Average water usage (gallons) per Utica well by county

Average water usage (gallons) on a per well basis by OH’s Utica Shale industry, shown quarterly between Q3-2010 and Q2-2014.

Figure 2. Average water usage (gallons) on per well basis by OH Utica Shale industry, shown quarterly between Q3-2010 & Q2-2014.

Belmont County’s 30+ Utica wells are the least efficient with respect to oil recovery relative to freshwater requirements, averaging 7,190 gallons of water per gallon of oil (Figure 3). A distant second is Jefferson County’s 14 wells, which have required on average 3,205 gallons of water per gallon of oil. Columbiana’s 26 Utica wells are in third place requiring 1,093 gallons of freshwater. Coshocton, Mahoning, Monroe, and Portage counties are home to wells requiring 146-473 gallons for each gallon of oil produced.

Belmont County’s 14 Utica wells are the least efficient with respect to natural gas recovery relative to freshwater requirements (Figure 4). They average 1,306 gallons of water per Mcf. A distant second is Carroll County’s 250+ wells, which have injected 520 gallons of water 7,000+ feet below the earth’s service to produce a single Mcf of natural gas. Muskingum’s Utica well and Noble County’s 39 wells are the only other wells requiring more than 100 gallons of freshwater per Mcf. The remaining nine counties’ wells require 15-92 gallons of water to produce an Mcf of natural gas.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Oil Produced (Gallons of Water Per Gallon of Oil).

Figure 3. Average water usage (gallons) per unit of oil (gallons) produced across 19 Ohio Utica counties

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Gas Produced (Gallons of Water Per MCF of Gas)

Figure 4. Average water usage (gallons) per unit of gas produced (Mcf) across 19 Ohio Utica counties

Waste Production

The aforementioned Jefferson wells are the least efficient with respect to waste vs. product produced. Jefferson wells are generating 12,728 gallons of brine per gallon of oil (Figure 5).6 Wells from this county are followed distantly by the 32 Belmont and 26 Columbiana county wells, which are generating 5,830 and 3,976 gallons of brine per unit of oil.5 The remaining counties (for which we have data) are using 8-927 gallons of brine per unit of oil; six counties’ wells are generating <38 gallons of brine per gallon of oil.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Brine Production Per Unit of Oil Produced (Gallons of Brine Per Gallon of Oil)

Figure 5. Average brine production (gallons) per gallon of oil produced per day across 19 Ohio Utica Counties

The average Utica well in OH is generating 820 gallons of fracking waste per unit of product produced. Across all OH Utica wells, an average of 0.078 gallons of brine is being generated for every gallon of freshwater used. This figure amounts to a current total of 233.9 MGs of brine waste produce statewide. Over the next five years this trend will result in the generation of one billion gallons (BGs) of brine waste and 12.8 BGs of freshwater required in OH. Put another way…

233.9 MGs is equivalent to the annual waste production of 5.2 million Ohioans – or 45% of the state’s current population. 

Due to the low costs incurred by industry when they choose to dispose of their fracking waste in OH, drillers will have only to incur $100 million over the next five years to pay for the injection of the above 1.0 BGs of brine. Ohioans, however, will pay at least $1.5 billion in the same time period to dispose of their municipal solid waste. The average fee to dispose of every ton of waste is $32, which means that the $100 million figure is at the very least $33.5 million – and as much as $250.6 million – less than we should expect industry should be paying to offset the costs.

Environmental Accounting

In summary, there are two ways to look at the potential “energy revolution” that is shale gas:

  1. Using the same traditional supply-side economics metrics we have used in the past (e.g., globalization, Efficient Market Hypothesis, Trickle Down Economics, Bubbles Don’t Exist) to socialize long-term externalities and privatize short-term windfall profits, or
  2. We can begin to incorporate into the national dialogue issues pertaining to watershed resilience, ecosystem services, and the more nuanced valuation of our ecosystems via Ecological Economics.

The latter will require a more real-time and granular understanding of water resource utilization and fracking waste production at the watershed and regional scale, especially as it relates to headline production and the often-trumpeted job generating numbers.

We hope to shed further light on this new “environmental accounting” as it relates to more thorough and responsible energy development policy at the state, federal, and global levels. The life cycle costs of shale gas drilling have all too often been ignored and can’t be if we are to generate the types of energy our country demands while also stewarding our ecosystems. As Mark Twain is reported to have said “Whiskey is for drinking; water is for fighting over.” In order to avoid such a battle over the water-energy nexus in the long run it is imperative that we price in the shale gas industry’s water-use footprint in the near term. As we have demonstrated so far with this series this issue is far from settled here in OH and as they say so goes Ohio so goes the nation!

A Moving Target

ODNR projection map of potential Utica productivity from Spring, 2012

Figure 6. ODNR projection map of potential Utica productivity from spring 2012

OH’s Department of Natural Resources (ODNR) originally claimed a big red – and nearly continuous – blob of Utica productivity existed. The projection originally stretched from Ashtabula and Trumbull counties south-southwest to Tuscarawas, Guernsey, and Coshocton along the Appalachian Plateau (See Figure 6).

However, our analysis demonstrates that (Figures 7 and 8):

  1. This is a rapidly moving target,
  2. The big red blob isn’t as big – or continuous – as once projected, and
  3. It might not even include many of the counties once thought to be the heart of the OH Utica shale play.

This last point is important because counties, families, investors, and outside interests were developing investment and/or savings strategies based on this map and a 30+ year timeframe – neither of which may be even remotely close according to our model.

An Ohio Utica Shale oil production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7a. An Ohio Utica Shale oil production model using Kriging6 for Q1-2013

An Ohio Utica Shale oil production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7b. An Ohio Utica Shale oil production model using Kriging for Q2-2014

An Ohio Utica Shale gas production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8a. An Ohio Utica Shale gas production model using Kriging for Q1-2013

An Ohio Utica Shale gas production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8b. An Ohio Utica Shale gas production model using Kriging for Q2-2014


Footnotes

  1. $4.25 per 1,000 gallons, which is the current going rate for freshwater at OH’s MWCD New Philadelphia headquarters, is 4.7-8.2 times less than residential water costs at the city level according to Global Water Intelligence.
  2. Carroll County wells have seen days in production jump from 36-62 days in 2011-2012 to 68-78 in 2014 across 256 producing wells as of Q2-2014.
  3. One Mcf is a unit of measurement for natural gas referring to 1,000 cubic feet, which is approximately enough gas to run an American household (e.g. heat, water heater, cooking) for four days.
  4. Assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively
  5. IHS’ share price has increased by $1.7 per month since publishing a report about the potential of US shale gas as a job creator and revenue generator
  6. On a per-API# basis or even regional basis we have not found drilling muds data. We do have it – and are in the process of making sense of it – at the Solid Waste District level.
  7. An interpolative Geostatistical technique formally called Empirical Bayesian Kriging.

Ancient Seas, Modern Ownership Concerns

By Karen Edelstein, NY Program Coordinator, FracTracker Alliance

In the Finger Lakes Region of New York State, while the debate rages about underground storage of gas in abandoned salt solution mines near Seneca Lake, the story is quite different to the east at Cayuga Lake. Cayuga has a history of not just solution brine mining, but also extensive mining of solid rock salt. The map below shows the footprint of underground salt mining – room-and-pillar style 2300 feet below Cayuga Lake – by the multinational corporation, Cargill. Mineral rights beneath the lake are owned by New York State, but note that some of the mine also extends underneath privately owned land in the Town of Lansing.


Map of Lansing, NY Cargill Salt Mine. For a full-screen version of this map (including map legend), click here.

About this Map

The interactive map (above) shows the location and extent of the Cargill Salt mine in Lansing, NY. The boundaries of the mine were digitized from a map, Figure 2.3-2, entitled “Plan View of the Cayuga Mine Showing East and West Shoreline Benchmark Locations” from the Spectra Environmental Group, Latham, NY, circa 2004, and another planning document acquired. Here is one of the original maps, and a planning map showing expansion through 2003. An additional map from a Cargill mine expansion permit request, viewed at the DEC headquarters in Cortland, NY, shows additional requested development under residential areas in Lansing. This layer is shaded green.

Questions Abound

The dynamics around salt extraction, and other uses such as gas extraction, raise several questions.

Consider the stratigraphic column of rocks in New York State. The salt layer that is being mined by Cargill is the Salina Group, approximately 2300 feet below the surface. Salt is dug out mechanically, broken up by machinery and explosives to break up the solid layer. The Marcellus Shale (in Lansing) is above that salt layer–in the expanse of Middle Devonian Rocks, while the Utica Shale is below it–part of the Ordovician rock strata. In order to drill into the Marcellus Shale, one would not need to enter the salt layer, although the boundary of rock between the two strata might only be a few hundred feet thick. Reaching the Utica Shale would require piercing the salt layer. The Central New York region is crisscrossed by an abundance of vertical cracks and joints in the bedrock, some of which are thought to be hundreds to thousands of feet long, and may extend to “basement rock”, the ancient rock below the hundreds-of-millions year-old sedimentary layers such as the shale, sandstone, and salt.

Numerous plugged and abandoned salt wells from the days of solution mining–mid 1800s to mid 1900s– are located on and near Salt Point, the delta where Salmon Creek meets Cayuga Lake. As the map shows, the rock salt mining extent is near to, but not in contact with, these old brine wells. The underground shape of the solution wells is not entirely understood, and may be variable due to different rates of dissolution of halite during the extraction process. The rock salt is mined out as a solid, not a a saturated salt liquid that would have then gone through an evaporation process in a giant kiln. Were rock salt extraction to occur too close to the old solution wells and a wall breached, flooding in the current Cargill mine could result.

This would obviously not be good.

(Nor, for that matter, would have been the prospect of storing spent nuclear fuel in the abandoned brine wells, something that was being considered in the mid-1970s. In a 3-volume study of the geology of the Salina Basin (spanning a d-state area), the conclusion made by the Stone and Webster Engineering Corporation1,  consultant to the US Department of Energy, was that no salt mining sites in the Finger Lakes region were appropriate  for nuclear fuel storage without further study of the area’s extensive, but under-studied, faulting patterns.)

What are the implications of other sorts of mineral extraction, in this part of the Finger Lakes Region?

Yours or Mine?

The extent of Cargill’s mining under residential portions of the Town of Lansing provokes several questions. For example, if Cargill has long-term access to these subsurface mineral rights, property owners do not control the land beneath their homes. This is not altogether uncommon in areas of mineral – or oil and gas – extraction. Can that land be leased for gas drilling?

It was revealing to look more closely at records of expired oil and gas leases in the area. During this process, we discovered that within the area that is “claimed” by Cargill for subsurface mineral extraction, numerous surface owners had also leased the gas rights beneath their property (see blue starburst markers on the map)2, even if the property deeds explicitly, for example,  indicated that the property owner “will not cause any damage to the said salt or mining operations [of the party of the second part] by permitting or consenting to any other drilling 1000 feet below the the surface of said premises, for oil, gas, water or any other substance or mineral..” (Tompkins County Clerk, Liber 463, p.284-5).  Here are links to page 2 and 3 of the deed, and the very comprehensive leasing clause of one of these oil and gas leases that permits a wide variety of gas-extraction related activity–both on the surface, and below ground.

Four of the ten leases were on property held by the Town of Lansing itself, and one other was on property owned by a local elected official. While all of these leases expired in 2012, and were never, in fact, drilled (due to the de facto moratorium on HVHF gas extraction in New York), the mash-up of these datasets raises important questions about our permitting structure. The implications of two separate entities claiming overlapping subsurface rights spotlights many questions regarding the oversight and regulation of potentially conflicting uses. Of particular concern are the risks posed by migration of gas through joints and fissures in the bedrock that are further weakened by hydraulic fracturing – and the potential for methane explosions3 in salt mines, whether or not a well shaft penetrates the salt gallery.

For more details on operations at Cargill’s Lansing mine, see this article from The Lansing Star, September 2012: Lansing Down Under: A Look at the Cargill Salt Mine.

References

  1. Regional Geology of the Salina Basin, Report of the Geologic Project Manager
    Volumes 1 and 2, Phase I, August 1977-January 1978, and Volume 3 Update, October 1979. Prepared by Stone and Webster Engineering Corporation for the Office of Nuclear Waste Isolation, Battelle Memorial Institute, Project Management Division, US Department of Energy.
  2. Map of Gas Leases in Tompkins County
  3. Cargill Incorporated Belle Isle Salt Mine Explosion (1979)

Keeping Track of Hydraulic Fracturing in California

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

Environmental regulations in California are considered conservative by most state standards. To name a few practices, the state has developed an air quality review board that conducts independent toxicological assessments on a level competitive with the U.S. EPA, and the state instituted the U.S.’s first green house gas cap and trade program. But most recently the California Department of Conservation’s Division of Oil, Gas and Geothermal Resources (DOGGR) has been criticized in the media for its lack of monitoring of hydraulic fracturing activity. DOGGR has been responsive to criticism and preemptive of legislative action and has begun a full review of all well-sites in California to identify which wells have been hydraulically fractured and plan to monitor future hydraulic fracturing. Additionally they have maintained historical records of all wells drilled, plugged, and abandoned in the state in web-accessible databases, which include data for oil and gas, geothermal, and injection wells, as well as other types of support wells such as pressure maintenance, steam flood etc.. The data is also viewable in map format on the DOGGR’s online mapping system (DOMS).

To understand what is missing from the DOGGR dataset, it was compared to the dataset extracted from FracFocus.org by SkyTruth. The map “Hydraulic Fracturing in California” compares these two datasets, which can be viewed individually or together as one dataset with duplicates removed. It is interesting to note the SkyTruth dataset categorizes 237 wells as hydraulically fractured that DOGGR does not, and identifies three wells (API #’s 11112215, 23727206, and 10120788) not identified in the DOGGR database. For the some of these 237 wells, DOGGR identifies them as new, which means they were recently drilled and hydraulically fractured and DOGGR will be updating their database. Many are identified as active oil and gas wells., while the rest are identified as well types other than oil and gas. Also the SkyTruth dataset from FracFocus data contains additional information about each well-site, which DOGGR does not provide. This includes volumes of water used for hydraulic fracturing and the fracture date, both of which are vital pieces of monitoring information.

The California State Legislature is currently reviewing California Senate Bill 4 (CA SB 4) written by Sen. Fran Pavley (D-Agoura Hills), which would put in place a regulatory structure for permitting and monitoring hydraulic fracturing and other activity.  A caveat for acidification is also included that would require companies to obtain a specific permit from the state before acidizing a well.  The bill has received criticism from both industry and environmentalists.  While it does not call for a moratorium or regulate what chemicals are used, it is the first legislation that requires a full disclosure of all hydraulic fracturing fluid additives, including those considered proprietary.  This is the last of at least seven bills on the issue, the majority of which have been turned down by lawmakers. The most conservative bills (Assemblywoman Mitchell; D-Culver City) proposed moratoriums on hydraulic fracturing in the state. Earlier this year lawmakers approved a bill (Sen. Pavley; D-Agoura Hills) that would direct the state to complete and independent scientific risk assessment of hydraulic fracturing. The bill directs permitters to deny permits if the study is not finished by January 1, 2015, and also requires public notice before drilling as well as disclosure of chemicals (besides those considered proprietary). In May, a bill (Sen. Wold; D-Davis) was passed requiring drillers to file a $100,000 indemnity bond for each well, with an optional blanket indemnity bond of $5 million for operators with over 20 wells. Another bill (Jackson; D-Santa Barbara) that would require monitoring of both transportation and disposal of wastewater was tabled until next year.

Although hydraulic fracturing has been conducted in California for over a decade, it was not monitored or regulated, and the majority of Californians were not aware of it. Industry groups have portrayed the lack of attention as a testament to its environmental neutrality, but Californians living smack dab in the middle of the drilling tend to tell a different story. The issue is now receiving attention because hydraulic fracturing is such a hotbed topic of contention, along with the potential future of the billions of barrels of oil in the Monterey Shale. The unconventional extraction technology necessary to recover the oil from these deep shale formations is state of the art, which means it is not tried and true. The methods include a combination of high tech approaches, such as horizontal drilling, high volume hydraulic fracturing, and acidification to name a few. Realize: if this technology existed for the last 60 years, the Monterey Shale would already have been developed long ago, along with the rest of the U.S. deep shale formations.

FracTracker Alliance’s *NEW* California Shale Viewer

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

The FracTracker Alliance has just recently opened a new office based out of Berkeley, California. As a first step in addressing the unique issues of oil and gas extraction in the Golden State, FracTracker has queried the data that is published by the state’s regulatory agencies, and has translated those datasets into various maps that highlight specific issues. As a first step in this process, FracTracker transcribed the well-site data that is publicly available from the California Department of Conservation’s (DOC) Division of Oil, Gas and Geothermal Resources (DOGGR).

This first phase of analysis is presented in FracMapper on the California page, here. FracTracker has translated the entire DOGGR database into a map layer that can be viewed on the California Shale Viewer map, here. The California Shale Viewer will be continuously updated to map the expanding oil and gas development as it occurs. Featured map layers on the California Shale Viewer focus on hydraulic fracturing in the state of California. The hydraulic fracturing well-site data comes from two sources. First, the layer “CA Hydraulically Fractured Wells Identified by DOGGR” portrays the maps identified by regulatory agency as having been hydraulically fractured. The DOGGR is aware that their dataset is not complete in terms of identifying all wells that have been hydraulically fractured. The second source of data is from our friends at SkyTruth, and provided in the layer “CA Hydraulically Fractured Wells Identified by SkyTruth”. Using a crowd-source platform, SkyTruth has generated a dataset based on the information reported to FracFocus.org. FracFocus.org refuses to provide aggregated datasets of their well-site data. These hydraulically fractured well-sites can be viewed as a individual datasets in the California Shale Viewer, or as a combined layer in the map “California Hydraulically Fractured and Conventional Oil and Gas Wells” map, where you are also able to view the dataset of wells FracFocus identifies as hydraulically fractured, but DOGGR does not.

More information concerning the many different types of wells drilled in California and the status of these wells (whether they are planned, active, idle or plugged) can be found in the “Well Type” map and “Well Status” map, also available on the FracTracker California page.

Determination Letters Added to PADEP Groundwater Complaints Map

A couple of months ago, Laura Legere of the Scranton Times-Tribune published an article showing her research into determination letters sent by the Pennsylvania Department of Environmental Protection (PADEP) in response to people who claimed that their groundwater had been impacted by oil and gas activity in the state.  Of the 973 complaints represented on this dataset, the PADEP has determined a causality between the oil and gas activity and the water complaint in 162 instances.  Note that not all of these complaints are necessarily as a result of the hydraulic fracturing (a.k.a. fracking) stage of operations.

The FracTracker Alliance assisted in the project by creating an interactive map of the instances throughout the state.  As the Scranton Times-Tribune has now made digital scans of each of the 973 records available on their servers, we have been able to link to them on the map.

In this screen capture, the popup box for the first of eleven complaints mapped at this location is shown.  In order to access the determination letter, the user must simply click on the PDF logo.

In this screen capture, the popup box for the first of eleven complaints mapped at this location is shown. In order to access the determination letter, the user must simply click on the PDF logo.

Names, addresses, and other personal information about the complainants have been removed from this dataset in order to protect their privacy.  And because the locations are drawn at the center-point of the municipality in which they live, we can get a general sense for the distribution of the events without being able to zoom in one the affected parties’ houses.

To get an idea of what the determination letters look like, here is one example in which the PADEP indicates that someone’s water supply has been impacted by gas drilling:

A portion of one of the determination letters sent by PADEP to a landowner in response to a complaint about groundwater.  Click the image to access the full PDF file.

A portion of one of the determination letters sent by PADEP to a landowner in response to a complaint about groundwater. Click the image to access the full PDF file.

Here is the dynamic version of the map of the complaints:


Please click on the Fullscreen icon to load our full suite of controls.

This updated data has also been added to the US Map of Suspected Well Water Impact project: