Current featured articles for the home page

Well Worker Safety and Statistics

By Samantha Malone, MPH, CPH – Manager of Science and Communications, FracTracker Alliance

The population most at risk from accidents and incidents near unconventional drilling operations are the drillers and contractors within the industry. While that statement may seem quite obvious, let’s explore some of the numbers behind how often these workers are in harm’s way and why.

O&G Risks

Oil and Gas Worker Fatalities over Time

Fig. 1. Number of oil and gas worker fatalities over time
Data Source: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2014

Drilling operations, whether conventional or unconventional (aka fracking), run 24 hours a day, 7 days a week. Workers may be on site for several hours or even days at a time. Simply the amount of time spent on the job inherently increases one’s chances of health and safety concerns. Working in the extraction field is traditionally risky business. In 2012, mining, quarrying, and oil and gas extraction jobs experienced an overall 15.9 deaths for every 100,000 workers, the second highest rate among American businesses. (Only Agriculture, forestry, fishing and hunting jobs had a higher rate.)

According to the Quarterly Census of Employment and Wages of the U.S. Bureau of Labor Statistics, the oil and gas industry employed 188,003 workers in 2012 in the U.S., a jump from 120,328 in 2003. Preliminary data indicate that the upward employment trend continued in 2013. However, between 2003 and 2012, a total of 1,077 oil and gas extraction workers were killed on the job (Fig. 1).

Causes of Injuries and Fatalities in Oil and Gas Field

Reasons for O&G Fatalities 2003-12. Aggregated from Table 1.

Fig. 2. Reasons for O&G Fatalities 2003-12. Aggregated from Table 1.

Like many industrial operations, here are some of the reasons why oil and gas workers may be hurt or killed according to OSHA:

  • Vehicle Accidents
  • Struck-By/ Caught-In/ Caught-Between Equipment
  • Explosions and Fires
  • Falls
  • Confined Spaces
  • Chemical Exposures

If you drill down to the raw fatality-cause numbers, you can see that the fatal worksite hazards vary over time and job type1 (Table 1, bottom). Supporting jobs to the O&G sector are at higher risk of fatal injuries than those within the O&G extraction job category2. The chart to the right shows aggregate data for years 2003-12. Records indicate that the primary risk of death originated from transportation incidents, followed by situations where someone came into contact with physical equipment (Fig. 2).

Silica Research

Silica-Exposed Workers

Fig. 3. Number of total silica-exposed workers and those exposed above PEL – compared across industries
Source: OSHA Directorate of Standards and Guidance

A recent NIOSH study by Esswein et al. regarding workplace safety for oil and gas workers was that the methods being employed to protect workers against respirable crystalline silica3 were not adequate. This form of silica can be found in the sand used for hydraulic fracturing operations and presents health concerns such as silicosis if inhaled over time. According to Esswein’s research, workers were being exposed to levels above the permissible exposure limit (PEL) of ~0.1 mg/m3 for pure quartz silica because of insufficient respirator use and inadequate technology controls on site. It is unclear at this time how far the dust may migrate from the well pad or sand mining site, a concern for nearby residents of the sand mines, distribution methods, and well pads. (Check out our photos of a recent frac sand mine tour.) The oil and gas industry is not the only employer that must protect people from this airborne workplace hazard. Several other classes of jobs result in exposure to silica dust above the PEL (Fig. 3).

References and Additional Resources

1. What do the job categories in the table below mean?

For the Bureau of Labor Statistics, it is important for jobs to be classified into groups to allow for better reporting/tracking. The jobs and associated numbers are assigned according to the North American Industry Classification System (NAICS).

(NAICS 21111) Oil and Gas Extraction comprises establishments primarily engaged in operating and/or developing oil and gas field properties and establishments primarily engaged in recovering liquid hydrocarbons from oil and gas field gases. Such activities may include exploration for crude petroleum and natural gas; drilling, completing, and equipping wells; operation of separators, emulsion breakers, desilting equipment, and field gathering lines for crude petroleum and natural gas; and all other activities in the preparation of oil and gas up to the point of shipment from the producing property. This industry includes the production of crude petroleum, the mining and extraction of oil from oil shale and oil sands, the production of natural gas, sulfur recovery from natural gas, and the recovery of hydrocarbon liquids from oil and gas field gases. Establishments in this industry operate oil and gas wells on their own account or for others on a contract or fee basis. Learn more

(NAICS 213111) Drilling Oil and Gas Wells comprises establishments primarily engaged in drilling oil and gas wells for others on a contract or fee basis. This industry includes contractors that specialize in spudding in, drilling in, redrilling, and directional drilling. Learn more

(NAICS 213112) Support Activities for Oil and Gas Operations comprises establishments primarily engaged in performing support activities on a contract or fee basis for oil and gas operations (except site preparation and related construction activities). Services included are exploration (except geophysical surveying and mapping); excavating slush pits and cellars, well surveying; running, cutting, and pulling casings, tubes, and rods; cementing wells, shooting wells; perforating well casings; acidizing and chemically treating wells; and cleaning out, bailing, and swabbing wells. Learn more

2. Fifteen percent of all fatal work injuries in 2012 involved contractors. Source

3. What is respirable crystalline silica?

Respirable crystalline silica – very small particles at least 100 times smaller than ordinary sand you might encounter on beaches and playgrounds – is created during work operations involving stone, rock, concrete, brick, block, mortar, and industrial sand. Exposures to respirable crystalline silica can occur when cutting, sawing, grinding, drilling, and crushing these materials. These exposures are common in brick, concrete, and pottery manufacturing operations, as well as during operations using industrial sand products, such as in foundries, sand blasting, and hydraulic fracturing (fracking) operations in the oil and gas industry.

4. OSHA Fact Sheet: OSHA’s Proposed Crystalline Silica Rule: General Industry and Maritime. Learn more

Employee health and safety are protected under the following OSHA regulations. These standards require employers to make sure that the workplace is in due order:

Table 1. 2003-2012 U.S. fatalities in oil & gas industries by year, job category, & event/exposure
Year Oil and Gas (O&G) Industriesa Total Fatal Injuries (number)b Event or Exposurec
Violence / injuries by persons / animalsd Transportatione Fires & Explosions Falls, Slips, Trips Exposure to Harmful Substances or Environments Contact w/Objects & Equipment
2012
O&G Extraction 26 0 8 6 5 3 4
Drilling O&G Wells 39 0 10 6 8 3 10
Support Activities 77 0 46 11 5 3 10
Yearly Totals 142 0 64 23 18 9 24
2011
O&G Extraction 13 0 7 0 0 0 3
Drilling O&G Wells 41 0 15 5 4 5 12
Support Activities 58 3 29 7 4 4 11
Yearly Totals 112 3 51 12 8 9 26
2010
O&G Extraction 12 0 5 3 0 3 0
Drilling O&G Wells 47 0 8 14 7 6 12
Support Activities 48 3 28 8 0 0 8
Yearly Totals 107 3 41 25 7 9 20
2009
O&G Extraction 12 0 6 0 0 0 3
Drilling O&G Wells 29 0 9 0 0 4 13
Support Activities 27 0 12 5 0 4 5
Yearly Totals 68 0 27 5 0 8 21
2008
O&G Extraction 21 0 7 4 0 0 5
Drilling O&G Wells 30 0 6 3 4 4 13
Support Activities 69 0 36 11 4 6 12
Yearly Totals 120 0 49 18 8 10 30
2007
O&G Extraction 15 0 5 0 0 0 5
Drilling O&G Wells 42 0 12 0 4 8 16
Support Activities 65 0 33 6 0 5 19
Yearly Totals 122 0 50 6 4 13 40
2006
O&G Extraction 22 0 6 7 0 3 4
Drilling O&G Wells 36 0 11 0 5 4 14
Support Activities 67 0 2 12 0 5 21
Yearly Totals 125 0 19 19 5 12 39
2005
O&G Extraction 17 0 4 5 0 0 4
Drilling O&G Wells 34 0 9 0 7 4 10
Support Activities 47 0 21 5 0 5 13
Yearly Totals 98 0 34 10 7 9 27
2004
O&G Extraction 29 0 17 0 0 0 8
Drilling O&G Wells 30 0 6 0 6 3 11
Support Activities 39 0 22 5 0 0 10
Yearly Totals 98 0 45 5 6 3 29
2003
O&G Extraction 17 0 9 4 0 0 3
Drilling O&G Wells 26 0 5 5 0 0 13
Support Activities 42 0 17 10 0 3 10
Yearly Totals 85 0 31 19 0 3 26
2003-12 TOTAL FATALITIES 1077 6 411 142 63 85 282
a Oil and gas extraction industries include oil and gas extraction (NAICS 21111), drilling oil and gas wells (NAICS 213111), and support activities for oil and gas operations (NAICS 213112).
b Data in event or exposure categories do not always add up to total fatalities due to data gaps.
c Based on the BLS Occupational Injury and Illness Classification System (OIICS) 2.01 implemented for 2011 data forward
d Includes violence by persons, self-inflicted injury, and attacks by animals
e Includes highway, non-highway, air, water, rail fatal occupational injuries, and fatal occupational injuries resulting from being struck by a vehicle.

An Open Letter to FracFocus

FracFocus.org is the preferred chemical disclosure registry for the oil and gas (O&G) industry, and use of your website by the industry is mandated by some states and regulatory agencies. As such, we hope you’ll be responsive to this call by FracTracker, other organizations, and concerned citizens across the country to live up to the standards of accessibility and transparency required by similar data registries.

A Focus on Data Transparency

Recent technological advances in high volume hydraulic fracturing operations have changed the landscape of O&G drilling in the United States.  As residents adjust to the presence of large-scale industrial sites appearing in their communities, the public’s thirst for knowledge about what is going on is both understandable and reasonable. The creation of FracFocus was a critical first step down the pathway to government and industry transparency, allowing for some residents to learn about the chemicals being used in their immediate vicinities.  The journey, however, is not yet complete.

Design Limitations on FracFocus

Query by Date

Even with the recently added search features there is no way to query reports by date. Currently a visitor would be unable to search by the date hydraulic fracturing / stimulation was performed, or when the report itself was submitted. Reports can only be viewed one PDF at a time, which would take someone quite a while to view all 68,000+ well sites in your system.

Aggregate Data Downloads

In October 2013, you informed us that “each registered state regulatory agency has access to the xml files for their state but they are not distributable from FracFocus to the public.” We must ask the reasonable question of “why not?” We understand that setting up a downloadable data system is a time-intensive process, as we manage one ourselves, but the benefits of providing such a service more than compensate for the effort expended. It is no longer possible to aggregate data, either automatically or manually, because of bandwidth limitations that keep users from downloading more than an arbitrarily limited number of reports in a single session. Considering public concern over the composition of frac fluid, as well as the volume and geographic extent of complaints of drinking water complaints to be related to O&G extraction, prudence would suggest making the data as accessible as possible. For example, making the aggregated data available to the public as a machine-readable download would greatly reduce the load on your servers, because users would no longer be forced to download the individual PDF reports. Changes in the way the reports are curated would also improve efficiency and reduce your server load; we would be more than happy to discuss these changes with you.

An Issue of Money?

The basic infrastructure to provide this service via FracFocus.org is already in place. An organization like the Groundwater Protection Council with a website serving some of the world’s wealthiest corporations loses credibility when making claims that “we have no way to meet your needs for the data.”  Withholding data from the public only serves to compound the distrust that many people have with regards to the oil and gas extraction industry.  Additionally, agencies that use FracFocus as a means of satisfying open government requirements are currently being short changed by the lack of access to your aggregated datasets; restricting access to data that is in the public interest is fundamentally at odds with data transparency initiatives, including the President’s 2013 Executive Order on Open Data.

One Small Step for a Company…

Within this discussion is a simple realization:  The Ground Water Protection Council, Interstate Oil and Gas Compact Commission, participating companies and states, and the federal government should recognize that data transparency is not merely a lofty ideal, but an actual obligation to our open society.  Once that realization has been made, the path of least resistance becomes clear:  you, FracFocus, should make all of your aggregate data available to the public, beginning with the easiest step: the statewide datasets that are already being provided to government agencies.

FracTracker operates in the public interest. We – and the thousands of individuals and organizations who use our services and yours – request no less from you. Thank you for addressing these critical matters.

Sincerely,
-The FracTracker Alliance-

FF Word Cloud

US Pipeline Incidents map

Pipeline Incidents Updated and Analyzed

Pipeline spill in Mayflower, AR on March 29, 2013. Photo by US EPA via Wikipedia.

The debate over the Keystone XL pipeline expansion project has grabbed a lot of headlines, but it is just one of several proposed major pipeline projects in the United States. As much of the discussion revolves around potential impacts of the pipeline system, a review of known incidents is relevant to the discussion.

A year ago, the FracTracker Alliance calculated that there was an average of 1.6 pipeline incidents per day in the United Sates.  That figure remains accurate, with 2,452 recorded incidents between January 1, 2010 and March 3, 2014, a span of 1,522 days.

The Pipeline and Hazardous Materials Safety Administration (PHMSA) classifies the incidents into three categories:

  • Gas transmission and gathering:  Gathering lines take natural gas from the wells to midstream infrastructure.  Transmission lines transport natural gas from the regions in which it is produced to other locations, often thousands of miles away.  Since 2010, there have been 486 incidents on these types of lines, resulting in 10 fatalities, 71 injuries, and $620 million in property damage.
  • Oil and hazardous liquid:  This includes all materials overseen by PHMSA other than natural gas, predominantly crude and refined petroleum products.  Liquified natural gas is included in this category.  There were 1,511 incidents during the reporting period for these pipelines, causing 6 deaths and 15 injuries, and $1.8 billion in property damage.
  • Gas distribution:  These pipelines are used by utilities to get natural gas to consumers.  In just over 40 months, there were 455 incidents, resulting in 42 people getting killed, 183 reported injuries, and $86 million in property damage.

Curiously, while incidents on distribution lines accounted for 72 percent of fatalities and 67 percent of all injuries, the property damage in these cases were only responsible for just over 3 percent of $2.5 billion in total property damage from pipeline spills since 2010.  A reasonable hypothesis accounting for the deaths and injuries is that distribution lines are much more common in densely populated areas than are the other types of pipelines; an incident that might be fatal in an urban area might go unnoticed for days in more remote locations, for example.  However, as the built environment is also much more densely located in urban areas, it does seem surprising that reported property damage isn’t closer to being in line with physical impacts on humans.

How accurate are the data?

In the wake of the events of September 11, 2001, governmental agency data suddenly became much more opaque.  In terms of pipelines, public access to the pipeline data that had been mapped to that point was removed.  It was later restored, with limitations.  As it stands now, most pipeline data in the United States, including the link to the pipeline proposal map above, are intentionally generalized to the point where pipelines might not even be rendered in the appropriate township, let alone street.

There are some exceptions, though.  If you would like to know where pipelines are in US waters in the Gulf of Mexcio, for example, the Bureau of Ocean Energy Management makes that data not only accessible to view, but available for download on data.gov, a site dedicated to data transparency.  While the PHMSA will not do the same with terrestrial pipelines, the do release location data along with their incident data.


Pipeline incidents from 1/1/2010 through 3/3/2014. To access details, legend, and other map controls, please click the expanding arrows icon in the top-right corner of the map.

This fatal pipeline incident was in Allentown, PA, but was given coordinates in Greenland.

This fatal pipeline incident was in Allentown, PA, but was given coordinates in Greenland.

Unfortunately, we see evidence that the data are not well vetted, at least in terms of location.  One of the most serious incidents in the timeframe, an explosion in Allentown, Pennsylvania that killed five people and injured three more, was given coordinates that render in the middle of Greenland.  Another incident leading to fatalities was given location data that put it in Manatoba, well outside of the reach of the US agency that publishes the data.  Still another incident appears to be in the Pacific Ocean, 1,300 miles west-southwest of Mexico.  There are many more examples as well, but the majority of incidents seem to be reasonably well located.

Fuzzy data: are national security concerns justified?

Anyone who watches the news on a regular basis knows that there are people out there who mean others harm. However, a closer look at the incident data shows that pipelines are not a common means of accomplishing such an end.

Causes of pipeline incidents from 1/1/10 to 3/3/14, with counts.

Causes of pipeline incidents from 1/1/10 to 3/3/14, with counts.

For each category showing causation, there are numerous subcategories. While we don’t need to look into all of those here, it is worth pointing out that there is a subcategory of, “other outside force damage” that is designated as, “intentional damage.”  Of the 2,452 total incidents, nine incidents fall into this subcategory.  These subcategories are further broken down, and while there is an option to express that the incident is a result of terrorism, none have been designated that way in this dataset .  Five of the nine incidents are listed as acts of vandalism, however. To be thorough, and because it provides a fascinating insight into work in the field, let’s take a look at the narrative description for each incident that are labeled as intentional in origin:

  • Approximately 2 bbls of crude oil were released when an unknown person(s) removed the threaded pressure warning device on the scraper trap’s closure door. As a result of the absence of the 1/2 inch pressure warning device crude oil was able to flow from the open port upon start up of the pipeline and pressurization of the scraper trap. Once this was discovered the 1/2 inch pressure warning device was properly put back into the scaper trap.
  • Aboveground piping intentionally shot by unknown party. Installed stoppall on line at 176+73 (7 146′) upstream of damaged aboveground piping. Cut and capped pipeline.
  • Friday october 18th at approximately 6:00 p.m. we were notified of a gas line break at Kayenta Mobile Home Park. The Navajo Police responded to an emergency call about vandals in one of the parks alley ways kicking at meters. Upon arrival they found the broke meter riser at the mobile home park and expediently used the emergency shutdown system to remedy the situation. This immediately cut service to 118 customers in the park. [Names removed] responded to the call. we arrived on site at approximately 9:30 p.m. We located the damage and fixed the system at approximately 1:30 a.m. i called the Amerigas emergency call center and informed them that we would be restarting the system the following morning and to tell our customers they would need to be home in order to restore service. We then started the procedure of shutting every valve off to all customers before restarting the system. We started the system back up at 9:30a.m. 10/19/2013. Once the system was up to full pressure and all systems were normal we began putting customers back into service. The completion of re-establishing service to all customers on the system was completed on 10/23/2013.
  • A service tech was called at 1:15 am Sunday morning to respond to the Marlboro Fire Department at an apparent explosion and house fire. The tech arrived and called for additional resources. He then began to check for migrating gas in the surrounding buildings along the service to the house and in the street. no gas readings were detected. The distribution and service on call personnel arrived and began calling in additional company resources to assist in the response effort and controlling the incident. A distribution crew was called in to shut off and cut the service. Additional service techs were called in to assist in checking the surrounding buildings and in the streets at catch basins and manholes around the entire block. Gas supply personnel were called in and dispatched to take odorant samples in the houses directly across from 15 Grant Ct. that had active gas service. Gas survey crews were called in to survey Grant St. and the two parallel streets McEnelly St. and Washington Ct. along with the portion of Washington st. in between these streets. The meter and meter bar assembly were taken by the investigators as evidence. The service was pressure tested to the riser which was witnessed by a representative of the DPI. The service was cut off at the main. After the investigators completed gathering evidence at the scene they gave permission to begin cleaning up the site. There was a tenant home at the time of the explosion who was conscious and walking around when the fire department arrived. He was taken to the hospital and reports are that he sustained 2nd and 3rd degree burns on portions of his body.
  • On Friday, September 7, 2012 PSE&G responded to a gas emergency call involving a gas ignition. The initial call came in from the Orange Fire Department at 17:09 as a house fire at 272 Reock Ave Orange; the fire chief stated gas was not involved and the fire was caused by squatters. Subsequent investigation of the incident revealed that the fire was caused when one of the squatters lit a match which ignited leaking gas originating from gas piping removed from the head of an inside meter set. The gas meter inlet valve and associated piping were all removed by an unknown person on an unknown date prior to the fire. An appliance service tech responded and shut the gas off at the curb at 17:40 on September 7 2012. A street crew was dispatched and the gas service to 272 reock ave was cut at the curb at 19:00. Two people (names unknown) squatters were injured one by the fire one was injured jumping out a window to escape the fire. The home in question was vacated by the owner and the injured parties were trespassing on the property at the time of the incident. PSE&G has been unable to confirm any information on the status of their injuries due to patient confidentiality laws.
  • The homeowner tampered with company piping by removing 3/4″ steel end cap with a 3/4″ steel nipple on the tee was removed which caused the gas leak in the basement and resulted in a flash fire. The most likely source of ignition was the water heater. The homeowner died in the incident.
  • A structure fire involved an unoccupied hardware store and a small commercial 12-meter manifold. There were no meters on the manifold and no customers lost service. The heat from the structure fire melted a regulator on the manifold which in turn released gas and contributed to the fire. The cause is officially undetermined; however according to the fire department the cause appears to be arson with the fire starting in the back of the building and not from PG&E facilities. PG&E was notified of this incident by the fire department at 1802 hours. The gas service representative arrived on scene at 1830 hours. The fire department stopped the flow of gas by closing the service valve and the fire was extinguished at approximately 1900 hours. this incident was determined to be reportable due to damages to the building exceeding $50,000. There were no fatalities and no injuries as a result of this incident. Local news media was on-site but no major media was present.
  • A house explosion and fire occurred at approximately 0208 hours on 2/7/10. The fire department called at PG&E at 0213 hours. PG&E personnel arrived at 0245 hours. The fire department had shut off the service valve and removed the meter before PG&E arrived. The house was unoccupied at the time of the explosion. The gas service account was active and the gas service was on (contrary to initial report). The cause of the explosion is undetermined at the time of this report but the fire department has indicated the cause appears to be arson. After the explosion, PG&E performed a leak survey of the service the services on both sides of this address and the gas main in the front of all three of these addresses. No indication of gas was found. PG&E also performed bar hole tests over the service at 3944 17th Avenue and found no indication of gas. The gas service was cut off at the main and will be re-connected when the customer is ready for service.
  • On Monday, January 25, 2010 at approximately 2:30pm a single-family home at 2022 west 63rd Street Cleveland OH (Cuyahoga County) was involved in an explosion/fire. The gas service line was shut-off at approximately 4:30pm. A leak survey of the main lines and service lines on W. 83rd between Madison and Lorain revealed no indications of gas near the structure. A service leak at 2131 West 83rd Street was detected during the leak survey. This service line was replaced upon discovery. On Tuesday, January 26th, 2010 the service line at 2022 W. 83rd was air tested at operating pressure with no pressure loss. An odor test was conducted at 2028 West 83rd Street. The results of this odor test revealed odor levels well within dot compliance levels. Our investigation revealed an odor complaint at this residence on January 18th. Dominion personnel responded to the call and met with the Cleveland Fire Department. Dominion found the meter disconnected and the meter shut-off valve in the half open position. The shut-off valve was closed by the Dominion technician and secured with a locking device. The technician placed a 3/4 inch plug in the open end of the valve. The technician also attempted to close the curb-slop valve but could not. The service line was then bar hole tested utilizing a combustible gas indicator from the street to the structure. As a result, no leakage was discovered. A second attempt to close the curb box valve on January 19th ended when blockage was discovered in the valve box. The valve box was in the process of being scheduled for excevatlon and shut off by a construction crew at the time of the incident. An investigation of the incident site determined the cause to be arson as approximately 6 inches of service line and the meter shut-off valve (with locking device still intact) detached from the service line were recovered inside the structure.

While several of these narratives do make it seem as if the incidents in question were deliberate, these seem to have been caused by people on the ground, not by some GIS-powered remote effort. Seven of the nine incidents were on distribution lines, which tend to occur in populated areas, where contact with gas infrastructure is in fact commonplace, and six out of those seven incidents occurred inside houses or other structures.

On the other hand, there is a real danger in not knowing where pipelines are located. 237 accidents were due to excavation activities, and 86 others were caused by boats, cars, or other vehicles unrelated to excavation activity. Better knowledge of the location of these pipelines could reduce these numbers significantly.

North American Pipeline Proposal Map

By Ted Auch, PhD – OH Program Coordinator, FracTracker Alliance

With all the focus on the existing TransCanada Keystone XL pipeline – as well as the primary expansion proposal recently rejected by Lancaster County, NB Judge Stephanie Stacy and more recently the Canadian National Energy Board’s approval of Enbridge’s Line 9 pipeline – we thought it would be good to generate a map that displays related proposals in the US and Canada.

North American Proposed Pipelines and Current Pipelines


To view the fullscreen version of this map along with a legend and more details, click on the arrows in the upper right hand corner of the map.

The map was last updated in October 2014.

Pipeline Incidents

The frequency and intensity of proposals and/or expansions of existing pipelines has increased in recent years to accompany the expansion of the shale gas boom in the Great Plains, Midwest, and the Athabasca Tar Sands in Alberta. This expansion of existing pipeline infrastructure and increased transport volume pressures has resulted in significant leakages in places like Marshall, MI along the Kalamazoo River and Mayflower, AR. Additionally, the demand for pipelines is rapidly outstripping supply – as can be seen from recent political pressure and headline-grabbing rail explosions in Lac-Mégantic, QC, Casselton, ND, Demopolis, AL, and Philadelphia.1 According to rail transport consultant Anthony Hatch, “Quebec shocked the industry…the consequences of any accident are rising.” This sentiment is ubiquitous in the US and north of the border, especially in Quebec where the sites, sounds, and casualties of Lac-Mégantic will not soon be forgotten.

Improving Safety Through Transparency

It is imperative that we begin to make pipeline data available to all manner of parties ex ante for planning purposes. The only source of pipeline data historically has been the EIA’s Pipeline Network. However, the last significant update to this data was 7/28/2011 – meaning much of the recent activity has been undocumented and/or mapped in any meaningful way. The EIA (and others) claims national security is a primary reason for the lack of data updates, but it could be argued that citizens’ right-to-know with respect to pending proposals outweighs such concerns – at least at the county or community level. There is no doubt that pipelines are magnets for attention, stretching from the nefarious to the curious. Our interest lies in filling a crucial and much requested data gap.

Metadata

Pipelines in the map above range from the larger Keystone and Bluegrass across PA, OH, and KY to smaller ones like the Rex Energy Seneca Extension in Southeast Ohio or the Addison Natural Gas Project in Vermont. In total the pipeline proposals presented herein are equivalent to 46% of EIA’s 34,133 pipeline segment inventory (Table 1).

Table 1. Pipeline segments (#), min/max length, total length, and mean length (miles).

Section

#

Min

Max

Mean

Sum

Bakken

34

18

560

140

4,774

MW East-West

68

5

1,056

300

20,398

Midwest to OK/TX

13

13

1,346

307

3,997

Great Lakes

5

32

1,515

707

3,535

TransCanada

3

612

2,626

1,341

4,021

Liquids Ventures

2

433

590

512

1,023

Alliance et al

3

439

584

527

1,580

Rocky Express

2

247

2,124

1,186

2,371

Overland Pass

6

66

1,685

639

3,839

TX Eastern

15

53

1,755

397

5,958

Keystone Laterals

4

32

917

505

2,020

Gulf Stream

2

541

621

581

1,162

Arbuckle ECHO

25

27

668

217

5,427

Sterling

9

42

793

313

2,817

West TX Gateway

13

1

759

142

1,852

SXL in PA and NY

15

48

461

191

2,864

New England

70

2

855

65

4,581

Spectra BC

9

11

699

302

2,714

Alliance et al

4

69

4,358

2,186

4,358

MarkWest

63

2

113

19

1,196

Mackenzie

46

3

2,551

190

8,745

Total

411

128

1,268

512

89,232

This is equivalent to 46% of the current hydrocarbon pipeline inventory in the US across the EIA’s inventory of 34,133 pipeline segments with a total length of 195,990 miles

The map depicts all of the following (Note: Updated quarterly or when notified of proposals by concerned citizens):

  1. All known North American pipeline proposals
  2. Those pipelines that have yet to be documented by the EIA’s Natural Gas Pipeline Network mapping team
  3. EIA documented pipelines more accurately mapped to the county level (i.e., select northeastern pipelines)
  4. The current Keystone XL pipeline and the Keystone XL expansion proposal rectified to the county level in Nebraska, South Dakota, Oklahoma, and Texas

We generated this map by importing JPEGs into ArcMAP 10.2, we then “Fit To Display”. Once this was accomplished we anchored the image (i.e., georeferenced) in place using a minimum of 10 control points (Note: All Root Mean Square (RMS) error reports are available upon request) and as many as 30-40. When JPEGs were overly distorted we then converted or sought out Portable Network Graphic (PNG) imagery to facilitate more accurate anchoring of imagery.

We will be updating this map periodically, and it should be noted that all layers are a priori aggregations of regional pipelines across the 4 categories above.

Imagery sources:

  1. Northeast – Long Island Sound, Montreal to Portland, Westchester, Spectra Energy Northeast, Maritime Northeast-Algonquin-Texas Eastern, Delaware River Watershed, Northeastern accuracy of existing EIA data, New England Kinder Morgan, Spectra Energy-Tennessee Gas Pipeline Company (TGP)-Portland Natural Gas Transmission System (PNGTS)
  2. Duluth to The Dakotas, NYMarc Pipeline, Mariner East, Millenium Pipeline Company, WBI Energy’s Bakken,
  3. British Columbia – Enbridge, Spectra/BG, Coastal, Tanker Route
  4. Midwest – ATEX and Bluegrass, BlueGrass, BlueGrass Pipeline,
  5. TransCanada/New England – Portland, Financial Post,
  6. Alaska Pipelines Historically
  7. Rail projects and primary transport
  8. Keystone Tar Sands – Canada (website no longer active), United States, Texas-Oklahoma
  9. Gulf Coast – Florida
  10. MarkWest Houston, Liberty, Liberty, Houston and Majorsville,
  11. Texas Oklahoma – Granite Wash Extension,
  12. Ohio – Spectra Energy, Enterprise Products, Kinder Morgan, Buckeye-Kinder Morgan-El Paso, Chesapeake Energy and AEP
  13. The Rockies Express Pipeline (REX)

Reference

1. Krauss, C, & Mouawad, J. (2014, January 25). Accidents Surge as Oil Industry Takes the Train, The New York Times.

 

PA Production and Waste Data Updated

Every six months, the Pennsylvania Department of Environmental Protection (PADEP) publishes production and waste data for all unconventional wells drilled in the Commonwealth.  These data are self-reported by the industry to PADEP, and in the past, there have been numerous issues with the data not being reported in a timely fashion.  Therefore, the early versions of these two datasets are often incomplete.  For that reason, I now like to wait a few weeks before analyzing and mapping this data, so as to avoid false conclusions.  That time has now come.


This map contains production and waste totals from unconventional wells in Pennsylvania from July to December, 2013. Based on data downloaded March 6, 2014. Also included are facilities that received the waste produced by these wells. To access the legend and other map controls, please click the expanding arrows icon at the top-right corner of the map.

Production

Top 20 unconventional gas producers in PA, from July to December 2013.  The highest values in each column are highlighted in red.

Table 1: Top 20 unconventional gas producers in PA, from July to December 2013. Highest values in each column are highlighted in red.

Production values can be summarized in many ways. In this post, we will summarize the data, first by operator, then by county. For operators, we will take a look at all operators on the production report, and see which operator has the highest total production, as well as production per well (Table 1).

It is important to note that not all of the wells on the report are actually in production, and not all of the ones that are produce for the entire cycle. However, there is some dramatic variance in the production that one might expect from an unconventional well in Pennsylvania that correlates strongly with which operator drilled the well in question.  For example, the average Cabot well produces ten times the gas that the average Atlas well does.  Even among the top two producers, the average Chesapeake well produces 2.75 times as much as the average Range Resources well.

The location of the well is the primary factor in regards to production values.  74 percent of Atlas’ wells are in Greene and Fayette counties, in southwestern Pennsylvania, while 99 percent of Cabot’s wells are in Susquehanna County.  Similarly, 79 percent of Range Resources’ wells are in the its southwestern PA stronghold of Washington County, while 62 percent of Chesapeake’s wells are in Bradford county, in the northeast.

Pennsylvania unconventional gas production by county, from July to December 2013.

Table 2: PA unconventional gas production by county, from July to December 2013

Altogether, there are unconventional wells drilled in 38 Pennsylvania counties, 33 of which have wells that are producing (see Table 2).  And yet, fully 1 trillion cubic feet (Tcf) of t he 1.7 Tcf produced by unconventional wells during the six month period in Pennsylvania came from the three northeastern counties of Susquehanna, Bradford, and Lycoming.

While production in Greene County does not compare to production in Susquehanna, this disparity still does not account for the really poor production of Atlas wells, as that operator averages less than one fourth of the typical well in the county.  Nor can we blame the problem on inactive wells, as 84 of their 85 wells in Greene County are listed as being in production.  There is an explanation, however.  All of  these Atlas wells were drilled from 2006 through early 2010, so none of them are in the peak of their production life cycles.

There is a different story in Allegheny County, which has a surprising high per well yield for a county in the southwestern part of the state.  Here, all of the wells on the report were drilled between 2008 and 2013, and are therefore in the most productive part of the well’s life cycle.  Only the most recent of these wells is listed as not being in production.

Per well production during the last half of 2013 for unconventional wells in Pennsylvania by year drilled.

Table 3: Per well production during last half of 2013 for PA unconventional wells by spud year

Generally speaking, the further back a well was originally drilled, the less gas it will produce (see Table 3). At first glance, it might be surprising to note that the wells drilled in 2012 produced more gas than those drilled in 2013, however, as the data period is for the last half of 2013, there were a number of wells drilled that year that were not in production for the entire data cycle.

In addition to gas, there were 1,649,699 barrels of condensate and 182,636 barrels of oil produced by unconventional wells in Pennsylvania during the six month period. The vast majority of both of these resources were extracted from Washington County, in the southwestern part of the state.  540 wells reported condensate production, while 12 wells reported oil.

Waste

There are eight types of waste detailed in the Pennsylvania data, including:

  • Basic Sediment (Barrels) – Impurities that accompany the desired product
  • Drill Cuttings (Tons) – Broken bits of rock produced during the drilling process
  • Flowback Fracturing Sand (Tons) – Sand used as proppants during hydraulic fracturing that return to the surface
  • Fracing Fluid Waste (Barrels) – Fluid pumped into the well for hydraulic fracturing that returns to the surface.  This includes chemicals that were added to the well.
  • Produced Fluid (Barrels) – Naturally occurring brines encountered during drilling that contain various contaminants, which are often toxic or radioactive
  • Servicing Fluid (Barrels) – Various other fluids used in the drilling process
  • Spent Lubricant (Barrels) – Oils used in engines as lubricants
Method of disposing of waste generated from unconventional wells in Pennsylvania from July to December 2013.

Table 4: Method of disposing of waste generated from unconventional wells in PA from July to December 2013

Solid and liquid waste disposal for the top 20 producers of unconventional liquid waste in Pennsylvania during the last half of 2013.

Table 5: Solid & liquid waste disposal for top 20 producers of PA unconventional liquid waste during last half of 2013

This table shows solid and liquid waste totals for the ten counties that produced the most liquid waste over the six month period.

Table 6: Solid & liquid waste totals for the 10 counties that produced the most liquid waste over the 6 month period

There are numerous methods for disposing of drilling waste in Pennsylvania (see Table 4). Some of the categories include recycling for future use, others are merely designated as stored temporarily, and others are disposed or treated at a designated facility.  One of the bright points of the state’s waste data is that it includes the destination of that waste on a per well basis, which has allowed us to add receiving facilities to the map at the top of the page.

As eight data columns per table is a bit unwieldy, we have aggregated the types by whether they are solid (reported in tons) or liquid (reported in 42 gallon barrels).  Because solid waste is produced as a result of the drilling and fracturing phases, it isn’t surprising that the old Atlas wells produced no new solid waste (see Table 5).  Chevron Appalachia is more surprising, however, as the company spudded 46 wells in 2013, 12 of which were started during the last half of the year.  However, Chevron’s liquid waste totals were significant, so it is possible that some of their solid waste was reported, but miscategorized.

As with production, location matters when it comes to the generation of waste from these wells. But while the largest gas producing counties were led by three counties in the northeast, liquid waste production is most prolific in the southwest (see Table 6).

Table 7: PA Unconventional operators with the most wells that produced gas, oil, and/or condensate, but no amount of waste.  The column on the right shows total number of wells that are indicated as producing, for that same operator, regardless of waste production.

Table 7: PA unconventional operators with the most wells that produced gas, oil, and/or condensate, but no amount of waste.

Finally, we will take a look at the 359 wells that are indicated as in production, yet were not represented on the waste report as of March 6th.  These remarkable wells are run by 38 different operators, but some companies are luckier with the waste-free wells than their rivals.  As there was a six-way tie for 10th place among these operators, as sorted by the number or wells that produce gas, condensate, or oil but not waste, we can take a look at the top 15 operators in this category (see Table 7). Of note, gas quantity only includes production from these wells. Column on the right shows total number of wells that are indicated as producing, for that same operator, regardless of waste production.

114 of Southwestern Energy’s 172 producing wells were not represented on the waste report as of March 6th, representing just under two thirds of the total.  In terms of the number of waste-free wells, Atlas was second, with 55.  As for the highest percentage, Dominon, Hunt, and Texas Keystone all managed to avoid producing any waste at all for each of their seven respective producing wells, according to this self-reported data.

Over 1.1 Million Active Oil and Gas Wells in the US

Many people ask us how many wells have been hydraulically fractured in the United States.  It is an excellent question, but not one that is easily answered; most states don’t release data on well stimulation activities.  Also, since the data are released by state regulatory agencies, it is necessary to obtain data from each state that has oil and gas data to even begin the conversation.  We’ve finally had a chance to complete that task, and have been able to aggregate the following totals:

Oil and gas summary data of drilled wells in the United States.

Oil and gas summary data of drilled wells in the United States.

 

While data on hydraulically fractured wells is rarely made available, the slant of the wells are often made accessible.  The well types are as follows:

  • Directional:  Directional wells are those where the top and the bottom of the holes do not line up vertically.  In some cases, the deviation is fairly slight.  These are also known as deviated or slant wells.
  • Horizontal:  Horizontal wells are directional wells, where the well bore makes something of an “L” shape.  States may have their own definition for horizontal wells.  In Alaska, these wells are defined as those deviating at least 80° from vertical.  Currently, operators are able to drill horizontally for several miles.
  • Directional or Horizontal:  These wells are known to be directional, but whether they are classified as horizontal or not could not be determined from the available data.  In many cases, the directionality was determined by the presence of directional sidetrack codes in the well’s API number.
  • Vertical:  Wells in which the top hole and bottom hole locations are in alignment.  States may have differing tolerances for what constitutes a vertical well, as opposed to directional.
  • Hydraulically Fractured:  As each state releases data differently, it wasn’t always possible to get consistent data.  These wells are known to be hydraulically fractured, but the slant of the well is unknown.
  • Not Fractured:  These wells have not been hydraulically fractured, and the slant of the well is unknown.
  • Unknown:  Nothing is known about the slant, stimulation, or target formation of the well in question.
  • Unknown (Shale Formation):  Nothing is known about the slant or stimulation of the wells in question; however, it is known that the target formation is a major shale play.  Therefore, it is probable that the well has been hydraulically fractured, with a strong possibility of being drilled horizontally.

Wells that have been hydraulically fractured might appear in any of the eight categories, with the obvious exception of “Not Fractured.”  Categories that are very likely to be fractured include, “Horizontal”, “Hydraulically Fractured”, and “Unknown (Shale Formation),” the total of which is about 32,000 wells.  However, that number doesn’t include any wells from Texas or Colorado, where we know thousands wells have been drilled into major shale formations, but the data had to be placed into categories that were more vague.

Oil and gas wells in the United States, as of February 2014. Location data were not available for Maryland (n=104), North Carolina (n=2), and Texas (n=303,909).  To access the legend and other map tools, click the expanding arrows icon in the top-right corner.

The standard that we attempted to reach for all of the well totals was for wells that have been drilled but have not yet been plugged, which is a broad spectrum of the well’s life-cycle.  In some cases, decisions had to be made in terms of which wells to include, due to imperfect metadata.

No location data were available for Maryland, North Carolina, or Texas.  The first two have very few wells, and officials in Maryland said that they expect to have the data available within about a month.  Texas location data is available for purchase, however such data cannot be redistributed, so it was not included on the map.

It should not be assumed that all of the wells that are shown in  the map above the shale plays and shale basin layers are actually drilled into shale.  In many cases, however, shale is considered a source rock, where hydrocarbons are developed, before the oil and gas products migrate upward into shallower, more conventional formations.

The raw data oil and gas data is available for download on our site in shapefile format.

 

Mapping California’s State Bill 4 (SB4) Well Stimulation Notices

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

Introduction

California passed State Bill 4 (SB4) in September, 2013 to develop and establish a regulatorySanta Barbara Channel_10.7.13 structure for unconventional resource extraction (hydraulic fracturing, acidizing, and other stimulation techniques) for the state.   As a feature of the current version of the regulations, oil and gas drilling/development operators are required to notify the California Department of Conservation’s Division of Oil Gas and Geothermal Resources (DOGGR), as well as neighboring property owners, 30 days prior to stimulating an oil or gas well.  In addition to property owners having the right to request baseline water sampling within the the following 20 days, DOGGR posts the well stimulation notices to their website.

Current State of Oil and Gas Production

The DOGGR dataset of well stimulation notices was downloaded, mapped, the dataset explored, and well-site proximity to certain sites of interest were evaluated using GIS techniques. First, the newest set of well stimulation notices, posted 1/17/14 were compared to a previous version of the same dataset, downloaded 12/27/13. When the two datasets are compared there are several distinct differences. The new dataset has an additional field identifying the date of permit approval and fields for latitude/longitude coordinates. This is an improvement, but there is much more data collected in the DOGGR stimulation notification forms that can be provided digitally in the dataset, including sources of water, amount of water used for stimulation, disposal methods, etc… An additional 60 wells have been added to the dataset, making the total count now 249 stimulation notices, with 37 stimulated by acid matrix (acidizing), 212 hydraulically fractured, and 3 by both. Of the 249, 59 look to be new wells as the API identifcation numbers are not listed in the DOGGR “AllWells.zip” database here, while 187 are reworks of existing wells. A difference of particular interest is the discrepancy in latitudes and longitudes listed for several well-sites. The largest discrepancy shows a difference of almost 10,000 feet for an Aera Energy well (API 3051341) approved for stimulation December 23, 2013. The majority of the well stimulations (246/249) are located in Kern County, and the remaining three are located in Ventura County.

Figure 1. Stimulation Notices and Past/Present Oil and Gas Wells
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Well Spacing

As can be seen in Figure 1, the well stimulations are planned for heavily developed oil and gas fields where hydraulic fracturing has been used by operators in the past. California is the 4th largest oil producing state in the nation, which means a high density of oil and gas wells. Many other states limit the amount of wells drilled in a set amount of space in support of safer development and extraction. In Ohio, unconventional wells (>4,000 foot depths) have a 1,000 foot spacing requirement , West Virginia has a 3,000 foot requirement for deep wells , and the Texas Railroad Commission has set a 1,200 foot well spacing requirement. Using Texas’s setback as an example buffer for analysis, 241/249 of the DOGGR new stimulations are within 1,200 feet of an active oil and gas well. Of the 364 hydraulically fractured oil and gas wells DOGGR has listed as “New” (they are not yet producing, but are permitted and may be in development), 351 are within 1,200 feet of a well identified in DOGGR’s database as an active oil and gas well. One of the industry promoted benefits of using stimulations such as hydraulic fracturing is the ability to decrease the number of well-sites necessary to extract resources and therefore decrease the surface impact of wells. This does not look to be the practice in California.

Environmental Media

Following this initial review of oil and gas production/development, three additional maps were created to visualize the environmental media threatened by contamination events such as fugitive emissions, spills or well-casing failures. The maps are focused on themes of freshwater resources, ambient air quality, and conservation areas.

Freshwater Resources

Figure 2. New Wells, Stimulation Notices and California’s Freshwater Resources
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Freshwater resources are limited in arid regions of California, and the state is currently suffering from the worst drought on record. In light of these issues, the FracMapper map “New Well Stimulations and California Freshwater Resources” includes map layers focused on groundwater withdrawals, groundwater availability, Class II wastewater injection wells, watershed basins, and the United States Geological Survey’s (USGS) National Hydrography Data-set (NHD). Since California does not have a buffer rule for streams and waterways, we used the setback regulation from Pennsylvania for an analysis of the proximity of the well stimulation notices to streams and rivers. In Pennsylvania, 300 feet is the minimum setback allowed for hydraulic fracturing near recognized surface waters. Of the 246 wells listed for new stimulation, 26 are within 300 feet of a waterway identified in the USGS’s NHD. The watersheds layer shows the drainage areas for these well locations. As a side note, the state of Colorado does not allow well-sites located within 100 year flood plains after the flash floods in September 2013 that caused over 890 barrels of oil condensates to be spilled into waterways. Also featured in Figure 2 are the predominant shallow aquifers in California. The current well stimulations posted by DOGGR are located in the Elk Hills (Occidental Inc.), Lost Hills (Chevron), Belridge and Ventura (both Aera Production) oil fields and have all exempted out of a groundwater monitoring plans based on aquifer exemptions, even though the aquifers are a source of irrigation for the neighboring agriculture.   Stimulation notices by Vintage Production in the Rose oil field, located in crop fields on farms, are accompanied by a groundwater and surface water monitoring plan. Take notice of the source water wells on the map that provide freshwater for both the acidizing and hydraulic fracturing operations and the Class II oil and gas wastewater injection wells that dispose of the produced waters. Produced wastewaters may also be injected into Class II enhanced oil recovery water flood wells, and several of the stimulation notices have indicated the use of produced waters for hydraulic fracturing.

Ambient Air Quality

Figure 3. California New Wells, Stimulation Notices and Air Quality
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Impacts to ambient air quality resulting from oil and gas fields employing stimulation techniques have been documented in areas like Wyoming’s Upper Green River Basin , the Uintah Basin of Utah , and the city of Dish, Texas . Typically, ozone is considered a summertime issue in urban environments, but the biggest threat to air quality in these regions has been elevated concentrations of ozone, particularly in the winter time. Ozone levels in these regions have been measured at concentrations higher than would typically be seen in Los Angeles or New York City. In Figure 3, the state and federal ozone attainment layers show that the areas with the highest concentrations of “new” wells and the DOGGR New Stimulation Notices do not pass ambient air criteria standards to qualify as “attainment” status for either state or federal ambient ozone compliance, meaning their ambient concentrations reach levels above health standards. Other air pollutants known to be released during oil and gas development, stimulation, and production include volatile organic compounds (VOCs) such as Benzene, Toluene, Ethylbenzene and xylene (BTEX); carbon monoxide (CO); hydrogen sulfide (H2S), Nitrogen Oxides (NOx), and sulfur dioxide (SO2), and methane (CH4), a potent greenhouse gas. It is important to point out that ground level ozone is not emitted directly but rather is created by chemical reactions between NOx and VOCs. Besides ozone, all these other air pollutants are in “attainment” in California except NOx in Los Angeles County. There have not been any stimulation notices posted in Los Angeles County, but the South Coast Air Quality Monitoring District identifies 662 recent wells that have been stimulated using hydraulic fracturing, acidizing, or gravel packing. See the Local Actions map of California for these well sites.

Conservation Areas

Figure 4. New Wells, Stimulation Notices and Conservation Areas
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

The map in Figure 4, “New Well Stimulations and Conservation Lands”, features land use planning maps developed by California and Federal agencies for conservation of the environment for multiple uses, ranging from recreation to farming and agriculture.  Many of the Stimulation Notices as well as “new” well sites located in Kern County are located in or along the boundary of the San Joaquin Valley Conservation Opportunity; land identified by the California Department of Fish and Game, Parks and Recreations, and Transportation (Caltrans) as important for wildlife connectivity. Oil and gas development inevitably results in loss of habitat for native species. Habitat disturbance and fragmentation of the natural ecosystems can pose risks particularly for endangered species like the San Joaquin Kit Fox, California Condor, and the blunt-nosed leopard lizards.

The California Rangeland Priority Conservation Areas layer was created to identify the most important areas for priority efforts to conserve the Oak Savannah grasslands of high diversity that host many grassland birds, native plants, and threatened vernal pool species. The areas of high biodiversity value are marked in red as “critical conservation areas”. The majority of the new well stimulations are encroaching on the borders of these “critical areas,” particularly in the Belridge oil field. The CA Farmland Mapping and Monitoring Program map layer rates land according to soil quality to analyze impacts on California’s agricultural resources. The majority of new stimulations and new oil wells are located on the border of areas designated as “prime farmland,” particularly the Belridge and Lost Hills fields. The Rose field on the other hand is located within the “prime farmland” and “farmland of statewide importance.” Also, well-sites from all fields in Kern County are located on Williamson Act Agricultural Preserve Land Parcels. By enrolling in the program these areas can take advantage of reduced tax rates as they are important buffers to reduce urban sprawl and over-development. Although the point of the act was to protect California’s important farmland and agriculture, some parcels enrolled in the Williamson Agricultural Preserve Act program even house stimulation notice sites and “new” hydraulically fractured wells.

Discussion

While allowing hydraulic fracturing, acidizing and other stimulations until January 1, 2015 under temporary regulations, SB4 requires the state of California to complete an Environmental Impact Review (EIR). New regulations will then be developed on the recommendations of the EIR. The regulations will be enforced by the Division of Oil, Gas, and Geothermal Resources (DOGGR), the agency currently responsible for issuing drilling permits to operators in the state. In some municipalities of California, an additional “land-use” development permit is required from the local land-use agency (Air district, Water District, County, other local municipality or any combination) for an operator to be granted permission to drill a well. In most areas of California a “land-use” permit is not required, and only the state permit from DOGGR is necessary. A simple explanation is DOGGR grants the permit for everything that occurs underground, and in some locations a separate regulatory body approves the permit for what occurs above the ground at the surface. The exceptions are San Benito County which has a 500 foot setback from roads and buildings, Santa Cruz County, which passed a moratorium, Santa Barbara with a de facto ban*, and the South Coast Air quality Monitoring District’s notification requirements, permitting a well stimulation (such as “fracking” or “acidizing”).  For the rest of the state permitting a well  stimulation is essentially the same as permitting a conventional well-site, although it should be recognized that some counties like Ventura have setback and buffer provisions for all (conventional and unconventional) oil and gas wells. Additionally, DOGGR’s provisional regulations do require chemical disclosures to FracFocus and public notifications to local residents 30 days in advance, but lacks public health and safety provisions such as setbacks, continuous air monitoring, and the majority of wells in the notices are exempt from groundwater monitoring,   While public notifications and chemical disclosures are all important for liability and tracking purposes, they are no substitute for environmental and engineering standards of practice including setbacks and other primary protection regulations to prevent environmental contamination. The state-sponsored EIR is intended to inform these types of rules, but that leaves a year of development without these protections.
*Santa Barbara County requires all operators using hydraulic fracturing to obtain an oil drilling production plan from the Santa Barbara County Planning Commission. No operator has applied for a permit since the rule’s passing in 2011.

References

  1. DOGGR. 2014. Welcome to the Division of Oil, Gas and Geothermal Resources.  Accessed 1/28/14.
  2. Lawriter Ohio Laws and Rules. 2010. 1501:9-1-04 Spacing of wells. Accessed 1/29/14.
  3. WVDNR. 2013. Regulations. Accessed 1/29/14.
  4. Railroad Commission of Texas. 2013. Texas Administrative Code. Accessed 1/28/14.
  5. PADEP. 2013. Act 13 Frequently Asked Questions.  Accessed 1/29/14.
  6. U.S.EPA. 2008. Wyoming Area Designations for the 2008 Ozone National Ambient Air Quality Standards. Accessed 1/29/14.
  7. UT DEQ. 2014. Uintah Basin. Accessed 1/29/14.
  8. UT DEQ. 2012. 2012 Uintah Basin Winter Ozone & Air Quality Study.
  9. Wolf Eagle Environmental. 2009. Town of Dish, TX Ambient Air Monitoring Analysis.

Songbird Nurseries of Pennsylvania

Guest Blog by Paul T. Zeph, Director of Conservation for Audubon Pennsylvania

Millions of small, beautiful, colorful songbirds that live in the tropics for most of the year venture north each spring to Pennsylvania to nest in our deep, quiet forests—forests that are now in danger of being fracked apart into industrial zones of natural gas extraction.

Pennsylvania’s forests provide nesting habitat for 17% of the world’s Scarlet Tanagers. Photo courtesy of the PA Gaming Commission.

Pennsylvania’s forests provide nesting habitat for 17% of the world’s Scarlet Tanagers. Photo by Jake Dingel, via the PA Game Commission.

The names of these birds are often described by their vibrant colors:  Black-throated Blue Warbler, Scarlet Tanager, Cerulean Warbler, or Rose-breasted Grosbeak. Here, in the deep remnants of Penn’s Woods, they find an abundance of caterpillars and other insects that are critical protein for raising baby birds. Once the young are fledged and finding food on their own, the parents and juveniles head back south in early fall to their “non-breeding” habitat, which is more accurately called the Neotropics; that is, the New World tropics of the Caribbean, Central America and South America.

Most of these Neotropical migrants cannot nest successfully in small woodlots or fragmented forests, and depend upon large, undisturbed tracts of woodland that we call “core” forests.  These are forests that are at least 300 feet from a permanent edge – such as a road, utility corridor, or housing development.  Pennsylvania still has some very large forest blocks, primarily in the northern tier of the state, that serve as bird “nurseries”—places where the nest density is high and many species are successfully fledging young.

A recently-completed Pennsylvania Breeding Bird Atlas is undergoing analysis by many researchers, and the data is helping us to identify the “best of the best” places in the state needed to sustain populations of our Neotropical visitors, for which we have a North American responsibility.  Not surprisingly, these quiet, large blocks of forest are also favorite places for humans to use for passive recreation, relaxation, and spiritual renewal.  If you want a quiet, peaceful place to escape the modern world for a weekend, look for places frequented in June by Blackburnian Warblers or Blue-headed Vireos.


Unconventional drilling and key forest songbird habitat in Pennsylvania. To access the legend, layer descriptions, and other tools, click on the expanding arrows icon in the top-right corner of the map.

Since many populations of our Neotropical species have been dramatically declining over the past 50 years, we need to protect as much nesting habitat as possible.  In 100 years, we will probably see many species disappear from Pennsylvania altogether due to fragmentation and climate change.  Our northern forest blocks may be a last refuge for a number of bird and other animal species that cannot survive in our sprawling suburbs or the ecological changes that will come with a warming planet.

Extensive gas infrastructure in forested Pennsylvania land. Photo by Pete Stern, 2013.

Extensive gas infrastructure in forested Pennsylvania land. Photo by Pete Stern, 2013.

Fracking is a heavily industrialized activity that not only causes short-term fragmentation, noise, and ecological disruption, but can lead to long-term ecological collapse of healthy, intact forest blocks.  Birds are only one of many types of animals that are impacted by the vast array of fracking infrastructure that is becoming all-too-common in our state’s quiet and shady bird nurseries, trout streams, and recreation areas:  widened roads letting in sunlight and nest predators; long, wide pipelines creating miles of permanent edge; thousands of acres of forest floor buried under compacted gravel pads; rain events carrying road and well pad gravel into sensitive headwater streams, burying aquatic life.

We have precious few public lands left in Pennsylvania that have not been leased for mineral extraction.  We must do all that we can to prevent leasing of lands where the state owns the mineral rights; and, where the rights are severed and owned by another, we must find compromises and solutions that keep as much of the forest intact as possible.

Well and pipeline data in British Columbia

British Columbia Map Now Available

Increasingly, FracTracker has been receiving requests to map oil and gas data from a variety of locations.  Now for the first time since the roll-out of the ArcGIS Online-based FracMapper platform last year, we have content dedicated to understanding oil and gas data outside of the United States.  Specifically, this map is focused on the extractive – and midstream – activities in British Columbia, Canada.


British Columbia Shale Viewer. Please click the expanding arrows icon in the upper right corner of the map to access the full page map, complete with legend and descriptions.

British Columbia’s Oil and Gas Commission has records for over 29,000 wells, of which over 11,000 are indicated as being directional.  These are the wells included on this map.  While directional drilling is a broader category than horizontal drilling, which is more commonly associated with hydraulic fracturing, it was the most readily available means of finding wells likely to be unconventional in nature.  And indeed, a substantial majority of the directional wells drilled in the province correspond to the unconventional plays in the northeastern portion of British Columbia.

While the available well data was lacking some of the detail that FracTracker prefers, this is made up for by a data type that is difficult to encounter in the United States:  pipeline rights-of-way.  Note that not all of the wells on the map are connected by pipelines.  One explanation is that the pipeline data are from October 30, 2006 onward, while over 3,600 of the directional wells were drilled before that time.

Well and pipeline data in British Columbia
This image shows a closeup of the British Columbia Shale Viewer, highlighting pipeline data

Other notable data types for British Columbia include oil and gas facilities, and a layer showing the extent of individual well sites.  For more information, see the Details section of the map.

Frac Sands Mines and Related Facilities

Northern American Frac Sand Mines

Pattern, Process, Quality, Quantity, and US Frac Sands
By Ted Auch, OH Program Coordinator, FracTracker Alliance;
Daniel Berghoff, The Ohio State University; Elliott Kurtz, Intern, FracTracker Alliance

Part I, Frac Sands Locations and Silica Geology Map Description


Click on the arrows in the upper right hand corner of the map for a fullscreen view and to access the legend.

This is a map of silica sands/frac sands mines, drying facilities, and value added facilities in North America. The map includes addresses and facility polygons. We present production for only 24 of these facilities all of which are in Wisconsin. The remaining Wisconsin and other state facilities do not have production or acreage data associated with them pursuant to a lack of disclosure requirements at the state level and USGS’s confidentiality agreement with all firms. The sandstone/silica geology polygons presented herein – in certain instances – include a breakdown of each polygon’s land cover distribution across agriculture, urban/suburban, temperate deciduous forest, and conifer forests. At the present time we only have this type of delineation for the primary frac sands producing US state, Wisconsin, along with Ohio, with Minnesota soon to arrive. The identification of each polygon’s land cover gives a sense for the types of ecosystem services present and/or threatened from a macro perspective. During our tour of select West Central Wisconsin frac sand mines it became apparent that the mining industry was essentially picking off forested “bluffs” or drumlins because these are generally the areas where frac sand deposits are deepest and closest to the surface. In return landowners are returned these parcels with less dramatic slopes making them more amenable to grazing or crop production. Consequently understanding the current land cover of each sandstone polygon will give us a sense for how much forest, grasslands, or wetlands acreage could potentially be converted to traditional agricultural usage.

Part I of this series can be found here.

Data Sources

Industry data was provided by or sourced from the following organizations, individuals, or websites:

Methodology

Land Cover Data Methodology:

State Level Primary and Secondary Silica Sand Geology – polygons extracted from USGS Mineral Resources > Online Spatial Data > Geology. Primary and secondary polygons are dissolved by Unit Age.Land cover in km2 and as a % of the entire polygon are presented using the following:

  1. “Select By Attributes” tool in ArcMAP
  2. _geol_poly_dd
  3. “ROCKTYPE1” = Primary; “ROCKTYPE1” = Secondary
  4. Using the following protocol we have begun to code each Silica Sand Geology polygon for land cover in terms of km^2 and % of polygons. The protocol fractionates polygons into forest, crop, pasture, urban, and wetlands:Used zonal statistics, which is in the spatial analyst toolbox in ArcGIS.

Here’s the basic procedure:

  1. Download national land cover dataset which can be found at: http://www.mrlc.gov/nlcd2006.php
  2. Before recoding the raster, it may be easier to manage after clipping it to a smaller extent such as the state you are interested in. Simply use Arc’s Clip tool to do this. I also found that QGIS has a fast, easy, clipping tool called Clipper. Once the raster is a bit more manageable, use the legend for the dataset that is on the above webpage to recode the raster into a set of rasters for each land cover type you’re interested in. Use Arc’s Reclassify to set all the values you want to 1 and all other values to 0. This process can also be done in QGIS which I found to be easier and faster. For QGIS, use Raster Calculator and create an expression that connects all the rasters of interest with “OR.” The syntax should be something along the lines of: ([name of raster @ band1] = first forest value) OR ([name of raster @ band1] = second forest value) and so on for all your values.
  3. Use the zonal statistics tool in Arc (Zonal Statistics as Table) to get the sum (it is important that is the sum) of the new binary raster for each polygon for each shapefile you’re using. The tool used should export a table of values.
  4. Add the table that the zonal statistics tool outputs and then join it to the shapefile you used to generate it.
  5. Repeat steps 3 and 4 for the other raster layers you generated with reclassify.
  6. Export the shapefile with the joined data.
  7. Put the shapefile back in Arc and open the attribute table.
  8. Add a new column.
  9. Use field calculator to calculate this column as 900 times the sum you got from your first zonal statistics run (because the data are in 30mX30m resolution, this will give you a good approximation of the square meters of land cover affected).
  10. Repeat steps 8 and 9 for your other zonal statistics results.
  11. Repeat step 2 for other raster classes you are interested in (developed, cultivated, wetland, etc.).
  12. Repeat steps 3-10 for the other shapefiles you are using.