Posts

Mapping the Petrochemical Build-Out Along the Ohio River

New maps show the build-out of oil and gas infrastructure that converts the upper Ohio River Valley’s fracked gas into petrochemical products

In 2004, Range Resources purchased land in Washington County, Pennsylvania and “fracked” the first well in the Marcellus Shale, opening the flood gates to a wave of natural gas development.

Since then, oil and gas companies have fracked thousands of wells in the upper Ohio River Valley, from the river’s headwaters in Pennsylvania, through Ohio and West Virginia, and into Kentucky.

Industry sold natural gas as a “bridge fuel” to renewable energy, but 15 years since the first fracked Marcellus well, it’s clear that natural gas is more of a barrier than a bridge. In fact, oil and gas companies are not bridging towards clean energy at all, but rather investing in the petrochemical industry- which converts fracked gas into plastic.

This article dives into the expanding oil, gas, and petrochemical industry in the Ohio River Valley, with six maps and over 16,000 data points detailing the build-out of polluting infrastructure required to make plastic and other petrochemical products from fossil fuels.

Fracking for plastic

The petrochemical industry is expanding rapidly, with $164 billion planned for new infrastructure in the United States alone. Much of the build-out involves expanding the nation’s current petrochemical hub in the Gulf Coast, yet industry is also eager to build a second petrochemical hub in the Ohio River Valley.

The shale rock below the Ohio River Valley releases more than methane gas used for energy. Fracked wells also extract natural gas liquids (NGLs) which the petrochemical industry manufactures into products such as plastic and resins. Investing in the petrochemical industry is one way to capitalize on gases that would otherwise be released to the atmosphere via venting and flaring. As companies continue to spend billions more on drilling than they’re bringing in, many are looking towards NGLs as their saving grace.

These maps look at a two-county radius along the upper Ohio River where industry is most heavily concentrated.

Step 1. Extraction

The petrochemical lifecycle begins at the well, and there are a lot of wells in the Ohio River Valley. The majority of the natural gas produced here is extracted from the Marcellus and Utica Shale plays, which also contain “wet gas,” or NGLs, such as ethane, propane, and butane.

Rig in Greene County, PA. Photo by Ted Auch.

12,507

active, unconventional wells in the upper Ohio River Valley

Of particular interest to the petrochemical industry is the ethane in the region, which can be “cracked” into ethylene at high temperatures and converted into polyethylene, the most common type of plastic. The Department of Energy predicts that production of ethylene from ethane in the Appalachian Basin will reach 640,000 barrels a day by 2025 – that’s 20 times the amount produced in 2013.

In our first map, we attempted to show only active and unconventional (fracked) wells, a difficult task as states do not have a uniform definition for “unconventional” or “active.” As such, we used different criteria for each state, detailed below.

This map shows 12,660 wells, including:

  • 12,507 shale oil and gas wells:
    • 5,033 wells designated as “active” and “unconventional” in Pennsylvania
    • 2,971 wells designated as “drilled,” “permitted,” or “producing,” and are drilled in the Utica-Point Pleasant and Marcellus Shale in Ohio
    • 4,269 wells designated as “active” or “drilled” in the Marcellus Shale in West Virginia
    • 234 wells designated as “horizontal” and are not listed as abandoned or plugged in Kentucky
  • 153 Class II injection wells, which are used for the disposal of fracking wastewater
    • 2 in Pennsylvania
    • 101 in Ohio
    • 42 in West Virginia
    • 8 in Kentucky

The map also shows the Marcellus and Utica Shale plays, and a line demarcating the portions of these plays that contain higher quantities of wet gas. These wet gas regions are of particular interest to the petrochemical industry. Finally, the Devonian-Ohio Shale play is visible as you zoom in.

View Map Full Screen | How FracTracker Maps Work

Step 2. Transportation

Burned hillside near Ivy Lane after the Revolution Pipeline Exploded

Site of the Revolution Pipeline explosion. Photo: Darrell Sapp, Post Gazette.

A vast network of pipelines transports the oil and gas from these wells to processing stations, refineries, power plants, businesses, and homes. Some are interstate pipelines passing through the region on their way to domestic and international markets.

A number of controversial pipeline projects cross the Ohio River Valley. Construction of the Mariner East II Pipeline is under criminal investigation, the Revolution Pipeline exploded six days after it came on line, protesters are blocking the construction of the Mountain Valley Pipeline, and the Atlantic Coast Pipeline is in the Supreme Court over permits to cross the Appalachian Trail.

Accurate pipeline data is not typically provided to the public, ostensibly for national security reasons.  The result of this lack of transparency is that residents along the route are often unaware of the infrastructure, or whether or not they might live in harm’s way. While pipeline data has improved in recent years, much of the pipeline data that exists remains inaccurate. In general, if a route is composed of very straight segments throughout the rolling hills of the Upper Ohio River Valley, it is likely to be highly generalized.

The pipeline map below includes:

  • natural gas interstate and intrastate pipelines
  • 8 natural gas liquid pipelines
  • 7 petroleum product pipelines
  • 3 crude oil pipelines
  • 18 pipeline projects that are planned or under construction for the region, including 15 natural gas pipelines and 3 natural gas liquids pipelines. To view a spreadsheet of these pipelines, click here.

View Map Full Screen | How FracTracker Maps Work

Step 3. Oil and Gas Transport and Processing

Pipelines transport oil and the natural gas stream to an array of facilities. Compressor stations and pumping stations aid the movement of the products through pipelines, while processing stations separate out the natural gas stream into its different components, including NGLs, methane, and various impurities.

At this step, a portion of the extracted fossil fuels are converted into sources of energy: power plants can use the methane from the natural gas stream to produce electricity and heat, and oil refineries transform crude oil into products such as gasoline, diesel fuel, or jet fuel.

A separate portion of the fuels will continue down the petrochemical path to be converted into products such as plastics and resins. Additionally, a significant portion of extracted natural gas leaks unintentionally as “fugitive emissions” (an estimated 2-3%) or is intentionally vented into the atmosphere when production exceeds demand.

This map shows 756 facilities, including:

  • 29 petroleum and natural gas power plants
    • 3 electric utilities
    • 24 independent power producers
    • 1 industrial combined heat and power (CHP) plant
    • 1 industrial power producer (non CHP)
  • 10 pumping stations, which assist in the transmission of petroleum products in pipelines
  • 645 compressor stations to push natural gas through pipelines
  • 21 gas processing plants which separate out NGLs, methane, and various impurities from the natural gas stream
  • 46 petroleum terminals, which are storage facilities for crude and refined petroleum products, often adjacent to intermodal transit networks
  • 3 oil refineries, which convert crude oil into a variety of petroleum-based products, ranging from gasoline to fertilizer to plastics
  • 2 petroleum ports, which are maritime ports that process more than 200 short tons (400,000 pounds) of petroleum products per year

*A small portion of these facilities are proposed or in construction, but not yet built. Click on the facilities for more information. 

View map full screen | How FracTracker Maps Work

Step 4. Storage

After natural gas is extracted from underground, transported via pipeline, and separated into dry gas (methane) and wet gas (NGLs), its components are often pumped back underground for storage. With the expansion of the petrochemical industry, companies are eager to find opportunities for NGL storage.

Underground storage offers a steady supply for petrochemical manufacturers and allows industry to adapt to fluctuations in demand. A study out of West Virginia University identified three different types of NGL storage opportunities along the Ohio and Kanawha River valleys:

  1. Mined-rock cavern: Companies can mine caverns in formations of limestone, dolomite, or sandstone. This study focused on caverns in formations of Greenbrier Limestone.
  2. Salt cavern: Developing caverns in salt formations involves injecting water underground to create a void, and then pumping NGLs into the cavern.
  3. Gas field: NGLs can also be stored in natural gas fields or depleted gas fields in underground sandstone reservoirs.

Above-ground tanks offer a fourth storage option.

Natural gas and NGL storage contains many risks. These substances are highly flammable, and accidents or leaks can be fatal. A historically industrialized region, the Ohio River Valley is full of coal mines, pipelines, and wells (including abandoned wells with unknown locations). All of this infrastructure creates passages for NGLs to leak and can cause the land above them to collapse. As many of these storage options are beneath the Ohio River, a drinking water supply for over 5 million people, any leak could have catastrophic consequences.

Furthermore, there are natural characteristics that make the geology unsuitable for underground storage, such as karst geological formations, prone to sinkholes and caves.

Notable Storage Projects

Appalachia Development Group LLC is heading the development of the Appalachia Storage & Trading Hub initiative, “a regional network of transportation, storage and trading of Natural Gas Liquids and chemical intermediates.” The company has not announced the specific location for the project’s storage component. Funding for this project is the subject of national debate; the company applied for a loan guarantee through a federal clean energy program, in a move that may be blocked by Congress.

Energy Storage Ventures LLC plans to construct the Mountaineer NGL Storage facility near Clarington, Ohio along the Ohio River. This facility involves salt cavern storage for propane, ethane, and butane. To supply the facility, the company plans to build three pipelines beneath the Ohio River: two pipelines (one for ethane and one for propane and butane) would deliver NGLs to the site from Blue Racer Natrium processing plant. A third pipeline would take salt brine water from the caverns to the Marshall County chlorine plant (currently owned by Westlake Chemical Corp).

The storage map below shows potential NGL storage sites to feed petrochemical infrastructure as well as natural gas storage for energy production:

View Map Full Screen | How FracTracker Maps Work

Step 5. Petrochemical Manufacturing

While conventional oil and gas extraction has occurred in the region for decades, and fracking for 15 years, the recent petrochemical build-out adds an additional environmental and health burdens to the Ohio River Valley. Our final map represents the facilities located “downstream” in the petrochemical process which convert fossil fuels into petrochemical products.

An image of plastic pellets

Polyethylene pellets, also called nurdles, manufactured by ethane crackers. Image source.

Ethane Crackers

Much of the petrochemical build-out revolves around ethane crackers, which convert ethane from fracked wells into small, polyethylene plastic pellets. They rely on a regional network of fracking, pipelines, compressor stations, processing stations, and storage to operate.

In 2017, Royal Dutch Shell began construction on the first ethane cracker to be built outside of the Gulf Coast in 20 years. Located in Beaver County, Pennsylvania, this plant is expected to produce 1.6 million tons of polyethylene plastic pellets per year. In the process, it will release an annual 2.2 million tons of carbon dioxide (CO2).

A second ethane cracker has been permitted in Belmont County, Ohio. Several organizations, including the Sierra Club, Center for Biological Diversity, FreshWater Accountability Project, and Earthworks have filed an appeal against Ohio EPA’s issuance of the air permit for the PTTGC Ethane Cracker.

Shell Ethane Cracker

The Shell Ethane Cracker, under construction in Beaver County, is expected to produce 1.6 million tons of plastic per year. Photo by Ted Auch, aerial assistance provided by LightHawk.

Methanol plants also convert part of the natural gas stream (methane) into feedstock for a petrochemical product (methanol). Methanol is commonly used to make formaldehyde, a component of adhesives, coatings, building materials, and many other products. In addition to methanol plants and ethane crackers, the map below also shows the facilities that make products from feedstocks, such as fertilizer (made from combining natural gas with nitrogen to form ammonia, the basis of nitrogen fertilizer), paints, and of course, plastic.

These facilities were determined by searching the EPA’s database of industrial sites using the North American Industry Classification System (NAICS).

In total, we mapped 61 such facilities:

  • 2 methanol plants (both in construction)
  • 3 ethane crackers (one in construction, one under appeal, and one uncertain project)
  • 12 petrochemical manufacturing facilities (NAICS code 32511)
  • 31 plastic manufacturing facilities
    • 2 plastic bag and pouch manufacturing facilities (NAICS code 326111)
    • 2 plastic packaging materials and unlaminated film and sheet manufacturing facilities (NAICS code 32611)
    • 2 plastic packaging film and sheet (including laminated) manufacturing facilities (NAICS code 326112)
    • 1 unlaminated plastic film and sheet (except packaging) manufacturing facility (NAICS code 326113)
    • 1 unlaminated plastics profile shape manufacturing facility (NAICS code 326121)
    • 2 laminated plastics plate, sheet (except packaging), and shape manufacturing facilities (NAICS code 32613)
    • 21 facilities listed as “all other plastics product manufacturing” (NAICS code 326199)
  • 11 paint and coating manufacturing facilities (NAICS code 325510)
  • 2 nitrogenous fertilizer manufacturing facilities (NAICS code 325311)

View Map Full Screen | How FracTracker Maps Work

Visualizing the Build-Out

How are these facilities all connected? Our final map combines the data above to show the connections between the fossil fuel infrastructure. To avoid data overload, not all of the map’s features appear automatically on the map. To add features, view the map full screen and click the “Layers” tab in the top right tool bar.

View Map Full Screen | How FracTracker Maps Work

A better future for the Valley

The expansion of oil and gas infrastructure, in addition to the downstream facilities listed above, has rapidly increased in the last few years. According to the Environmental Integrity Project, regulatory agencies in these four states have authorized an additional 15,516,958 tons of carbon dioxide equivalents to be emitted from oil and gas infrastructure since 2012. That’s in addition to emissions from older oil and gas infrastructure, wells, and the region’s many coal, steel, and other industrial sites.

View the Environmental Integrity Project’s national map of emission increases here, which also includes permit documents for these new and expanding facilities.

The petrochemical build-out will lock in greenhouse gas emissions and plastic production for decades to come, ignoring increasingly dire warnings about plastic pollution and climate change. A recent report co-authored by FracTracker Alliance found that the greenhouse gas emissions across the plastic lifecycle were equivalent to emissions from 189 coal power plants in 2019 – a number that’s predicted to rise in coming years.

What does the petrochemical build out look like in the Ohio River Valley?

 

But it doesn’t have to be this way. The oil and gas industry’s plan to increase plastic manufacturing capacity is a desperate attempt to stay relevant as fracking companies “hemorrhage cash” and renewable energy operating costs beat out those of fossil fuels. Investing instead in clean energy, a less mechanized and more labor intensive industry, will offer more jobs and economic opportunities that will remain relevant as the world transitions away from fossil fuels.

In fact, the United States already has more jobs in clean energy, energy efficiency, and alternative vehicles than jobs in fossil fuels. It’s time to bring these opportunities to the Ohio River Valley and bust the myth that Appalachian communities must sacrifice their health and natural resources for economic growth.

People gather at the headwaters of the Ohio River to advocate for the sustainable development of the region. Add your voice to the movement advocating for People Over Petro by signing up for the coalition’s email updates today!

Download the maps

 

 

 

 

 

 

 

This data in this article are not exhaustive. FracTracker will be updating these maps as data becomes available.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

Piecing together the ethane cracker - Graphic by Sophie Riedel

Piecing Together an Ethane Cracker

How fragmented approvals and infrastructure favor petrochemical development

By Leann Leiter and Lisa Graves-Marcucci

Let’s think back to 2009, when oil and gas companies like Range Resources began drilling the northeast shale plays in earnest. Picture the various stages involved in drilling – such as leasing of land, clearing of trees, boring of wells, siting of compressor stations, and construction of pipelines to gather the gas. Envision the geographic scope of the gas infrastructure, with thousands of wells in Pennsylvania alone, and thousands of miles of pipelines stretching as far as Louisiana.

Figure 1. A pipeline right-of-way snakes behind a residential property in Washington County, PA. Photo credit: Leann Leiter.

Figure 1. A pipeline right-of-way snakes behind a residential property in Washington County, PA. Photo credit: Leann Leiter

Now, picture the present, where a homeowner looks out over her yard and wonders how a lease she signed with Shell several years prior made it possible for the company to run an ethane pipeline across her property and between her house and her garage.

Think forward in time, to 2022, the year when a world-scale ethane cracker is set to go online in Beaver County, Pennsylvania, to begin churning through natural gas liquids from wells in PA and others, producing a variety of disposable plastic products.

At each of these moments in gas development, which of the many stakeholders – industry leaders, local governments, state regulatory agencies, or landowners and residents – were granted a view of the full picture?

The proposed Shell ethane cracker in Beaver County is an illustration of the fragmented nature of gas development. From the extensive web of drilling infrastructure required to supply this massive facility, to several years of construction, this project is a case-study in piecemeal permitting. Such fragmentation creates a serious barrier to transparency and to the informed decision-making that relies upon it.

In the first two articles in this series on the petrochemical development in Beaver County, we focused on ethane cracker emergency scenarios and how the area might prepare. In this article, we draw the lens back to take in the larger picture of this region-altering project and highlight the effects of limited transparency.

The “Piecemeal” Nature of Gas Development

All across the Pennsylvania, proposed industrial development – even coal operations – have historically provided to the public, elected officials, and regulatory agencies the extent or footprint of their planned operations. Nonetheless, the oil and gas industry has in several instances undertaken a practice of developing its extensive infrastructure piece-by-piece. Operators of these facilities first acquire a GP-5 General Permit, which is only available to certain oil and gas operations with “minor” emissions and which allows them to avoid having the permit undergo public notice or comment. These operators then add emissions sources and increases through a series of minor amendments. While they are required to obtain a “major” source permit once their modifications result in major emissions, they avoid the scrutiny required for a major source by this fragmented process.

Unlike most other industrial permitting, the gas industry has enjoyed a much less transparent process. Instead of presenting their entire planned operation at the time of initial permit application, gas operators having been seeking – and receiving – incremental permits in a piecemeal fashion. This process puts local decision makers and the women, men, and children who live, work, and go to school near gas development at a severe disadvantage in the following ways:

  • Without full disclosure of the entirety of the planned project, neither regulatory bodies nor the public can conduct a full and factual assessment of land use impacts;
  • Incremental approvals allow for ever-expanding operations, including issuance of permits without additional public notification and participation;
  • Piecemeal approvals allow operations to continuously alter a community and its landscape;
  • The fragmented approval process prevents consideration of cumulative impacts; and
  • Without full transparency of key components of the proposed operations, emergency planning is hampered or non-existent.

From the Well to the Ethane Cracker

In the fragmented approval process of gas development, the proposed ethane cracker in Beaver County represents a pertinent example. Developers of this massive, multi-year, and many-stage project have only revealed the size and scope in a piecemeal fashion, quietly making inroads on the project (like securing land leases along the route of the pipeline required for the cracker, years in advance of permit approvals for the facility itself). By rolling out each piece over several years, the entirety of the petrochemical project only becomes clear in retrospect.

A World-Scale Petrochemical Hub

While Shell is still pursuing key approval from the PA Department of Environmental Protection, industry leaders treat the ethane cracker as a foregone conclusion, promising that this facility is but one step in turning the area into a “petrochemical hub.”

The cracker facility, alone, will push existing air pollution levels further beyond their already health-threatening state. Abundant vacant parcels around Shell’s cracker site are attractive sites for additional spin-off petrochemical facilities in the coming “new industry cluster.” These facilities would add their own risks to the equation, including yet-unknown chemical outputs emitted into the air and their resulting cumulative impacts. Likewise, disaster risks associated with the ethane cracker remain unclear, because in the piecemeal permitting process, the industry is not required to submit Preparedness, Prevention, and Contingency (PPC) Plans until after receiving approval to build.

Figure 2: Visualization shows a portion of the extensive US natural gas interstate pipeline system stretching from the petrochemical hubs in the bayous of the Gulf Coast Basin to Pittsburgh's Appalachian Basin. However, petrochemical development in the northeast may reverse or otherwise change that flow. Visualization created by Sophie Riedel, Carnegie Mellon University, School of Architecture. Data on interstate natural gas supply sourced from Energy Information Administration, Form EIA176 "Annual Report of Natural Gas and Supplemental Gas Supply and Disposition," 2007.

Figure 2. A portion of the extensive US natural gas interstate pipeline system stretching from the petrochemical hubs in the bayous of the Gulf Coast Basin to Pittsburgh’s Appalachian Basin. However, petrochemical development in the northeast may reverse or otherwise change that flow. Visualization created by Sophie Riedel, Carnegie Mellon University, School of Architecture. Data on interstate natural gas supply sourced from Energy Information Administration, Form EIA176 “Annual Report of Natural Gas and Supplemental Gas Supply and Disposition,” 2007.

92.3 Miles of Explosive Pipeline

More than just a major local expansion, communities downriver and downwind will be susceptible to the impacts, including major land disturbance, emissions, and the potential for “incidents,” including explosion. The pipeline required to feed the cracker with highly flammable, explosive ethane would tie the tri-state region into the equation, expanding the zone of risk into Ohio and crossing through West Virginia.

Figure 3: The Falcon Pipeline, which would be used to transport ethane to the cracker in Beaver County. At 92.3 miles long, it consists of two “legs,” starting from Scio and Cadiz, Ohio and Houston, PA, respectively, and extending up to the site of Shell’s ethane cracker. Credit: Shell Pipeline Company LP.

Figure 3. The Falcon Pipeline, which would be used to transport ethane to the cracker in Beaver County. At 92.3 miles long, it consists of two “legs,” starting from Scio and Cadiz, Ohio and Houston, PA, respectively, and extending up to the site of Shell’s ethane cracker. Credit: Shell Pipeline Company LP

Renewed Demand at the Wellhead

No one piece of the gas infrastructure stands alone; all work in tandem. According to the  Energy Information Administration (EIA), the new US ethane crackers will drive consumption of ethane up by a 26% by the end of 2018. Gas wells in the northeast already supply ethane; new ethane crackers in the region introduce a way to profit from this by-product of harvesting methane without piping it to the Gulf Coast. How this renewed demand for ethane will play out at fracked wells will be the result of complex variables, but it will undoubtedly continue to drive demand at Pennsylvania’s 10,000 existing unconventional oil and gas wells and those of other states, and may promote bringing new ones online.

quote-from-petchem-report

Figure 4. Excerpt from Executive Summary of IHS Markit Report, “Prospects to Enhance Pennsylvania’s Opportunities in Petrochemical Manufacturing.”

Along with drilling comes a growing network of gathering and transmission lines, which add to the existing 88,000 miles of natural gas pipeline in Pennsylvania alone, fragment wildlife habitat, and put people at risk from leaks and explosions. Facilities along the supply stream that add their own pollution and risks include pump stations along the route and the three cryogenic facilities at the starting points of the Falcon Pipeline (see Fig. 6).

Figure 4: Several yards of the 88,000 miles of gas pipelines cutting through Pennsylvania. Finleyville, PA. Credit: Leann Leiter.

Figure 5. Several yards of the 88,000 miles of gas pipelines cutting through Pennsylvania. Finleyville, PA. Credit: Leann Leiter

The infrastructure investment required for ethane crackers in this region could reach $3.7 billion in processing facilities, pipelines for transmitting natural gas liquids including ethane, and storage facilities. A report commissioned by Team Pennsylvania and the PA Department of Community and Economic Development asserts that “the significant feedstock and transportation infrastructure required” will “exceed what is typically required for a similar facility” in the Gulf Coast petrochemical hub, indicating a scale of petrochemical development that rivals that of the southern states. This begs the question of how the health impacts in Pennsylvania will compare to those in the Gulf Coast’s “Cancer Alley.”

Figure 6. Houston, PA Cryogenic and Fractionation Plant, one of three such facilities supplying feedstock to the proposed Shell ethane cracker. Credit: Garth Lenz, iLCP.

Figure 6. Houston, PA Cryogenic and Fractionation Plant, one of three such facilities supplying feedstock to the proposed Shell ethane cracker. Credit: Garth Lenz, iLCP

Water Impacts, from the Ohio River to the Arctic Ocean

Shell’s facility is only one of the ethane crackers proposed for the region that, once operational, would be permitted to discharge waste into the already-beleaguered Ohio River. This waterway, which traverses six separate states, supplies the drinking water for over 3 million people. Extending the potential water impact even further, the primary product of the Shell facility is plastics, whose inevitable disposal would unnecessarily add to the glut of plastic waste entering our oceans. Plastic is accumulating at the alarming rate of 3,500 pieces a day on one island in the South Pacific and as far away as the waters of the Arctic.

Figure 7: View of the Ohio River, downriver from the site of Shell’s proposed ethane cracker. Existing sources of industrial pollution to the river include the American Electric power plants, coal loading docks, barges, coal ash lagoons, and dry coal ash beds shown in this picture, and at least two fracking operations within the coal plant areas. Credit: Vivian Stockman/ohvec.org; flyover courtesy SouthWings.org.

Figure 7. View of the Ohio River, downriver from the site of Shell’s proposed ethane cracker. Existing sources of industrial pollution to the river include the American Electric power plants, coal loading docks, barges, coal ash lagoons, and dry coal ash beds shown in this picture, and at least two fracking operations within the coal plant areas. Credit: Vivian Stockman/ohvec.org; flyover courtesy SouthWings.org.

How does fragmentation favor industry?

The gas and petrochemical industry would likely defend the logistical flexibility the piecemeal process affords them, allowing them to tackle projects, make investments, and involve new players as needed overtime. But in what other ways do the incredibly fragmented approval processes, and the limited requirements on transparency, favor companies like Shell and their region-changing petrochemical projects? And what effect does the absence of full transparency have on local communities like those in Beaver County? We conclude that it:

  • “Divides and conquers” the region. The piecemeal approach to gas development, and major projects like the Shell ethane cracker, deny any sense of solidarity between the people along the pipeline route resisting these potentially explosive channels cutting through their yards, and residents of Beaver County who fear the cracker’s emissions that will surround their homes.
  • Makes the project seem a foregone conclusion, putting pressure on others to approve. For example, before Shell formally announced its intention to build the facility in Potter Township, it rerouted a state-owned road to facilitate construction and increased traffic flow. Likewise, though a key permit is still outstanding with the PA DEP, first responders, including local volunteer firefighters, have already begun dedicating their uncompensated time to training with Shell. While this is a positive step from a preparedness standpoint, it is one of many displays of confidence by Shell that the cracker is a done deal.
  • Puts major decisions in the hands of those with limited resources to carry them out and who do not represent the region to be affected. In the case of the Shell ethane cracker, three township supervisors in Potter Township granted approvals for the project. The impacts, however, extend well beyond Potter or even Beaver county and include major air impacts for Allegheny County and the Pittsburgh area. Effects will also be felt by landowners and residents in numerous counties and two states along the pipeline route, those near cryogenic facilities in Ohio and Pennsylvania, plus those living on the Marcellus and Utica shale plays who will see gas well production continue and potentially increase.


Figures 8a and 8b. Potter Township Supervisors give the go-ahead to draft approval of Shell’s proposed ethane cracker at a January meeting, while confronted with public concern about deficiencies in Shell’s permit applications. Photos courtesy of the Air Quality Collaborative.

Fragmented Transparency, Compromised Decision-making

The piecemeal, incremental, and fragmented approval processes for the ethane cracker – and other gas-related facilities in the making – create one major problem. They make it nearly impossible for locals, elected officials, and regulatory agencies to see the whole picture as they make decisions. The bit-by-bit approach to gas development amounts to far-reaching development with irreversible impacts to environmental and human health.

We ask readers, as they contemplate the impacts closest to them – be it a fracked well, a hazardous cryogenic facility, the heavily polluted Ohio River, a swath of land taken up for the pipeline’s right-of-way, or Shell’s ethane cracker itself – to insist that they, their elected officials, and regulators have access to the whole picture before approvals are granted. It’s hard to do with a project so enormous and far-reaching, but essential because the picture includes so many of us.

Sincere Appreciation

To The International League of Conservation Photographers, The Ohio Environmental Council, and The Air Quality Collaborative for sharing photographs.

To Sophie Riedel for sharing her visualizations of natural gas interstate pipelines.

To Lisa Hallowell at the Environmental Integrity Project, and Samantha Rubright and Kirk Jalbert at FracTracker, for their review of and and invaluable contributions to this series.

Photo by Garth Lenz, iLCP - for Ethane Cracker article about risk and disclosure

Understanding in Order to Prepare: Ethane Cracker Risk and Disclosure

By Leann Leiter and Lisa Graves Marcucci
Maps and data analysis by Kirk Jalbert

Highly industrialized operations like petrochemical plants inherently carry risks, including the possibility of large-scale disasters. In an effort to prepare, it is incumbent upon all stakeholders to fully understand the risk potential. Yet, the planned Shell ethane cracker and additional petrochemical operations being proposed for Western Pennsylvania are the first of their kind in our region. This means that residents and elected officials are without a frame of reference as they consider approving these operations. Officials find themselves tasked with reviewing and approving highly complicated permit applications, and the public remains uncertain of what questions to ask and scenarios to consider. Often overlooked in the decision-making process is valuable expertise from local first responders like police, fire and emergency crew members, HAZMAT teams, and those who protect vulnerable populations, like emergency room personnel, nursing home staff, and school officials.

Steam cracker at BASF's Ludwigshafen site. Photo credit: BASF - for risk and disclosure article

Example of cracker producing ethylene, located at BASF’s Ludwigshafen site. Photo credit: BASF

In the first article in this series , we tried to identify the known hazards associated with ethane crackers. In this article, we look more closely at how that risk could play out in Beaver County, PA and strive to initiate an important dialogue that invites valuable, local expertise.

In keeping with the first article in this series, we use the terms vulnerability and capacity. Vulnerability refers to the conditions and factors that increase the disaster impact that a community might experience, and capacity consists of the strengths that mitigate those impacts. Importantly, vulnerability and capacity frequently intertwine and overlap. We might, for example, consider a fire station to be a site of “capacity,” but if it lies within an Emergency Planning Zone (discussed more below), an explosion at the plant could render it a vulnerability. Likewise, “vulnerable” populations such as the elderly may have special skills and local knowledge, making them a source of capacity.

Emergency Planning: Learning from Louisiana

FracTracker got in touch with the Emergency Operations Center (EOC) in St. Charles Parish, Louisiana, to learn how a community already living with Shell-owned and other petrochemical facilities manages risk and disclosure. The Emergency Manager we spoke with explained that they designate a two- and a five-mile area around each new facility in their jurisdiction, like ethane crackers, during their emergency planning process. They call these areas “ emergency planning zones ” or EPZs, and they maintain records of the vulnerabilities and sites of capacity within each zone. In case of a fire, explosion, or other unplanned event at any facility, having the EPZs designated in advance allows them to mobilize first responders, and notify and evacuate everyone living, working, and attending school within the zone. Whether they activate a two- or a five-mile EPZ depends on the type of incident, and factors like wind speed and direction.

Based on those procedures, the map below shows similar likely zones for the proposed plant in Beaver County, along with sites of vulnerability and capacity.

Ethane Cracker Hazard Map

View Map Fullscreen | How FracTracker Maps Work

The map helps us visualize the vulnerability and capacity of this area, relative to the proposed ethane cracker. It includes three main elements: the Shell site and parcels likely to be targeted for buildout of related facilities, two Emergency Planning Zones (EPZs) around the Shell facility, and infrastructure and facilities of the area that represent vulnerability and capacity.

vacant-parcels

Vacant parcels near the site

It is important to note that the proposed ethane cracker in Beaver County is merely the first of an influx of petrochemical spin-off facilities promised for the area, potentially occupying the various empty parcels indicated on the map above as “vacant properties” and presented in light gray in the screenshot left.

Each new facility would add its own risks and cumulative impacts to the equation. It would be impossible to project these additional risks without knowing what facilities will be built here, so in this article, we stick to what we do know – the risks already articulated by Shell, lessons learned from other communities hosting petrochemical industry in other parts of the country, and past disasters at similar facilities.

Vulnerability and Capacity in Beaver County

Red, blue, and green points on the map above and in the screenshot below stand in for hospitals like Heritage Valley Beaver; fire and emergency medical services like Vanport Volunteer Fire Company; police stations like the Beaver County Sheriff’s office; and daycares and schools like Center Grange Primary School.

Transportation routes, if impacted, could challenge evacuation. Potter Township Fire Chief Vicki Carlton pointed out that evacuations due to an event at this facility could also be complicated by the need to stay upwind, when evacuations would likely move in a downwind direction. This map lacks drinking water intakes and other essential features upon which lives depend, but which nonetheless also sit within this zone of vulnerability.

points-within-epzs

Points within EPZS

Vulnerability/capacity within 2-mile zone:

  • 1 hospital
  • 5 police stations
  • 10 fire/EMS stations
  • 23 schools/daycare facilities
  • 47,717 residents*

When expanded to 5-mile zone:

  • 2 hospitals
  • 9 police stations
  • 23 fire/EMS stations
  • 40 schools/daycare facilities
  • 120,849 residents*

*Note: For census tracts that are partly within a zone, a ratio is determined based on the percentage of land area in the tract within the zone. This ratio is then used to estimate the fraction of the population likely within the zone.

Stakeholders’ Right to Know

No person or community should be subjected to risk without the opportunity to be fully informed and to give meaningful input. Likewise, no group of people should have to bear a disproportionate share of environmental risks, particularly stakeholders who are already frequently disenfranchised in environmental decision-making. “Environmental justice” (EJ) refers to those simple principles, and DEP designates environmental justice areas based on communities of color and poverty indicators.

Presented as blue fields on the map and shown in the screenshot below, several state-designated EJ areas fall partially or entirely within the 2- and 5-mile EPZs (a portion of two EJ areas home to 2,851 people, and when expanded to five miles, two entire EJ areas and a portion of seven more, home to 18,679 people, respectively).

EJ Areas and Emergency Planning Zones around the Site

EJ Areas and Emergency Planning Zones around the Site

The basic ideas behind environmental justice have major bearing in emergency scenarios. For example, those living below the poverty line tend to have less access to information and news sources, meaning they might not learn of dangerous unexpected emissions plumes coming their way. They also may not have access to a personal vehicle, rendering them dependent upon a functioning public transportation system to evacuate in an emergency. Living below poverty level may also mean fewer resources at home for sheltering-in-place during a disaster, and having less financial resources, like personal savings, may lead to more difficult post-disaster recovery.

Local expertise

FracTracker recently consulted with the Emergency Management Director for Beaver County, Eric Brewer, and with Potter Township Fire Chief Vicki Carlton. Both indicated that their staff have already begun training exercises with Shell -including a live drill on site that simulated a fire in a work trailer. But when asked, neither reported that they had been consulted in the permit approval process. Neither had been informed of the chemicals to be held on site, and both referred to emergency planning considerations as something to come in the future, after the plant was built.

Unfortunately, the lack of input from public safety professionals during the permit approval stage isn’t unique to Beaver County. Our emergency management contact in Louisiana pointed to the same disturbing reality: Those who best understand the disaster implications of these dangerous developments and who would be mobilized to respond in the case of a disaster are not given a say in their approval or denial. This valuable local expertise – in Louisiana and in Beaver County – is being overlooked.

All Beaver County first responders who spoke with FracTracker clearly showed their willingness to perform their duties in any way that Shell’s new facility might demand, hopefulness about its safety, and a generally positive relationship with the company so far. Chief Carlton believes that the ethane cracker will be an improvement over the previous facility on the same site, the Horsehead zinc smelter, though a regional air pollution report characterizes this as a trade off of one type of dangerous pollution for another. Director Brewer pointed to the existing emergency plans for the county’s nuclear facility as giving Beaver County an important leg-up on preparedness.

But the conversations also raised concern about what the future relationship between the community and the industry will look like. Will funds be allocated to these first responders for the additional burdens brought on by new, unprecedented facilities, in what amount, and for how long into the future? Chief Carlton pointed out that until Shell’s on-site fire brigade is in place two or three years from now, her all-volunteer department would be the first line of defense in case of a fire or other incident. In the meantime, her fire company has ordered a much-needed equipment upgrade to replace a 30-year old, outdated tanker at a cost of $400,000. They are formally requesting all corporate businesses in the township, including Shell, to share the cost. Hopefully, the fire company will see this cost covered by their corporate neighbors who use their services. But further down the road? Once all is said and done, and Shell has what they need to operate unfettered, Chief Carlton wonders, “where do we stand with them?”

Waiting for disclosure of the risks

Emergency preparedness and planning should be a process characterized by transparency and inclusion of all stakeholders. However, when it comes to the Shell ethane cracker, those who will share a fence line with such operations have not yet been granted access to the full picture. Currently, the DEP allows industrial operations like the proposed ethane cracker to wait until immediately before operations begin to disclose emergency planning information, in the form of Preparedness, Prevention, and Contingency (PPC) plans. In other words, when permits are up for approval or denial prior to construction, permit applicants are not currently required to provide PPC plans, and the public and emergency managers cannot weigh the risks or provide crucial input.

Shell’s Acknowledged Risks
According to public information provided by Shell

Sampling of Shell’s Disastrous
Petrochemical Precedents

Fire and Explosions

Shell’s Deer Park, Texas, 1997:
Blast at chemical plant

Leaks

Shell’s Deer Park, Texas refinery and chemical plant, 2013:
Harmful air pollution and benzene leak

Equipment Failures

Shell’s Martinez Refinery in California, 2016:
Equipment failure event; Shell’s refusal to reveal gases emitted

According to Shell, possible risks of the proposed Beaver County petrochemical facility include fire, explosion, leaks, and equipment failures. More than mere potentialities, examples of each are already on the books. The above table presents a sampling. Shell also points out the increased risk of traffic accidents, not explored in this chart. It is worth noting, however, that the proposed facility, and likely spin-off facilities, would greatly increase vehicular and rail traffic.

The ethane cracker in Beaver County plant has not yet been constructed. However, Shell operates similar operations with documented risks and their own histories of emergency events. Going forward, the various governmental agencies tasked with reviewing permit applications should require industrial operations like Shell, to make this information public as part of the review and planning process. Currently they can relegate safety information to a few vague references and get a free pass to mark it as “confidential” in permit applications. Strengthening risk disclosure requirements would be a logical and basic step toward ensuring that all stakeholders – including those with special emergency planning expertise – can have input on whether those risks are acceptable before permits are approved and site prep begins.

Until regulations are tightened, we invite Shell to fulfill its own stated objective of being a “good neighbor” by being forthcoming about what risks will be moving in next door. Shell can and should take the initiative to share information about its existing facilities, as well as lessons learned from past emergencies at those sites. Instead of waiting for the post-construction, or the “implementation” stage, all stakeholders deserve disclosure of Shell’s plans to prevent and respond to emergencies now.

In our next article, we will explore the infrastructure for the proposed Shell facility, which spans multiple states, and sort out the piecemeal approval processes of building an ethane cracker in Pennsylvania.


Sincere Appreciation

Emergency Managers and First Responders in St. Charles Parish, Louisiana and Potter Township and Center Township, PA.

Lisa Hallowell, Senior Attorney at the Environmental Integrity Project, for her review of this article series and contributions to our understanding of relevant regulations.

Kirk Jalbert, in addition to maps and analysis, for contributing key points of consideration for and expertise on environmental justice.

The International League of Conservation Photographers for sharing the feature image used in this article.

The image used on our homepage of the steam cracker at BASF’s Ludwigshafen site was taken by BASF.


By Leann Leiter, Environmental Health Fellow for FracTracker Alliance and the Southwest PA Environmental Health Project and Lisa Graves Marcucci, PA Coordinator, Community Outreach of Environmental Integrity Project

With maps and analysis by Kirk Jalbert, Manager of Community-Based Research & Engagement, FracTracker Alliance

Shell Ethane Cracker

A Formula for Disaster: Calculating Risk at the Ethane Cracker

by Leann Leiter, Environmental Health Fellow
map & analysis by Kirk Jalbert, Manager of Community-Based Research & Engagement
in partnership with the Environmental Integrity Project

On January 18, 2016, Potter Township Supervisors approved conditional use permits for Shell Chemical Appalachia’s proposed ethane cracker facility in Beaver County, PA. A type of petrochemical facility, an ethane cracker uses energy and the by-products of so-called natural gas to make ethylene, a building block of plastics. FracTracker Alliance has produced informative articles on the jobs numbers touted by the industry, and the considerable negative air impacts of the proposed facility. In the first in a series of new articles, we look at the potential hazards of ethane cracker plants in order to begin calculating the risk of a disaster in Beaver County.

As those who stand to be affected by — or make crucial decisions on — the ethane cracker contemplate the potential risks and promised rewards of this massive project, they should also carefully consider what could go wrong. In addition to the serious environmental and human health effects, which might only reveal themselves over time, what acute events, emergencies, and disasters could potentially occur? What is the disaster risk, the potential for “losses, in lives, health status, livelihoods, assets and services,” of this massive petrochemical facility?

Known Ethane Cracker Risks

A well-accepted formula in disaster studies for determining risk, cited by, among others, the United Nations International Strategy for Disaster Reduction (UNISDR), is Disaster Risk = (Hazard x Vulnerability)/Capacity, as defined in the diagram below. In this article, we consider the first of these factors: hazard. Future articles will examine the remaining factors of vulnerability and capacity that are specific to this location and its population.

disaster-risk-infographic-websize

Applied to Shell’s self-described “world-scale petrochemical project,” it is challenging to quantify the first of these inputs, hazard. Not only would a facility of this size be unprecedented in this region, but Shell has closely controlled the “public” information on the proposed facility. What compounds the uncertainty much further is the fact that the proposed massive cracker plant is a welcome mat for further development in the area—for a complex network of pipelines and infrastructure to support the plant and its related facilities, and for a long-term commitment to continued gas extraction in the Marcellus and Utica shale plays.

williams-geismar-explosion-websize

U.S. Chemical Safety and Hazard Investigation Board, Williams Geismar Case Study, No. 2013-03-I-LA, October 2016.

We can use what we do know about the hazards presented by ethane crackers and nearby existing vulnerabilities to establish some lower limit of risk. Large petrochemical facilities of this type are known to produce sizable unplanned releases of carcinogenic benzene and other toxic pollutants during “plant upsets,” a term that refers to a “shut down because of a mechanical problem, power outage or some other unplanned event.” A sampling of actual emergency events at other ethane crackers also includes fires and explosions, evacuations, injuries, and deaths.

For instance, a ruptured boiler at the Williams Company ethane cracker plant in Geismar, Louisiana, led to an explosion and fire in 2013. The event resulted in the unplanned and unpermitted release of at least 30,000 lbs. of flammable hydrocarbons into the air, including ethylene, propylene, benzene, 1-3 butadiene, and other volatile organic chemicals, as well as the release of pollutants through the discharge of untreated fire waters, according to the Louisiana Department of Environmental Quality. According to the Times-Picayune, “workers scrambl(ed) over gates to get out of the plant.” The event required the evacuation of 300 workers, injured 167, and resulted in two deaths.

The community’s emergency response involved deployment of hundreds of personnel and extensive resources, including 20 ambulances, four rescue helicopters, and buses to move the injured to multiple area hospitals. The U.S. Chemical Safety and Hazard Investigation Board chalked up the incident to poor “process safety culture” at the plant and “gaps in a key industry standard by the American Petroleum Institute (API).” The accident shut the plant down for a year and a half.

Potential Risks & Shell’s Mixed Messages

Shell has done little to define the potential for emergencies at the proposed Beaver County ethane cracker plant, at least in materials made available to the public. Shell has revealed that general hazards include “fire, explosion, traffic accidents, leaks and equipment failures.”

However, we located numerous versions of Shell’s handout and found one notable difference among them—the brochure distributed to community members at a December 2016 public hearing held by the Pennsylvania Department of Environmental Protection (PA DEP) excluded the word “explosion” from the list of “potential safety concerns.” The difference is seen in comparing the two documents.

Figure #1 below: Excerpt of online version of a handout for Beaver County, dated May 2015, with “explosion” included in list of “potential safety concerns.” (Other Shell-produced safety documents, like the one included as an exhibit in the conditional use permit application on file with the township, and Shell’s webpage for the project, also include “explosion” in the list of hazards.)

Figure #2 below: Excerpt of handout, dated November 2016 and provided to the community at December 15, 2016 meeting, with the word “explosion” no longer included.

 

Additional hints about risks are peppered throughout the voluminous permit applications submitted by Shell to the PA DEP and Potter Township, such as references to mitigating acts of terror against the plant, strategies for reducing water contamination, and the possibility of unplanned upsets. But the sheer volume of these documents, coupled with their limited accessibility challenge the public’s ability to digest this information. The conditional use permit application submitted by Shell indicates the existence of an Emergency Response Plan for the construction phase, but the submission is marked as confidential.

Per Pennsylvania law, and as set forth in PA DEP guidelines, Shell must submit a Preparedness, Prevention, and Contingency Plan (PPC Plan) at an unspecified point prior to operation. But at that likely too-late stage, who would hear objections to the identified hazards, when construction of the plant is already a done deal? Even then, can we trust that the plan outlined by that document is a solid and executable one?

Shell’s defense of the Beaver County plant is quick to point out differences between other plants and the one to come, making the case that technical advances will result in safety improvements. But it is noteworthy that the U.S. Chemical Safety and Hazard Investigation Board attributes failures at the Williams Geismar plant, in part, to “the ineffective implementation of…process safety management programs… as well as weaknesses in Williams’ written programs themselves.” The Geismar explosion demonstrates some of the tangible hazards that communities experience in living near ethane cracker plants. It is worth noting that the proposed Beaver County facility will have about 2½ times more ethylene processing capacity than the Geismar plant had at the time of the 2013 explosion.

Opening the Floodgates

In an effort to expand our understanding of risk associated with the proposed Beaver County ethane cracker and the extent of related developments promised by industry leaders, FracTracker Alliance has constructed the below map. It shows the site of the Shell facility and nearby land marked by Beaver County as “abandoned” or “unused.” These land parcels are potential targets for future build-out of associated facilities. Two “emergency planning zones” are indicated—a radius of 2 miles and a radius of 5 miles from the perimeter of Shell’s site. These projections are based upon FracTracker’s discussions with officials at the Saint Charles Parish Department of Homeland Security and Emergency Preparedness, who are responsible for emergency planning procedures in Norco, Louisiana, the site of another Shell ethane cracker facility. The emergency zones are also noted in the 2015 Saint Charles Hazard Mitigation Plan.

Also shown on the map is an estimated route of the Falcon pipeline system Shell intends to build, which will bring ethane from the shale gas fields of Ohio and Pennsylvania. Note that this is an estimated route based on images shown in Shell’s announcement of the project. Finally, our map includes resources and sites of vulnerability, including schools, fire stations, and hospitals. The importance of these sites will be discussed in the next article of this series.

Ethane Cracker Hazards Map


View map fullscreenHow FracTracker maps work

While the site of the Shell cracker is worth attending to, it would be a mistake to limit assessments of disaster risk to the site of the facility alone. Shell’s proposed plant is but one component in a larger plan to expand ethane-based processing and use in the region, with the potential to rival the Gulf Coast as a major U.S. petrochemical hub. An upcoming conference on petrochemical construction in the region, scheduled for June 2017 in Pittsburgh, shows the industry’s commitment to further development. These associated facilities (from plants producing fertilizers to plastics) would utilize their own mix of chemicals, and their potential interactions would produce additional, unforeseen hazards. Ultimately, a cumulative impact assessment is needed, and should take into account these promised facilities as well as existing resources and vulnerabilities. The below Google Earth window gives a sense of what this regional build-out might look like.

What might an ethane cracker and related petrochemical facilities look like in Beaver County? For an idea of the potential build-out, take a tour of Norco, Louisiana, which includes Shell-owned petrochemical facilities.

Final Calculations

As discussed in the introduction, “hazard,” “vulnerability,” and “capacity” are the elements of the formula that, in turn, exacerbate or mitigate disaster risk. While much of this article has focused on drastic “hazards,” such as disastrous explosions or unplanned chemical releases, these should not overshadow the more commonplace public health threats associated with petrochemical facilities, such as detrimental impact on air quality and the psychological harm of living under the looming threat of something going wrong.

The second and third articles in this series will dig deeper into “vulnerability” and “capacity.” These terms remind us of the needs and strengths of the community in question, but also that there is a community in question.

Formulas, terminology, and calculations should not obscure the fact that people’s lives are in the balance. The public should not be satisfied with preliminary and incomplete risk assessments when major documents that should detail the disaster implications of the ethane cracker are not yet available, as well as when the full scale of future build-out in the area remains an unknown.

Much gratitude to Lisa Graves-Marcucci and Lisa Hallowell of the Environmental Integrity Project for their expertise and feedback on this article.

The Environmental Integrity Project is a nonpartisan, nonprofit watchdog organization that advocates for effective enforcement of environmental laws. 

Ethylene Cracker Would Contribute Jobs, Air Pollution

Last year, Shell Chemicals announced its intentions to build a multi-billion dollar ethylene cracker “in Appalachia”, effectively setting the stage for a bidding war between Ohio, West Virginia, and Pennsylvania. There have been numerous other plans for such plants in the area, including a recent partnership trying to get Aither Chemicals catalytic cracking process up in running, once again, “in Appalachia.”  The interest in the region is mostly due to the Marcellus and Utica shale gas produced in the region, which contains mostly methane (so-called natural gas used for heating, cooking, etc.), as well as other hydrocarbons that must be removed from the methane before the gas is put into pipelines.  These other hydrocarbons are mostly ethane, propane, and butane, which are converted into ethylene, propylene, and butadiene, respectively, through a process called cracking, and are then used for the creation of plastics, synthetic rubber, and other petrochemicals.

Whichever state lands these massive facilities stands to gain several thousand temporary construction jobs and several hundred permanent positions at the facility.  It seems reasonable to take a look at other similar facilities in the country, not only to get a reasonable idea of the economic contribution, but also to gain insight on the facility’s contribution to air pollution in the region.

I have chosen to look at the cracker in Norco, Loisiana, also run by Shell Chemicals. Norco is the ultimate company town, named for the now defunct New Orleans Refining Company, it contains not only the Shell plant, but also major petrochemical facilities owned by Dow, Hexion, and Valero. There is also a presence by Motiva, but all indications are that this is functionally part of the Shell plant that is simply owned by a different company.


Norco, LA as seen from Google Earth

According to the Shell page linked above, the facility employs 600 full time workers and 160 contractors for an annual payroll of $50 million. It also contributes $22 million in state, local, and property taxes to the community. That’s all very significant, albeit a far cry from the 17,000 jobs, $1 billion in wages, and $169 million in tax revenues that the good people of Ohio are being promised–perhaps those figures are over the estimated life of the facility, who knows? I’m guessing the proposed facility in Appalachia won’t be 22 times larger than the one in Norco, Louisiana though.

In terms of air emissions, it is hard to know what to expect. Emissions may wind up being quite different from Norco’s due to a different chemical composition of the feedstock, for example.  However, to get the conversation started, I have compiled the EPA’s 2008 National Emissions Inventory (NEI) estimated emissions for Norco, as well as a well known polluter that’s already in the area, Clairton Coke Works. I should mention that based on my experience, I don’t have a lot of faith of the validity of NEI data, especially for data in Pennsylvania (see this discussion about Clairton, for example), but it is what’s available.  Also, I need to mention that the data for Shell is aggregated between the Norco East, Norco West, and Motiva facilities, because from looking at the the websites for Shell and Motiva, the whole operation seems to be focused around cracking.  Let’s take a look:


2008 USEPA National Emissions Inventory for the Coke Works in Clairton, PA and the Shell ethylene cracker in Norco, LA

Now before you go to the EPA site to research these 84 pollutants, I didn’t put these up for direct comparison, since the facilities are obviously quite different. The point is that in an area that still largely in nonattainment for fine particulate matter and just recently re-entering attainment for ozone, the prospect of adding another major emitter of particulates and ozone and particulate precursors (as well as a whole host of other junk) isn’t going to help.