Posts

Secret Chemicals Report Cover - Rig

New report finds widespread use of proprietary fracking chemicals in PA

Keystone Secrets: Records Show Widespread Use of Secret Fracking Chemicals is a Looming Risk for Delaware River Basin, Pennsylvania Communities

A report released today by the Partnership for Policy Integrity (PFPI) found that between 2013 and 2017, drilling companies injected at least one hydraulic fracturing (“fracking”) chemical with an identity kept hidden from the public into more than 2,500 unconventional natural gas wells drilled in Pennsylvania. The report, KeyStone Secrets, found companies injected secret fracking chemicals 13,632 times into 2,515 wells in total (explore map below).

Fracking in unconventional formations has significantly increased oil and gas extraction, making Pennsylvania the nation’s second-largest natural gas producer. The process has also sparked concerns about pollution and health effects, especially related to unidentified fracking chemicals. In response, Pennsylvania and 28 other states have enacted rules that require some public disclosure of these chemicals. However, most if not all of these rules have exceptions that allow companies to withhold chemical identities as trade secrets.

This report by Massachusetts-based Partnership for Policy Integrity (PFPI), with analysis of fracking chemical disclosure data by FracTracker Alliance, illustrates that drilling companies have used these exceptions extensively.

Records obtained by PFPI from the US Environmental Protection Agency (EPA) show that non-disclosure of fracking chemical identities may leave people unknowingly exposed to harmful substances. Between 2003 and 2014, the EPA identified health concerns for 109 of 126 new chemicals proposed for use in oil and gas drilling and fracking. The manufacturers submitted information about the chemicals for review under a program that requires EPA to screen and regulate new chemicals for health and environmental impacts before they are used commercially.

Despite concerns by EPA scientists about the chemicals’ health effects, EPA approved most of the 109 chemicals for use, and 62 were later used in or likely used in oil and gas wells.  Manufacturers took advantage of trade secret protections that are permitted by federal law to conceal 41 of the 62 chemicals’ identities.  It is possible that some of these chemicals declared secret at the federal level are some of the same chemicals being used under trade secret protection in Pennsylvania.Keystone Secrets map

Explore dynamic map full screen

Mapping of secret fracking chemical injection sites (above) show that use is heaviest in southwest Pennsylvania near Pittsburgh and in northeast Pennsylvania near the Delaware River Basin, tracking areas of intensive drilling.

The use of secret chemicals in Pennsylvania’s oil and gas wells is likely even higher than detailed in this report because of exemptions in Pennsylvania law, including:

  • No disclosure requirements for the chemicals used in drilling oil and gas wells – the portion of the oil and gas extraction process that precedes fracking;
  • No requirement that fracking chemicals for so-called “conventional” oil and gas wells be reported to an easily searchable electronic database; and
  • A reporting exemption for chemical manufacturers who are not required to disclose trade secret chemical identities even to emergency responders cleaning up a leak or spill.

In the coming months, the Delaware River Basin Commission is expected to consider a ban on fracking in the basin – fracking that would be most likely to occur in unconventional gas wells in Pennsylvania’s portion of the four-state area. There is currently a de facto moratorium on fracking in the basin that provides drinking water for New York City and Philadelphia – among other cities. The commission is also expected to consider whether to allow related activities inside the basin, including the treatment and discharge into waterways of fracking wastewater from outside the basin. Any fracking or discharges of wastewater would be likely to include some of the secret fracking chemicals discussed in this report.

People have a right to know the identities of chemicals used in oil and gas operations so that citizens, first responders, regulators, and scientists can determine the chemicals’ risks and act to protect health and the environment. Learn more about the proprietary fracking chemicals used in PA by reading the full report:


Report Author: Dusty Horwitt, Partnership for Policy Integrity

Partnership for Policy Integrity Logo

Documenting Fracking Impacts: A Yearlong Tour from a Bird’s-Eye-View

“The aeroplane has unveiled for us the true face of the earth.” by French writer and aviator Antoine de Saint-Exupéry author of Le Petit Prince (The Little Prince)

I always tell people that you can’t really understand or appreciate the enormity, heterogeneity, and complexity of the unconventional oil and gas industry’s impact unless you look at the landscape from the cockpit of a Cessna 172. This bird’s-eye-view allows you to see the grandeur and nuance of all things beautiful and humbling. Conversely, and unfortunately more to the point of what I’ve seen in the last year, a Cessna allows one to really absorb the extent, degree, and intensity of all things destructive.

I’ve had the opportunity to hop on board the planes of some amazing pilots like Dave Warner, a forester formerly of Shanks, West Virginia (Note: More on our harrowing West Virginia flight with Dave later!!), Tim Jacobson Esq. out of La Crosse, Wisconsin, northern Illinois retired commodity and tree farmer Doug Harford, and Target corporate jet pilot Fred Muskol out of the Twin Cities area of Minnesota.

Since joining FracTracker I’ve been fortunate to have completed nearly a dozen of these “morning flights” as I like to call them, and five of those have taken place since August 2017. I’m going to take the next few paragraphs to share what I’ve found in my own words and by way of some of the photos I think really capture how hydraulic fracturing, and all of its tentacles, has impacted the landscape.

The following is by no means an empirical illustration. I’m increasingly aware, however, that often times tables, charts, and graphs fail to capture much of the scale and scope of fossil fuel’s impact. Photos, if properly georeferenced and curated, are as robust a source of data as a spreadsheet or shapefile, both of which are the traditional coins of the realm here at FracTracker.

West Central Wisconsin Frac Sand Mines

August 2, 2017

Figure 1. Wisconsin and Winona, Minnesota silica sand mines, processing facilities, and related operations

It was nearly a year ago today that I met Bloomer, Wisconsin dairy farmer Ken Schmitt at the Chippewa Valley Regional Airport (KEAU) and soon thereafter jumped into Tim Jacobson’s Cessna 172 to get a bird’s-eye-view of the region’s many frac sand mines and their impacts (Figure 1). These sites are spread out over a 12-county region known as West Central Wisconsin (WCW). Ken hadn’t been up to see these mines since October of 2016 and was eager to see how they had “progressed,” knowing what he did about their impact on his neck of the woods in northern Chippewa County.

Ken is one of the smartest guys I’ve ever met, and – befitting a dairy farmer – he is also one of the most conservative and analytical folks I’ve ever met. However, that morning it was clear that his patience with county administrators and the frac sand mining industry had long since run out. He was tired of broken promises, their clear and ubiquitous bullying tactics, and a general sense that his livelihood and the farm he was hoping to leave his kids were at risk due to sand mining’s complete capture of WCW’s residents and administrators.

Meanwhile Mr. Jacobson Esq. was intimately familiar with some of the legal tools residents were using to fight the spread of sand mining in the WCW. This is something he referred to as “anticipatory nuisance” lawsuits, which he and his colleagues were pursuing on behalf of several landowners against OmniTrax’s (f/k/a Terracor) “sand mine, wet and dry processing, a conveyor system to a rail load out with manifest yard” proposal in Jackson County, Wisconsin. I, too, have worked with Tim to inform some of his legal work with respect to the nuisance stories and incidents I’ve documented in my travels, as well as research into the effects of sand mining across Michigan, Illinois, Minnesota, and Wisconsin.

Explore details from our sand mining tour by clicking on the images below:

Our flight lasted nearly 2.5 hours and stretched out over 4,522 square miles. It included nearly 20 sand mines – and related infrastructure – in the counties of Jackson, Wood, Clark, Eau Claire, Monroe, Trempealeau, and Buffalo. What we saw was a sizeable expansion of the mining complex in the region since the last time I flew the area – nearly four years earlier on October 8, 2013. The number and size of mines that had popped up since that trip were far greater than any of us had expected.

This expansion paralleled the relative – and total –increase in demand for “proppant” from the High Volume Hydraulic Fracturing (HVHF) all across the country (Figure 2).

Figure 1. A map of the likely destination for Wisconsin’s frac sand mines silica sand based on an analysis of Superior Silica Sand’s 2015 SEC 10Ks.

Figure 2. A map of the likely destination for Wisconsin’s frac sand mines silica sand based on an analysis of Superior Silica Sand’s 2015 SEC 10Ks.

West Virginia Panhandle & Southeastern Ohio

January 26, 2018

On the morning of January 26th, I woke up on the west side of Cleveland thinking there was very little chance we were going to get up in the air for our flight with SouthWings’ pilot Dave Warner due to inclement weather. There was a part of me that was optimistic, however, so I decided to make the three hour drive down to the Marshall County Airport (KMPG) in Moundsville, West Virginia from Cleveland in the hopes that the “cold rain and snow” we’d been receiving was purely lake effect stuff and the West Virginia panhandle had not been in the path of the same cold front.

Marshall County, West Virginia Airport (KMPG) staff clearing the runway for our flight with SouthWings pilot Dave Warner, 1/26/2018

Unfortunately, when I arrived at the Moundsville airport I was wrong, and the runway was pretty slick around 8:00 a.m. However, the airport’s staff worked diligently to de-ice and plow the runway and by the time Dave Warner arrived from southern West Virginia conditions were ideal. The goal of this flight was two-fold:

  1. Photograph some of the large-scale high-volume hydraulic fracturing (HVHF) infrastructure in the West Virginia counties of Doddridge, Wetzel, and Marshall owned and operated by MarkWest, and
  2. Allegheny Front’s Julie Grant was doing a story on natural gas gathering pipeline’s impact on waterways, and more specifically the Hellbender Salamander (Cryptobranchus alleganiensis). She was looking to see the impacted landscape from the air.

Both of these goals were achieved efficiently and safely, with the resulting Allegheny Front piece receiving significant interest across multiple public radio and television platforms including PRI’s Living On Earth.

Explore details from our WV / OH tour by clicking on the images below:

On my return drive home that afternoon the one new thing that really resonated with me was the fact that hydraulic fracturing or fracking has come to be defined by 4-5 acre well pads across Appalachian, Texas, Oklahoma, and North Dakota. This is a myth, however, expertly perpetuated by the oil and gas industry and their talking shops. Fracking’s extreme volatility and quick declines in rates of return necessitate that this latest fossil fuel iteration install large pieces of infrastructure like compressor stations and cracking facilities. This all is to ensure timely movement of product from supply to demand and to optimize the “value added” products the global markets demand and plastics industry uses as their primary feedstocks. This large infrastructure was never mentioned at the outset of the shale revolution, and I would imagine if it had been there would be far more resistance.

The one old thing the trip reinforced was the omnipresence and sinuosity of natural gas gathering lines across extremely steep and forested Appalachian geographies. How these pipelines will hold up and what their hasty construction is doing to terrestrial and aquatic wildlife, not to mention humanity, is anyone’s guess; the data is just so darn bad.

Southeastern Ohio

March 5, 2018 – aka, The XTO Powhatan Point Well Pad Explosion Flight

FAA’s Temporary Flight Restriction (TFR) notification

Around 9 a.m. on Thursday, February 15, 2018, an explosion occurred at XTO’s Schnegg frack pad “as the company worked to frack a fourth well” in Powhatan Point, Belmont County, Ohio. Shortly thereafter, a two-mile Temporary Flight Restriction (TFR) was enacted by the Federal Aviation Administration (FAA) around the incident’s location. The TFR was supposed to lapse during the afternoon of March 5, however, due to complications at the site the TFR was extended to the evening of March 8.

We were antsy to see what we could see, so we caught an emergency flight with Dave Warner, only this time under the LightHawk umbrella. We left on the morning of March 5th out of the all too familiar[1] Carroll County-Tolson Airport (KTSO). Although we couldn’t get close to the site, there was a holler valley to the northwest of the pad that allowed us to capture a photo of the ongoing releases. Additionally, within several weeks we obtained by FOIA the raw Ohio State Trooper monitoring footage from their helicopter and posted this footage to our YouTube channel, where it has received 4,787 views since March 19, 2018. This type of web traffic is atypical for anything that doesn’t include kittens, the Kardashians, or the Kardashians’ kittens.

Explore details from our Southeastern Ohio tour by clicking on the images below:

Much like our flight in January the most salient points I got out of Dave’s plane thinking about were:

  • Astonishment regarding the number of gas gathering lines and the fact that they seem to have been installed with very little-to-no reclamation forethought. They are also installed during a time of year when – even if hydroseed is applied – it won’t grow, leaving plenty of chances for predictable spring rains to cause major problems for streams and creeks, and
  • Amazement over the growing inventory of large processing infrastructure required by the HVHF industry. This insfrastructure includes the large Mark West and Blue Racer Midstream processing plants in Cadiz and Lewisville, Ohio, respectively, as well as Texas-based Momentum Midstream’s natural gas liquids-separating complex in Scio along the Carroll and Harrison County borders. That complex is affectionately referred to by the company’s own spokesman as The Beast because of its sheer size.

It is a big plant, a very big plant and far bigger than other plants around here… What’s really amazing that we got it up and running in six months. No one believed that we could do that. – Momentum Midstream spokesman Eric Mize discussing their natural gas liquids-separating complex in Scio, Ohio.

LaSalle County, Illinois

May 24 & 26, 2018

 Frac Sand Mines and The Nature Conservancy’s Nachusa Grasslands Buffalo Herd, Franklin Grove, Illinois

It was during the week of June 20, 2016 that I first visited the frac sand mine capital of the United States: LaSalle County, Illinois. Here is the land of giant silica sand mines owned by even larger multinationals like U.S. Silica, Unimin, and Fairmount Santrol.

Fast forward to the week of May 21st of this year, and I was back in the frac sand capital to interview several folks that live near these mines or have been advocating for a more responsible industry. I conducted a “morning flight” with several journalists and county officials from neighboring Ottawa County.

LaSalle County is an extremely interesting case study for anyone even remotely interested in the food, energy, and water (FEW) conversation that has begun to receive significant attention in the age of the “Shale Revolution.” (Such focus is largely thanks to the extreme amounts of water required during the fracking process.) While LaSalle County has never experienced even a single HVHF permit, it is home to much of the prized silica or “proppant” the HVHF industry prizes. La Salle receives this recognition due to its location above one of the finest sources of silica sand: the St. Peter Sandstone formation. This situation has prompted a significant expansion in the permitting of new silica sand mines and expansion of existing mines throughout the county – from small townships like North Utica and Oglesby to Troy Grove 7 miles north on East 8th Road.

Meanwhile, LaSalle County is home to some of the most productive soils in the United States, due largely to the carbon sequestration capabilities of the tallgrass prairies that once dominated the region. In any given year, the county ranks in the top 5 nationally based on the amount of soybean and corn produced on a per-acre basis. According to an analysis of the most recent USDA agricultural census, total agricultural value in LaSalle County exceeds $175 million or seven times the national average by county of roughly $23 million.

Needless to say, the short-term extraction of silica sands in the name of “energy independence” stands to have a profound impact on long-term “food security” in the U.S. and worldwide. Sadly, this conflict is similar to the one facing the aforementioned West Central Wisconsin, home to similarly productive soils. The cows that feed on the forage those soils produce some of the highest quality dairy anywhere. (As an aside: both regions are facing the realities of their disproportionate support for Donald Trump and the effects his trade war will have on their economies.)

LaSalle County is also home to the 2,630-acre Starved Rock State Park along the south bank of the Illinois River. Much of the park’s infrastructure was built by the Civilian Conservation Core (CCC) back in the early 1900s. Starved Rock is home to 18 canyons featuring:

… vertical walls of moss-covered stone formed by glacial meltwater that slice dramatically through tree-covered sandstone bluffs. More than 13 miles of trails allow access to waterfalls, fed season runoff or natural springs, sandstone overhangs, and spectacular overlooks. Lush vegetation supports abundant wildlife, while oak, cedar and pine grow on drier, sandy bluff tops. – IL DNR

Starved Rock receives more than 2.5 million visitors annually, which is the most of any Illinois state park. However, it is completely surrounded by existing or proposed frac sand mines, including US Silica’s Covel Creek mine. US Silica even recently pitched an expansion to the doorstep of Starved Rock and future plans to nearly engulf the park’s perimeter. What such an expansion would do to the attractiveness of the park and its trickle down economic impact is debatable, but LaSalle County residents Paul Wheeler and photographer Michelle McCray took a stab at illustrating the value of the state park to residents for our audience back in August, 2016:


Our flight with LightHawk pilot and neighboring Mazon, Illinois retired farmer Doug Harford lifted off from Illinois Valley Regional Airport (KVYS) at around 9:00 a.m. local time on the morning of May 24th. We had perfect conditions for taking photos, with no clouds and a comfortable 70-75°F for the duration of a two-hour flight. We covered nearly 200 square miles and ten existing, abandoned, or permitted frac sand mines.

Explore details from our Illinois tour by clicking on the images below:

All passengers were struck by how large these mines were and how much several of the mines had expanded since the last time we all flew over them in June of 2016. The mines that had experienced the greatest rates of expansion were US Silica’s LaSalle Voss mine along Interstate 80 and the aforementioned Illinois River mine along with Fairmount Mineral’s major expansion, both in terms of infrastructure and actual mine footprint, in Wedron along the Fox River.

Figure 2. A map of the LaSalle County frac sand mines and associated St. Peter sandstone formation along with the city of Chicago for some geographic perspective.

Figure 3. A map of the LaSalle County frac sand mines and associated St. Peter sandstone formation, along with the city of Chicago for some geographic perspective.

Most of this expansion is due to three critical distinguishing characteristics about the industry in LaSalle County:

  • The processing and export infrastructure (i.e., east-west rail) is in place and allows for mining to take place at times when other sand mining regions are mothballed,
  • Due to the large aggregation of parcels for farming purposes, companies can lease or outright purchase large amounts of land from relatively few landowners, and
  • Only the largest firms are active in the region, and with economies of scale they are not subject to the same types of shocks that smaller firms are when the price of oil collapses (like it did between June 2015 and February 2016). This means that the conflict will only be amplified in the coming months and years as the frac sand mining industry looks to supersede agriculture as LaSalle County’s primary economic driver.

However, all is not lost in North Central Illinois. This hope was stoked during our sojourn – and my subsequent trip in person – up to see The Nature Conservancy’s 3,600 acre preserve in Franklin Grove on the border of Lee and Ogle counties. As someone who is working hard to establish a small plot of prairie grasses and associated wildflowers at my home outside Cleveland, I was hoping to see what an established prairie looks like from the air. My primary goal, however, was to see what a healthy herd of native bison looks like.[2] The Nachusa bison are unique in that they came:

… from Wind Cave National Park in South Dakota and…Unlike most other American bison, animals from the Wind Cave herd have no history of cross-breeding with cattle. Bison from Wind Cave are the species’ most genetically pure and diverse specimens.

We were fortunate during our flight to have spotted the heard at the western edge of the preserve in what volunteer naturalist, Betty Higby, later told me the staff calls Oak Island. While I am not a person of faith, seeing these behemoths roaming freely and doing what 20-30 million of their ancestors used to do across much of North America moved me in a way I was not prepared for. I was immediately overwhelmed with a sense of awe and humility. How was I going to explain this beast’s former ubiquity and current novelty to my 5-year-old son, who shares a love of the North American Bison with me and would most certainly ask me what happened to this majestic creature?

Medina & Stark counties, Ohio NEXUS Pipeline flight

June 25, 2018

Ohio is currently home to 2,840 fracking permits, with 2,370 of these laterals having been drilled since September 2010. The growing concern around the fracking and petrochemicals conversation across much of the Midwest is the increasing number of FERC-permitted natural gas pipeline “proposals”[3] the industry is demanding it needs to maximize potential. Most residents in the path of these pipelines have strong objections to such development, citing the fact that imminent domain should not be invoked for corporate gain.

Much like all of the other patterns and processes we’ve documented and/or photographed at FracTracker, we felt that a flight over the latest FERC-approved pipeline – The NEXUS pipeline – would give us a better understanding of how this critical piece of infrastructure has altered the landscapes of Medina and Stark counties. Given the population density of these two northeastern Ohio counties, we also wanted to document the pipeline’s pathway with respect to urban and suburban centers.

Our flight on June 25th was delayed due to low clouds and last minute changes to the flight plan, but once we took off from Wadsworth Municipal Airport (3G3) with a local flight instructor it was clear that NEXUS is a pipeline that navigates a sinuous path in cities and townships like Green, Medina, Rittman, and Seville – coming dangerously close to thousands of homes and farms, as well as many schools and medical facilities.

Explore details from our NEXUS Pipeline tour by clicking on the images below:

Will this be the last FERC-approved pipeline to transverse Ohio in the name of “energy independence”? Will this pipeline and its brethren with names like the Utopia and ET Rover be monitored in real-time? If not, why? It is unfortunate, to say the least, that we so flippantly assume these pipelines are innocuous given their proximity to so many Ohioans. And, as if to add insult to injury, imminent domain is invoked. All this for a piece of oil and gas infrastructure that will profit companies on the global market, with only a fraction of the revenue returning to affected communities.

What’s Next?

I don’t know of a better way to understand the magnitude of these pipelines than flying over them at 1,000-1,500 feet, and I will continue to monitor and photograph oil and gas developments from the air with the assistance of amazing pilots like those affiliated with LightHawk and SouthWings.

To this end, I will be returning to West Central Wisconsin for yet another “morning flight” with the aforementioned La Crosse-area pilot and lawyer Tim Jacobson and frequent collaborator University of Wisconsin-Stout professor Tom Pearson.[4] Our flight plan will return us to the northern Wisconsin frac sand counties of Chippewa, Barron, Dunn, Eau Claire, and if we have time we’ll revisit the mines we photographed in August of last year. We’ve been told by Susan Bence, an environmental reporter out of Milwaukee Public Radio, that she is trying to convince the powers that be at NPR in Washington, DC that this is a story the entire country should hear about. Wish us luck!


By Ted Auch, Great Lakes Program Coordinator

Bird’s-Eye-View Endnotes

  1. The first of my morning fracking flights was out of this airport back in June, 2012 along with the other passenger on this flight Paul Feezel of Carroll Concerned Citizens and David Beach of the Cleveland Museum of Natural History’s Green City Blue Lakes program.
  2. The Conservancy initially brought at least 30 bison of different ages and genders to Nachusa. The bison graze on approximately 1,500 acres of the prairie and the site currently supports more than 120 bison according to site volunteer naturalist Betty Higby.
  3. I put quotes around this word because in my travels across Ohio interviewing those in the path of these transmission pipelines it is clear that this is not the correct word because ‘proposals’ implies that these pipelines might not happen or are up for debate. Yet, neither could be further from the truth with most folks indicating that it was very clear very early in their interactions with FERC and the pipeline companies that there was never a chance that these pipelines were not going to happen with “imminent domain for private gain” being the common thread throughout my conversations.
  4. Tom is the author of a recently published book on the topic “When the Hills Are Gone.”

Supporting Documentation

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Aerial image of fracking activity in Marshall County, WV, next to the Ohio River on January 26th, 2018 from approximately 1,000 to 1,200 feet, courtesy of a partnership with SouthWings and pilot Dave Warner. The camera we used was a Nikon D5300. Photo by Ted Auch, FracTracker Alliance, January 2018

Fracking’s Freshwater Supply and Demand in Eastern Ohio

Mapping Hydraulic Fracturing Freshwater Supply and Demand in Ohio

Below is a map of annual and cumulative water withdrawal volumes by the hydraulic fracturing industry across Ohio between 2010 and 2016. It displays 312 unique sites, as well as water usage per lateral. The digital map, which can be expanded fullscreen for more features, includes data up until May 2017 for 1,480 Ohio laterals (vertical wells can host more than one lateral well).


View map fullscreen | How FracTracker maps work

The primary take-home message from this analysis and the resulting map is that we can only account for approximately 73% of the industry’s more than 13-billion-gallon freshwater demand by considering withdrawals alone. Another source or sources must be supplying water for these hydraulic fracturing operations.

Hydraulic fracturing rig on the banks of the Ohio River in Marshall County, West Virginia, Winter 2018 (Flight provided by SouthWings)

When Leatra Harper at Freshwater Accountability Project and Thriving Earth Exchange and I brought up this issue with Ohio Division of Water Resources Water Inventory and Planning Program Manager, Michael Hallfrisch, the following correspondence took place on January 24, 2018:

Mr. Hallfrisch: “Where did the water usage per lateral data come from?  Does the water usage include reused/recycled water?  I know that many of the larger operators reuse a significant amount of their flow back because of the high cost of disposal in class II injection wells.”

FracTracker: “[We’]ve been looking at Class II disposal economics in several states and frankly the costs here in Ohio are quite cheap and many of the same players in Ohio operate in the other states [We]’ve looked at.  Granted they usually own their own Class II wells in those other states (i.e., OK, or CO) but the fact that they are “vertically integrated” still doesn’t excuse the fact that the cost of disposing of waste in Ohio is dirt cheap.  As for recycling that % was always a rounding error and last [we] checked the data it was going down by about 0.25-0.35% per year from an average of about 5.5-8.0%.  [We respectfully] doubt the recycling % would fill this 25% gap in where water is coming from.  This gap lends credence to what Lea and [FracTracker] hear time and again in counties like Belmont, Monroe, Noble etc with people telling us about frequent trenches being dug in 1st and 2nd order streams with operators topping off their demands in undocumented ways/means.  Apologies for coming down hard on this thing but we’ve been looking/mapping this thing since 2012 and increasingly frustrated with the gap in our basic understanding of flows/stocks of freshwater and waste cycling within Ohio and coming into the state from PA and WV.”

Broader Implications

The fracking industry in Ohio uses roughly 10-14 million gallons per well, up from 4-5 million gallon demands in 2010, which means that freshwater demand for this industry is increasing 15% per year (Figures 1 and 2). (This rate is more than double the volumes cited in a recent publication by the American Chemical Society, by the way.) If such exponential growth in hydraulic fracturing’s freshwater demand in Appalachia continues, by 2022 each well in Ohio and West Virginia will likely require[1*] at least 43 million gallons of freshwater (Table 1).

Table 1. Projected annual average freshwater demand per well (gallons) for the hydraulic fracturing industry in Ohio and West Virginia based on a 15% increase per year.

Year Water Use Per Well (gallons)
Ohio West Virginia
2019 19,370,077 19,717,522
2020 23,658,666 23,938,971
2021 28,896,760 29,064,215
2022 35,294,582 35,286,756
2023 43,108,900 42,841,519

Water quantity and associated watershed security issues are both acute and chronic concerns at the local level, where fracking’s freshwater demands equal 14% of residential demands across Ohio. These quantities actually exceed 85% of residential demand in several Ohio counties (e.g., Carroll and Harrison), as well as West Virginia (e.g., Doddridge, Marshall, and Wetzel). Interestingly the dramatic uptick in Ohio freshwater demand that began at the end of 2013 coincides with a 50% decline in the price of oil and gas (Figure 3).  The implication here is that as the price of gas and oil drops and/or unproductive wells are drilled at an unacceptable rate, the industry uses more freshwater and sand to ensure acceptable financial returns on investments.

Figures 1-3

Note: Data from U.S. Energy Information Administration (EIA) Petroleum & Other Liquids Overview

Total Water Used

To date, the fracking industry has taken on average 90 million gallons of freshwater per county out of Ohio’s underlying watersheds, resulting in the production of 9.6 million gallons of brine waste that cannot be reintroduced into waterways. This massive waste stream is destined for one of Ohio’s Class II Injection wells, but the industry spends less than 1.25% of available capital on water demand(s) and waste disposal. All of this means that the current incentive (cost) to become more efficient is too low. Sellers of water to the industry like the Muskingum Watershed Conservancy District, which we’ve chronicled frequently in the past[2], have actually dropped their price for every 1,000 gallons of water – from roughly $9 to now just $4-6 – for the fracking industry in recent years.

Hydraulic fracturing’s demand is becoming an increasingly larger component of total water withdrawals in Ohio, as other industries, agriculture, and mining become more efficient. Oil and gas wells drilled at the perimeter of the Utica Shale are utilizing 1.25 to 2.5 times more water than those that are staged in the shale “Sweet Spots.” Furthermore, the rise in permitting of so called “Super Laterals” would render all of our water utilization projections null and void. Laterals are the horizontal wells that extend out underground from the vertical well. Most well pads are home to multiple laterals in the range of 4-7 laterals per pad across Ohio and West Virginia.

These laterals, which can reach up to 21,000 feet or almost 4 miles, demand as much as 87 million gallons of freshwater each.

Even accounting for the fact that the super laterals are 17-21,000 feet in length – vs. an average of 7,452 feet – such water demand would dwarf current demands and their associated pressures on watershed security and/or resilience; typically, Ohio’s hydraulically fractured laterals require 970-1,080 gallons of freshwater per lateral foot (GPLF), but super laterals would need an astounding 4,470 GLPF.

Conclusions and Next Steps

The map above illustrates the acute pressures being put upon watersheds and public water supplies in the name of “energy independence.” Yet, Ohio regulators and county officials aren’t putting any pressure on the high volume hydraulic fracturing (HVHF) industry to use less water and produce less waste. We can’t determine exactly how water demand will change in the future. The problem is not going away, however, especially as climate change results in more volatile year-to-year fluctuations in temperature and precipitation. This means that freshwater that was/is viewed as a surplus “commodity” will become more valuable and hopefully priced accordingly.

Furthermore, the Appalachian Ohio landscape is undergoing dramatic transformations at the hands of the coal and more recently the HVHF industry with strip-mines, cracking plants, cryogenic facilities, compressor stations, gas gathering lines – and more – becoming ubiquitous.

We are seeing significant acreage of deciduous forests, cropland, or pasture that once covered the region replaced with the types of impervious surfaces and/or “clean fill” soil that has come to dominate HVHF landscapes in other states like North Dakota, Texas, and Oklahoma.

This landscape change in concert with climate change will mean that the region will not be able to receive, processes, and store water as effectively as it has in the past.

It is too late to accurately and/or more holistically price the HVHF’s current and past water demand in Ohio, however, such holistic pricing would do wonders for how the industry uses freshwater in the future. After all, for an industry that believes so devotedly in the laws of supply and demand, one would think they could get on board with applying such laws to their #1 resource demand in Appalachia. The water the HVHF industry uses is permanently removed from the hydrological cycle. Now is the time to act to prevent long term impacts on Ohio’s freshwater quantity and quality.


Relevant Data

  • Ohio hydraulic fracturing lateral freshwater demand by individual well between 2010 and the end of 2016. Download
  • Ohio hydraulic fracturing lateral freshwater withdrawals by site between 2010 and the end of 2016. Download

Endnotes

  1. *Certainty, with respect to this change in freshwater demand, is in the range of 86-90% assuming the exponential functions we fit to the Ohio and West Virginia data persist for the foreseeable future. Downing, Bob, 2014, “Ohio Drillers’ Growing Use of Fresh Water Concerns Environmental Activists”, March 19th, Akron, Ohio
  2. Downing, Bob, 2014, “Group Reacts to Muskingum Watershed Leasing Deal with Antero”, April 22nd, Akron, Ohio

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Appalachian Ohio: Where Coal Mining, Fracking, and National Politics Converge

The head of Murray Energy Corporation, Robert Murray, is very close to the highest office in the land. Such an association demands a close look at the landscape from which this corporation and its founder arouse.

Belmont County, Ohio’s most famous tycoon Robert Murray has established a close relationship with the Trump administration. This connection dates back to his $300,000 contribution to Trump’s inauguration. The intimacy of this relationship has been given new weight recently when it was revealed that a hug between Mr. Murray and the Department of Energy’s Secretary Rick Perry preceded a meeting where Mr. Murray presented the administration with a memo outlining a 16-point plan for removing some of the burdensome regulations put in place by Mr. Murray’s least favorite person former President Barack Obama.

Among the few consistent themes from this most inconsistent of presidents has been a fondness for coal and steel, where brawny men do essential work and are threatened not by shifting economics, but by greenies and weenies who want to shut them down. Mr Trump and Mr Murray both want environmental rules rolled back—Mr Murray because it would be good for his bottom line, and Mr Trump because a second consistent aim of his presidency is to reverse anything done by Barack Obama. It is doubtful whether policy shifts alone could revive coal mining, but the attempt to do so says much about how vested interests operate in this administration… Mr Trump played a hard-nosed businessman on TV, but Mr Murray is the real thing. – The Economist, 2018

Not only has Mr. Murray succeeded in capturing the hearts and minds of the Trump administration, he has demanded that his $300,000 contribution get his longtime Oklahoman lawyer, and former aide to the senate’s chief climate skeptic James M. Inhofe of Oklahoma, the #2 spot behind Scott Pruitt at the EPA. Mr. Murray is so powerful that he managed to get Perry & Co. to fire the photographer that took the photo of the tender moment between Messrs. Perry and Murray.

Awkwardness aside, these situations could reasonably lead one to conclude that Perry and Pruitt are competing for Murray’s favor in the event they choose to run for higher office and need a patron with deep pockets. Mr. Murray would be in a real pickle if they both chose to run for the highest office in the land, with two fawning candidates potentially offering to one-up the other in terms of incentives and/or regulatory carve outs for Mr. Murray’s beloved King Coal.

Belmont County

Once the heart of Ohio Coal Country, Belmont Co. is now a major player on the hydraulic fracturing landscape, as well.

Given the growing influence of Mr. Murray and the coal industry writ large we thought it was time to do a deep dive into how Mr. Murray’s Appalachian Ohio home county of Belmont and surrounding counties have been altered by coal mining. We were also interested in how the coal industry has come to interact with the hydraulic fracturing industry, which has drilled 542 Utica wells in Belmont County alone since March 2012. These wells amount to 20% of all fracked wells in Ohio as of January 2018. The rate at which Utica wells are being permitted in Belmont County is actually increasing by about 1.5 to 2 permits per month or 5.5 to 7.8 times the statewide average (Figure 1).

Belmont County also happens to be the “all-time leader in coal production in Ohio” having produced 825 million tons since 1816 (ODNR, 2005). All of this means that the Ohio county that produces the most coal is also now The Buckeye State’s most actively drilled county.

Utica Wells Permits in Belmont County, Ohio Q1-2012 to Q1-2018

Figure 1. Monthly and cumulative hydraulically fractured wells in Belmont County, Ohio between Q1-2012 and Q1-2018

Photos of coal mining operations in Belmont County, OH. Flyovers courtesy of SouthWings:

An End to Coal

However, the days of coal’s dominance – and easily mineable coal – in Ohio appear to be coming to an end.

Per mine, Ohio’s mines produce about 30% of the national average and 43% of the state averages (Figure 2). Ohio’s mines only produce about 10% of what the mega Western mines produce on a per-mine basis, and much less than states like New Mexico and Texas, as well.

Even with automation, the barriers to a return of coal in Appalachia are formidable given that most of the easily recoverable coal has already been mined. Additionally, the landscape is more formidable and not as conducive to the large strip-mine and dragline operations of  the Powder River Basin, which produce roughly 8.5 million tons of coal per mine, compared to an average of 330,000 tons per mine in Appalachia. (Figure 2).

Coal Production by State (Thousand Tons, 2016)

Figure 2. Total coal produced across the twenty-five coal producing states, the Appalachian region, Western Basins (2016, tons, Data Courtesy of Energy Information Administration (EIA) State Profile and Energy Estimates)

Mapping Coal and Fracking

The below map depicts parcels owned by coal mining companies in the Ohio counties of Belmont, Noble, Guernsey, and Muskingum, as well as previously mined and/or potential parcels based on owner and proximity to existing mines.

We also incorporated production data (2001 to 2016) for 116 surface and strip coal mines in these and surrounding counties, natural gas pipelines, hydraulically fractured laterals, and Class II Salt Water Disposal (SWD) injection wells as of January 2018.

There are few areas in the United States where underground coal mining and fracking are taking place simultaneously and on top of each other. What could possibly go wrong when injecting massive amounts of fracking waste at high pressures into the geology below, while simultaneously pumping billions of gallons of water into hydraulically fractured laterals and mining coal at similar depths?

In the coming months and years we will be monitoring Belmont County, Ohio as an unfortunate case-study in determining the answer to such a unique question.

At the present time:

  • Murray Energy, its subsidiaries, and other coal companies own approximately 15% of Belmont County.
  • Coal companies and their associated real-estate firms and subsidiaries have mined or own approximately 5,615 square miles across the Noble, Belmont, Guernsey, and Muskingum counties.
  • The 116 mines in this map have mined an average of 3.22 million tons of coal since 2001 and more than 373 million tons in total. Mr. Murray’s mines account for 50% of this amount, producing nearly 15 times more coal per mine than the other 112 mines.

Collectively, these mines have contributed 1.09 billion tons of CO2 and CH4+N2O in CO2 equivalents to atmospheric climate change, or 68 million tons per year (MTPY). This volume is equivalent to the annual emissions of nearly 60 million Americans or 19% of the population.

Murray’s mines alone have contributed enough greenhouse gases (CO2+CH4+N2O) to account for the emissions of 9.2% of the US population since 2001. Each Murray mine is belching out 8.41 million tons of greenhouse gases per year or roughly equivalent to the emissions of 463,489 Americans.


View map fullscreen | How FracTracker maps work

Relevant data for this map can be found at the end of this article.

Broader Implications

Robert Murray’s influence and mining impacts extend well beyond Appalachian Ohio.

Mr. Murray’s is the primary owner of 157 mines and associated facilities1 across eleven states – and five of the six major Lower 48 coal provinces – from Utah and North Dakota to Alabama, Georgia, and Florida (Figure 3). Mr. Murray likes to highlight his sage purchases of prime medium and high volatility bituminous coal real-estate over the years on his company’s website. However, nowhere in his corporate overview does he mention his most notorious mine: the abandoned and sealed underground Crandal Canyon Mine, Emery County, Utah. It was at this mine on August 6, 2007 that a collapse trapped six miners and resulted in their deaths, along with the deaths of three rescue workers. Mr. Murray told the BBC that he had had an emotional breakdown and hadn’t deserted anyone living in a little trailer adjacent to the mine’s entrance every day following the collapse. Furthermore, Mr. Murray blames such events on subsidiaries like Grenwal Resources Inc., which happens to be the owner of record for the Crandal Canyon Mine and is one of thirty-three unique subsidiaries owned by Mr. Murray (data download).

US Coal Mines and Mines Owned by Robert Murray

Figure 3. US Coal Mines by type and Mines Owned by Robert Murray highlighted in turquoise

Table 1. Robert Murray coal mine ownership by mine status

Status Number of Mines
Abandoned 68
Abandoned and Sealed 62
Active 12
Non-Producing 10
Temporarily Idled 5
Total 157

The Politics of Energy

Robert Murray and his fellow fossil fuel energy brethren’s bet on Trump paid off, with Trump winning 99% of the vote in congressional districts where coal mines exist (Figure 4). Such a performance bested the previous GOP candidates of McCain and Romney even though they had achieved an impressive 96% of the vote. Interestingly, Trump did nearly as well in congressional districts dominated by wind farms and ethanol refineries where more than 87% of the electorate was white.

Percent of Energy Infrastructure in Congressional Districts that went for GOP Presidential Candidates in 2016, 2012, and 2008

Figure 4. Presidential election results for GOP candidates in voting districts where various forms of energy are produced and/or processed, 2016, 2012, and 2008

Trump & Co. promised these districts that his administration would breathe life into the fossil fuel industry. True, Trump, Pruitt, Perry, and Interior Secretary Ryan Zinke are greasing the skids for the industry’s revival. In terms of annual production, however, it is far from certain that such moves will translate into the types of boost in employment promised by Trump during the 2016 campaign. Even if production does return, executives like Murray admit that the advent of efficiencies and extraction technologies means that the industry is mining more coal per miner than ever before:

“Trump has consistently pledged to restore mining jobs, but many of those jobs were lost to technology rather than regulation and to competition from natural gas and renewables, which makes it unlikely that he can do much to significantly grow the number of jobs in the industry,” said Murray. “I suggested that he temper his expectations. Those are my exact words,” said Murray. “He can’t bring them back.” – The Guardian, March 27, 2017

Conclusions and Next Steps

It remains to be seen how the coal mining and fracking industry’s battle for supremacy will play out from a socioeconomic, health, environmental, and regulatory perspective. While many people understand that coal jobs aren’t coming back, we shouldn’t doubt the will of the Trump administration and friends like Robert Murray to make sure that profits can still be extracted from Appalachia.

Will the fracking industry and coal barons agree to get along, or will they wage a war on multiple fronts to marginalize the other side? Will this be another natural resource conflagration? If so, how will the people – and species like the “near-threatened” Hellbender Salamander (Cryptobranchus alleganiensis) or the region’s recovering Bald Eagle (Haliaeetus leucocephalus) population that live in the disputed Appalachian communities respond? How will their already stressed day-to-day existence be affected? To this point, the fossil fuel industry has managed to blame everyone but itself for the tepid to non-existent job growth in their sectors.

The Appalachian landscape has been deeply scarred and fragmented by coal mining, and now it is experiencing a new colonizing force in the form of the hydraulic fracturing industry. When Appalachia realizes that automation, globalization, and natural gas, are the key drivers to the downfall of coal, will they bring fire, brimstone, and pitchforks to the doorstep of Murray Energy of the fracking companies? Or is Appalachia’s future merely that of an extraction colony?

Oh Say, did you see him; it was early this morning.
He passed by your houses on his way to the coal.
He was tall, he was slender, and his dark eyes so tender
His occupation was mining, West Virginia his home
It was just before noon, I was feeding the children,
Ben Moseley came running to give us the news.
Number eight was all flooded, many men were in danger
And we don’t know their number, but we fear they’re all doomed.
– “West Virginia Mine Disaster” © Jean Ritchie, Geordie Music Publishing


By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Endnote

  1. Murray is listed as the owner of 45 coal mining facilities, 35 surface mines, and 77 underground mines according to data compiled from the Department of Labor

Download Relevant Data (Zip Files)

Falcon Public EIA Project feature image

Wingspan of the Falcon Pipeline

A Public EIA of Shell’s Ethane Cracker Pipeline

Pittsburgh, Pennsylvania – Jan. 29 – FracTracker Alliance has released a detailed environmental impact assessment (EIA), including digital maps, of the Falcon Ethane Pipeline being built to feed Shell Appalachia’s ethylene cracker plant in Beaver County, PA.

FracTracker’s Falcon Public EIA Project offers a rich series of interactive maps and articles detailing the Falcon’s proposed route through PA, WV, and OH, likely impacts to waterways, potential blast zones, ecological footprint, proximity to hazardous industrial areas, and more.

Given the issues associated with Mariner East 2 – a PA-based natural gas liquids pipeline whose history has been fraught with citations, public scrutiny is a crucial facet of pipeline construction. The Falcon Public EIA Project represents the first time that public stakeholders have been given such a significant amount of time and detail to investigate a proposed pipeline, including access to specific location information. Public comments are being accepted by the PA Department of Environmental Protection on the Falcon’s permit until February 20th.

“Companies are generally not required to publicly disclose GIS data when applying for permits,” remarked Kirk Jalbert, project lead and Manager of Community Based Research and Engagement at FracTracker. “While concerned citizens can stitch together paper maps provided by companies in their applications, that process can be complex and very labor intensive.”

With FracTracker’s project, however, digital maps and figures are front and center.

Early access to what is being proposed for the Falcon pipeline will enable nearby communities to better understand how its construction and the associated ethane cracker facility, which will produce 1 million tons of ethylene annually for making plastics, will affect their lives. Upon analyzing the data, FracTracker uncovered a number of particularly noteworthy statistics, for example:

  • There are 97.5 miles of pipeline proposed to be built through 22 townships in 3 states.
  • 2,000 properties have been surveyed; 765 easements executed.
  • Falcon will intersect 319 streams and 174 wetlands, with hundreds more proximate to work areas.
  • 550 family residences, 20 businesses, 240 groundwater wells, 12 public parks, 5 schools, 6 daycare centers, and 16 emergency response centers are within potential risk areas.
  • Learn more

“Extreme levels of risk and injustice are commonplace in petrochemical pipeline siting, as well as in where their contents come from and how they get used. This project provides context for the importance of reducing these impacts, both for curtailing environmentally unfriendly plastics as well as for moving away from fossil fuel dependencies,” said Brook Lenker, Executive Director of FracTracker.

The Falcon Public EIA Project is meant to expand public dialogue about what should be included in EIAs and how they should apply to petrochemical pipelines. The project also serves as a model for how regulatory agencies can be more transparent with data when engaging the public. This is especially important in the case of the Falcon pipeline, which will be exempt from Federal Energy Regulatory Commission (FERC) scrutiny and, therefore, not be subject to a full environmental impact assessment.

River Healers drone footage of fracking site in NM

Protect Greater Chaco: Drone surveillance of regional fracking sites in NM

The River Healers have droned multiple fracking sites in the Greater Chaco Area (New Mexico) impacted by explosions, fires, spills, and methane. See what they are finding. Hear their story.

 

By Tom Burkett – River Healer Spokesperson, New Mexico Watchdog

The Greater Chaco region is known to the Diné (Navajo) as Dinétah, the land of their ancestors. It contains countless sacred sites that date to the Anasazi and is home of the Bisti Badlands and Chaco Culture National Historical Park, a World Heritage Site. Currently WPX Energy has rights to lease about 100,000 acres of federal, state, and Navajo allottee lands in the oil rich San Juan Basin, which includes Greater Chaco.1 WPX Energy along with other fracking companies plan to continue establishing crude oil fracking wells on these sacred lands, although the Greater Chaco community has spoken out against fracking and continue to call for more safety and oversight from New Mexico state regulatory bodies such as the EMNRD Oil Conservation Division.

The River Healers pulled EMNRD records that show over 8,300 spills in New Mexico had been reported by the the fracking industry to EMNRD between 2011-2016 (map below). This is thousands more than reported by the Environmental Protection Agency. The records also showed how quickly reports of spills, fires, and explosions were processed by the EMNRD as ‘non-emergency’ and accepted industry reports that no groundwater had been contaminated.

River Healers map

Zoomed in view of the River Healers’ NM fracking spills map. Learn more

Daniel Tso, Member of the Navajo Nation and Elder of the Counselor Chapter, led us to fracking sites in Greater Chaco that had reported spills and fires. Daniel Tso is one of many Navajo Nation members working on the frontlines to protect Greater Chaco, their ancestral land, and their pastoral ways of life from the expanding fracking industry. Traveling in white trucks and cars we blended in with the oil and gas trucks that dot indigenous community roads and group around fracking pads on squares federally owned land. Years of watchdogging the fracking destruction on their sacred land was communicated through Tso’s eyes looking over the landscape for new fracking disruption and a calm voice,

… the hurt on the sacred landscapes; the beauty of the land is destroyed, this affects our people’s mental, spiritual, and emotional health.

At each site our eyes were scanning the fracking sites and terrain for drone flight patterns while the native elders were slowly scanning the ground for pottery shards and signs of their ancestors. Arroyos sweep around the fracking pads and display how quickly the area can flash flood from rain that gathers on the striated volcanic ash hills of the badlands.

Fracking Regulation in NM

The EMNRD Oil Conservation Division has only 12 inspectors that are in charge of overseeing over 50,000 wells scattered throughout New Mexico.2 Skepticism around EMNRD’s ability to regulate not only comes from a short staff being stretched across 121,598 square miles of New Mexico’s terrain, but thousands of active fracking sites continue to report spills, fires, and explosions every year.3 Even more problematic is that Ken McQueen, Cabinet Secretary of EMNRD formerly served as Vice President of WPX Energy.4 Ken McQueen managed WPX Energy’s assets in the Four Corners area of New Mexico, Colorado, and in addition, part of Wyoming. New Mexico Governor, Susana Martinez’s appointment of McQueen severely compromises the state’s ability to impartially oversee WPX Energy and regulate the fracking industry. Governor Martinez has been called to clean up the EMNRD, and rid the regulatory body of cabinet members more interested in protecting the assets of WPX than the health and rights of New Mexicans. Tso remarks,

The sacrifices of indigenous communities continue for a society that thinks gasoline comes from a gas station. That thinks oil is a commodity that is unending resource. This is unfortunate, and ultimately compromises our physical health. Yet this doesn’t matter to the industry. They want every last drop of crude oil even if it is cost prohibitive.

The River Healers maintain that Governor Martinez is complicit in the exploitation of human water rights as long as the EMNRD remains a compromised and unreliable regulatory body.

riverhealers-pic-1

New Mexico governmental assimilation with the oil and gas industry is presented to the Greater Chaco indigenous communities in the form of 90,000-lb gross weight oilfield trucks. Western Refining started rolling out trucks with larger-than-life prints of state and county law enforcements officers and military personnel at the same time water protectors at Standing Rock were being arrested and assaulted by the Morton County Sheriff’s Department in North Dakota.5 The indigenous-led movement to stop the Dakota Access Pipeline from desecrating sacred land and threatening rights to clean water has drawn greater resistance to oil and gas projects around the country.

Indigenous solidarity is felt in Greater Chaco, but Western Refining’s blatant propaganda campaign demonstrates how oil and gas corporations continue to threaten and silence the communities they extract oil from by displaying the paid power of state and federal law enforcement. The River Healers view this as a direct form of intimidation that aims to further a corporate ideology and remind native communities of the violence they experienced at the hand of the United States Federal Government in the past. The Western Refining campaign is a direct form of corporate-sponsored terrorism and should be grounds to ban their ability to use images of law enforcement officers to further their interests. Furthermore, the state should discontinue paying for officers to patrol facking roads and pads and instead use state funds to make state regulatory bodies work for the communities most impacted by the oil and gas industries.

What we are finding

Drone surveillance of fracking sites in Greater Chaco show how quickly the fracking industry has exploited a state government tied to the interests of a booming and unchecked resource extraction industry. In Greater Chaco this element of time is more deeply understood through the lens of the indigenous community.

Ultimately, the health of the fauna and flora are devastated. The adaptation of the delicate ecosystem is forever destroyed. Their recovery and healing will take years and years.

The Anasazi Kivas in Chaco Canyon took over 300 years to construct, while drill rigs such as Cyclone 32 take less than 10 days to drill 6,500 ft wells in the canyon plateau. We hiked 12 miles of the sacred Chaco Wash, pulled water samples, and saw the red palm of the Supernova Petrograph clinging to the understory of the canyon wall, clearly taking notice of what is happening above.

We deeply thank members of the Navajo Nation for inviting us into their lives, and our hearts stand with them in solidarity. Protect Greater Chaco! Dooda Fracking!


River Healers Site Videos

Site 1

Nageezi, NM
County: San Juan
Kimbeto Wash/Chaco River
GPS: 36°14’22.38”, -107°43’51.38”

Protect Greater Chaco : Site 1 from River Healers on Vimeo.

This particular site caught fire on June 11th, 2016 and was allowed to burn until July 14th. The fracking fire and contaminates spread to areas north and south of the fracking pad, burning Juniper trees within 200 feet of residential buildings. This fire is not the only documented case in the Greater Chaco Area where communities were disrupted and evacuated in the middle of the night. While community members remain concerned about their health, WPX reported that the incident was not an emergency and that no damage was caused to groundwater.

Site 2

Nageezi, NM
County: San Juan
Kimbeto Wash/Chaco River
GPS: 36°13’43.23″, -107°44’28.72″

Protect Greater Chaco : Site 2 from River Healers on Vimeo.

Drone surveys of this particular site show Cyclone 32, a 1500 Horsepower 755 ton drill rig manufactured in Wyoming. The drill rig is transported through Greater Chaco communities on small dusty single lane dirt roads used by the community members and school buses. The drilling is heard and seen moving from pad to pad. The rig is establishing multiple drill heads on pockets of land tucked along the Kimbeto Wash, a tributary to the Chaco River and sacred source of water security for members of the Greater Chaco Area in Nageezi, New Mexico.

Site 3

Nageezi, NM
County: San Juan
Kimbeto Wash/Chaco River
GPS: 36°13’27.51″, -107°45’3.24″

No video available

Site 4

Counselor, NM
County: Rio Arriba
Canada Larga River
GPS: 36°13’18.19″, -107°28’56.24″

Protect Greater Chaco : Site 4 from River Healers on Vimeo.

Drone surveys show Lybrook Elementary School only 1600ft from a WPX Energy fracking site. The crude oil tanks of the site can be seen from the classroom windows of the school. The elementary school was moved to this location in 2006 because it was right across the highway from a large and expanding natural gas plant and had to relocate elementary students to a safe location.

Although the WPX Energy site is established on federal land, this area of Counselor, New Mexico is referred to as ‘The Checkerboard’ because of the quadrants of federal land that break up tribal land. The 5 well heads are highlighted to show that these pockets of federal land are being fracked with a high concentration of fracking wells. By drilling multiple wells in one pad location fracking companies are able to quickly drain the plays of crude oil under the the Greater Chaco Area and avoid signing contracts with the native property owners that live and attend school in the area they are fracking.

Site 5

Counselor, NM
County: Sandoval
Chaco Wash/Chaco River
GPS: 36° 9’45.22″, -107°29’11.47″

Protect Greater Chaco : Site 5 from River Healers on Vimeo.

Drone surveys show crude oil being fracked within 840 ft of an indigenous community in Sandoval County, NM (Greater Chaco). The fracking site is located in the path of the community water supply, which had to be routed around the wellhead and crude tanks. The underground water line remains only 110 ft from active fracking activity.

Particular communities in Greater Chaco are dependent upon pastoral industry and the health of their livestock. Horses owned by the indigenous community are seen grazing on open and unprotected fracking pads. Many of these fracking pads have recorded spills of either fracking fluid, wastewater, or crude oil and pose health risks to the livestock grazing on potentially contaminated grasses and wastewater.

A Western Refining (WPX) crude truck can be seen driving down the community road. These dirt roads were designed to support local community traffic and school buses but are now heavily used by the fracking industry. 90,000-lb gross weight oilfield trucks haul the volatile crude oil through pastoral lands, endangering livestock and community members. Fracking companies continue to level dirt roads to accommodate the weight of their crude trucks. The practice cuts roads deep into the landscape. Roads in Greater Chaco now resemble trenches and make travel dangerous, block scenic views of ancestral land, and hinder the ability to monitor livestock and fracking development.

Site 6

Nageezi, NM
County: San Juan
Kimbeto Wash/Chaco River
GPS: 36°15’20.46”, -107°41’43.14”

Protect Greater Chaco : Site 6 from River Healers on Vimeo.

Drone surveys show 3 well heads, crude tanks, and compressors north of Hwy 550 in Nageezi, NM. The location is of importance because it shows how flaring is used to burn off methane caused by fracking and the transportation processes of crude oil. The River Healers droned this site when workers were not present and the flare tower was turned off for safety concerns, but the flame can usually be seen all the way from Hwy 550 tucked into the distinct hills of the Bisti Badlands. Such methane hotspots are of concern because methane causes severe health risks for individuals living near crude oil facilities. NASA has identified two large methane gas clouds in new Mexico. The methane gas is concentrated above fracking occurring in the San Juan Basin and Permian Basin and disproportionately affects the air quality of Greater Chaco, Four Corners Region, Farmington, and South East region of New Mexico.

Two unlined wastewater pits can be seen on the edge of the fracking pad near the well heads and compressors. Erosion caused by water drainage can be seen leading from the well heads and compressor areas directly to the wastewater pits. Drainages can also be seen coming directly out of the waste water pits and going into the Upper Kimbeto Wash, a tributary of the Chaco River. It is illegal for fracking companies to keep fracking wastewater in unlined pits in the state of New Mexico. The River Healers reported this possible water violation to the EMNRD Oil Conservation Division (a state regulatory body for the fracking industry). EMNRD replied that WPX Energy maintains that the wastewater is caused by stormwater runoff and contains no fracking contaminates. This is the first time we have heard of the fracking industry creating stormwater runoff pits and find the practice to be unusual. Further skepticism that these runoff pits are not contaminated comes from research about the site. In June of 2016, WPX Energy reported a spill of 600 gallons of crude oil at this site because of a fire. WPX maintains that no groundwater was impacted and marked the incident as not an emergency.


References

  1. WPX Adds Accreage in Gallup Oil Play, press release
  2. NM Oil and Gas Enforcement Inspections, Earthworks
  3. New Mexico Geologic Mapping Program, NM Bureau of Geology and Mineral resources
  4. New Mexico Energy, Minerals, and Natural Resources Department – Cabinet Secretary Ken McQueen
  5. Western Refining, Community Supporting Law Enforcement

About River Healers: New Mexico Chapter

newmexicoriverhealers.com

The River Healers organize anonymous watchdog operations and tactical campaigns to protect water. The artist collective is engaged in direct action through analyzing, exposing, and bringing down systematic abuses of water rights. The River Healers work to accelerate theories of water democracy, decentralize aesthetics of environmentalism, and expose corporate sponsored water terrorism. ‘Water is a commons – No one has the right to destroy’

Healthy Homes article in PA

Healthy Homes: Re-Framing Fracking Impacts

An Ohio family took joy in raising their kids and cattle at their farmhouse, built in 1853 with crooked walls and no indoor bathrooms. When they leased land to fracking activity, however, the “beep, beep, beep” of heavy truck traffic kept them up all night, and a cow died after drinking a strange fluid flowing on the land during the cold of winter. They dedicated their retirement savings to moving and building a new home, only to soon after receive a compressor station as their neighbor – close enough to hear the engines at all hours and loud enough to make them dread even walking out to their mailbox.

During the upswing of a boom-and-bust cycle of the gas industry in Greene County, the influx of outside workers and the high demand on rental housing resulted in one particular family being unable to secure an apartment. Without adequate housing, their children were temporarily taken from their custody.

In Huntingdon, a young woman resisted a pipeline being forced through her property by stationing herself in a tree, while workers with chainsaws felled those around her. Eminent domain enabled the gas company to claim this privately-owned land under a weak guise of “public good.”

These unsettling but true stories hint at the countless ways fracking plays out in individual households. A healthy home environment – with clean air, potable drinking water, and safety from outside elements – is essential to human life and functioning. Yet, the industrial processes involved in unconventional oil and gas development (UOGD), often summed up with the term “fracking,” may interfere with or even take away the ability to maintain a healthy home.

This article aims to put these household impacts, and the right to a healthy home, at the center of the fracking debate.

Framing the issue

definition-of-a-frame

The way we understand just about anything depends on our frame of reference. A frame, like the frame around a picture, brings its contents into focus. At the same time, it excludes the information outside its borders. A frame declares that what’s inside is what matters. When it comes to the human effects of fracking, various conflicting frames exist, each dictating their own picture of what fracking actually does and means.

health-frame

The frame we use to look at the fracking debate is so important, because it dictates how we talk about and think about the problem. Likewise, if we can identify the frame others are using when they talk about fracking, we can see more clearly what they have prioritized and what they are leaving out of the conversation.

Two researchers who conducted surveys, interviews, and focus groups in five Pennsylvania counties in 2014 and 2015 argue for the need for a new frame.1 Some of the common ways of talking about fracking not only favor shale gas development for reasons like those included in the frame on the left above, they also work against those trying to make a stand against the negative effects fracking. These researchers suggest that, rather than arguing within the existing, dominant frames, activists should consider proactively “reframing the debate around other core values.” The right to a healthy home is a widely-shared value. I propose we adopt a frame that puts that right at the center of the picture.

What is a “healthy home”?

The term healthy home isn’t new. The federal agencies Housing and Urban Development (HUD) and the Centers for Disease Control (CDC) both use this phrase in defining the importance of a home environment free from hazards and contaminants, like lead and radon. Simply put, a healthy home is one that supports health.

Why Now?

We sit poised at a unique moment to take on the task of reframing fracking. While new drilling in some places appears to be on the decline, countless large-scale petrochemical projects, like a growing crop of plastic-producing ethane crackers in the northeast US, are ramping up. These facilities will demand massive supplies of natural gas and byproducts, perpetuating and likely increasing drilling.

The renewed demand on wells and their associated infrastructure increase the burden on those households in its wake, living amid stimulated wells, near odorous compressor stations, next to pipelines with pig launchers spewing emissions.

Continued demand on natural gas – for energy or cheap plastics – also requires less-discussed but equally-invasive infrastructure, such as the massive underground gas storage underlying communities in growing numbers in states like Ohio and Pennsylvania. Such infrastructure exposes residents to the possibility of leaks, like the one that forced the evacuation of thousands of families in Porter Ranch, California. It burdens other communities with the disposal of toxic waste fluids, including underground injection and the associated earthquakes, like the hundreds pockmarking Ohio and now encroaching on Pennsylvania. Keeping the fracking going means communities, like some dairy farming regions in Wisconsin, continue to see the environmental and quality-of-life impacts of frac sand mining.

Engagement is urgent and timely,2 and the entire country has a role to play. This moment in our energy history is a chance for all of us – those affected by, in favor of, concerned about, eager to welcome, or otherwise learning about UOGD – to get clear on our frame of understanding fracking.

pipeline-route-runs-behind-home-and-swingset

A pipeline right-of-way, about 200 yards behind this house and children’s swingset, shows how close fracking infrastructure comes to homes. Photo credit: Leann Leiter

Why a “Healthy Homes” Frame?

Proponents of frames that endorse fracking often live at a considerable distance from the processes involved,3 buffering them and their families from its impacts. According to researchers4 who listened to the testimonies of residents at a community hearing, the distance they lived from the industrial activities shows up in how they talk about fracking. Those in favor tend to use a depersonalized, “birds-eye view” in describing the impacts. People for whom the negative impacts are or will be a part of their lives rely on more descriptive, specific, and place-based language.

Similarly, a frame that focuses on household impacts emphasizes the on-the-ground, lived experience of living near fracking infrastructure. This frame approaches the debate on fracking by continually asking, what is this like for the people who live with the process? What are the impacts to their home environment? Such a frame does not ignore large-scale issues of jobs and energy supply, but grounds these bigger questions with the real and urgent consequences to the people who are suffering.

oval-healthy-homes-frame

Household impacts

Despite rulings that define UOGD as an industrial process, drilling companies locate all manner of infrastructure – wells, pipelines, compressor stations, among others – in areas formerly residential or agricultural. Rules dictating distances from UOGD facilities to structures like houses vary by municipality and state. Yet, these new and often imposing facilities repeatedly occupy the immediate view of homes, or are within close proximity that defy medical and safety warnings.


Video: Glaring light of burning flares and noises both droning and sudden, along with major truck traffic and other changes to the immediate landscape around the household, produce high levels of stress, leading to its own health problems, creating an environment where water may become unsafe to drink and breathing the air becomes a hazard.

The Oil & Gas Threat Map (by Earthworks and FracTracker) shows the populations within a half-mile “threat radius” of infrastructure that includes fracking – close enough for residents to be exposed to contaminated air emissions, and possibly smell disturbing odors, hear loud sounds and feel vibrations, and see bright lights and the fire of emergency flares. As confirmed by the EPA, in some cases, UOGD results in contamination of drinking water, as well.

Researchers at The Environmental Health Project (EHP) offer individual health assessments to residents living in the shadow of fracking operations. In a physician’s thorough review of over 61 assessments, they identified the following symptoms to be temporally related to gas activity:

Table 1. Symptoms temporally related to UOGD

SYMPTOM CATEGORY n Symptom %
UPPER RESPIRATORY SYMPTOMS 39 64% Nose or throat irritation 25 41%
 Sinus pain or infections 17 28%
Nose bleeds 8 13%
CONSTITUTIONAL SYMPTOMS 33 54% Sleep disruption 26 43%
Fatigue 13 21%
 Weak or Drowsy 9 15%
NEUROLOGICAL SYMPTOMS 32 52% Headache 25 41%
Dizziness 11 18%
Numbness 9 15%
Memory loss 8 13%
PSYCHOLOGICAL SYMPTOMS 32 52% Stress or anxiety 23 38%
Irritable or moody 12 20%
Worry 6 10%
LOWER RESPIRATORY SYMPTOMS 30 49% Cough 21 34%
Shortness of breath 19 31%
Weezing 14 23%
GASTRO-INTESTINAL SYMPTOMS 27 44% Nausea 13 21%
Abdominal pain 12 20%
EYE SYMPTOMS 23 38% Itchy eyes 11 18%
Painful or dry 10 16%
DERMATOLOGICAL SYMPTOMS 19 31% Rash 10 16%
Itching 7 11%
Lesions or blisters 6 10%
CARDIAC SYMPTOMS 17 28% Palpitations 9 15%
Chest pain 6 10%
Other cardiac symptoms 6 10%
HEARING CHANGES OR TINNITUS 10 16% Hearing loss 3 5%
Tinnitus (ringing in the ear) 10 16%
 MUSCULOSKELETAL 10 16% Painful joints 9 15%
Aches 7 11%
ENDOCRINE 7 11% Hair loss 7 11%
n =  Number of patients reporting symptom, out of 61 patients assessed
% = Percentage of patients reporting symptom, out of 61 patients assessed
Table adapted from EHP – Click to download Excel spreadsheet

Mental and emotional stress can exacerbate and create physical health symptoms. For households close to fracking, the fear of a disaster, like a well pad fire, or concern for the long term health effects of exposures through air and water can create serious stress. These developments change communities, sometimes in divisive, negative ways, potentially adding to the stress.

Fracking, a disruptive, landscape-altering process can also produce what’s called solastalgia, whereby negatively-perceived changes to the land alter a person’s sense of belonging. In the case of fracking in residential areas, people may lose not only their relationship to the land, but their homes as they once knew them.5 Solastalgia, considered by some researchers to be a new psycho-social condition, is “the lived experience of the physical desolation of home.”6

When Home is Unsafe, Where to Get Help

EHP Trifold Cover

Click to expand and explore the tri-fold. Click here to access and print this free resource, and many others by EHP.

EHP offers a new resource for protecting your health at a household level, called: “Protecting Your Health from Unconventional Oil and Gas Development.” We created this free informational resource in collaboration with residents and health care providers in four different shale gas counties.

The final product is the direct result of input and knowledge from 15 focus groups and project meetings in these affected communities with over 100 participants, including residents and healthcare providers. EHP has packed this resource with practical steps for households amid shale gas development to limit their exposure to air and water contamination that may be associated with fracking.

For follow-up questions, or for free personalized health services for those experiencing fracking-related exposures, you can contact EHP directly at 724-260-5504 or by email at info@environmentalhealthproject.org.

Re-Centering Home in the Fracking Debate

Putting affected households at the center of the fracking debate better reflects the experiences of people on the front lines. This powerful frame could help counter the power of those who speak positively about fracking, but lack direct experience of the process.

For those at the frontlines of fracking, the intent is that these resources and tools will help you protect your health and your homes.

For those not yet directly affected by fracking, you can lend a hand. Show support for health protective measures by signing up at EHP for updates on events, education, and opportunities to make your voice heard. And, whenever and wherever you can weigh in on the debate, put a frame around fracking that puts impacted households at the center.

References

  1. Cooley, R., & Casagrande, D. (2017). Marcellus Shale as Golden Goose. ExtrACTION: Impacts, Engagements, and Alternative Futures.
  2. Short, D., Elliot, J., Norder, K., Lloyd-Davies, E., & Morley, J. (2015). Extreme energy, ‘fracking’ and human rights: a new field for human rights impact assessments?, The International Journal of Human Rights, 19:6, 697-736, DOI:10.1080/13642987.2015.1019219
  3. Cooley, R., & Casagrande, D. (2017). Marcellus Shale as Golden Goose. ExtrACTION: Impacts, Engagements, and Alternative Futures.
  4. Mando, J. (2016). Constructing the vicarious experience of proximity in a Marcellus Shale public hearing. Environmental Communication, 10(3), 352-364.
  5. Resick, L. K. (2016). Gender, protest, and the health impacts of unconventional natural gas development. In Y. Beebeejaum (Ed.), The participatory city (pp. 167-175). Berlin: Jovis Verlag GmgH.
  6. Albrecht et al (2007). Solastalgia: the distress caused by environmental change, Australasian Psychiatry . Vol 15 Supplement.

By Leann Leiter, Environmental Health Fellow for the SW-PA Environmental Health Project and FracTracker Alliance

Feature photograph: A compressor station sits above a beautiful farm in Washington County, Pennsylvania. Photo credit: Leann Leiter

US Farms and Agricultural Production near Drilling

Health vs. Power – Risking America’s Food for Energy

Over 50% of land in the United States is dedicated to agriculture. Oil and gas development, particularly hydraulic fracturing or “fracking,” is taking place near many of these farms.

Farms feed us, and unfortunately they are not protected from the impacts of fracking. Even if drilling can be done responsibly, accidents happen. In Colorado, for example, two spills occur on average per day, 15% of which result in water contamination. [1] Risking our food supply is not only a risk to our health – it’s a risk to national security.

Food Independence

Rocky Mountain Apple Orchard by Celia Roberts

Rocky Mountain apple orchard. Photo by Celia Roberts

Domestic oil and gas production has been promoted by the industry as a means to provide the U.S. with energy independence. The argument goes something like this: “We need to be a net exporter of energy so as to reduce our reliance on foreign countries for these resources, especially countries in the Middle East.” This ignores the point that for energy security we might want to keep rather than export fossil fuels.

However, energy independence and food independence are inextricably linked.

Considering that the basic human needs are clean water, food, shelter, and safety — along with energy — we need to think about self-reliance; we can’t be dependent on foreign countries for our food. The U.S. is currently a net exporter of agricultural products, and California produces 50% of the food consumed in the U.S. But what would happen if our foodsheds became contaminated?

Drilling Proximity – Why the concern?

Front Range, Colorado Working Landscape At Risk of Unconventional Oil & Gas Drilling by Rita Clagget

Front Range, Colorado working landscape at risk of unconventional oil & gas drilling. Photo by Rita Clagget

Over 58% of US agricultural market value and 74% of US farms – both conventional and organic – operate within shale basins, active shale plays, and the primary frac sand geologies.

Why is this so important? Why be concerned? Here are just a few reasons:

  1. People can be exposed to the compounds involved with oil and gas extraction through spills, emissions, and other processes. The top five health impacts associated with these chemicals are: respiratory, nervous system, birth defects, and reproductive problems, blood disorders, and cancer.[2]
  2. Rural gas gathering pipelines are unregulated; operators have no obligation to publicly report about incremental failures along the pipeline that may contaminate soil and water as long as they don’t require evacuations.[3]
  3. Oil and gas operators are exempt from certain provisions of several environmental laws designed to protect public health and safety, including the Safe Water Drinking Act, The Resource Conservation and Recovery Act, The Emergency Planning and Community Right-to-Know Act, The Clean Water Act, The Clean Air Act, and The Comprehensive Environmental Response, Compensation, and Liability Act. These exemptions, in a way, permit oil and gas operators to contaminate water supplies with chemicals from their operations, in particular hydraulic fracturing fluids and produced wastewater.[4]
  4. The gold standard of clean, chemical-free food is the USDA National Organic Program Standards, as governed by the Organic Foods Production Act. Unfortunately, organic certification does not require testing for oil and gas chemicals in water being used in organic production. The organic standard is satisfied as long as state, water, and food safety agencies deem the water safe. To our knowledge these agencies do not test for oil and gas chemicals.[5]
  5. Based on available data spills occur regularly. Recent research has identified that the mixture of chemicals from fracking fluid and produced wastewater interact in a way that can lead to soil accumulation of these chemicals. Potentially, then, the chemicals may be absorbed by plants.[6] Fifteen chemicals often used in fracking have been identified as toxic, persistent and fast-traveling.[7] Some farms – such as those in Southern California – are being irrigated with produced water from oil and gas operations. Additionally, every single farm in the San Jaoquin Valley is within eight miles of oil and gas operations.[8]
  6. There is significant Competition for water between natural gas production and agriculture. This includes growing commodity crops for energy, such as ethanol. Natural gas operations result in removing water quantity available for agriculture, and changing the water quality, which affects the agricultural product. In drought stricken areas, water scarcity is already an issue. In addition, extreme heat as a result of climate change is putting more stress on farmers operating in already depleted watersheds. Layered on all of this is the growing realization that precipitation regimes are gradually – and in many places dramatically – transitioning from many smaller and more predictable events to fewer, more intense, and less predictable rain and snow events which is are harder for the landscape to capture, process, and store for agricultural and/or other uses.
  7. Operating costs: Farmers are already operating under razor- thin margins, with the cost of inputs continually increasing and the resilience of the soils and watersheds they rely upon coming into question with unconventional oil and gas’ expansion across the Midwest and Great Plains.

Public Lands

Over 45% of lands in the Western United States are owned by the federal government. Opening up public lands—by the Bureau of Land Management, United State Forest Service in particular—is controversial on multiple levels. As it relates to food security and independence, the issue often missed is that many headwaters to prime farmland reside on federal lands, along with the majority of cattle grazing.

There isn’t enough private land in the West for oil and gas operators to reach their production goals. They have to drill on public lands in order to scale up production and develop an export market for domestic natural gas. This means that public lands, taxpayer funded public lands, could potentially be used to irreparably harm prime agricultural and grazing lands (foodsheds). More alarming, is that the Trump Administration is focused on unfettered development, extraction and distribution of natural gas resources, including opening up public lands to oil and gas leasing and gutting regulations that protect us from pollution and public health risks.

The map we have developed shows that many of the largest farms in the West are surrounded by public lands. Sixty-percent of Colorado farms are surrounded by public lands, which are within shale basins or active shale plays.  Four of the top natural gas producing counties in Colorado are also four of the top agricultural producing counties: Weld, Mesa, Montezuma, and LaPlata counties. The third, fifth, sixth, eighth and tenth agricultural producing counties in the State are surrounded by public lands within shale basins, respectively,: Larimer, Delta, El Paso, Montrose and Douglas counties. The 6,325 farms in these counties represent 17% of all Colorado farms, and 29% (nearly half) of Colorado at-risk farms for being surrounded by public lands and within shale basins.

Colorado: Public lands surround majority of farms.

Colorado: Public lands surround majority of farms.

Colorado: zoom into 3 of top agricultural producing and natural gas producing counties in Colorado, illustrating how they are surrounded by public lands.

Colorado: Map zoomed into 3 of top agricultural producing and natural gas producing counties in Colorado, illustrating how they are surrounded by public lands.

food-table

These farms, headwaters, and public lands need to be protected if we are to maintain food independence and security. Producing potentially contaminated food is neither food independence, nor food security.

Policy Implications

Why should policy makers and health insurers care? Chronic and terminal illnesses are on the rise. Healthcare costs have nowhere to go but up as long as the environment we live in, the food we eat, the water we drink, and the air we breathe continue to be polluted at such a large scale. Attempts to reduce healthcare costs by insuring all Americans will have no impact if they are all sick. The insurance model only works when there are more healthy people in the pool than unhealthy people.

Mapping Conventional & Organic U.S. Farms

Below is an interactive map showing agricultural production in the U.S. You can use the map to zoom in at the county level to understand better the type of agricultural production taking place, as well as the value of the agricultural products at the county level.

U.S. Conventional and Organic Farms and Their Productivity Near Shale Plays and Basins


View map fullscreen | How FracTracker maps work

This map excludes Alaska for a variety of reasons[9]. We include over 180 unique data points for each county across five categories: 1) Crops and Plants, 2) Economics, 3) Farms, 4) Livestock and Animals, and 5) Operators. We then break these major categories into 20 subcategories.

Table 1. Subcategories Utilized in the “US Shale Plays and Basins Along with Agricultural Productivity By County” map above

Categories Subcategories
Crops and Plants Field Crops Harvested
Fruits, Tree Nuts, Berries, Nursery and Greenhouse
Hay and Forage Crops Harvested
Seed Crops Harvested
Vegetables and Melons Harvested
Economics Buildings, Machinery and Equipment on Operation
Farm Production Expenses
Farm-Related Income and Direct Sales
Farms by Value of Sales
Market Value of Agricultural Products Sold
Farms Agricultural Chemicals Used
Farms
Farms by Size
Farms by Type of Organization
Land in Farms and Land Use
Livestock and Animals Livestock, Poultry, and Other Animals
Operators Characteristics of Farm Operators
Hired Farm Labor
Primary Occupation of Operator
Tenure of Farm Operators and Farm Operations

Analysis Results

In total, there are 589,922 and 1,369,961 farms in US Shale Plays and Basins, respectively, averaging between 589 and 646 acres in size and spread across 2,146 counties (Figure 1). These farm counties produce roughly $87.31- 218.32 billion in agricultural products each year with the highest value per-acre being the Monterey and Monterey-Temblor Formations of Southern California, the Niobrara Formation in North Central Colorado, Eastern Barnett in North Central Texas, the Antrim in Michigan, and the Northern Appalachian Shale Basins of Pennsylvania, New York, and Ohio (Figures 2a/2b). Roughly 52% of all agricultural revenue generated in US Shale Play counties comes from livestock, poultry, and derivative products vs. a national average of 44% (Figure 3).

Put another way, the value of US Shale Basin agricultural infrastructure would rank as the 9th largest economy worldwide, between Italy and Brazil.

Family-owned farms are at the greatest risk. While corporations tend to own larger acreage farms, only 8.2% of US farms are owned by corporations. This figure is nearly halved in US Shale Plays, with 4.5% of farms owned by corporations, or 95% owned by families or individuals.


Figures 1, 2a, 2b, and 3 above show the number of farms near drilling, as well as variations in the value of agricultural products produced in those regions.

Risk vs. Benefits in CO

Oil and gas activity is regulated on a somewhat patchwork basis, but generally it is overseen at the state level subject to federal laws. New York and Maryland are the only two states that ban fracking, while communities around the country have invoked zoning laws to ban fracking or impose moratoriums on a smaller scale. However, in Colorado, the Colorado Oil and Gas Conservation Commission has exclusive jurisdiction over oil and gas regulation in the State. There, fracking bans imposed by local communities, with a large number of farms, have been found to be unconstitutional by the Colorado Supreme Court.

Weld County is Colorado’s leading producer of cattle, grain, and sugar beets. Weld is the richest agricultural county in the U.S. east of the Rocky Mountains, the fourth richest overall nationally, and the largest natural gas producer in CO. Compare this to the North Fork Valley on the Western Slope of CO, which is home to the largest concentration of organic farms in the state, one of two viticultural (wine making) areas in the state, and has a reputation for being a farm-to-table hub. Delta County, in which the North Fork Valley is located, is known for its sustainable agriculture initiatives. Uniquely, Delta County is one of the few agricultural areas in the country so far untouched by the fracking boom – but that could all change. The Bureau of Land Management is considering opening 95% of BLM lands and minerals within and surrounding Delta County to oil and gas leasing.

Protecting Food Supplies

Oil and gas extraction is taking place on both private and public lands across the country. Prime and unique agricultural lands need to be protected from these industrial activities if we are to maintain food independence and ensure a healthy food supply. As demonstrated by the map above, agricultural communities in active shale plays may already in trouble. To prevent further damages on day-to-day food staples, it is imperative to increase awareness about this consequential issue.

How can people trust that the food they eat is safe to consume? Families trust farmers, food brands, school and office cafeterias, and restaurants to the extent that the food supply chain is regulated and maintained. If most of the food produced in the U.S. is within active shale plays, and the water/soil is not being tested for oil and gas chemicals, that supply chain is at risk. The secure production of our food – via clean air, water, and soil – is tantamount to lasting food independence.

Farming Testimonials

I am the leader of Slow Food Western Slope, which functions as a chapter of Slow Food USA. We envision a world in which all people can eat food that is good for them, good for the people who grow it and good for the planet: good, clean and fair food for all. Our chapter promotes and supports over 70 farmers, orchardists, ranchers, agricultural businesses and winemakers of the North Fork Valley – all of which depend on good and clean water, air and soil. With its industrial footprint and potential damage to landscape, air, water, soil and human health, extraction industries have no place in the future of the North Fork Valley. We can build a new economy around clean food, outdoor recreation, healthy lifestyle and small nonthreatening businesses.

Jim BrettSlow Food Western Slope

Agricultural land is much more valuable in the long-run than the short-term gains promised from oil and gas extraction… As farmers we are attuned to crop, soil, and water conditions especially as a result of weather. If it’s too hot, too dry, too wet, too cold then there is no food. Natural gas extraction is an undeniable factor in changing climate and is incompatible with the practice of sustainable agriculture.

Mark WaltermireOwner of Thistle Whistle Farm in Hotchkiss, CO

References and More Information

FracTracker Alliance raised awareness of this issue in 2015 when it mapped the proximity of organic farms to oil and gas wells. In that mapping analysis, it was discovered that 11% of organic farms are within ½ mile of oil and gas development. Did you know that less than 1% of agricultural lands in the United States are used to grow crops without chemicals, and that 42% of those organic farms produce food for human consumption?

Organic Farms Near Drilling Activity in the U.S.

View map fullscreen | How FracTracker maps work

This research prompted the question of what about the other 99% of agricultural lands used to grow crops and raise livestock utilizing chemicals and other conventional methods in the United States. The majority of dairy, grains, beef, poultry, fruits, vegetables, and animal feed for livestock are produced on conventional farms. Where are they located, and do we know how they are being impacted by oil and gas development?

The majority of the US population lives in urban centers and is disconnected from the American farm, including how and where food is produced. People trust their farmer, food brands, school and office cafeterias, and restaurants to the extent that they trust their supply chain, and to the extent that the farmers trust their water supply and soils. If the majority of the food produced in the U.S. is within active shale plays, and the water and soil are not being tested for oil and gas chemicals, this research questions how people can trust that their food is safe to consume. If we are to maintain our food independence and health, not only do consumers need to understand that the food supply is at risk in order to exercise their rights to protect it at the local, state, and federal levels, but policymakers need to be informed with this data to make better decisions around oil and gas development regulations and development proposals that impact our foodsheds.

References/Footnotes:

  1. 2015 Colorado Oil and Gas Toxic Release Tracker, Center for Western Priorities
  2. COMPENDIUM OF SCIENTIFIC, MEDICAL, AND MEDIA FINDINGS DEMONSTRATING RISKS AND HARMS OF FRACKING (UNCONVENTIONAL GAS AND OIL EXTRACTION), Fourth Edition, Physicians for Social Responsibility, November 17, 2016; Colborn T, Kwiatkowski C, Schultz K, Bachran M., Natural gas operations from a public health perspective, Human and Ecological Risk Assessment, 2011 17(5):1039-1056; Fracking Fumes: Air Pollution from Hydraulic Fracturing Threatens Public Health and Communities, NRDC Issue Brief, December 2014
  3. 49 CFR §192
  4. Brady, William J., Hydraulic Fracturing Regulation in the United States: The Laissez-Faire Approach of the Federal Government and Varying State Regulations, Vermont Journal of Environmental Law, Vol. 14 2012
  5. National Organic Program Standards, 7 CFR Part 205. Organic Foods Production Act, 7 U.S.C. Ch. 94
  6. Molly C. McLaughlin, Thomas Borch,, and Jens Blotevogel, Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions, Environ. Sci. Technol. 2016, 50, 6071−6078
  7. AirWaterGas Sustainability Research Network, November 2016.
  8. Matthew Heberger and Kristina Donnelly, OIL, FOOD, AND WATER: Challenges and Opportunities for California Agriculture, Pacific Institute, December 2015.
  9. Issues with Alaskan agricultural data include incomplete reporting and large degrees of uncertainty in the data relative to the Lower 48.

By Natasha Léger, Interim Executive Director, Citizens for a Healthy Community and Ted Auch, Great Lakes Program Director, FracTracker Alliance

Wayne National Forest map and drilling

Wayne National Forest Could Be Deforested – Again

Guest article by Becca Pollard

Eighty years ago, Southeastern Ohio was a wasteland of barren, eroding hills. During the 18th and 19th centuries this once heavily forested area in the Appalachian foothills had been clear cut and mined beyond recognition. When the Great Depression struck, lowering crop prices made farming unprofitable in the area, and 40% of the population moved away.

In 1933, President Franklin Delano Roosevelt established the Civilian Conservation Corps (CCC), a public work relief program that employed men aged 18-25 to do manual labor related to conservation and development of natural resources such as planting trees, constructing trails, roads, and lodges, fighting wildfires, and controlling erosion. The following year, Ohio’s legislature agreed to allow the federal government to purchase land in the state for the purpose of establishing a national forest. The Forest Service was tasked with restoring the land for what is now called Wayne National Forest (WNF). A tree nursery was established near Chillicothe, and with the help of the CCC and volunteers, including members of the Daughters of the American Revolution, garden clubs, and school children, reforestation began.

Photos Credit: US Forest Service

An Area on the Mend

Today, WNF comprises three units that span 12 Ohio counties in the Unglaciated Allegheny Plateau. The hills are covered in biologically diverse mixed mesophytic forest, which includes approximately 120 species of trees and provides habitat for at least 45 species of mammals, 158 species of birds, 28 species of reptiles, 29 species of amphibians, and 87 species of fish. The US Forest Service estimates that 240,000 people visit this ecological wonder annually, according to Forest Recreation Program Manager, Chad Wilberger, in Nelsonville, Ohio. The restoration of barren public land to its current state is a great achievement. If it continues to be protected, Wayne could one day resemble the old growth forest that thrived here before the arrival of European settlers.

The Bureau of Land Management (BLM), however, has recently decided to lease up to 40,000 acres of Wayne to gas and oil companies for horizontal hydraulic fracturing, or fracking. The first auction took place last December resulting in the lease of 700 acres. A second auction this March leased another 1,200 acres. Nearly all of this land lies within the 60,000 acre Marietta Unit of the forest. This brings Oil & Gas Expressions of Interest (EOI) acreage to roughly 7.5% of all WNF owned parcels in this unit.

Wayne National Forest and Adjacent Existing Oil and Gas Infrastructure
Below is a map of the Wayne National Forest, along with parcels owned by WNF (shown in gray) and those that might be subject to unconventional oil and gas development (gray parcels outlined with dashes). We also include existing unconventional oil and gas infrastructure near the park. Explore the map below, or click here to view the map fullscreen.


View map fullscreen | How FracTracker maps work

Not new, not old

Gas and oil development is not new to the Wayne. Since the passage of The Federal Land Policy and Management Act of 1976, the US Forest Service’s land management plan for WNF has included conventional drilling, and derricks are a common sight on both public and private land in southeastern Ohio.

Fracking (unconventional drilling), however, has a far greater impact, requiring clear cutting of large areas of land for the construction of concrete well pads, and the use of millions of gallons of water that will become contaminated during the process and then transported by truck to injection wells. Accidents can be catastrophic for workers and nearby residents, and fracking and waste water disposal have been linked to earthquakes in Ohio.

In 2012, BLM updated its WNF Land and Resource Management Plan to allow fracking in the forest without conducting new impact studies.

What is at risk?

The Marietta Unit of the WNF is located in Monroe, Perry, and Washington counties in Southeastern Ohio along the Ohio River. Within its boundary are a wealth of trails used for hiking, backpacking, horseback riding, and mountain biking, campgrounds, and waterways ideal for kayaking and fishing. Both the highest and lowest points in the Wayne lie in this unit, as does the Irish Run Natural Bridge. The area is also known for its exceptional wildflowers, as shown in the photos below.

One popular recreation area, Lamping Homestead, lies directly within an oil and gas Expression Of Interest (EOI) parcel #3040602400 (See Map Above), one of the areas under consideration for lease. In the 1800s, it was the site of the Lamping family’s farm, but today all that remains of the settlers is a small cemetery with an iron gate atop a hill overlooking a small lake. Six campsites are situated around the western side of the lake, and two intersecting hiking loops rise into the wooded hills to the east. On the western side of the parking lot is a covered picnic area. A creek flows out of the lake and into Clear Fork, a tributary of the Little Muskingum River, across the road from the parking lot.

Both the lake and stream are popular boating and fishing areas. Lamping is an excellent spot for wildlife viewing. The lake, the creeks that flow in and out of it, and the surrounding wooded hills support an impressive variety of plant and animal species. During the day, visitors might spot ducks, geese, great blue herons, red-winged blackbirds, summer tanagers, red spotted newts, box turtles, northern water snakes, garter snakes, deer, rabbits, and muskrats. At night, they could be greeted by a cacophony of voices from frogs, owls, and coyotes.

Species of trees, plants, and fungus are also numerous. In winter, stands of white pine pop out against the bare branches of oak, hickory, maple, buckeye, and other deciduous trees. In spring, eye-catching splotches of blooming dogwood and redbud contrast against the many shades of green. But hikers who pull their gaze away from the brightly colored canopy and look down are rewarded with an abundance of wildflowers and the butterflies they attract, as well as many varieties of mushrooms and fungus, including such edible varieties as morels, wood ear, and dryad’s saddle.

Estimating Disturbances

It is unclear how much surface disturbance would occur on public land if this parcel were to be fracked, but even if the well pad and pipelines were constructed on private land adjacent to the forest, in order to drill under the forest, the public land and its inhabitants and visitors would certainly be impacted.

There is no question that noise and air pollution from traffic and construction would be disruptive both to wildlife and to human visitors. Explore various photos of the oil and gas industry in the gallery below:

The extraction process requires 2 million to 6 million gallons of fresh water each time a well is fracked. The rate at which hydraulic fracturing’s water demand is increasing on a per-well basis here in Ohio reached an exponential state around Q4-2013 and Q1-2014 and continues to rise at a rate of 3.1 million gallons per well per year (Figure 1).

Ohio Hydraulic Fracturing Total and Per Well Freshwater Demand between Q3-2010 and Q3-2016.

Ohio Hydraulic Fracturing Total and Per Well Freshwater Demand between Q3-2010 and Q3-2016.

In Ohio, oil and gas companies are allowed to pull this water directly from streams and rivers at no cost. All this is possible, despite the fact that after its use it is so contaminated that it must be disposed of via injection wells and is permanently removed from the water cycle. The industry is already pulling water from streams in the Marietta Unit of the WNF for use in fracking on private land. Fracking public land simply means water withdrawals will occur on a much larger scale.

Ohio and West Virginia Shale Water Demand and Injection Waste Disposal
This map shows Utica wells weighted by water demand and disposal (and/or production). It also depicts water, sand, and chemical usage as well as injection waste and oil production. Explore the map below, or click here to view map fullscreen.


View map fullscreen | How FracTracker maps work

Inevitable methane leaks, in addition to contributing to climate change, affect humans and wildlife in their immediate vicinity, causing headaches and nausea and even killing trees and plants.

In addition to the anticipated harm that fracking inflicts upon a natural area, there is also a risk of accidents with potentially devastating consequences. Residents of Monroe County have already seen a few in recent years from fracking on private land. In 2014, a well pad fire in the village of Clarington resulted in a chemical spill that contaminated nearby Opossum Creek, killing 70,000 fish. The same year a large gas leak 15 miles south in the village of Sardis resulted in the evacuation of all homes within half mile radius.

Recent studies have shown that extraction wells, in addition to injection wells, can cause earthquakes. Unsurprisingly, Monroe County has seen a spike in seismic activity with the increase in fracking activity in the area. The most recent incident was a 3.0 magnitude earthquake in the forest less than five miles from Lamping Homestead in April of this year.

Supporters of Wayne National Forest

Many people have repeatedly spoken out against BLM’s plan, submitting a petition with more than 100,000 signatures, and protesting outside Wayne National Forest Headquarters and Athens Ranger Station in Nelsonville. They have even organized voters to call and write letters to Regional Forester Kathleen Atkinson and legislators, including Senators Sherrod Brown and Rob Portman, and Governor John Kasich. BLM has not budged on its decision, unfortunately, insisting that leasing this land for fracking, and associated infrastructure buildout, will have “no significant impact.”

This May, the Center for Biological Diversity, Ohio Environmental Council, Ohio Sierra Club, and Heartwood, a regional organization focused on protecting forests, filed a lawsuit against BLM, aiming to void BLM leases and halt all fracking operations within the national forest.

Concerned citizens continue to organize raise awareness as they await the outcome of the suit.

Becca Pollard is Freelance Journalist and Co-founder of Keep Wayne Wild


Data Downloads

Click on the links below to download the data used to create this article’s maps:

Events

Nothing Found

Sorry, no posts matched your criteria