Posts

34 states with active drilling activity in US map

34 states have active oil & gas activity in U.S. based on 2016 analysis

Each year, FracTracker Alliance compiles a national well file to try to assess how many wells have been drilled in the U.S. We do this by extracting data from the various state regulatory agencies that oversee drilling in oil and gas producing states. We’re a little late posting the results of our 2016 analysis, but here it is.

Based on data from 2014-2015, 34 states * saw drilling activity, amounting to approximately 1.2 million facilities across the U.S. – from active production wells, to natural gas compressor stations, to processing plants.

The process we used to count these wells and related facilities for the 2016 analysis changed a bit this time around, which obviously impacts the total number of wells in the dataset. 2016’s compilation was created in consultation with Earthworks, for the purpose of informing the Oil and Gas Threat Map project. The scope was more restrictive than previous editions (see our 2014 and 2015 analyses), focusing only on wells that we were reasonably confident were actively producing oil and gas wells, thus excluding wells with inactive or uncertain statuses, as well salt water disposal (SWD) and other Class II injection (INJ) well types.

There are facilities included in this dataset that we don’t normally tally, as well (See Table 1 below). Earthworks was able to determine the latitude and longitude coordinates of a number of compressors and other processing plants, which are included in the dataset below and final map.

In all, the facility counts are reduced from about 1.7 million in 2015 to about 1.2 million in 2016, but this is more a reflection of the definition than substantial changes in the active well inventory in the U.S. You can explore this information by state, and additional results of this project, using Earthworks’ Threats Maps. Additionally, the national well file is available to download below.

You’ll notice that we don’t refer to the wells in this analysis as “fracked” wells. The primary reason for not using such terminology is because no one common definition exists across those states for what constitutes a hydraulically fractured well. In PA, for example, such wells are considered “unconventional” because drilling occurs in an unconventional formation and usually involves some sort of well stimulation. Contrastingly, in CA, often drillers use “acidizing” not fracking – a similar process that breaks up the ground using acidic injected fluids instead of the high pressure seen in traditional fracking. As such, we included all active oil and gas production instead of trying to limit the analysis to just wells that have been stimulated. We will likely continue to use this process until a federal or national definition of what constitutes a “fracked” well is determined.

Table 1. Facilities by State and Type

State Count of Facilities by Type Grand Total
Compressor Processor Well
AK 7 3,356 3,363
AL 17 7,016 7,033
AR 231 8 13,789 14,028
AZ 40 40
CA 7 21 92,737 92,765
CO 426 49 50,881 51,356
FL 2 102 104
ID 6 6
IL 5 48,748 48,753
IN 7,374 7,374
KS 9 90,526 90,535
KY 5 11,769 11,774
LA 6,486 94 2,555 9,135
MI 19 16,525 16,544
MO 2 687 689
MS 6 4,556 4,562
MT 5 9,768 9,773
ND 19 13,024 13,043
NE 1 16,202 16,203
NM 902 37 57,839 58,778
NV 176 176
NY 12,244 12,244
OH 29 10 90,288 90,327
OK 856 96 29,042 29,994
OR 56 56
PA 452 11 103,680 104,143
SD 408 408
TN 15,956 15,956
TX 758 315 397,776 398,849
UT 18 20,608 20,626
VA 9,888 9,888
WI 1 1
WV 20 16,118 16,138
WY 325 48 38,538 38,911
Grand Total 10,472 825 1,182,278 1,193,575
* NC facilities are not included because the state did not respond to multiple requests for the data. This exclusion likely does not significantly affect the total number of wells in the table, as historically NC only had 2 oil and gas wells.
Approaching 10K Unconventional Wells in PA

Approaching 10K Unconventional Wells in PA

By Matt Kelso, Manager of Data & Technology

Each state has its own definition of what it means for an oil or gas well to be “fracked.” In Pennsylvania, these wells are known as “unconventional,” a definition mostly based on the depth of the target formation:

An unconventional gas well is a well that is drilled into an unconventional formation, which is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.

The count of these unconventional wells in PA stands at 9,760 as of June 14, 2016. Their distribution is widespread across the state, but is particularly focused in the northeast and southwest corners of Pennsylvania.

Unconventional oil and gas wells in Pennsylvania:

View map full screen | How FracTracker maps work

Wells Drilled

The industry is not drilling at the same torrid pace as it was between 2010 and 2012, however. The busiest month for drill rigs in the Keystone State was August 2011, with 210 unconventional wells drilled. Last month, there were just 32 such wells.

Unconventional wells in PA: Unconventional oil and gas permits, wells, and violations in Pennsylvania by quarter. Data source: Pennsylvania DEP

Figure 1. Unconventional oil and gas permits, wells, and violations in Pennsylvania by quarter. Data source: Pennsylvania DEP

Permits

As Figure 1 captures, the number of permits issued per quarter is always greater than the number of wells drilled during the same time period. Even when drilling activity seems to be entering a bust phase, oil and gas operators continue to plan for future development. Altogether, there are 17,492 permitted locations, meaning there are about 7,700 permitted locations where drilling has not yet commenced.

Violations

The number of violations issued by DEP is generally follows the same trends as permits and wells. It is usually the smallest of the three numbers. In the first quarter of 2016, however, is one of a few instances on the chart above where the number of violations issued outpaced wells drilled. There could be any number of reasons for this anomaly; it could have been due to to unusual compliance issued in the field or aggressive regulatory blitzes. It could also be due to some other factor that can’t be determined by the available published data source.

Interestingly, this phenomenon has not occurred since the first quarter of 2010, when the industry was in full swing.

About VpW

One of the best ways to understand the impact of the industry is to look at violations per well (VpW). Unfortunately, there are a number of important caveats to that discussion. First of all, not all items that appear on the compliance report receive their own Violation ID number. It is clear from the DEP workload report that violations are tallied internally by the number of Violation ID numbers. This is as opposed to the number of items on the compliance report. As of June 14, 2016, there were 6,706 rows of data and 5,755 distinct Violation ID numbers that were issued to 2,080 different oil and gas wells. This discrepancy means that about 21% of unconventional wells are issued violations in Pennsylvania. Those that are cited receive an average of 2.8 to 3.2 violations per well, depending on how you count them.

Unconventional Wells in PA: Violations per well (VpW) of the 20 companies with the most unconventional wells in PA.

Table 1. Violations per well (VpW) of the 20 companies with the most unconventional wells in PA.

Determining the violations per well by operator comes with additional caveats. The drilled wells data comes from the spud report, which lists the current operator of each of the wells. The compliance report, however, lists the operator that was in charge of the well at the time of the infraction. This poses a problem for analysis, however. The ownership of the wells is quite fluid when taken in aggregate, as companies fold, are bought out, or change their names to something else.

VpW Results

We calculated VpW figures for the 20 operators with the largest inventory of drilled wells wells in Pennsylvania, found in Table 1. In some instances, we were able to reunite operators with violations that were issued under a different name but are in fact the same company. Specifically, we combined Rex Energy’s violations with RE Gas Dev, CONSOL violations with CNX, and Southwestern with SWN Productions, as the company is now known.

SWN’s violation-per-well score appears to be quite low. Their statistic, however, does not take into account wells that it purchased from Chesapeake in 2014, for example. In this transaction, 435 wells changed hands, with an unknown number of those in Pennsylvania. Any violations on these wells that Chesapeake had would stay with that company even as their well count was reduced. Such a change would thereby artificially inflate Chesapeake’s VpW score. On the other hand, SWN is now in possession of a number of wells which might have been problematic during the early stages of operation. Those violations, alternatively, are not associated with SWN, making their inventory of wells appear to be less problematic.

Data Caveats and Takeaways

Alas, we do not live in a world of perfect data. As such, these results must be taken with a grain of salt. Still, we can see that there are some trends that persist among operators that have been active in Pennsylvania for many years. Chief, Cabon, and EXCO, for example, all average more than one violation per well drilled. Chevron, CNX, and RE Gas Development, on the other hand, have much better rates of compliance, on the order of one violation per every five wells drilled.

Defining Environmental Justice in Pennsylvania

By Kirk Jalbert, Manager of Community-Based
Research & Engagement, FracTracker Alliance

Missing the Mark in Oil & Gas Communities

Conventional oil and gas drilling for commercial purposes has existed in Pennsylvania for over 150 years. In the past decade, drilling operations have turned to extract these resources from unconventional reservoirs, such as the deep underground Marcellus Shale formation. Proponents of the oil and gas industry’s expansion promise jobs and tax revenue for regions seeking economic revitalization. However, a growing body of research suggests that these processes also negatively impact the environment and pose significant public health risks.

According to the U.S. Environmental Protection Agency, environmental justice is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. How this definition applies to residents of Pennsylvania has become a hotly contested issue as regulatory agencies have begun to investigate whether or not the oil and gas industry targets marginalized communities.

PA Environmental Justice Map

The following interactive article and map illustrates how race and poverty, the two key indicators for determining environmental justice eligibility, fail to capture the nature of the industry. It also suggests that there are other ways we might assess unfair development practices. In doing so, the goal of the article is to shed light on the complexity of environmental justice issues and to offer guidance as PA’s Department of Environmental Protection (DEP) assesses its policies in coming days.

environmental justice map

Feature image photo credit: Drilling rig and farm in PA by Schmerling (photodocmark@gmail.com)

Time Sequence Map of PA Drilling Available

Pennsylvania’s Drake Well is known for sparking the first oil boom in the United States in 1859. In more recent history, the industry has resurrected hydrocarbon extraction in the Commonwealth through unconventional oil and gas drilling – or fracking. Between 2002 and October 28, 2015, at least 16,826 of these high-impact wells have been approved statewide, and 9,508 drilled.

While standard maps can be useful to show the reach of the industry in aggregate, they aren’t the best way to show how drilling activity has changed over time. Luckily, we have other tools in the toolbox to show the trend. See drilling by year in this time sequence map below.

PA Unconventional Drilling Time Sequence Map

This representation starts slowly, just as the industry did in the state. Activity begins to pick up around 2008. In later years, watch exploration expand throughout the Marcellus and Utica shale plays. Eventually the activity concentrates in the northeastern and southwestern portions in the state.

FracTracker Launches Oil and Gas Tracking App

Pittsburgh, PA – FracTracker Alliance announces the release of our free iPhone app – designed to collect and share experiences related to oil and gas drilling across the United States. As unconventional drilling or “fracking” intensifies, so too do the innovative ways in which citizens can track, monitor, and report potential issues from their smart phones.

The app allows users to submit oil and gas photos or reports. Users can also view a map of wells drilled near them and user-submitted reports. This map shows wells that have been drilled both unconventionally and conventionally.

“FracTracker’s app contributes to the collective understanding of oil and gas impacts and provides a new opportunity for public engagement,” explains Brook Lenker, Executive Director of the FracTracker Alliance. “We hope that our mobile app will revolutionize how people share oil and gas information.”

Development Partners

Several organizations and community groups helped to test and improve the app during its development. To address questions about the impacts of oil and gas development across landscapes, FracTracker joined with the National Parks Conservation Association (NPCA) to create a crowd-sourced digital map with photos detailing the scale of oil and gas development near North Dakota’s Theodore Roosevelt National Park using the app. The photo map is part of a NPCA’s campaign designed to educate citizens about the cross-landscape impacts of oil and gas development near America’s national parks. NPCA is hosting two events this week in support of this campaign work – in Pittsburgh and Philadelphia.

“FracTracker’s new app allows us to tell a visual story about fracking’s impacts to national parks and their local communities,” said Nick Lund, who manages the NPCA’s Landscape Conservation program. “With this week’s public events in Pittsburgh and Philadelphia, we will show the dramatic impact that fracking continues to have, in just a few years, near Theodore Roosevelt National Park. These images can help inform the public and our elected officials as they finalize drilling regulations in Pennsylvania. We hope this information will lead to strong protections for our national parks, our forests, and our drinking water.”

Beta testing and reviews of the app were also conducted by Mountain Watershed Association, Responsible Drilling Alliance, Audubon PA, PA Forest Coalition, Southwest PA Environmental Health Project, and Save Our Streams PA. The app was developed in collaboration with Viable Industries, L.L.C.

Like NPCA, groups can use the FracTracker app to collect visual data and develop customized maps for their own projects. Contact FracTracker to learn more: info@fractracker.org.

Download the App

Download_on_the_App_Store_Badge_US-UK_135x40

Download the free app from the iTunes store or visit FracTracker.org to learn more: www.fractracker.org/apps. Currently the app is only available for only iPhone users, but an Android platform is due out later this year.

App Screenshots

app1

See a map of wells near you or submit a report.

app4

The legend describes the points on the map in more detail.

app2

Clicking on a dot shows the record/well

app3

Clicking the “i” shows you more information about the point

# # #

Media Contact

Samantha Malone
FracTracker Alliance
malone@fractracker.org
412-802-0273

FracTracker Alliance is a non-profit organization with offices in PA, OH, NY, WV, and CA that shares maps, data, and analyses to communicate impacts of the global oil and gas industry and inform actions that positively shape our energy future. Learn more about FracTracker at www.fractracker.org.

National Parks Conservation Association: Since 1919, the nonpartisan National Parks Conservation Association has been the leading voice of the American people in protecting and enhancing our National Park System. NPCA, its one million members and supporters, and many partners work together to protect the park system and preserve our nation’s natural, historical, and cultural heritage for our children and grandchildren. For more information, please visit www.npca.org.

Comparing Unconventional Drilling in Southwestern PA

By Matt Unger, GIS Intern, FracTracker Alliance

We recently received a request  for unconventional (fracking) drilling data in Southwestern Pennsylvania counties and municipalities. Specifically, the resident wanted to know the following information:

  1. Number of drilled wells in Southwestern PA counties, and in each municipality,
  2. How many wells are producing natural gas in each municipality, and
  3. The number of well violations reported there.

The following counties in Southwestern PA were studied (based on available electronic data): Allegheny, Armstrong, Beaver, Butler, Cambria, Fayette, Greene, Indiana, Somerset, Washington, and Westmoreland.

The well production data was compiled from a production report found on the Pennsylvania DEP Office of Oil and Gas website. This report detailed production values from unconventional gas wells statewide from January 2014 – June 2014. The well violation data was compiled using the Pennsylvania DEP Office of Oil and Gas’s interactive Oil and Gas Compliance report. From here, a compliance report was created using the following criteria: All PA regions, counties, and municipalities, all well operators, unconventional wells only, and wells inspected from 1/1/2000 – 9/9/2014.

Drilling Data Trends

Once all of the data was compiled, we created a spreadsheet that included a ratio of violations/wells for each municipality and county. Below are a few observations that stood out to us, followed by possible explanations for what has been reported.

  • Slightly less than 1/3 of all wells drilled in the 11 counties selected for this analysis have committed some sort of violation (.31).
  • The ratio of violations to wells drilled in Somerset County is 1.38, by far the largest ratio discovered. This means than more than one violation has been cited for every well drilled in that area, but that does not mean that every well carries with it a violation. The second largest ratio would be Cambria County at 1.00.
  • If you break down the numbers and look at municipality trends, the largest violation/wells ratio by municipality is found in Stewart Township, Fayette County (9.00). There have been 18 reported violations in association with the 2 wells drilled in the area.
  • Of the 60 municipalities that recorded no violations, South Buffalo Township in Armstrong County has the most wells drilled with 20.
  • Across the 11 counties studied, Allegheny County has the lowest ratio of violation/wells (.007).
  • Violations were reported in Somerset Township, Somerset County. No wells were drilled in this area, however.
  • Violations were reported in Wayne Township, Greene County, yet no wells were reported to be drilled in the municipality.

Explaining Some Data Caveats

Why is Allegheny County seeing such a low violation/well ratio?

Across the 11 counties studied, Allegheny County has the lowest ratio of violation/wells (.007).

Allegheny is the most populated county studied in Southwestern PA. Oil and gas drillers in the county, therefore, have the largest audience watching them. This may be encouraging the drillers to be more cautious or follow rules and regulations more strictly. Another possible explanation is that inspectors may be more lenient when reporting violations in in Allegheny County. Additionally, drillers operating primarily in Allegheny County may be are more likely to or are more capable of drilling according to the regulations. A final possibility is that Allegheny County is one of the last counties in this region to be heavily drilled, perhaps allowing for more best practices to be implemented on site compared to well pads established early on.

Violations With No Wells?

Violations were reported in Somerset Township, Somerset County. No wells were drilled in this area, however. These violations could have occurred when constructing the well pad. If construction has stopped at this site since the violation, there would not have been any wells drilled. Additionally, there may be an error in the dataset as to the actual location (e.g. county) of the well pad.

Violations were reported in Wayne Township, Greene County, yet no wells were reported to be drilled in the municipality. The PA DEP has informed FracTracker that these violations were actually reported for a well pad located in Center Township, Greene County. The entry for Wayne Township was a recording error on their part. Our data has been updated to reflect the proper number of violations reported in Center Township, as well as the removal of any activity in Wayne Township.

Download the Spreadsheet

The spreadsheet we supplied to this resident can be downloaded as a compliance report.

Updated PA Map

Explore our map of PA unconventional wells and violations by clicking on the map below:

Last updated: September 19, 2014

 

Fracturing wells and land cover in California

By Andrew Donakowski, Northeastern Illinois University

Land cover data can play an important role in spatial analysis; satellite or aerial imagery can effectively demonstrate the extent and make-up of land cover characteristics for large areas of land. For fracking analysis, this can be used to explore important spatial relationships between fracking infrastructure and the area and/or ecosystems surrounding them. Working with FracTracker, I have compiled data concerning land cover classifications and geologic rock areas to examine areas that may be particularly vulnerable to unconventional drilling – e.g. fracking.  After computing the makeup of land cover type for each geologic area, I then mapped locations of known fracking wells for further analysis. This is part of FracTracker’s ongoing interest in understanding changes in ecosystem services and plant/soil productivity associated with well pads, pipelines, retention ponds, etc.

Developed

First, by looking at the Developed areas (below), we can see that, for the most part, hydraulic fracturing is occurring relatively far from large population areas. (That is to say, on this map we can see that these types of wells are not found as often in areas where population density is high (<20 people per square mile) or a Developed land cover classification is predominate as they are in areas with a lower Develop land cover percentage).  However, we can also see that there is quite a large cluster of fracking wells in the southern portion of the state, and many cities fall within 5 or 10 mi of some wells.  While there may not be an immediate danger to cities that fall within this radius, we can see that some areas of the state may be more likely to encounter the effects of fracking and its associated infrastructure than others.

Forested

Next, the map depicting Forested land cover areas is, in my opinion, the most aesthetically groovy of the land cover maps; the variations in forested areas throughout the state provide a cool image.  By looking at this data, we can see that much of California’s forested land lies in the northern part of the state, while most fracking wells are located in the south and central parts of the state.

Cultivated

To me, the most interesting map is the one below showing the location of fracking wells in relation to Cultivated lands (which includes pasture areas and cropland).  What is interesting to note is the fertile Central Valley, where a high percentage of land is covered with agriculture and pasture lands (Note: The Central Valley accounts for 1% of US farmland but 25% of all production by value).  Notably, it is also where many fracking wells are concentrated.  When one stops to think about this, it makes sense: Farmers and rural landowners are often approached with proposals to allow drilling and other non-farming activities on their land.  Yet, it also raises a potential area for concern: A lot of crops grown in this area are shipped across the country to feed a significant number of people.  When we consider the uncertainties of fracking on surrounding areas, we must also consider what effects fracking could have beyond the immediate area and think about how fracking could affect what is produced in that area (in this case, it is something as important as our food supply.)

The Usefulness of Maps

Finally, as previously mentioned, mapping the extent of these land coverage can be useful for future analysis.  Knowing now the areas of relatively large concentrations of forested, herbaceous, and wetland (which can be highly sensitive to ecological intrusions) areas can be good to know down the line to see if those areas are retreating or if the overall coverage is diminishing.  Additionally, by allowing individuals to visualize spatial relationships between fracking areas and land coverage, we can make connections and begin to more closely examine areas that may be problematic. The next step will be: a) parsing forest cover into as many of the six major North American forest types and hopefully stand age, b) wetland type, and c) crop and/or pasture species. All of this will allow us to better quantify the inherent ecosystem services and CO2 capture/storage potential at risk in California and elsewhere with the expansion of the fracking industry. As an example of the importance of the intersection between forest cover and the fracking industry we recently conducted an analysis of frac sand mining polygons in Western Wisconsin and found that 45.8% of Trempealeau County acreage is in agriculture while only 1.8% of producing frac sand mine polygons were in agriculture prior to mining with the remaining acreage forested prior to mining which buttresses our anecdotal evidence that the frac sand mining industry is picking off forested bluffs and slopes throughout the northern extent of the St. Peter Sandstone formation.

A Quick Note on the Data

Datasets for this project were obtained from a few different sources.  First, land cover data were downloaded from the National Land cover Classification Database (NLCD) from the Multi-Resolution Land Character Consortium.  Geologic data were taken from the United States Geologic Survey (USGS) and their Mineral Resources On-Line Spatial Data. Lastly, locations of fracking wells were taken from the FracTracker data portal, which, in turn, were taken from SkyTruth’s database.  Once the datasets were obtained, values from the NLCD data were reclassified to highlight land-coverage types-of-interest using the Raster Calculator tool in ArcMap 10.2.1.  Then, shapefiles from the USGS were overlaid on top of the reclassified raster image, and ArcMaps’s Tabulate Area tool was used to determine the extent of land coverage within each geologic rock classification area.  Known fracking wells downloaded from FracTracker.org were added to the map for comparative analysis.

About the Author

Andrew Donakowski is currently studying Geography & Environmental Studies, with a focus on Geographic Information Systems (GIS), at Northeastern Illinois University (NEIU) in Chicago, Ill. These maps were created in conjunction with FracTracker’s Ted Auch and NEIU’s Caleb Gallemore as part of a service-learning project conducted during the spring of 2014 aimed at addressing real-world issues beyond the classroom.

Over 1.1 Million Active Oil and Gas Wells in the US

Many people ask us how many wells have been hydraulically fractured in the United States.  It is an excellent question, but not one that is easily answered; most states don’t release data on well stimulation activities.  Also, since the data are released by state regulatory agencies, it is necessary to obtain data from each state that has oil and gas data to even begin the conversation.  We’ve finally had a chance to complete that task, and have been able to aggregate the following totals:

Oil and gas summary data of drilled wells in the United States.

Oil and gas summary data of drilled wells in the United States.

 

While data on hydraulically fractured wells is rarely made available, the slant of the wells are often made accessible.  The well types are as follows:

  • Directional:  Directional wells are those where the top and the bottom of the holes do not line up vertically.  In some cases, the deviation is fairly slight.  These are also known as deviated or slant wells.
  • Horizontal:  Horizontal wells are directional wells, where the well bore makes something of an “L” shape.  States may have their own definition for horizontal wells.  In Alaska, these wells are defined as those deviating at least 80° from vertical.  Currently, operators are able to drill horizontally for several miles.
  • Directional or Horizontal:  These wells are known to be directional, but whether they are classified as horizontal or not could not be determined from the available data.  In many cases, the directionality was determined by the presence of directional sidetrack codes in the well’s API number.
  • Vertical:  Wells in which the top hole and bottom hole locations are in alignment.  States may have differing tolerances for what constitutes a vertical well, as opposed to directional.
  • Hydraulically Fractured:  As each state releases data differently, it wasn’t always possible to get consistent data.  These wells are known to be hydraulically fractured, but the slant of the well is unknown.
  • Not Fractured:  These wells have not been hydraulically fractured, and the slant of the well is unknown.
  • Unknown:  Nothing is known about the slant, stimulation, or target formation of the well in question.
  • Unknown (Shale Formation):  Nothing is known about the slant or stimulation of the wells in question; however, it is known that the target formation is a major shale play.  Therefore, it is probable that the well has been hydraulically fractured, with a strong possibility of being drilled horizontally.

Wells that have been hydraulically fractured might appear in any of the eight categories, with the obvious exception of “Not Fractured.”  Categories that are very likely to be fractured include, “Horizontal”, “Hydraulically Fractured”, and “Unknown (Shale Formation),” the total of which is about 32,000 wells.  However, that number doesn’t include any wells from Texas or Colorado, where we know thousands wells have been drilled into major shale formations, but the data had to be placed into categories that were more vague.

Oil and gas wells in the United States, as of February 2014. Location data were not available for Maryland (n=104), North Carolina (n=2), and Texas (n=303,909).  To access the legend and other map tools, click the expanding arrows icon in the top-right corner.

The standard that we attempted to reach for all of the well totals was for wells that have been drilled but have not yet been plugged, which is a broad spectrum of the well’s life-cycle.  In some cases, decisions had to be made in terms of which wells to include, due to imperfect metadata.

No location data were available for Maryland, North Carolina, or Texas.  The first two have very few wells, and officials in Maryland said that they expect to have the data available within about a month.  Texas location data is available for purchase, however such data cannot be redistributed, so it was not included on the map.

It should not be assumed that all of the wells that are shown in  the map above the shale plays and shale basin layers are actually drilled into shale.  In many cases, however, shale is considered a source rock, where hydrocarbons are developed, before the oil and gas products migrate upward into shallower, more conventional formations.

The raw data oil and gas data is available for download on our site in shapefile format.

 

PA Unconventional Drilling Activity Trends

The Pennsylvania Department of Environmental Protection (PADEP) publishes data on unconventional oil and gas permits, drilled wells, and violations. The FracTracker Alliance has taken this data, and summarized it by month:

Permits issued, wells drilled, and violations issued for unconventional oil and gas wells in Pennsylvania from January 2005 through May 2013.

Permits issued, wells drilled, and violations issued for unconventional oil and gas wells in Pennsylvania from January 2005 through May 2013.

There are numerous ways to interpret the raw data, to the point where it is easy to get bogged down in the specifics. Still, a certain amount of discussion is merited to understand that answers to questions like, “How many unconventional oil and gas violations are there in Pennsylvania?” are fundamentally interpretive in nature, based on the available data. For example, there are often multiple actions for a single well API number that appear in the permits report, and likewise multiple actions for a single violation ID number that has been issued. In this analysis, we have counted only the first action for each of these.

Here are some more summary details about the data:

This table shows a summary of unconventional oil and gas data in PA by month.

This table shows a summary of unconventional oil and gas data in PA by month.

The top section shows summaries of monthly counts of permits, drilled wells, and violations, while the second section shows the frequency of the monthly totals reaching specified targets, and the third section shows the total numbers that were used for the analysis.  For example, we can see in the top section that the maximum number of violations issued in a month is 160, so there are zero instances where the monthly total of violations reached the target of being greater than 200.  And while there have been four months since January 2005 where there have been no unconventional permits issued in the state (the most recent being in September 2005, incidentally), this has happened 21 times on the violations report.

This map has expired.

The Ohio Utica Shale Play Turns 500… Almost!

Drilling Trends

Ohio’s first Utica well was permitted by ODNR on behalf of Hess Ohio Resources on 9-28-10. As shown in Figure 1 (right), the major uptick in well permitting began in the summer of 2011 with 23 wells permitted during that period, ramping up to 24 wells in November 2011. There was a brief reduction in permitting during the winter of 2011-12, followed by the boom-boom summer and fall of 2012, with an average of 37 wells per month and a total of 261 wells permitted between June and December 2012.

Production

As of the end of 2012, only 30.4% of the 487 permitted wells had been drilled or are currently being drilled. Forty-seven are currently producing gas, with the Ohio Department of Natural Resources (ODNR) reporting production data for only 9 of the 47 producing wells. All of these wells are owned by Chesapeake, 2/3 of which are in Carroll County. On average, these wells produced 61 barrels of oil, 1,875 million cubic feet of gas, and 8,905 gallons (i.e. 37 tons) of brine per day over an average production period of 88 days. Twenty of the permitted wells are classified as inactive (not drilled) or plugged, with the remaining permitted but yet to be drilled (Figure 2). The top five Utica counties based on number of well permits are Carroll, Harrison, Columbiana [1], Jefferson, and Guernsey [2]; while on the other end, Ashland, Geauga, Medina, and Wayne are each home to one Utica well at this point (Figure 3). According to Columbus, OH-based Huntington Bank’s first Midwest Economic Index, early returns in these parts are mixed in Ohio: “58 percent of respondents agreed that the industry would bring opportunity, with 15 percent of those saying it would be a significant opportunity, while 42 percent said they did not see it bringing economic opportunity to their communities.”

Bird’s Eye View

From an area perspective, Carroll County has 0.45 wells per square mile – 0.39 more wells per square mile than the next ten counties with the most wells (Figure 4) – while the bottom four counties currently contain 0.0023 wells per square mile. The relationship between population and wells is generally the opposite of the previous two relationships with the bottom four counties having an average of 108,345 citizens for every well drilled. Carroll County has 163 residents per well, while the remaining top ten counties have an average resident-to-well ratio of 7,057 (Figure 4, Inset). This means that any potential ad valorem-based tax structure would benefit – on a per capita basis – less populated counties rather than those with more wells such as Carroll.

Companies Involved

Chesapeake and its subsidiaries is the dominant player in the Ohio Utica play, with 320 of all wells permitted, followed by Gulfport Energy with 25, Enervest and HG Energy with 16, and Hess Ohio with 14 permitted wells. These five firms account for 80.3% of all permitted wells in Ohio, with an additional eighteen firms splitting the remaining 19.7% (Table 1, below). However, the firms that are publicly traded have been experiencing an average decline in share price of 3.41% since the time their first wells were permitted to the close of business on January 22nd, 2013. The biggest financial losers have been some of the Ohio Utica play’s biggest participants – including Chesapeake (CHK, -27%), Consol Energy (CNX, -29%), and Devon (DVN, -17%) [3]. Meanwhile, Anadarko (APC, +14%), Gulfport (GPOR, +19%)), and the upstart PDC Energy (PDCE, +55%) are the biggest beneficiaries of wading into Ohio’s Utica Shale play. However, the industry is displaying quite a few characteristics of an unsustainable boom; Wall Street analysts have been skeptical of big Utica Shale energy operations from soup to nuts as reported by Reuters last fall. but Wall Street voted in favor of the removal – either voluntary or forced – of CHK’s founder Aubrey McLendon to the tune of a 10% share spike the day of the announcement. Even the aforementioned winners have been outperformed by the S&P 500 and Dow Jones Industrial by 12.6% since permitting began in September 2010.

Will the boom continue to boom? It may be too soon to tell, but one thing is for sure, shale gas extraction to-date has made an indelible mark on many communities in eastern Ohio.

Figure 1. Ohio Utica Well Development per Month &amp; Cumulatively as of January 1, 2013

Figure 1. Ohio Utica Well Development per Month & Cumulatively as of January 1, 2013. Click on the image to view full-screen.

Figure 2. Ohio Utica Well Status as of January 1, 2013.

Figure 2. Ohio Utica Well Status as of January 1, 2013. Click on the image to view full-screen.

Figure 3. Ohio Utica Wells by County as of January 1, 2013

Figure 3. Ohio Utica Wells by County as of January 1, 2013. Click on the image to view full-screen.

Figure 4. Ohio Utica Wells Per Square Mile by County and People Per Well by County as of January 1, 2013.

Figure 4. Ohio Utica Wells Per Square Mile by County and People Per Well by County as of January 1, 2013. Click on the image to view full-screen.


[1] Thanks to the surge in Columbiana County wells, the Texas-based Santrol will be opening a frac sand terminal with direct access to Ohio State Route 11 open 365 days a year and equipped to handle 500,000 tons annually.

[2] Guernsey and Noble are home to the Muskingum Watershed Conservancy District that is currently in negotiations with Antero to drill beneath Seneca Lake – even though there is a substantial and vocal opposition in the region in the form of the Southeast Ohio Alliance to Save Our Water.


Table 1. Distribution of Ohio Utica Shale wells across companies (#, %), Date of First Permit (DFP), and the valuation of the publicly funded companies at their DFP at the close of business 1/22/2013.

     

Company Valuation

Company

#

%

DFP

Share Price DFP

Share Price 1/22/2013

% Change

Anadarko

12

0.025

09/07/2011

69.88

79.49

1.138

Antero

11

0.023

03/23/2012

Atlas Noble

5

0.010

09/24/2012

31.14

30.315

0.974

Carrizo

2

0.004

07/26/2012

24.02

22.43

0.934

Chesapeake Energy

320

0.657

12/23/2010

25.61

18.73

0.731

Chevron Appalachia

2

0.004

07/31/2012

109.58

115.91

1.058

Consol Energy

19

0.039

06/17/2011

45.86

32.74

0.714

Devon Energy

13

0.027

11/02/2011

65.46

54.28

0.829

Eclipse Resources

1

0.002

12/21/2012

Enervest

16

0.033

06/30/2011

9.37

9.37

1.000

EQT

1

0.002

09/13/2012

57.76

60.43

1.046

Gulfport Energy

25

0.051

02/28/2012

35.49

42.3

1.192

Halcon

1

0.002

11/02/2012

5.003

5.815

1.162

Hall Drilling

1

0.002

09/17/2012

Hess Ohio

14

0.029

09/28/2010

53.63

58.87

1.098

HG Energy

16

0.033

09/14/2011

Hilcorp Energy

1

0.002

12/14/2012

Mountaineer Keystone

7

0.014

07/13/2012

PDC Energy

4

0.008

05/25/2012

25.67

39.8

1.550

R E Gas Development

8

0.016

03/19/2012

Sierra Resources

3

0.006

07/02/2012

SWEPI

1

0.002

06/20/2012

XTO Energy

4

0.008

04/09/2012

0.28

0.027

0.096

 Sum

487

       Average

0.966

DFP = Date of First Permit; “—“ not a publicly funded company.