Drilling Bella Romero: Children at Risk in Greeley, Colorado

By
Kirk Jalbert, Manager of Community Based Research & Engagement
Kyle Ferrar, Western Program Coordinator

Weld County, Colorado, is one of the top producing shale oil and gas regions in the United States, boasting more than 12,000 active horizontal or directional wells, which account for 50% of all horizontal or directional wells in the state. To put this into perspective, the entire state of Pennsylvania has ten times the land area with “only” 9,663 horizontal or directional wells. At the center of Weld County is the city of Greeley, population 92,889. Greeley has experienced dramatic changes in the past decade as extraction companies compete to acquire oil and gas mineral rights. Extensive housing developments on the outskirts of the city are being built to accommodate future well pads on neighboring lots. Meanwhile, a number of massive well pads are proposed within or on the border of city limits.

FracTracker visited Colorado back in November 2015 and met with regional advocacy organizations including Coloradans Against Fracking, Protect our Loveland, Weld Air and Water, and Our Longmont to determine how we could assist with data analysis, mapping, and digital storytelling. FracTracker returned in June 2016 to explore conditions unique to Weld County’s oil and gas fields. During our visit we interviewed residents of Greeley and found that one of their greatest concerns was the dangers of siting oil and gas wells near schools. While there is much more we will be publishing in coming weeks about our visit, this article focuses on one troubling project that would bring gas drilling to within 1,300ft of a public school. The proposal goes before the Weld County Commissioners on Wednesday, June 29th for final approval. As such, we will be brief in pointing out what is at stake in siting industrial oil and gas facilities near schools in Colorado and why residents of Greeley have cause for concern.

Drilling Bella Romero

On June 7th, the Weld County Planning Commission unanimously approved a proposal from Denver-based Extraction Oil & Gas to develop “Vetting 15H”—a 24-head directional well pad in close proximity to Bella Romero Academy, a middle school just outside Greeley city limits. In addition to the 24-head well pad would be a battery of wastewater tanks, separators, and vapor recovery units on an adjacent lot. The permit submitted to the Colorado Oil & Gas Conservation Commission (COGCC) also states that six more wells may be drilled on the site in the future.

As was detailed in a recent FracTracker article, Colorado regulations require a minimum setback distance of 500ft from buildings and an additional 350ft from outdoor recreational areas. In more populated areas, or where a well pad would be within 1,000ft of high occupancy buildings, schools, and hospitals, drilling companies must apply for special variances to minimize community impacts. Setbacks are measured from the well head to the nearest wall of the building. For well pads with multiple heads, each well must comply with the respective setback requirements.

bella_romero_playground

Bella Romero’s playground with Vetting 15H’s proposed site just beyond the fence.

Vetting 15H would prove to be one of the larger well pads in the county. And while its well heads remain just beyond the 1,000ft setback requirement from Bella Romero buildings, a significant portion of the school’s ballfields are within 1,000ft of the proposed site. When setbacks for the well pad and the processing facility are taken together—something not explicitly demonstrated in the permit—almost the entirety of school grounds are within 1,000ft and the school itself lies only 1,300ft from the pad. The below figures show the images supplied by Extraction Oil & Gas in their permit as well as a more detailed graphic generated by FracTracker.

 

Youth: A High Risk Population

The difference between 1,000ft and 1,300ft may be negligible when considering the risks of locating industrial scale oil and gas facilities near populated areas. The COGCC has issued 1,262 regulatory violations to drilling companies since 2010 (Extraction Oil & Gas ranks 51st of 305 operators in the state for number of violations). Some of these violations are for minor infractions such as failing to file proper paperwork. Others are for major incidents; these issues most often occur during the construction phases of drilling, where a number have resulted in explosions and emergency evacuations. Toxic releases of air and water pollution are not uncommon at these sites. In fact, the permit shows drainage and potential spills from the site would flow directly towards Bella Romero school grounds as is shown in the figure below.

Vetting 15H post-development drainage map.

Vetting 15H post-development drainage map.

A host of recent research suggests that people in close proximity to oil and gas wells experience disproportionate health impacts. Emissions from diesel engine exhaust contribute to excessive levels of particular matter, and fumes from separators generate high levels of volatile organic compounds. These pollutants decrease lung capacity and increase the likelihood of asthma attacks, cardiovascular disease, and cancer (read more on that issue here). Exposure to oil and gas facilities is also linked to skin rashes and nose bleeds.

As we’ve mentioned in our analysis of oil and gas drilling near schools in California, children are more vulnerable to these pollutants. The same amount of contaminants entering a child’s body, as opposed to an adult body, can be far more toxic due to differences in body size and respiratory rates. A child’s developing endocrine system and neural pathways are also more susceptible to chemical interactions. These risks are increased by children’s lifestyles, as they tend to spend more hours playing outdoors than adults and, when at school, the rest of their day is spent at a central location.

At the June 7th public hearing Extraction Oil & Gas noted that they intend to use pipelines instead of trucks to transport water and gas to and from Vetting 15H to reduce possible exposures. But, as residents of Greeley noted of other projects where similar promises were made and later rescinded, this is dependent on additional approvals for pipelines. Extraction Oil & Gas also said they would use electric drilling techniques rather than diesel engines, but this would not eliminate the need for an estimated 22,000 trucking runs over 520 days of construction.

Below is a table from the Vetting 15H permit that shows daily anticipated truck traffic associated with each phase of drilling. The estimated duration and operational hours of each activity are based on only 12 wells since construction is planned in two phases of 12 wells at a time. These numbers do not account for the trucking of water for completions activities, however. The figures could be much higher if pipelines are not approved, as well as if long-term trucking activities needed to maintain the site are included in the estimates.

Vetting 15H daily vehicle estimates.

Vetting 15H daily vehicle estimates from permit

 

At the Top of the Most Vulnerable List

Bella Romero Academy has the unfortunate distinction of being one of the few schools in Colorado in close proximity to a horizontal or directional well amongst 1,750 public and 90 private schools in the state. Based on our analysis, there are six public schools within 1,000ft of a horizontal or directional well. At 2,500ft we found 39 public schools and five private schools. Bella Romero is presently at the top of the list of all schools when ranked by number of well heads located within a 1,000ft buffer. An 8-head well pad is only 800ft across the street from its front door. If the Vetting 15H 24-head well pad was to be constructed, Bella Romero would be far and above the most vulnerable school within 1,000ft of a well. It would also rank 3rd in the state for well heads located within 2,500ft of a school. The tables below summarize our findings of this proximity analysis.

Colorado public schools within 1,000ft of a horizontal or directional well

Colorado public schools within 1,000ft of a horizontal or directional well

Colorado public schools within 2,500ft of a horizontal or directional well with 5 or more well heads. There are 39 schools in total.

Colorado public schools within 2,500ft of a horizontal or directional well with 5 or more well heads. There are 39 schools in total

Colorado private schools within 2,500ft of a horizontal or directional well

Colorado private schools within 2,500ft of a horizontal or directional well

The following interactive map shows which schools in Colorado are within a range of 2,500ft from a directional and horizontal well. Additional buffer rings show 1,000ft and 500ft buffers for comparison. 1,000ft was selected as this is the minimum distance required by Colorado regulations from densely populated areas and schools without requiring special variances. Environmental advocacy groups are presently working to change this number to 2,500ft. The map is zoomed in to show the area around Bella Romero. Zoom out see additional schools and click on features to see more details. [NOTE: The Colorado school dataset lists Bella Romero Academy as an elementary/middle school. Bella Romero was recently split, with the elementary school moving a few blocks west.]

Map of schools and setbacks in Colorado

View map full screen | How FracTracker maps work

Environmental Injustice

Drilling near Bella Romero is also arguably an environmental justice issue, as its student population has some of the highest minority rates in the county and are amongst the poorest. According to coloradoschoolgrades.com, Bella Romero is 89% Hispanic or Latino and 3% African American whereas, according to the U.S. Census Bureau, Greeley as a whole is 59% White and 36% Hispanic or Latino. 92% of Bella Romero’s students are also from low income families. Furthermore, according to the EPA’s Environmental Justice Screening Tool, which is used by the agency to assess high risk populations and environments, the community surrounding Bella Romero is within the 90-95% percentile range nationally for linguistically isolated communities.

Many of Bella Romero's students come from low-income communities surrounding Greeley.

Many of Bella Romero’s students come from low-income communities surrounding Greeley.

 

Implications

These statistics are significant for a number of reasons. Firstly, oil and gas permitting in Colorado only requires operators to notify residents immediately surrounding proposed well pads. This rule does not include residents who may live further from the site but send their students to schools like Bella Romero. Parents who might comment on the project would need to hear about it from local papers or neighbors, but language barriers can prevent this from occurring. Another factor we witnessed in our June visit to Latino communities in Weld County is that many students have undocumented family members who are hesitant to speak out in public, leaving them with no voice to question risks to their children.

Residents of Greeley speak out at the June 7th Planning Commission meeting.

Residents of Greeley speak out at the June 7th Planning Commission meeting

Nevertheless, at the June 7th Planning Commission hearing, Weld County administrators insisted that their decisions would not take race and poverty into consideration, which is a blatant disregard for EPA guidelines in siting industrial development in poor minority communities. Weld County’s Planning Commission claimed that their ruling on the site would be the same regardless of the school’s demographics. By comparison, another proposed Extraction Oil & Gas site that would have brought a 22-head well pad to within 1,000ft of homes in a more well off part of town was denied on a 0-6 vote by the City of Greeley’s Planning Commission earlier this year after nearby residents voiced concerns about the potential impacts. Extraction Oil & Gas appealed the ruling and Greeley City Council passed the proposal in a 5-2 vote pending additional urban mitigation area permit approval. While the Greeley Planning Commission and the Weld County Planning Commission are distinct entities, the contrast of these two decisions should emphasize concerns about fair treatment.

Conclusion

There are very real health concerns associated with siting oil and gas wells near schools.  When evaluating this project, county administrators should assess not only the immediate impacts of constructing the well pad but also the long-term effects of allowing an industrial facility to operate so close to a sensitive youth population. There are obvious environmental justice issues at stake, as well. Public institutions have a responsibility to protect marginalized communities such as those who send their children to Bella Romero. Finally, approving the Vetting 15H project would place Bella Romero far at the top of the list for schools in Colorado within 1,000ft of oil and gas wells. School board administrators should be concerned about this activity, as it will undoubtedly put their students’ health and academic performance at risk. We hope that, when the County Commissions review the proposal, these concerns will be taken into account.

Digging into Waste Data

Pennsylvania’s Drilling Waste Distributed to Eight States

By Matt Kelso, Manager of Data & Technology

According to data published by the Pennsylvania Department of Environmental Protection (DEP), Pennsylvania’s unconventional oil and gas waste that was generated in the first half of 2015 found its way to treatment facilities, disposal wells, and landfills in eight different states. While the majority of the waste stayed in-state, neighboring Ohio, New York, and West Virginia all received significant quantities of both solid and liquid waste, and additional disposals were made in the non-contiguous states of Michigan, Texas, Utah, and Idaho.


Waste generated by Pennsylvania’s unconventional oil and gas wells was disposed of in a variety of ways and over a large geographic area. Click on a facility to learn more, or zoom in to access waste generated by individual wells. Click here to access the full screen map with a legend and additional controls.

Unconventional drillers in the state are now required to report production data monthly, rather than in six month increments, but waste quantities generated by the wells is still supposed to be reported biannually. However, a small number of operators have been reporting waste monthly, as well, and those figures have been included in this analysis, after spot-checking for duplication. Each record includes data on how the waste was processed and where it was shipped, so we were able to map the receiving facilities as well, and aggregate their waste totals.

Types of Waste

Waste generated by unconventional wells in Pennsylvania from January to June 2015.

Waste generated by unconventional wells in Pennsylvania from January to June 2015 by type.

There are eight types of waste detailed in the Pennsylvania data, including:

  • Basic Sediment (Barrels) – Impurities that accompany the desired product
  • Drill Cuttings (Tons) – Broken bits of rock produced during the drilling process
  • Flowback Fracturing Sand (Tons) – Sand used to prop open cracks made during hydraulic fracturing that return to the surface
  • Fracing Fluid Waste (Barrels) – Fluid pumped into the well for hydraulic fracturing that returns to the surface. This includes chemicals that were added to the well.
  • Produced Fluid (Barrels) – Naturally occurring brines encountered during drilling that contain various contaminants, which are often toxic or radioactive
  • Servicing Fluid (Barrels) – Various other fluids used in the drilling process
  • Spent Lubricant (Barrels) – Oils used in engines as lubricants
  • General O&G Waste (Tons) – Solid waste types other than drill cuttings or fracturing sand

For the sake of simplicity, this analysis will at times aggregate the waste types into two categories, with all types reporting in tons as solid waste, while those listed in 42 gallon barrels will be considered liquid waste.

Waste Disposal

Waste disposal method for unconventional wells in PA, January to June 2015

Waste disposal method for unconventional wells in PA, January to June 2015

This PA waste gets disposed of in a variety of ways. About 93 percent of all solid waste ends up in landfills. 29 of the 58 operators reporting waste during this cycle reported drill cuttings. In a separate report, the DEP has records for unconventional wells drilled by 28 different operators during the same time frame, so these results seem reasonable, since drill cuttings are generated during the drilling process, whereas other types of waste are produced throughout the life cycle of the well.

Statewide, there over 596,000 tons of drill cuttings produced during a period which saw 422 wells spudded, an average of 1,412 tons of cuttings per well. Not all operators generated the same amount of cuttings per well, however. Vantage Energy reports 3,089 tons of cuttings per well, while Hilcorp Energy manages to average just 119 tons over 23 wells drilled in the six month period. It is worth noting that some wells that were spudded just prior to the reporting period likely still generated drill cuttings during the six months in question, and some wells spudded during the cycle will continue to produce cuttings into the next one.

In terms of liquid waste, nearly two thirds of the amount reported is reused for purposes other than road spreading. This is, unfortunately, a dead end in terms of being able to follow the waste stream in the data, as there are no facilities associated with the 13.8 million barrels of waste that falls into this category. 225,000 barrels are specified as being reused for hydraulic fracturing, while the remainder is simply destined for, “Reuse without processing at a permitted facility.”

The amount used for road spreading, 147 barrels, is relatively small, and all of this waste is reported as going to private roads in Greene County. The total amount of liquid waste produced in the six month period is almost 879 million gallons, or enough to fill 1,331 Olympic-sized swimming pools.

PA Waste Receiving Facilities

Altogether, we know where roughly 7 million of the nearly 21 million barrels of reported liquid waste wound up, as well as 640,000 of the 647,000 tons of solid waste. The top ten destinations for each waste type are as follows:

Top 10 reported recipients of unconventional O&G waste produced in PA during the first half of 2015.

Top 10 reported recipients of unconventional O&G waste produced in PA during the first half of 2015.

Six of the top destinations for liquid waste were located in-state, while seven of the top ten facilities for solid waste stayed in Pennsylvania. The only facility to appear on both lists is Patriot Water Treatment in Warren, Ohio.

The Water-Energy Nexus in Ohio, Part II

OH Utica Production, Water Usage, and Waste Disposal by County
Part II of a Multi-part Series
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

In this part of our ongoing “Water-Energy Nexus” series focusing on Water and Water Use, we are looking at how counties in Ohio differ between how much oil and gas are produced, as well as the amount of water used and waste produced. This analysis also highlights how the OH DNR’s initial Utica projections differ dramatically from the current state of affairs. In the first article in this series, we conducted an analysis of OH’s water-energy nexus showing that Utica wells are using an ave. of 5 million gallons/well. As lateral well lengths increase, so does water use. In this analysis we demonstrate that:

  1. Drillers have to use more water, at higher pressures, to extract the same unit of oil or gas that they did years ago,
  2. Where production is relatively high, water usage is lower,
  3. As fracking operations move to the perimeter of a marginally productive play – and smaller LLCs and MLPs become a larger component of the landscape – operators are finding minimal returns on $6-8 million in well pad development costs,
  4. Market forces and Muskingum Watershed Conservancy District (MWCD) policy has allowed industry to exploit OH’s freshwater resources at bargain basement prices relative to commonly agreed upon water pricing schemes.

At current prices1, the shale gas industry is allocating < 0.27% of total well pad costs to current – and growing – freshwater requirements. It stands to reason that this multi-part series could be a jumping off point for a more holistic discussion of how we price our “endless” freshwater resources here in OH.

In an effort to better understand the inter-county differences in water usage, waste production, and hydrocarbon productivity across OH’s 19 Utica Shale counties we compiled a data-set for 500+ Utica wells which was previously used to look at differenced in these metrics across the state’s primary industry players. The results from Table 1 below are discussed in detail in the subsequent sections.

Table 1. Hydrocarbon production totals and per day values with top three producers in bold

County

# Wells

Total

Per Day

Oil

Gas

Brine

Production

Days

Oil

Gas

Brine

Ashland

1

0

0

23,598

102

0

0

231

Belmont

32

55,017

39,564,446

450,134

4,667

20

8,578

125

Carroll

256

3,715,771

121,812,758

2,432,022

66,935

67

2,092

58

Columbiana

26

165,316

9,759,353

189,140

6,093

20

2,178

65

Coshocton

1

949

0

23,953

66

14

0

363

Guernsey

29

726,149

7,495,066

275,617

7,060

147

1,413

49

Harrison

74

2,200,863

31,256,851

1,082,239

17,335

136

1,840

118

Jefferson

14

8,396

9,102,302

79,428

2,819

2

2,447

147

Knox

1

0

0

9,078

44

0

0

206

Mahoning

3

2,562

0

4,124

287

9

0

14

Medina

1

0

0

20,217

75

0

0

270

Monroe

12

28,683

13,077,480

165,424

2,045

22

7,348

130

Muskingum

1

18,298

89,689

14,073

455

40

197

31

Noble

39

1,326,326

18,251,742

390,791

7,731

268

3,379

267

Portage

2

2,369

75,749

10,442

245

19

168

228

Stark

1

17,271

166,592

14,285

602

29

277

24

Trumbull

8

48,802

742,164

127,222

1,320

36

566

100

Tuscarawas

1

9,219

77,234

2,117

369

25

209

6

Washington

3

18,976

372,885

67,768

368

59

1,268

192

Production

Total

It will come as no surprise to the reader that OH’s Utica oil and gas production is being led by Carroll County, followed distantly by Harrison, Noble, Belmont, Guernsey and Columbiana counties. Carroll has produced 3.7 million barrels of oil to date, while the latter have combined to produce an additional 4.5 million barrels. Carroll wells have been in production for nearly 67,000 days2, while the aforementioned county wells have been producing for 42,886 days. The remaining counties are home to 49 wells that have been in production for nearly 8,800 days or 7% of total production days in Ohio.

Combined with the state’s remaining 49 producing wells spread across 13 counties, OH’s Utica Shale has produced 8.3 million barrels of oil as well as 251,844,311 Mcf3 of natural gas and 5.4 million barrels of brine. Oil and natural gas together have an estimated value of $2.99 billion ($213 million per quarter)4 assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively.

Potential Revenue at Different Severance Tax Rates:

  • Current production tax, 0.5-0.8%: $19 million ($1.4 Million Per Quarter (MPQ). At this rate it would take the oil and gas industry 35 years to generate the $4.6 billion in tax revenue they proposed would be generated by 2020.
  • Proposed, 1% gas and 4% oil: At Governor Kasich’s proposed tax rate, $2.99 billion translates into $54 million ($3.9 MPQ). It would still take 21 years to return the aforementioned $4.6 billion to the state’s coffers.
  • Proposed, 5-7%: Even at the proposed rate of 5-7% by Policy Matters OH and northeastern OH Democrats, the industry would only have generated $179 million ($12.8 MPQ) to date. It would take 11 years to generate the remaining $4.42 billion in tax revenue promised by OH Oil and Gas Association’s (OOGA) partners at IHS “Energy Oil & Gas Industry Solutions” (NYSE: IHS).5

The bottom-line is that a production tax of 11-25% or more ($24-53 MPQ) would be necessary to generate the kind of tax revenue proposed by the end of 2020. This type of O&G taxation regime is employed in the states of Alaska and Oklahoma.

From an outreach and monitoring perspective, effects on air and water quality are two of the biggest gaps in our understanding of shale gas from a socioeconomic, health, and environmental perspective. Pulling out a mere 1% from any of these tax regimes would generate what we’ll call an “Environmental Monitoring Fee.” Available monitoring funds would range between $194,261 and $1.8 million ($16 million at 55%). These monies would be used to purchase 2-21 mobile air quality devices and 10-97 stream quantity/quality gauges to be deployed throughout the state’s primary shale counties to fill in the aforementioned data gaps.

Per-Day Production

On a per-day oil production basis, Belmont and Columbiana (20 barrels per day (BPD)) are overshadowed by Washington (59 BPD) and Muskingum (40 BPD) counties’ four giant Utica wells. Carroll is able to maintain such a high level of production relative to the other 15 counties by shear volume of producing wells; Noble (268 BPD), Guernsey (147 BPD), and Harrison (136 BPD) counties exceed Carroll’s production on a per-day basis. The bottom of the league table includes three oil-free wells in Ashland, Knox, and Medina, as well as seventeen <10 BPD wells in Jefferson and Mahoning counties.

With respect to natural gas, Harrison (1,840 Mcf per day (MPD)) and Guernsey counties are replaced by Monroe (7,348 MPD) and Jefferson (2,447 MPD) counties’ 26 Utica wells. The range of production rates for natural gas is represented by the king of natural gas producers, Belmont County, producing 8,578 MPD on the high end and Mahoning and Coshocton counties in addition to the aforementioned oil dry counties on the low end. Four of the five oil- or gas-dry counties produce the least amount of brine each day (BrPD). Coshocton, Medina, and Noble county Utica wells are currently generating 267-363 barrels of BrPD, with an additional seven counties generating 100-200 BrPD. Only four counties – 1.2% of OH Utica wells – are home to unconventional wells that generate ≤ 30 BrPD.

Water Usage

Freshwater is needed for the hydraulic fracturing process during well stimulation. For counties where we had compiled a respectable sample size we found that Monroe and Noble counties are home to the Utica wells requiring the greatest amount of freshwater to obtain acceptable levels of productivity (Figure 1). Monroe and Noble wells are using 10.6 and 8.8 million gallons (MGs) of water per well. Coshocton is home to a well that required 10.8 MGs, while Muskingum and Washington counties are home to wells that have utilized 10.2 and 9.5 MGs, respectively. Belmont, Guernsey, and Harrison reflect the current average state of freshwater usage by the Utica Shale industry in OH, with average requirements of 6.4, 6.9, and 7.2 MGs per well. Wells in eight other counties have used an average of 3.8 (Mahoning) to 5.4 MGs (Tuscarawas). The counties of Ashland, Knox, and Medina are home to wells requiring the least amount of freshwater in the range of 2.2-2.9 MGs. Overall freshwater demand on a per well basis is increasing by 220,500-333,300 gallons per quarter in Ohio with percent recycled water actually declining by 00.54% from an already trivial average of 6-7% in 2011 (Figure 2).

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale.

Figure 1. Average water usage (gallons) per Utica well by county

Average water usage (gallons) on a per well basis by OH’s Utica Shale industry, shown quarterly between Q3-2010 and Q2-2014.

Figure 2. Average water usage (gallons) on per well basis by OH Utica Shale industry, shown quarterly between Q3-2010 & Q2-2014.

Belmont County’s 30+ Utica wells are the least efficient with respect to oil recovery relative to freshwater requirements, averaging 7,190 gallons of water per gallon of oil (Figure 3). A distant second is Jefferson County’s 14 wells, which have required on average 3,205 gallons of water per gallon of oil. Columbiana’s 26 Utica wells are in third place requiring 1,093 gallons of freshwater. Coshocton, Mahoning, Monroe, and Portage counties are home to wells requiring 146-473 gallons for each gallon of oil produced.

Belmont County’s 14 Utica wells are the least efficient with respect to natural gas recovery relative to freshwater requirements (Figure 4). They average 1,306 gallons of water per Mcf. A distant second is Carroll County’s 250+ wells, which have injected 520 gallons of water 7,000+ feet below the earth’s service to produce a single Mcf of natural gas. Muskingum’s Utica well and Noble County’s 39 wells are the only other wells requiring more than 100 gallons of freshwater per Mcf. The remaining nine counties’ wells require 15-92 gallons of water to produce an Mcf of natural gas.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Oil Produced (Gallons of Water Per Gallon of Oil).

Figure 3. Average water usage (gallons) per unit of oil (gallons) produced across 19 Ohio Utica counties

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Gas Produced (Gallons of Water Per MCF of Gas)

Figure 4. Average water usage (gallons) per unit of gas produced (Mcf) across 19 Ohio Utica counties

Waste Production

The aforementioned Jefferson wells are the least efficient with respect to waste vs. product produced. Jefferson wells are generating 12,728 gallons of brine per gallon of oil (Figure 5).6 Wells from this county are followed distantly by the 32 Belmont and 26 Columbiana county wells, which are generating 5,830 and 3,976 gallons of brine per unit of oil.5 The remaining counties (for which we have data) are using 8-927 gallons of brine per unit of oil; six counties’ wells are generating <38 gallons of brine per gallon of oil.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Brine Production Per Unit of Oil Produced (Gallons of Brine Per Gallon of Oil)

Figure 5. Average brine production (gallons) per gallon of oil produced per day across 19 Ohio Utica Counties

The average Utica well in OH is generating 820 gallons of fracking waste per unit of product produced. Across all OH Utica wells, an average of 0.078 gallons of brine is being generated for every gallon of freshwater used. This figure amounts to a current total of 233.9 MGs of brine waste produce statewide. Over the next five years this trend will result in the generation of one billion gallons (BGs) of brine waste and 12.8 BGs of freshwater required in OH. Put another way…

233.9 MGs is equivalent to the annual waste production of 5.2 million Ohioans – or 45% of the state’s current population. 

Due to the low costs incurred by industry when they choose to dispose of their fracking waste in OH, drillers will have only to incur $100 million over the next five years to pay for the injection of the above 1.0 BGs of brine. Ohioans, however, will pay at least $1.5 billion in the same time period to dispose of their municipal solid waste. The average fee to dispose of every ton of waste is $32, which means that the $100 million figure is at the very least $33.5 million – and as much as $250.6 million – less than we should expect industry should be paying to offset the costs.

Environmental Accounting

In summary, there are two ways to look at the potential “energy revolution” that is shale gas:

  1. Using the same traditional supply-side economics metrics we have used in the past (e.g., globalization, Efficient Market Hypothesis, Trickle Down Economics, Bubbles Don’t Exist) to socialize long-term externalities and privatize short-term windfall profits, or
  2. We can begin to incorporate into the national dialogue issues pertaining to watershed resilience, ecosystem services, and the more nuanced valuation of our ecosystems via Ecological Economics.

The latter will require a more real-time and granular understanding of water resource utilization and fracking waste production at the watershed and regional scale, especially as it relates to headline production and the often-trumpeted job generating numbers.

We hope to shed further light on this new “environmental accounting” as it relates to more thorough and responsible energy development policy at the state, federal, and global levels. The life cycle costs of shale gas drilling have all too often been ignored and can’t be if we are to generate the types of energy our country demands while also stewarding our ecosystems. As Mark Twain is reported to have said “Whiskey is for drinking; water is for fighting over.” In order to avoid such a battle over the water-energy nexus in the long run it is imperative that we price in the shale gas industry’s water-use footprint in the near term. As we have demonstrated so far with this series this issue is far from settled here in OH and as they say so goes Ohio so goes the nation!

A Moving Target

ODNR projection map of potential Utica productivity from Spring, 2012

Figure 6. ODNR projection map of potential Utica productivity from spring 2012

OH’s Department of Natural Resources (ODNR) originally claimed a big red – and nearly continuous – blob of Utica productivity existed. The projection originally stretched from Ashtabula and Trumbull counties south-southwest to Tuscarawas, Guernsey, and Coshocton along the Appalachian Plateau (See Figure 6).

However, our analysis demonstrates that (Figures 7 and 8):

  1. This is a rapidly moving target,
  2. The big red blob isn’t as big – or continuous – as once projected, and
  3. It might not even include many of the counties once thought to be the heart of the OH Utica shale play.

This last point is important because counties, families, investors, and outside interests were developing investment and/or savings strategies based on this map and a 30+ year timeframe – neither of which may be even remotely close according to our model.

An Ohio Utica Shale oil production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7a. An Ohio Utica Shale oil production model using Kriging6 for Q1-2013

An Ohio Utica Shale oil production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7b. An Ohio Utica Shale oil production model using Kriging for Q2-2014

An Ohio Utica Shale gas production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8a. An Ohio Utica Shale gas production model using Kriging for Q1-2013

An Ohio Utica Shale gas production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8b. An Ohio Utica Shale gas production model using Kriging for Q2-2014


Footnotes

  1. $4.25 per 1,000 gallons, which is the current going rate for freshwater at OH’s MWCD New Philadelphia headquarters, is 4.7-8.2 times less than residential water costs at the city level according to Global Water Intelligence.
  2. Carroll County wells have seen days in production jump from 36-62 days in 2011-2012 to 68-78 in 2014 across 256 producing wells as of Q2-2014.
  3. One Mcf is a unit of measurement for natural gas referring to 1,000 cubic feet, which is approximately enough gas to run an American household (e.g. heat, water heater, cooking) for four days.
  4. Assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively
  5. IHS’ share price has increased by $1.7 per month since publishing a report about the potential of US shale gas as a job creator and revenue generator
  6. On a per-API# basis or even regional basis we have not found drilling muds data. We do have it – and are in the process of making sense of it – at the Solid Waste District level.
  7. An interpolative Geostatistical technique formally called Empirical Bayesian Kriging.

Conventional, Non-Vertical Wells in PA

Like most states, the data from the Pennsylvania Department of Environmental Protection do not explicitly tell you which wells have been hydraulically fractured. They do, however, designate some wells as unconventional, a definition based largely on the depth of the target formation:

An unconventional gas well is a well that is drilled into an Unconventional formation, which is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.


Naturally occurring karst in Cumberland County, PA. Photo by Randy Conger, via USGS.

While Pennsylvania has been producing oil and gas since before the Civil War, the arrival of unconventional techniques has brought greater media scrutiny, and at length, tougher regulations for Marcellus Shale and other deep wells. We know, however, that some companies are increasingly looking at using the combination of horizontal drilling and hydraulic fracturing in much shallower formations, which could be of greater concern to those reliant upon well water than wells drilled into deeper unconventional formations, such as the Marcellus Shale. The chance of methane or fluid migration through karst or other natural fissures in the underground rock formations increase as the distance between the hydraulic fracturing activity and groundwater sources decrease, but the new standards for unconventional wells in the state don’t apply.

The following chart summarizes data for wells through May 16, 2014 that are not drilled vertically, but that are considered to be conventional, based on depth:

These wells are listed as conventional, but are not drilled vertically.

These wells are listed as conventional, but are not drilled vertically.

Note that there have already been more horizontal wells in this group drilled in 2014 than any previous year, showing that the trend is increasing sharply.

Of the 26 horizontal wells, 12 are considered oil wells, five are gas wells, five are storage wells, three are combination oil and gas, and one is an injection well.  These 177 wells have been issued a total of 97 violations, which is a violation per well ratio of 62 percent.  429 permits in have been issued in Pennsylvania to date for non-vertical wells classified as conventional.  Greene county has the largest number of horizontal conventional wells, with eight, followed by Bradford (5) and Butler (4) counties.

We can also take a look at this data in a map view:


Conventional, non-vertical wells in Pennsylvania. Please click the expanding arrows icon at the top-right corner to access the legend and other map controls.  Please zoom in to access data for each location.

Ancient Seas, Modern Ownership Concerns

By Karen Edelstein, NY Program Coordinator, FracTracker Alliance

In the Finger Lakes Region of New York State, while the debate rages about underground storage of gas in abandoned salt solution mines near Seneca Lake, the story is quite different to the east at Cayuga Lake. Cayuga has a history of not just solution brine mining, but also extensive mining of solid rock salt. The map below shows the footprint of underground salt mining – room-and-pillar style 2300 feet below Cayuga Lake – by the multinational corporation, Cargill. Mineral rights beneath the lake are owned by New York State, but note that some of the mine also extends underneath privately owned land in the Town of Lansing.


Map of Lansing, NY Cargill Salt Mine. For a full-screen version of this map (including map legend), click here.

About this Map

The interactive map (above) shows the location and extent of the Cargill Salt mine in Lansing, NY. The boundaries of the mine were digitized from a map, Figure 2.3-2, entitled “Plan View of the Cayuga Mine Showing East and West Shoreline Benchmark Locations” from the Spectra Environmental Group, Latham, NY, circa 2004, and another planning document acquired. Here is one of the original maps, and a planning map showing expansion through 2003. An additional map from a Cargill mine expansion permit request, viewed at the DEC headquarters in Cortland, NY, shows additional requested development under residential areas in Lansing. This layer is shaded green.

Questions Abound

The dynamics around salt extraction, and other uses such as gas extraction, raise several questions.

Consider the stratigraphic column of rocks in New York State. The salt layer that is being mined by Cargill is the Salina Group, approximately 2300 feet below the surface. Salt is dug out mechanically, broken up by machinery and explosives to break up the solid layer. The Marcellus Shale (in Lansing) is above that salt layer–in the expanse of Middle Devonian Rocks, while the Utica Shale is below it–part of the Ordovician rock strata. In order to drill into the Marcellus Shale, one would not need to enter the salt layer, although the boundary of rock between the two strata might only be a few hundred feet thick. Reaching the Utica Shale would require piercing the salt layer. The Central New York region is crisscrossed by an abundance of vertical cracks and joints in the bedrock, some of which are thought to be hundreds to thousands of feet long, and may extend to “basement rock”, the ancient rock below the hundreds-of-millions year-old sedimentary layers such as the shale, sandstone, and salt.

Numerous plugged and abandoned salt wells from the days of solution mining–mid 1800s to mid 1900s– are located on and near Salt Point, the delta where Salmon Creek meets Cayuga Lake. As the map shows, the rock salt mining extent is near to, but not in contact with, these old brine wells. The underground shape of the solution wells is not entirely understood, and may be variable due to different rates of dissolution of halite during the extraction process. The rock salt is mined out as a solid, not a a saturated salt liquid that would have then gone through an evaporation process in a giant kiln. Were rock salt extraction to occur too close to the old solution wells and a wall breached, flooding in the current Cargill mine could result.

This would obviously not be good.

(Nor, for that matter, would have been the prospect of storing spent nuclear fuel in the abandoned brine wells, something that was being considered in the mid-1970s. In a 3-volume study of the geology of the Salina Basin (spanning a d-state area), the conclusion made by the Stone and Webster Engineering Corporation1,  consultant to the US Department of Energy, was that no salt mining sites in the Finger Lakes region were appropriate  for nuclear fuel storage without further study of the area’s extensive, but under-studied, faulting patterns.)

What are the implications of other sorts of mineral extraction, in this part of the Finger Lakes Region?

Yours or Mine?

The extent of Cargill’s mining under residential portions of the Town of Lansing provokes several questions. For example, if Cargill has long-term access to these subsurface mineral rights, property owners do not control the land beneath their homes. This is not altogether uncommon in areas of mineral – or oil and gas – extraction. Can that land be leased for gas drilling?

It was revealing to look more closely at records of expired oil and gas leases in the area. During this process, we discovered that within the area that is “claimed” by Cargill for subsurface mineral extraction, numerous surface owners had also leased the gas rights beneath their property (see blue starburst markers on the map)2, even if the property deeds explicitly, for example,  indicated that the property owner “will not cause any damage to the said salt or mining operations [of the party of the second part] by permitting or consenting to any other drilling 1000 feet below the the surface of said premises, for oil, gas, water or any other substance or mineral..” (Tompkins County Clerk, Liber 463, p.284-5).  Here are links to page 2 and 3 of the deed, and the very comprehensive leasing clause of one of these oil and gas leases that permits a wide variety of gas-extraction related activity–both on the surface, and below ground.

Four of the ten leases were on property held by the Town of Lansing itself, and one other was on property owned by a local elected official. While all of these leases expired in 2012, and were never, in fact, drilled (due to the de facto moratorium on HVHF gas extraction in New York), the mash-up of these datasets raises important questions about our permitting structure. The implications of two separate entities claiming overlapping subsurface rights spotlights many questions regarding the oversight and regulation of potentially conflicting uses. Of particular concern are the risks posed by migration of gas through joints and fissures in the bedrock that are further weakened by hydraulic fracturing – and the potential for methane explosions3 in salt mines, whether or not a well shaft penetrates the salt gallery.

For more details on operations at Cargill’s Lansing mine, see this article from The Lansing Star, September 2012: Lansing Down Under: A Look at the Cargill Salt Mine.

References

  1. Regional Geology of the Salina Basin, Report of the Geologic Project Manager
    Volumes 1 and 2, Phase I, August 1977-January 1978, and Volume 3 Update, October 1979. Prepared by Stone and Webster Engineering Corporation for the Office of Nuclear Waste Isolation, Battelle Memorial Institute, Project Management Division, US Department of Energy.
  2. Map of Gas Leases in Tompkins County
  3. Cargill Incorporated Belle Isle Salt Mine Explosion (1979)

Violations per Well Among PA Operators

Note

This post has been archived. It is provided here for informational purposes only.

People often want to know which operators perform the best (or worst) among their peers in terms of adhering to the laws set forth in a given state. In principle, the easiest metric for determining this is to look at the ratio of violations issued per well, or VpW.

However, in order to make that analysis, we would obviously need to have violations data. Unfortunately, out of the twenty states that we have shale viewers for on FracMapper, we only have violations data for Arkansas, Colorado, and Pennsylvania, with the latter being far and away more robust and complete when compared to the other two. We have been told that the data is also available for North Dakota as well, if we are willing to pay for it, so we might be able to perform a VpW analysis for the Peace Garden State in the near future.

Then, of course, there is the realization that, “What is a violation?” is actually somewhat of a philosophical question in Pennsylvania.  In the past, I’ve determined that the Pennsylvania Department of Environmental Protection (PADEP) uses the number of unique violation ID numbers issued to calculate their totals. However, historically, the department would often lump several issues that showed up on the Compliance Report together under the same violation ID.  Others have taken to looking at Notices of Violations (NOV’s), which are more limited in number.  Still others exclude any violations marked as being administrative in nature, an idea that makes sense superficially, but a closer look at the data shows that the label is extremely misleading.  For example, “Pits and tanks not constructed with sufficient capacity to contain pollutional substances” is an administrative violation, as is, “Improper casing to protect fresh groundwater”.

In addition to all of that, the cast of operators is constantly shifting as new operators come on board, old ones get bought out by rivals, joint ventures are formed between them, and the like.  Sometimes a parent company will shift the active operator status to one of its subsidiaries, so wells that were originally Consol will then be listed under CNX, for example.

In terms of violations per well, there is a further complication, in that all of the drilled wells data reflect the current custodians of the wells, whereas the violations data reflect those that received the violations.  The result is that there are records issued for Turm Oil (really!) for wells where Chesapeake is now listed as the operator.  In some respects, this makes sense:  why should Chesapeake carry the burden of the legacy mistakes of Turm in their compliance record?

But it does make analysis somewhat tricky.  My approach has been to combine operators that are obviously the same parent company, and to do the analysis in several different ways, and over different time frames.  Who’s ready for some numbers?

Violations per Well (VpW) for operators of unconventional wells in Pennsylvania with 50 or more wells. Those operators with scores higher than the average of their peers are highlighted in pink.

Violations per Well (VpW) for operators of unconventional wells in Pennsylvania with 50 or more wells. Those operators with scores higher than the average of their peers are highlighted in pink.

Here, violations per well are based on the number of violation ID’s issued, where as NOVpW is based on the number of Notices of Violations.  The date range for this table is from January 1, 2000 through October 21, 2013, and please note that the totals represent those that are included on the chart, not statewide totals.  A lot of violations are lost of the shuffle when we look at only the largest current operators, but it also helps eliminate some of the noise that can be generated with small sample sizes, as well as with the inconsistencies described above.  Here’s a look at data from this year:

Violations per Well (VpW) for operators with unconventional wells in Pennsylvania in 2013, through October 21. Those operators with scores higher than the average of their peers are highlighted in pink.

Violations per Well (VpW) for operators with unconventional wells in Pennsylvania in 2013, through October 21. Those operators with scores higher than on violation per well or NOV per well are highlighted in pink.

Notice that the highest violations per well and notices of violations per well scores are much higher than the data aggregated since 2000, whereas the statewide averages of the two scores are actually much lower.  The former is almost certainly attributable to having a smaller sample size, but there is something else at play with the latter:

Violations per well of Pennsylvania's unconventional wells. 2013 data through 10/21/2013.

Violations per well of Pennsylvania’s unconventional wells. 2013 data through 10/21/2013.

The number of violations per well drilled has been steadily decreasing since 2009, and it is now down to an average of less than one violation issued per every two wells.  There is nothing in the data that indicates why this is the case, however.

Note:  This post was edited on 12/18/2013.  The table showing operators violations per well and NOV’s per well in 2013 originally stated that that values higher than the average of their peers are highlighted in pink.  In fact, only those with values of 1.00 or higher are highlighted in that fashion.

Severed rights and leased lands in PA state forests

Leases and Severed Rights in PA’s State Forests

A few years ago, the Department of Conservation and Natural Resources (DCNR), the agency responsible for state park and state forest lands throughout Pennsylvania, published maps on their website showing which state forest lands had been leased for the purpose of unconventional oil and gas exploration and development.  Not only has that page been taken down, but the data are also not among the hundreds of Pennsylvania-specific datasets available on the Pennsylvania Spatial Data Access (PASDA), to which DCNR is a key contributor.

This data does still exist though, and it was provided to the FracTracker Alliance from DCNR upon request, along with data showing areas of the state forest where unconventional oil and gas rights are owned by the state, which is not always the case.  However, this fulfillment of our data request came with some strings attached:

  1. I understand that the accuracy of this data set and its boundaries cannot be guaranteed and should not be considered precise.
  2. I will not distribute raw data to other entities outside the scope of this request.
  3. I will annually provide the Bureau of Forestry with a status update of the project activities and findings.  If the project is abandoned, I will provide the Bureau of Forestry copies of the available information from the project.
  4. I will provide the Bureau of Forestry with copies of draft reports, articles, publications and so forth that result from this analysis.
  5. If requested, I agree to supply the Bureau of Forestry with copies of data analysis.
  6. I understand that the Bureau of Forestry or the Commonwealth of Pennsylvania is not relinquishing any rights or interests with this agreement.

Obviously, this ties our hands with regards to making the data available for download, either through the download section of our site, or through ArcGIS Online, but we feel as if the scope of our request was worded in such a way as to allow us  to produce a map of these layers, and make that available for public viewing.  Readers interested in obtaining similar data will have to contact DCNR directly, until the agency decides to release the data regarding Pennsylvania’s public lands without conditions.

We have combined this data with drilling data from the Pennsylvania Department of Environmental Protection, so that we can finally take a closer look at drilling on public lands in Pennsylvania, including an approximation of which wells are drilled on lands have been leased by the state, and which by third parties.  So with all appropriate disclaimers, here is that map:


Drilled unconventional wells in Pennsylvania and control of mineral rights on state forest land. To access full controls, such as legends, layer controls, and layer descriptions, please click the expanding arrows in the top-right corner of the map.

West Virginia Map Updated

At FracTracker, we are constantly adding new content to our maps page. In recent weeks, we have added new content for Michigan, Pennsylvania, and Arkansas. Now, we have updated our West Virginia Shale Viewer as well.


West Virginia Shale Viewer. Please click the expanding arrows in the top right corner to access the legend and other map tools.

The map above shows some detail about Marcellus Shale operations in the Mountain State, including:

  • Permits issued (purple).  To date, there have been 3,079 permits issued statewide since 2000 where the Marcellus Shale is the target formation.
  • Completed wells (orange).  Of the permits that have been issued, the West Virginia Department of Environmental Protection (WVDEP) has received a completion form for 1,840 wells, or just under 60 percent.
  • Wells in noncompliance (yellow).  196 Marcellus wells were given the noncompliance flag in the dataset.  There are no details on what might have led to this status, however.
  • Public comment wells (blue).  35 Marcellus Shale wells in West Virginia are flagged as having received a public comment of one sort or another.  As with the wells in noncompliance, this dataset offers no details on these wells.

Here’s a look at the number of completion reports received by WVDEP by month:

Marcellus Shale completions by month in West Virginia

Marcellus Shale completions by month in West Virginia

The largest number of completions per month for Marcellus Shale wells is 97 in April 2009.  The next highest total was the following month, with 81 completions.  From January through August of this year, there are an average of 40.5 completions per month in West Virginia.

The information that is distributed in this West Virginia data is typical, however, a good deal of data are being collected by WVDEP.  To see the kinds of things that the state knows about completed wells, take a look at what is required for submission on form WR-35.

Keeping Track of Hydraulic Fracturing in California

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

Environmental regulations in California are considered conservative by most state standards. To name a few practices, the state has developed an air quality review board that conducts independent toxicological assessments on a level competitive with the U.S. EPA, and the state instituted the U.S.’s first green house gas cap and trade program. But most recently the California Department of Conservation’s Division of Oil, Gas and Geothermal Resources (DOGGR) has been criticized in the media for its lack of monitoring of hydraulic fracturing activity. DOGGR has been responsive to criticism and preemptive of legislative action and has begun a full review of all well-sites in California to identify which wells have been hydraulically fractured and plan to monitor future hydraulic fracturing. Additionally they have maintained historical records of all wells drilled, plugged, and abandoned in the state in web-accessible databases, which include data for oil and gas, geothermal, and injection wells, as well as other types of support wells such as pressure maintenance, steam flood etc.. The data is also viewable in map format on the DOGGR’s online mapping system (DOMS).

To understand what is missing from the DOGGR dataset, it was compared to the dataset extracted from FracFocus.org by SkyTruth. The map “Hydraulic Fracturing in California” compares these two datasets, which can be viewed individually or together as one dataset with duplicates removed. It is interesting to note the SkyTruth dataset categorizes 237 wells as hydraulically fractured that DOGGR does not, and identifies three wells (API #’s 11112215, 23727206, and 10120788) not identified in the DOGGR database. For the some of these 237 wells, DOGGR identifies them as new, which means they were recently drilled and hydraulically fractured and DOGGR will be updating their database. Many are identified as active oil and gas wells., while the rest are identified as well types other than oil and gas. Also the SkyTruth dataset from FracFocus data contains additional information about each well-site, which DOGGR does not provide. This includes volumes of water used for hydraulic fracturing and the fracture date, both of which are vital pieces of monitoring information.

The California State Legislature is currently reviewing California Senate Bill 4 (CA SB 4) written by Sen. Fran Pavley (D-Agoura Hills), which would put in place a regulatory structure for permitting and monitoring hydraulic fracturing and other activity.  A caveat for acidification is also included that would require companies to obtain a specific permit from the state before acidizing a well.  The bill has received criticism from both industry and environmentalists.  While it does not call for a moratorium or regulate what chemicals are used, it is the first legislation that requires a full disclosure of all hydraulic fracturing fluid additives, including those considered proprietary.  This is the last of at least seven bills on the issue, the majority of which have been turned down by lawmakers. The most conservative bills (Assemblywoman Mitchell; D-Culver City) proposed moratoriums on hydraulic fracturing in the state. Earlier this year lawmakers approved a bill (Sen. Pavley; D-Agoura Hills) that would direct the state to complete and independent scientific risk assessment of hydraulic fracturing. The bill directs permitters to deny permits if the study is not finished by January 1, 2015, and also requires public notice before drilling as well as disclosure of chemicals (besides those considered proprietary). In May, a bill (Sen. Wold; D-Davis) was passed requiring drillers to file a $100,000 indemnity bond for each well, with an optional blanket indemnity bond of $5 million for operators with over 20 wells. Another bill (Jackson; D-Santa Barbara) that would require monitoring of both transportation and disposal of wastewater was tabled until next year.

Although hydraulic fracturing has been conducted in California for over a decade, it was not monitored or regulated, and the majority of Californians were not aware of it. Industry groups have portrayed the lack of attention as a testament to its environmental neutrality, but Californians living smack dab in the middle of the drilling tend to tell a different story. The issue is now receiving attention because hydraulic fracturing is such a hotbed topic of contention, along with the potential future of the billions of barrels of oil in the Monterey Shale. The unconventional extraction technology necessary to recover the oil from these deep shale formations is state of the art, which means it is not tried and true. The methods include a combination of high tech approaches, such as horizontal drilling, high volume hydraulic fracturing, and acidification to name a few. Realize: if this technology existed for the last 60 years, the Monterey Shale would already have been developed long ago, along with the rest of the U.S. deep shale formations.

Waste produced by Chesapeake Appalachia and the industry leader in each category from unconventional wells in PA between January and June 2013

PA Releases Unconventional Production and Waste Data

The Pennsylvania Department of Environmental Protection (DEP) releases unconventional oil and gas production and waste data twice a year.  It is important to note that both datasets are self-reported from the industry, and there are usually a few operators who miss the reporting deadline.  For that reason, FracTracker usually waits a week or so to capture the results of the fashionably late.  However, after looking at the data, it is likely that there are still operators that have not yet reported.

Production

Production is perhaps the most important metric of the oil and gas industry.  After all, if there were no production, there would be no point in drilling in the first place.  Royalty payments for property owners are based on production values from the wells.  More than that though, it can be an indication of hot spots, and to some degree, which operators are better at getting the product out of the ground than the rest of the field.

Location

Unconventional formations–especially the Marcellus Shale and Utica Shale–underlie about two-thirds of Pennsylvania.  However, that does not mean that if an operator drilling a hole in Clarion County can expect the same result as well in Sullivan County, for example.  Production is unevenly distributed throughout the state:

Unconventional gas production in Pennsylvania from January to June 2013.  All production values are in thousands of cubic feet (Mcf).  Counties with above average production per well are highlighted in orange.

Unconventional gas production in Pennsylvania from January to June 2013. All production values are in thousands of cubic feet (Mcf). Counties with above average production per well are highlighted in orange.

With 1.4 trillion cubic feet of gas production in half a year from unconventional wells, Pennsylvania has become a major leader in production.  For a quick comparison to other regions of the country, see the Energy Information Administration, (although the EIA has apparently not felt inspired to update their data in a while).

It should be noted that there is also oil and condensate production from unconventional wells in Pennsylvania, although that really amounts to a drop in the barrel, so to speak.  Unlike the Bakken, where gas is seen as a byproduct that is routinely flared because there is no infrastructure ready to accept it, the Marcellus and Utica in Pennsylvania are really all about the gas.  Some of the gas from the western part of the state is considered wet, with heavier hydrocarbons like ethane and propane mixed with the methane, but in terms of this report, there is no distinction between wet gas and dry gas, or pure methane.  Eight out of 17 wells producing oil and 430 out of 505 wells producing condensate are located in Washington County.

Operators

The reason that production values are more telling for geographies than for operators is that most operators in Pennsylvania are limited to select portions of the state, where their leasing strategies were focused.  Therefore, certain companies occupy the regions that yield higher production, while others are left trying to extract from less productive areas.  So looking at production by operator does not necessarily reflect their skill at extraction, but it does does give a general impression of how much one of their wells is likely to produce, which could be useful for people trying to negotiate leases, among other considerations.

Unconventional gas production by operator in Pennsylvania from January to June 2013.  All production values are in thousands of cubic feet (Mcf).  Operators with above average production are highlighted in orange.

Unconventional gas production by operator in Pennsylvania from January to June 2013. All production values are in thousands of cubic feet (Mcf). Operators with above average production are highlighted in orange.

Note that eight operators on the list have no data.  Presumably, there are the operators that have not yet reported their data to the DEP, although it is possible that some of them could be defunct.  Obviously, any missing data here would also be missing from the county totals.  Alpha Shale is the clear leader in terms of production per well, with about 1.2 million Mcf per well.  Citrus, Rice, and Chief occupy the next teir, with each exceeding an average of 700,000 Mcf.  All four are relatively minor operators, however, with fewer than 100 wells reporting production.  In terms of total production, Chesapeake blows the competition out of the water, with roughly the same production as the next two producers (Cabot and Range) combined.

Waste

Along with all of the profitable gas being produced in Pennsylvania comes all of the various waste products that are created in the process.  Before jumping into the numbers, I’d like to point out that it is likely that operators who have not reported production also have not reported their contribution to the waste.  In its current form, the waste report has 12,604 lines of data from 4,991 different unconventional wells.    Here is a summary of the waste produced by type from unconventional formations in Pennsylvania:

Waste reported from unconventional wells in Pennsylvania from January to June 2013.  Note that one barrel equals 42 US gallons.

Waste reported from unconventional wells in Pennsylvania from January to June 2013. Note that one barrel equals 42 US gallons.

Some interesting things are revealed when sorting the waste type data by operator, although the resulting table is a little unweildy, even for me.  But here are a few highlights:

  • Anadarko reported 99.5 percent of basic sediment production  
  • Southwestern Energy produced more than twice as much drill cuttings (128,000 tons) as the next highest operator (Cabot:  50,000 tons)
  • Range Resources led the pack with 172,000 barrels of drilling fluid, with Chevron Appalachia (168,000 barrels) close behind
  • PA Gen Energy had the most flowback fracturing sand reported, with over 8,600 tons, despite having fewer than 100 producing wells.
  • Chevron Appalachia produced the most fracing fluid waste (934,000 barrels), with Range Resources coming in at number two (773,000 barrels).  This is what Pennsylvania calls the flowback fluid; this is not the straight chemical additives that used in the hydraulic fracturing process, but those additives are included in this fluid
  • The most produced fluid, or formation brine, came from Range Resources wells (1.6 million barrels), followed by Chesapeake (1.4 million barrels)
  • 82 percent of the servicing fluid reported was from Cabot (1,741 barrels)
  • 100 percent of the spent lubricant was reported by SWEPI (19 barrels)

Amazingly, despite their overwhelming lead in gas production in the state, Chesapeake Appalachia did not have the most of any of the eight different waste types, and in some cases, were not even close:

Waste produced by Chesapeake Appalachia and the industry leader in each category from unconventional wells in PA between January and June 2013

Waste produced by Chesapeake Appalachia and the industry leader in each category from unconventional wells in PA between January and June 2013

The Pennsylvania waste data is also notable for including the disposal method of the waste:

Disposal method for unconventional waste from PA between January and June 2013

Disposal method for unconventional waste from PA between January and June 2013

And for those who can handle one last table, Pennsylvania also tells us where the waste is disposed:

Destination of unconventional oil and gas waste in PA between January and June 2013, by state

Destination of unconventional oil and gas waste in PA between January and June 2013, by state