Posts

Map of PA drilling complaints - collaboration with Public Herald

PA Fracking Complaints are Increasing, Systemic

The Pennsylvania Department of Environmental Protection (DEP) logs incoming complaints from residents about drilling activity in the Commonwealth, and Public Herald has spent a great deal of time aggregating and making that information public. A recent investigation by Public Herald into that data, with help from FracTracker, has highlighted a number of concerning issues related to fracking in Pennsylvania unfortunately.

Concerning Complaints

Firstly, the data they reviewed indicate that complaints from residents about unconventional drilling (how most fracked wells are designated) are more common than those about traditional wells. Secondly, it seems that complaints about fracked wells are increasing over time, even though the number of new wells has decreased.

There may be several reasons for such trends, and Public Herald discusses some of them in their new report. Are fracking wells more likely to fail, resulting in a higher proportion of complaints from nearby residents? Or has tracking simply improved in recent years? What these trends undoubtably indicate, however, is that the impacts from drilling have been systemic, according to Drs. Ingraffea and Stolz, who also reviewed the data.

Probably the most troubling finding unearthed in this investigation is that the PA DEP was not transparent about complaint data. The information they released to Public Herald differed wildly from the spreadsheets previously obtained by other requestors. Learn more about this and other issues in Public Herald’s Hidden Data Report.

Digging into the Data

Below we have included a map showing where those complaints originated, as well as a table that parses out the data by county.

Pennsylvania Oil & Gas Complaint Map


View map fullscreen | How FracTracker maps work

The above map by Public Herald and FracTracker Alliance shows the density of citizen complaints reported to the Department of Environmental Protection from 2004 – 2016. It includes conventional and unconventional well complaints. Clicking on a township reveals a database of complaints where viewers can download files.

In addition to the report issued by Public Herald, you can explore the data mapped above in the table below. It fleshes out how many complaints have been issued by residents, where these complaints originated, and how many are specific to water issues.

Table 1. PA Unconventional Well Complaint Statistics Logged by the PA DEP

DEP Office County Total Complaints (#) Water Complaints (#) Municipalities w/Complaints (#) Drilled Unconventional Wells, Jan 2004 – Nov 29 2016
TOTALS
PENNSYLVANIA 47 9442 4108 893 10027
SWRO 3653 1427 328 3587
NWRO 3197 1159 284 1027
NCRO (ERO) 2592 1522 281 5413
BY COUNTY
SWRO Washington 1066 460 51 1478
ERO Susquehanna 648 393 32 1326
ERO Bradford 647 468 43 1371
SWRO Greene 576 156 26 1082
NWRO McKean 550 121 21 134
SWRO Westmoreland 538 219 43 270
NWRO Warren 443 106 26 3
NWRO Butler 419 186 35 497
SWRO Armstrong 388 208 38 223
SWRO Indiana 367 153 32 48
ERO Tioga 349 212 30 907
SWRO Fayette 335 121 28 291
NWRO Mercer 276 153 31 61
NWRO Venango 273 108 25 6
NWRO Crawford 258 141 35 3
NWRO Jefferson 244 113 29 56
ERO Lycoming 242 110 32 927
SWRO Allegheny 228 30 53 100
NWRO Clarion 186 89 23 28
NWRO Forest 177 56 8 22
ERO Clearfield 175 70 34 150
ERO Wyoming 167 92 19 258
NWRO Erie 164 17 30 0
NWRO Elk 143 37 9 146
ERO Potter 108 60 25 91
ERO Sullivan 86 47 8 127
SWRO Beaver 67 44 25 62
NWRO Lawrence 64 32 12 71
SWRO Somerset 44 16 18 26
SWRO Cambria 43 20 13 7
ERO Clinton 40 16 8 107
ERO Bedford 36 25 7 1
ERO Centre 33 10 9 65
ERO Luzerne 19 1 10 2
ERO Wayne 14 4 7 5
ERO Lackawanna 6 3 3 2
ERO Columbia 5 1 2 3
ERO Blair 4 3 2 6
ERO Cameron 4 2 2 64
ERO Huntingdon 2 2 1 1

SWRO = Southwest Regional Office; NWRO = Northwest Regional Office; NCRO (ERO) = North Central/Eastern Regional Office. Find your office here.

Stay Tuned

Public Herald will be releasing Part 2 of their Hidden Data report soon!

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

New Frac Sand Resources on FracTracker.org

We’ve added several new frac sand resources for visitors to our website this month, including a map of frac sand mines, as well as geolocated data you can download. Explore these resources using the map and links below:

Updated Frac Sand Mining Map


View map fullscreen | How FracTracker maps work

On the map above you can view silica sands/frac sand mines, drying facilities, and value-added facilities in North America. Click view map fullscreen to see the legend, an address search bar, and other tools available on our maps.

Additional data shown on this map include addresses and facility polygons. Wisconsin provides sand production data for 24 facilities, so that information has been included on this map. The remaining Wisconsin and other state facilities do not have production or acreage data associated with them. (Most states lack disclosure requirements for releasing this kind of data. Additionally the USGS maintains a confidentiality agreement with all firms, preventing us from obtaining production data.)

The sandstone/silica geology polygons (areas on the map) include a breakdown of how much land is currently made up of agriculture, urban/suburban, temperate deciduous forest, and conifer forests. At the present time we only have this information for the primary frac-sand-producing state: Wisconsin. We should have details for Ohio and Minnesota soon.

Data Downloads

Click on the links below to download various geolocated datasets (zipped shape files) related to the frac sand industry:

  1. SIC and/or NAICS related violations and inspections
  2. Resin Coating Facilities
  3. Silica Sand Mine Time Series polygon expansion over time (in Wisconsin, Illinois, Arkansas, Minnesota, and Missouri)
  4. Existing Silica Sand Mine Points
  5. Existing Silica Sand Mine Polygon land-use
  6. St. Peter and Sylvanian Surficial Sandstone Geologies
  7. Frac Sand Mine Proposals – inventory of frac sand mine proposals in LaSalle County, IL; Monroe County, IL; Arkansas; and Minnesota
  8. Western Michigan frac sand mines within or adjacent to sensitive dunes
  9. Mid or downstream frac sand industry participants (PDF) – detailed descriptions of 34 US and 4 Canadian firms
Colonial Pipeline and site of Sept 2016 leak in Alabama

A Proper Picture of the Colonial Pipeline’s Past

On September 9, 2016 a pipeline leak was detected from the Colonial Pipeline by a mine inspector in Shelby County, Alabama. It is estimated to have spilled ~336,000 gallons of gasoline, resulting in the shutdown of a major part of America’s gasoline distribution system. As such, we thought it timely to provide some data and a map on the Colonial Pipeline Project.

Figure 1. Dynamic map of Colonial Pipeline route and related infrastructure

View Map Fullscreen | How Our Maps Work | The Sept. 2016 leak occurred in Shelby County, Alabama

Pipeline History

The Colonial Pipeline was built in 1963, with some segments dating back to at least 1954. Colonial carries gasoline and other refined petroleum projects throughout the South and Eastern U.S. – originating at Houston, Texas and terminating at the Port of New York and New Jersey. This ~5,000-mile pipeline travels through 12 states and the Gulf of Mexico at one point. According to available data, prior to the September 2016 incident for which the cause is still not known, roughly 113,382 gallons had been released from the Colonial Pipeline in 125 separate incidents since 2010 (Table 1).

Table 1. Reported Colonial Pipeline incident impacts by state, between 3/24/10 and 7/25/16

State Incidents (#) Barrels* Released Total Cost ($)
AL 10 91.49 2,718,683
GA 11 132.38 1,283,406
LA 23 86.05 1,002,379
MD 6 4.43 27,862
MS 6 27.36 299,738
NC 15 382.76 3,453,298
NJ 7 7.81 255,124
NY 2 27.71 88,426
PA 1 0.88 28,075
SC 9 1639.26 4,779,536
TN 2 90.2 1,326,300
TX 19 74.34 1,398,513
VA 14 134.89 15,153,471
Total** 125 2699.56 31,814,811
*1 Barrel = 42 U.S. Gallons

** The total amount of petroleum products spilled from the Colonial Pipeline in this time frame equates to roughly 113,382 gallons. This figure does not include the September 2016 spill of ~336,000 gallons.

Data source: PHMSA

Unfortunately, the Colonial Pipeline has also been the source of South Carolina’s largest pipeline spill. The incident occurred in 1996 near Fork Shoals, South Carolina and spilled nearly 1 million gallons of fuel into the Reedy River. The September 2016 spill has not reached any major waterways or protected ecological areas, to-date.

Additional Details

Owners of the pipeline include Koch Industries, South Korea’s National Pension Service and Kohlberg Kravis Roberts, Caisse de dépôt et placement du Québec, Royal Dutch Shell, and Industry Funds Management.

For more details about the Colonial Pipeline, see Table 2.

Table 2. Specifications of the Colonial and/or Intercontinental pipeline

Pipeline Segments 1,1118
Mileage (mi.)
Avg. Length 4.3
Max. Length 206
Total Length 4,774
Segment Flow Direction (# Segments)
Null 657
East 33
North 59
Northeast 202
Northwest 68
South 20
Southeast 30
Southwest 14
West 35
Segment Bi-Directional (# Segments)
Null 643
No 429
Yes 46
Segment Location
State Number Total Mileage Avg. Mileage Long Avg. PSI Avg. Diameter (in.)
Alabama 11 782 71 206 794 35
Georgia 8 266 33 75 772 27
Gulf of Mexico 437 522 1.2 77 50 1.4
Louisiana 189 737 3.9 27 413 11
Maryland 11 68 6.2 9 781 30
Mississippi 63 56 0.9 15 784 29
North Carolina 13 146 11.2 23 812 27
New Jersey 65 314 4.8 28 785 28
New York 2 6.4 3.2 6.4 800 26
Pennsylvania 72 415 5.8 17 925 22
South Carolina 6 119 19.9 55 783 28
Texas 209 1,004 4.8 33 429 10
Virginia 32 340 10.6 22 795 27
PSI = Pounds per square inch (pressure)

Data source: US EIA


By Sam Rubright, Ted Auch, and Matt Kelso – FracTracker Alliance

New York: A Sunshine State!

Photovoltaic solar resources of the US (NREL)

Photovoltaic solar resources of the US (NREL)

It’s difficult to talk about the risks of oil and gas extraction without providing data on energy alternatives in the conversation. Let’s look at New York State, as an example. There, solar power is taking a leadership position in the renewable energy revolution in the United States. Although New York State receives far less sunshine than many states to the west and south, the trends are bright! Currently, New York State ranks seventh in the nation in installed solar capacity, with over 700 MW of power generated by the sun, enough to power 121,000 homes.

Despite common assumptions that solar power only makes sense where the sun shines 360 days a year, we’ve been seeing successful adoption of solar in Europe for years. For example, in Germany, where even the most southern part of the country is further north of the Adirondack Mountains in New York State, close to 7% of all the power used comes from combined residential and commercial scale photovoltaic sources–35.2 TWh in all. Munich, one of the sunniest places in all of Germany, has a lower average solar irradiation rate of 3.1 kWh/m2/day than most cities in New York State; compare it with locations in New York like Rochester (3.7 kWh/m2/day), New York City (4.0 kWh/m2/day), and Albany (3.8 kWh/m2/day). At present, Germany still leads New York State by more than double the electrical output from solar for equivalent areas.

cumulative_capacity

Cumulative Solar Capacity in New York

The cumulative capacity for completed photovoltaic systems in New York State has risen steeply in the past three years, with ground-mounted and roof-top residential capacity outpacing commercial capacity by a wide margin.

Nonetheless, commercial and industrial scale installations in New York account for over 100 MW of power capacity in the state.

Large-Scale Solar Installations Map

This map shows the location of those large-scale solar installations in the US (zoom out to see full extent of US), as of March 2016. Here is our interactive map:

View map full screen | How FracTracker maps work

In the past fifteen years, the increase in small to medium-sized solar installations in New York State has been significant, and growth is projected to continue.  The following animation, based on data from the New York State Energy Research and Development Authority (NYSERDA), shows that increase in capacity (by zip code) since 2000:

solar_animation_cumulative_2000-15

Solar Installations by Zip Code

NYSERDA also provides maps that show distributions of residential, governmental/NGO, and commercial solar energy projects (images shown below). For example, Suffolk County leads the way in the residential arena, with nearly 8200 photovoltaic (PV) systems on roofs and in yards, with an average size of 8.3 kW each.

Erie County has 128 PV systems run by governmental and not-for-profit groups, with an average size of about 27 kW each. Albany County has over 320 commercial installations, with an average size each of about 117 kW.

New York State’s Future Solar Contribution

pricing

Price of Completed Solar Systems 2003-2016

The prices of solar panels is steeply declining, and is coupled with generous tax incentives. The good news, according to the Solar Energy Industries Association (SEIA), is that over the next five years, New York State’s solar capacity is expected to quadruple its current output, adding over 2900 MW of power. This change would elevate New York State from seventh to fourth place in output in the US.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

Approaching 10K Unconventional Wells in PA

Approaching 10K Unconventional Wells in PA

By Matt Kelso, Manager of Data & Technology

Each state has its own definition of what it means for an oil or gas well to be “fracked.” In Pennsylvania, these wells are known as “unconventional,” a definition mostly based on the depth of the target formation:

An unconventional gas well is a well that is drilled into an unconventional formation, which is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.

The count of these unconventional wells in PA stands at 9,760 as of June 14, 2016. Their distribution is widespread across the state, but is particularly focused in the northeast and southwest corners of Pennsylvania.

Unconventional oil and gas wells in Pennsylvania:

View map full screen | How FracTracker maps work

Wells Drilled

The industry is not drilling at the same torrid pace as it was between 2010 and 2012, however. The busiest month for drill rigs in the Keystone State was August 2011, with 210 unconventional wells drilled. Last month, there were just 32 such wells.

Unconventional wells in PA: Unconventional oil and gas permits, wells, and violations in Pennsylvania by quarter. Data source: Pennsylvania DEP

Figure 1. Unconventional oil and gas permits, wells, and violations in Pennsylvania by quarter. Data source: Pennsylvania DEP

Permits

As Figure 1 captures, the number of permits issued per quarter is always greater than the number of wells drilled during the same time period. Even when drilling activity seems to be entering a bust phase, oil and gas operators continue to plan for future development. Altogether, there are 17,492 permitted locations, meaning there are about 7,700 permitted locations where drilling has not yet commenced.

Violations

The number of violations issued by DEP is generally follows the same trends as permits and wells. It is usually the smallest of the three numbers. In the first quarter of 2016, however, is one of a few instances on the chart above where the number of violations issued outpaced wells drilled. There could be any number of reasons for this anomaly; it could have been due to to unusual compliance issued in the field or aggressive regulatory blitzes. It could also be due to some other factor that can’t be determined by the available published data source.

Interestingly, this phenomenon has not occurred since the first quarter of 2010, when the industry was in full swing.

About VpW

One of the best ways to understand the impact of the industry is to look at violations per well (VpW). Unfortunately, there are a number of important caveats to that discussion. First of all, not all items that appear on the compliance report receive their own Violation ID number. It is clear from the DEP workload report that violations are tallied internally by the number of Violation ID numbers. This is as opposed to the number of items on the compliance report. As of June 14, 2016, there were 6,706 rows of data and 5,755 distinct Violation ID numbers that were issued to 2,080 different oil and gas wells. This discrepancy means that about 21% of unconventional wells are issued violations in Pennsylvania. Those that are cited receive an average of 2.8 to 3.2 violations per well, depending on how you count them.

Unconventional Wells in PA: Violations per well (VpW) of the 20 companies with the most unconventional wells in PA.

Table 1. Violations per well (VpW) of the 20 companies with the most unconventional wells in PA.

Determining the violations per well by operator comes with additional caveats. The drilled wells data comes from the spud report, which lists the current operator of each of the wells. The compliance report, however, lists the operator that was in charge of the well at the time of the infraction. This poses a problem for analysis, however. The ownership of the wells is quite fluid when taken in aggregate, as companies fold, are bought out, or change their names to something else.

VpW Results

We calculated VpW figures for the 20 operators with the largest inventory of drilled wells wells in Pennsylvania, found in Table 1. In some instances, we were able to reunite operators with violations that were issued under a different name but are in fact the same company. Specifically, we combined Rex Energy’s violations with RE Gas Dev, CONSOL violations with CNX, and Southwestern with SWN Productions, as the company is now known.

SWN’s violation-per-well score appears to be quite low. Their statistic, however, does not take into account wells that it purchased from Chesapeake in 2014, for example. In this transaction, 435 wells changed hands, with an unknown number of those in Pennsylvania. Any violations on these wells that Chesapeake had would stay with that company even as their well count was reduced. Such a change would thereby artificially inflate Chesapeake’s VpW score. On the other hand, SWN is now in possession of a number of wells which might have been problematic during the early stages of operation. Those violations, alternatively, are not associated with SWN, making their inventory of wells appear to be less problematic.

Data Caveats and Takeaways

Alas, we do not live in a world of perfect data. As such, these results must be taken with a grain of salt. Still, we can see that there are some trends that persist among operators that have been active in Pennsylvania for many years. Chief, Cabon, and EXCO, for example, all average more than one violation per well drilled. Chevron, CNX, and RE Gas Development, on the other hand, have much better rates of compliance, on the order of one violation per every five wells drilled.

Defining Environmental Justice in Pennsylvania

By Kirk Jalbert, Manager of Community-Based
Research & Engagement, FracTracker Alliance

Missing the Mark in Oil & Gas Communities

Conventional oil and gas drilling for commercial purposes has existed in Pennsylvania for over 150 years. In the past decade, drilling operations have turned to extract these resources from unconventional reservoirs, such as the deep underground Marcellus Shale formation. Proponents of the oil and gas industry’s expansion promise jobs and tax revenue for regions seeking economic revitalization. However, a growing body of research suggests that these processes also negatively impact the environment and pose significant public health risks.

According to the U.S. Environmental Protection Agency, environmental justice is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. How this definition applies to residents of Pennsylvania has become a hotly contested issue as regulatory agencies have begun to investigate whether or not the oil and gas industry targets marginalized communities.

PA Environmental Justice Map

The following interactive article and map illustrates how race and poverty, the two key indicators for determining environmental justice eligibility, fail to capture the nature of the industry. It also suggests that there are other ways we might assess unfair development practices. In doing so, the goal of the article is to shed light on the complexity of environmental justice issues and to offer guidance as PA’s Department of Environmental Protection (DEP) assesses its policies in coming days.

environmental justice map

Feature image photo credit: Drilling rig and farm in PA by Schmerling (photodocmark@gmail.com)

Florida resolutions against oil drilling

Florida resolutions opposing unconventional oil drilling

By Karen Edelstein, Eastern Program Coordinator

Florida, where there has long been an interest in drilling for oil, has recently come into the cross-hairs for unconventional extraction several miles beneath the state. Oil drilling has had spotty and elusive success in the Sunshine State, but new technologies like hydraulic fracturing – fracking – could potentially provide access to those energy resources. Currently, Florida is in a gray zone, however, with no clear regulatory authority over unconventional drilling, but no clear mandate to prevent it either.

History

Florida well. Source: www.naplesnews.com

Dan Hughes well adjacent to Florida Panther Wildlife Refuge Source: www.naplesnews.com

In 2014, fracking came to the forefront when the Florida Department of Environmental Protection disclosed that in 2013, the Dan A. Hughes Company filed for a permit to use unconventional drilling techniques to rework an existing conventional well in Naples without a thorough review of the plans by regulators, and fracked the well later that year. As a result, the permit was revoked. Hughes had leases on 115,000 acres of land for additional wells, much of which was in environmentally sensitive areas of the Florida Everglades, bordering the Florida Panther National Wildlife Refuge and Big Cypress National Preserve. After legal pressure from the State of Florida, as well as environmental groups Preserve our Paradise, the Stone Crab Alliance, and South Florida Wildlands Association, the company abandoned their plans for drilling in the area. FracTracker covered this story in a previous blog entry.

A plan to regulate fracking in Florida was unveiled in November 2014. A slate of regulations was drafted by the Orange County League of Women Voters and students in the Environmental and Earth Clinic at Barry Law School, and drew upon examples from 14 states that had already grappled with the issue. While this plan specifies how, when, and where fracking may occur in Florida, it also leaves open the option for communities to ban the practice within its bounds altogether. Democratic Senators Darren DeSoto and Dwight Bulland introduced a bill (SB 166) in the 2015 legislative session that would ban fracking entirely, but they also emphasized the need for rules to be in place governing the practice, were that ban to be overturned. That bill did not advance beyond the Senate’s Environmental Preservation and Conservation Committee, but was reintroduced in August 2015, with additional components that would also prohibit well stimulation.

In April 2015, two bills were presented on the floor of the State Senate and House of representatives: one to create regulations on the practice of fracking (SB 1468), and another that would permit non-disclosure of fracking chemicals by industry (SB 1582). Both bills passed in committee in April 2015, and are set to move on to further consideration by the full House and Senate.

In late April 2015, a bill (HB 1205) passed in the Florida House that would allow fracking to continue, but would put a moratorium on the practice until a study and regulations were in place. HB 1209, would also have exempted industry from disclosure of fracking chemicals. Because the Senate did not take up discussion on either bill and due to an early adjournment of the House, however, neither the Senate nor the House moved ahead on either bill during the 2015 Legislative session.

Using a similar strategy to New York State, which successfully banned high volume hydraulic fracturing for gas in June 2015, dozens of communities across Florida have taken to passing resolutions against unconventional drilling within their municipal bounds. The resolutions cite concerns about water quality, habitat protection, and impacts on endangered species that may result from this technology that aims to extra oil from rock layers more than 14,000 feet below the surface.

In July 2015, the Bonita Springs, Florida (Lee County) took their resolution one step further; the city council unanimously approved a ban on fracking within the city limits. Collier Resources, owner of thousands of acres of land within Bonita Springs, vigorously objected, and threatened lawsuits against the city’s decision. The company is predicting that the ban will be overturned by statewide legislation that permits fracking to occur. Meanwhile, Estero Village, also in Lee County, plans to take up legislation for a similar ban this month, with a vote expected on December 16th, 2015.

On the cusp of this vote, the concerns of dozens of communities across Florida have been registered in local resolutions opposing hydraulic fracturing within their municipal boundaries. Meanwhile, bills that would remove the rights of local municipalities to regulate fracking (HB 191 and SB 318) are also proceeding through legislative channels and will be taken up by the Florida State Legislature when it reconvenes in January 2016.

Florida Resolutions Map

This map shows the locations of those communities, most recently updated November 2016. Click here for a full-screen view with map legend.

Community activists in Estero Village are in a race against time to pass this ban; opposing legislation is before the Florida State Legislature that would make it so that only the state, not municipalities, can exercise authority over oil exploration.

The 2016 legislative session will present many important debates and votes on this important issue.

Sources

Time Sequence Map of PA Drilling Available

Pennsylvania’s Drake Well is known for sparking the first oil boom in the United States in 1859. In more recent history, the industry has resurrected hydrocarbon extraction in the Commonwealth through unconventional oil and gas drilling – or fracking. Between 2002 and October 28, 2015, at least 16,826 of these high-impact wells have been approved statewide, and 9,508 drilled.

While standard maps can be useful to show the reach of the industry in aggregate, they aren’t the best way to show how drilling activity has changed over time. Luckily, we have other tools in the toolbox to show the trend. See drilling by year in this time sequence map below.

PA Unconventional Drilling Time Sequence Map

This representation starts slowly, just as the industry did in the state. Activity begins to pick up around 2008. In later years, watch exploration expand throughout the Marcellus and Utica shale plays. Eventually the activity concentrates in the northeastern and southwestern portions in the state.

The Ultimate Price of PA State Forest Drilling

By Ted Auch, Matt Kelso, and Sam Rubright

PA DCNR recently released a draft State Forest Resource Management Plan. The draft plan, last revised in 2007, is an important tool that the Bureau of Forestry (BOF) uses to help manage Pennsylvania’s approximately 2.2 million acre state forest system. Approximately 1.5 million acres of state forest lands lie within the shale gas fairway and gas extraction – along with related issues like water resources –  is among the numerous subjects addressed in the document.

In total, approximately 673,000 acres are available for oil and gas development in PA state forests, either because private interests own the mineral rights below the land or because DCNR has opened up state-lands for drilling where it controls the mineral rights.

Approximately 386,000 acres have been leased by DCNR to allow drilling. DCNR’s shale gas monitoring report in 2014 said that only 16% of available state forest lands have been developed, which means that 84% (or 328,700 acres) could still be accessed for oil and gas through DCNR leases. Another 287,000 acres of state forest land sits atop private mineral rights. Mineral rights supersede – or overrule – those of the surface rights.

By some estimates, the projected “drillout” of state forest lands may include an additional 2,000 to 3,000 unconventional natural gas wells. There are concerns that the draft plan also does not adequately address the full scale and scope of such drilling and the serious impacts associated with it.

Derived from available data, FracTracker has prepared the following portrait of the projected impact to Pennsylvania’s state forest estate with emphasis on the resource-intensive nature of hydraulic fracturing and its extensive footprint on this sensitive landscape.


View or print static infographic

Get Involved

If you are concerned about these risks and potential development, DCNR is holding twelve meetings to gather public input on this draft plan until Nov 12th. Written comments can also be submitted through November 30 at StateForestPlan2015@pa.gov.

More background information about PA’s Draft 2015 State Forest Resource Management Plan


Extra Resources: Projected Build out Statistics

Land Use

Table 1. Projected land use needed to add 2,000 to 3,000 more wells on PA state forestlands

 Facility Type  Unit Projected Drilled Wells
2,000 3,000
Well Pads # 606 909
Acres 2,477 3,716
Limit Of Disturbance (LOD)* Acres 7,130 10,695
Gathering Lines Acres 20,189 30,284
Addtl. Mid/Down-stream Facilities Acres 2,847 4,271
Compressor Stations** # 126-210 189-316
Acres 2,978-4,976 4,466-7,464
ESTIMATED TOTAL Acres 36,621 54,931

*Limit of Disturbance includes infrastructure, mounded earth, etc. needed to access and service the well pads.
**1 compressor station is needed for every 25-30 miles of gathering lines, at 15-30 acres per station.

In Ohio, well pads average 4-5 acres, 3.4 laterals per well pad, and 8.5 acres of gathering line per acre of well pad. However, each pad has what we are calling a “Limit of Disturbance,” which includes infrastructure, mounded earth, etc. LOD likely represents a conservative estimate of miscellaneous land disturbance as it does not include the access roads; it was not possible with our current datasets to discern which roads were specifically added to access the well pads. LODs are averaging 10-14 acres.

Using the 2,000-3,000 wells proposed, the total acreage that could be disturbed by new well pads, well pad LODs, gathering lines, compressor stations, and related mid/downstream facilities in PA’s state forests would be between and 36,621 and 54,931 acres depending on the number and size of compressor stations (i.e., averaging 24 acres) (Table 1).

Water Use

Table 2. Projected resource use and waste produced per well based on OH, WV, and PA historical figures.

Variable Unit Avg Increase / Quarter
Water Needed Gallons 3.5 MGs

PA Stats

Gallons 4.4 MGs

OH Stats*

Gallons 6.2-7.0 MGs 405-410 K

WV Stats

Gallons 7.9 MGs 450 K
Drill Cuttings** Tons 1,050 4.96
OH Stats Tons 700+ (estimate) 4.7-5.2
PA Stats Tons 1,400
Landfill Waste (Drilling Muds) Tons / Facility 28,098 15,319
Silica Sand Tons 4,303 86
Injection Waste Gallons / Quarter 117 MGs 5.4 MGs

* 7-9% of injected fluids returns to the surface as fracking waste
** significantly dependent upon lateral length

Injection wells in OH for disposing of oil and gas wastewater

Threats to Ohio’s Water Security

Ohio waterways face headwinds in the form of hydraulic fracturing water demand and waste disposal

By Ted Auch, PhD – Great Lakes Program Coordinator, and Elliott Kurtz, GIS Intern and University of Michigan Graduate Student

In just 44 of its 88 counties, Ohio houses 1,134 wells – including those producing oil and natural gas and Class II injection wells into which the industry’s waste is disposed. Last month we wrote about Ohio’s disturbing fracking waste disposal trend and the disproportionate influence of neighboring states. (Prior to that Ariel Conn at Virginia Tech outlined the relationship between Class II Injection Wells and induced seismicity on FracTracker.) This time around, we are digging deeper into how water demand is related to Class II disposal trends.

Ohio’s Utica oil and gas wells are using 7 million gallons of freshwater – or 2.4-2.8 million more than the average well cited by the US EPA.1 Below we explore the inter-county differences of the water used in these oil and gas wells, and how demand compares to residential water demand and wastewater production.

Please refer to Table 1 at the end of this article regarding the following findings.

Utica Shale Freshwater Demand

Data indicate that there may be serious threats to Ohio’s water security on the horizon due to the oil and gas industry.

OH Water Use

The counties of Guernsey and Monroe are next up with water demand and waste water generation at rates of 14.6 and 10.3 million gallons per year. However, the 11.4 million gallons of freshwater demand and fracking waste produced by these two counties 114 Utica and Class II wells still accounts for roughly 81% of residential water demand.

The wells within the six-county region including Meigs, Washington, Athens, and Belmont along the Ohio River use 73 million gallons of water and generate 51 million gallons of wastewater per year, while the hydraulic fracturing industry’s water-use footprint ranges between 48 and 17% of residential demand in Coshocton and Athens, respectively. Class II Injection well disposal accounts for a lion’s share of this footprint in all but Belmont County, with injection well activities equaling 77 to 100% of the industry’s water footprint (see Figure 1 for county locations and water stress).

Primary Southeast Ohio Counties experiencing Utica Shale and Class II water stress

Figure 1. Primary Southeast Ohio counties experiencing Utica Shale and Class II water stress

The next eight-county cohort is spread across the state from the border of Pennsylvania and the Ohio River to interior Appalachia and Central Ohio. Residential water demand there equals 428 million gallons, while the eight county’s 92 Utica and 90 Class II wells have accounted for 15 million gallons of water demand and disposal. Again the injection well component of the industry accounts for 5.8% of the their 7.7% footprint relative to residential demand. The range is nearly 10% in Vinton and 5.3% in Jefferson County.

The next cohort includes twelve counties that essentially surround Ohio’s Utica Shale region from Stark and Mahoning in the Northeast to Pickaway, Hocking, and Gallia along the southwestern perimeter of “the play.” These counties’ residents consume 405 million gallons of water and generate 329 million gallons of wastewater annually. Meanwhile the industry’s 69 Class II wells account for 53 million gallons – a 2.8% water footprint.

Finally, the 11 counties with the smallest Utica/Class II footprint are not suprisingly located along Lake Erie, as well as the Michigan and Indiana border, with water demand and wastewater production equalling nearly 117 billion gallons per year. Meanwhile the region’s 3 Utica and 18 Class II wells have utilized 59 million gallons. These figures equate to a water footprint of roughly 00.15%, more aligned with the 1% of total annual water use and consumption for the hydraulic fracturing industry cited by the US EPA this past June.

Future Concerns and Projections

Industry will see their share of the region’s hydrology increase in the coming months and years given that injection well volumes and Utica Shale demand is increasing by 1.04 million gallons and 405-410 million gallons per quarter per well, respectively. The number of people living in these 42 counties is declining by 0.6% per year, however, 1.4% in the 10 counties that have seen the highest percentage of their water resources allocated to Utica and Class II operations. Additionally, hydraulic fracturing permitting is increasing by 14% each year.2

Table 1. Residential, Utica Shale, and Class II Injection well water footprint across forty-two Ohio Counties (Note: All volumes are in millions of gallons)

Table1

Footnotes & Resources

1. In their recent “Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources” (Note: Ohio’s hydraulically fractured wells are using 6% reused water vs. the 18% cited by the EPA).

2. Auch, W E, McClaugherty, C, Gallemore, C, Berghoff, D, Genshock, E, Kurtz, E, & Jurjus, R. (2015). Ramification of current and future production, resource utilization, and land-use change in the Ohio Utica Shale Basin. Paper presented at the National Environmental Monitoring Conference, Chicago, IL.