Posts

Ethanol and fracking

North American Ethanol’s Land, Water, Nutrient, and Waste Impact

Corn Ethanol and Fracking – Similarities Abound

Even though it is a biofuel and not a fossil fuel, in this post we discuss the ways in which the corn ethanol production industry is similar to the fracking industry. For those who may not be familiar, biofuel refers to a category of fuels derived directly from living matter. These may include:

  1. Direct combustion of woody biomass and crop residues, which we recently mapped and outlined,
  2. Ethanol1 produced directly from the fermentation of sugarcanes or indirectly by way of the intermediate step of producing sugars from corn or switchgrass cellulose,
  3. Biodiesel from oil crops such as soybeans, oil palm, jatropha, and canola or cooking oil waste,2 and
  4. Anaerobic methane digestion of natural gas from manures or human waste.

Speaking about biofuels in 2006, J. Hill et al. said:

To be a viable substitute for a fossil fuel, an alternative fuel should not only have superior environmental benefits over the fossil fuel it displaces, be economically competitive with it, and be producible in sufficient quantities to make a meaningful impact on energy demands, but it should also provide a net energy gain over the energy sources used to produce it.

Out of all available biofuels it is ethanol that accounts for a lion’s share of North American biofuel production (See US Renewables Map Below). This trend is largely because most Americans put the E-10 blends in their tanks (10% ethanol).3 Additionally, the Energy Independence and Security Act of 2007 calls for ethanol production to reach 36 billion gallons by 2022, which would essentially double the current capacity (17.9 billion gallons) and require the equivalent of an additional 260 refineries to come online by then (Table 1, bottom).

US Facilities Generating Energy from Biomass and Waste along with Ethanol Refineries and Wind Farms


View map fullscreen | How FracTracker maps work

But more to the point… the language, tax regimes, and potential costs of both ethanol production and fracking are remarkably similar. (As evidenced by the quotes scattered throughout this piece.) Interestingly, some of the similarities are due to the fact that “Big Ag” and “Big Oil” are coupled, growing more so every year:

The shale revolution has resulted in declining natural gas and oil prices, which benefit farms with the greatest diesel, gasoline, and natural gas shares of total expenses, such as rice, cotton, and wheat farms. However, domestic fertilizer prices have not substantially fallen despite the large decrease in the U.S. natural gas price (natural gas accounts for about 75-85 percent of fertilizer production costs). This is due to the relatively high cost of shipping natural gas, which has resulted in regionalized natural gas markets, as compared with the more globalized fertilizer market. (USDA, 2016)

Ethanol’s Recent History

For background, below is a timeline of important events and publications related to ethanol regulation in the U.S. in the last four decades: 

Benefits of Biofuels

[Bill] Clinton justified the ethanol mandate by declaring that it would provide “thousands of new jobs for the future” and that “this policy is good for our environment, our public health, and our nation’s farmers—and that’s good for America.” EPA administrator Carol Browner claimed that “it is important to our efforts to diversify energy resources and promote energy independence.” – James Bovard citing Peter Stone’s “The Big Harvest,” National Journal, July 30, 1994.

Of the 270 ethanol refineries we had sufficient data for, we estimate these facilities employ 235,624 people or 873 per facility and payout roughly $6.18-6.80 billion in wages each year, at an average of $22.9-25.2 million per refinery. These employees spend roughly 423,000 hours at the plant or at associated operations earning between $14.63 and $16.10 per hour including benefits. Those figures amount to 74-83% of the average US income. In all fairness, these wages are 13-26% times higher than the farming, fishing, and forestry sectors in states like Minnesota, Nebraska, and Iowa, which alone account for 33% of US ethanol refining.

Additional benefits of ethanol refineries include the nearly 179 million tons of CO2 left in the field as stover each year, which amounts to 654,532 tons per refinery. Put another way – these amounts are equivalent to the annual emissions of 10.7 million and 39,194 Americans, respectively.

Finally, what would a discussion of ethanol refineries be without an estimate of how much gasoline is produced? It turns out that the 280 refineries (for which we have accurate estimates of capacity) produce an average of 71.93 million gallons per year and 20.1 billion gallons in total. That figure represents 14.3% of US gasoline demand.

Costs of Biofuels

Direct Costs

Biofuel expansions such as those listed in the timeline above and those eluded to by the likes of the IPCC have several issues associated with them. One of which is what Pimentel et al. considered an insufficient – and to those of us in the fracking NGO community, familiar sounding – “breadth of relevant expertise and perspectives… to pronounce fairly and roundely on this many-sided issue.”

The above acts and reports in the timeline prompted many American farmers to double down on corn at the expense of soybeans, which caused Indirect Land Use Change (ILUC); the global soy market skyrocketed. This, in turn, prompted the clearing and/or burning of large swaths of the Amazonian rainforests and tropical savannas in Brazil, the world’s second-leading soy producer. More recently, large swaths of Indonesia and Malaysia’s equally biodiverse peatland forests have been replaced by palm oil plantations (Table 2 and Figure 3, bottom). In the latter countries, forest displacement is increasing by 2.7-5.3% per year, which is roughly equal to the the rate of land-use change associated with hydraulic fracturing here in the US4 (Figure 1).


Figures 1A and 1B. Palm Oil Production in A) Indonesia and B) Malaysia between 1960 and 2016.

There is an increasing amount of connectivity between disparate regions of the world with respect to energy consumption, extraction, and generation. These connections also affect how we define renewable or sustainable:

In a globalized world, the impacts of local decisions about crop preferences can have far reaching implications. As illustrated by an apparent “corn connection” to Amazonian deforestation, the environmental benefits of corn-based biofuel might be considerably reduced when its full and indirect costs are considered. (Science, 2007)

These authors pointed to the fact that biofuel expectations and/or mandates fail to account for costs associated with atmospheric – and leaching – emissions of carbon, nitrogen, phophorus, etc. during the conversion of lands, including diverse rainforests, peatlands, savannas, and grasslands, to monocultures. Also overlooked were:

  • The ethical concerns associated with growing malnourishment from India to the United States,
  • The fact that 10-60%5 more fossil fuel derived energy is required to produce a unit of corn ethanol than is actually contained within this very biofuel, and
  • The tremendous “Global land and water grabbing” occuring in the name of natural resource security, commodification, and biofuel generation.

Sacrificing long-term ecological/food security in the name of short-term energy security has caused individuals and governments to focus on taking land out of food production and putting it into biofuels.

The rationale for ethanol subsidies has continually changed to meet shifting political winds. In the late 1970s ethanol was championed as a way to achieve energy independence. In the early 1980s ethanol was portrayed as salvation for struggling corn farmers. From the mid and late 1980s onward, ethanol has been justified as saving the environment. However, none of those claims can withstand serious examination. (James Bovard, 1995)

This is instead of going the more environmentally friendly route of growing biofuel feedstocks on degraded or abandoned lands. An example of such an endeavor is the voluntary US Conservation Reserve Program (CRP), which has stabilized at roughly 45-57 thousand square miles of enrolled land since 1990, even though the average payout per acre has continued to climb (Figure 2).

The Average Subsidy to Farmers Per Acre of Conservation Reserve Program (CRP) between 1986 and 2015.

Figure 2. The Average Subsidy to Farmers Per Acre of Conservation Reserve Program (CRP) between 1986 and 2015.

The primary goals of the CRP program are to provide an acceptable “floor” for commodity prices, reduce soil erosion, enhance wildlife habitat, ecosystem services, biodiversity, and improve water quality on highly erodible, degraded, or flood proned croplands. Interestingly CRP acreage has declined by 27% since a high of 56 thousand square miles prior to the Energy Independence and Security Act of 2007 being passed. Researchers have pointed to the fact that corn ethanol production on CRP lands would create a carbon debt that would take 48 years to repay vs. a 93 year payback period for ethanol on Central US Grasslands.

To quote Fred Magdoff in The Political Economy and Ecology of Biofuels:

Alternative fuel sources are attractive because they can be developed and used without questioning the very workings of the economic system — just substitute a more “sustainable,” “ecologically sound,” and “renewable” energy for the more polluting, expensive, and finite amounts of oil. People are hoping for magic bullets to “solve” the problem so that capitalist societies can continue along their wasteful growth and consumption patterns with the least disruption. Although prices of fuels may come down somewhat — with dips in the business cycle, higher rates of production, or a burst in the speculative bubble in the futures market for oil — they will most likely remain at historically high levels as the reserves of easily recovered fuel relative to annual usage continues to decline.

Indirect Costs: Ethanol, Fertilizers, and the Gulf of Mexico Dead Zone

This is the Midwest vs. the Middle East. It’s corn farmers vs. the oil companies. – Dwaney Andreas in Big Stink on the Farm by David Greising

Sixty-nine percent6 of North America’s ethanol refineries are within the Mississippi River Basin (MRB). These refineries collectively rely on corn that receives 1.9-5.1 million tons of nitrogen each year, with a current value of $1.06-2.91 billion dollars or 9,570-26,161 tons of nitrogen per refinery per year (i.e. $5.42-14.81 million per refinery per year). These figures account for 27-73% of all nitrogen fertilizer used in the MRB each year. More importantly, the corn acreage receiving this nitrogen leaches roughly 0.81-657 thousand tons of it directly into the MRB. Such a process amounts to 5-44% of all nitrogen discharged into the Gulf of Mexico each year and 1.7-13.8 million tons of algae responsible for the Gulf’s growing Dead Zone.

Midwest/Great Plains US Ethanol Refineries and Crop Residue Production

Leaching of this nitrogen is analogous to flushing $45.7-371.6 million dollars worth of precious capital down the drain. Put another way, these dollar figures translate into anywhere between 55% and an astonishing 4.53 times Direct Costs to the Gulf’s seafood and tourism industries of the Dead Zone itself.

These same refineries rely on corn acreage that also receives 0.53-2.61 million tons of phosphorus each year with a current value of 0.34-1.66 billion dollars. Each refinery has a phosphrous footprint in the range of 2,700 to 13,334 tons per year (i.e., $1.72-8.47 million). We estimate that 25,399-185,201 tons of this fertilizer phosphorus is leached into the the MRB, which is equivalent to 19% or as much as 1.42 times all the phosphorous dischared into the Gulf of Mexico per year. Such a process means $16.13-117.60 million is lost per year.

Together, the nitrogen and phosphorus leached from acreage allocated to corn ethanol have a current value that is between 75% and nearly 6 times the value lost every year to the Gulf’s seafood and tourism industries.

Indirect Costs: Fertilizer and Herbicide Costs and Leaching

The 270 ethanol refineries we have quality production data for are relying on corn that receives 367,772 tons of herbicide and insecticide each year, with a current value of $6.67 billion dollars or 1,362 tons of chemical preventitive per refinery per year (i.e. $24.7 million per refinery per year). More importantly the corn acreage receiving these inputs leaches roughly 15.8-128.7 thousand tons of it directly into surrounding watersheds and underlying aquifers. Leaching of these inputs is analogous to flushing $287 million to $2.3 billion dollars down the drain.

What’s Next?

During the recent Trump administration EPA, USDA, DOE administrator hearings, the Renewable Fuel Standard (RFS) was cited as critical to American energy independence by a bipartisan group of 23 senators. Among these were Democratic senator Amy Klobuchar and Republican Chuck Grassley, who co-wrote a letter to new EPA administrator Scott Pruitt demanding that the RFS remains robust and expands when possible. In the words of Democratic Senator Heidi Heitkamp – and long-time ethanol supporter – straight from the heart of the Bakken Shale Revolution in North Dakota:

The RFS has worked well for North Dakota farmers, and I’m fighting to defend it. As we’re doing today in this letter, I’ll keep pushing in the U.S. Senate for the robust RFS [and Renewable Volume Obligations (RVOs)] we need to support a thriving biofuels industry and stand up for biofuels workers. Biofuels create good-paying jobs in North Dakota and help support our state’s farmers, who rely on this important market – particularly when commodity prices are challenging.

Furthermore, the entire Iowa congressional delegation including the aforementioned Sen. Grassley joined newly minted USDA Secretary Sonny Perdue when he told the Iowa Renewable Fuels Association:

You have nothing to worry about. Did you hear what he said during the campaign? Renewable energy, ethanol, is here to stay, and we’re going to work for new technologies to be more efficient.

How this advocacy will play out and how the ethanol industry will respond (i.e., increase productivity per refinery or expand the number of refineries) is anybody’s guess. However, it sounds like the same language, lobbying, and advertising will continue to be used by the Ethanol and Unconventional Oil and Gas industries. Additional parallels are sure to follow with specific respect to water, waste, and land-use.

Furthermore, as both industries continue their ramp up in research and development, we can expect to see productivity per laborer to continue on an exponential path. The response in DC – and statehouses across the upper Midwest and Great Plains – will likely be further deregulation, as well.

From a societal perspective, an increase in ethanol production/grain diversion away from people’s plates has lead to a chicken-and-egg positive feedback loop, whereby our farmers continue to increase total and per-acre corn production with less and less people. In rural areas, mining and agriculture have been the primary employment sectors. A further mechanization of both will likely amplify issues related to education, drug dependence, and flight to urban centers (Figures 4A and B).

We still don’t know exactly how efficient ethanol refineries are relative to Greenhouse Gas Emissions per barrel of oil. By merging the above data with facility-level CO2 emissions from the EPA Facility Level Information on Greenhouse gases Tool (FLIGHT) database we were able to match nearly 200 of the US ethanol refineries with their respective GHG emissions levels back to 2010. These facilities emit roughly:

  • 195,116 tons of CO2 per year, per facility,
  • A total of 36.97 million tons per year (i.e., 2.11 million Americans worth of emissions), and
  • 22,265 tons of CO2 per barrel of ethanol produced.

Emissions from ethanol will increase to 74.35 million tons in 2022 if the Energy Independence and Security Act of 2007’s prescriptions run their course. Such an upward trend would be equivalent to the GHG emissions of somewhere between that of Seattle and Detroit.

What was once a singles match between Frackers and Sheikhs may turn into an Australian Doubles match with the Ethanol Lobby and Farm Bureau joining the fray. This ‘game’ will only further stress the food, energy, and water (FEW) nexus from California to the Great Lakes and northern Appalachia.

We are on a thinner margin of food security, just as we are on a thinner margin of oil security… The [World] Bank implicitly questions whether it is wise to divert half of the world’s increased output of maize and wheat over the next decade into biofuels to meet government “mandates.” – Ambrose Evans-Pritchard in The Telegraph

Will long-term agricultural security be sacrificed in the name of short-term energy independence?

US and Global Corn Production and Acreage between 1866 and 2015.

Figure 3. US and Global Corn Production and Acreage between 1866 and 2015.

Figures 4A and 4B. A) Number of Laborers in the US Mining, Oil and Gas, Agriculture, Forestry, Fishing, and Hunting sector and B) US Corn Production Metrics Per Farm Laborer between 1947 and 2015.

Ethanol Tables

Table 1. Summary of our Corn Ethanol Production, Land-Use, and Water Demand analysis

Gallons of Corn Ethanol Produced Per Year 17,847,616,000
Bushels of Corn Needed 6,374,148,571
Percent of US Production 44.73%
Land Needed 104,372,023 acres
“” 163,081 square miles
Percent of Contiguous US Land 5.51%
Percent of US Agricultural Land 11.28%
Gallons of Water Needed 49.76 trillion (i.e. 3.55 million swimming pools)
Gallons of Water Per Gallon of Oil 2,788
Average and Total Site/Industry Capacity
Average Corn Ethanol Production Per Existing or Under Construction Facility (n = 257) 69,717,250
Gallons of Corn Ethanol Produced Per Year 17,847,616,000
Difference Between 2022 Energy Independence and Security Act of 2007 36 Billion Gallon Mandate 18,152,384,000
# of New Refineries Necessary to Get to 2022 Levels 260
Percent Increase Over Current Facility Inventory 1.7
IEA 2009 World Energy Outlook 250-620% Increase Predictions for 2030
250% 44,619,040,000
# of New Refineries Necessary 640
Percent Increase Over Current Facility Inventory 150.00
620% 110,655,219,200
# of New Refineries Necessary 1,587
Percent Increase Over Current Facility Inventory 520.00

Table 2. Global Population Growth and Corn and Soybean Productivity Trends.

Percent Change Metric
+1.13% Global Population Growth Trend
Corn (Bushels Per Acre)
+1.15% Per Year United States
+1.20% Per Year Global
Soybean (Tons Per Acre)
+0.9% Per Year United States
+1.5% Per Year Brazil
Palm Oil (Tons)
+5.1% Per Year Indonesia
+2.7% Per Year Malaysia

References and Footnotes

  1. Ethanol as defined in the Ohio Revised Code (ORC) Corporation Franchise Tax 5733.46 means “fermentation ethyl alcohol derived from agricultural products, including potatoes, cereal, grains, cheese whey, and sugar beets; forest products; or other renewable resources, including residue and waste generated from the production, processing, and marketing of agricultural products, forest products, and other renewable resources that meet all of the specifications in the American society for testing and materials (ASTM) specification D 4806-88 and is denatured as specified in Parts 20 and 21 of Title 27 of the Code of Federal Regulations.”
  2. A) Pyrolysis is included in the biofuel category and involves the anaerobic decay of cellulose rich feedstocks such as switchgrass at high temperatures producing synthetic diesel or syngas, and
    B) According to many researchers biofuels made from waste biomass or crops grown on degraded and abandoned lands with warm-season prairie grasses and legumes incur little or no carbon debt and provide “immediate and sustained Greenhouse Gas (GHG) advantages” by rehabilitating soil health and capturing, rather than emitting by way of increased fertilizer use, various forms of nitrogen including N2O, NO3, and NO2.
  3. According to Fred Magdoff, the ethanol complex is lobbying for “more automobile engines capable of using E-85 (85 percent ethanol, 15 percent gasoline) for which there are currently 2,710 fueling stations across the country although 56% of them are in just nine states: 1) Wisconsin (117), 2) Missouri (107), 3) Minnesota (335), 4) Michigan (174), 5) Indiana (172), 6) Illinois (221),  7) Iowa (193), 8) Texas (99), and 9) Ohio (97). Some states are mandating a mixture greater than 10 percent. Ethanol can’t be shipped together with gasoline in pipelines because it separates from the mixture when moisture is present, so it must be trucked to where it will be mixed with gasoline.” The E-85 blend comes with its own costs including higher emissions of CO, VOC, PM10, SOx, and NOx than gasoline.
  4. McClaugherty, C., Auch, W. Genshock, E. and H. Buzulencia. (2017). Landscape impacts of infrastructure associated with Utica shale oil and gas extraction in eastern Ohio, Ecological Society of America, 100th Annual Meeting, Baltimore, MD, August, 2015.
  5. Hill et al. recently indicated “Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more.”
  6. An additional 9-10 refineries or 73% of all ethanol refineries are within 25 miles of the Mississippi River Basin.

By Ted Auch, PhD, Great Lakes Program Coordinator, FracTracker Alliance

Cover photo, left: Oil and gas well pad, Ohio. Photo by Ted Auch.
Cover photo, right: A typical ethanol plant in West Burlington, Iowa. Photo by Steven Vaughn.


Data Downloads

Click on the links below to download the datasets used to create the maps in this article.

  1. Detailed US Ethanol water, land, chemical fertilizer, and herbicide demand
  2. Estimates of North American Ethanol Refinery’s water and land-use demand
SCOTT STOCKDILL/NORTH DAKOTA DEPARTMENT OF HEALTH VIA AP - for oil spills in North Dakota piece

Oil Spills in North Dakota: What does DAPL mean for North Dakota’s future?

By Kate van Munster, Data & GIS Intern, and
Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Pipelines are hailed as the “safest” way to transport crude oil and other refinery products, but federal and state data show that pipeline incidents are common and present major environmental and human health hazards. In light of current events that have green-lighted multiple new pipeline projects, including several that had been previously denied because of the environmental risk they pose, FracTracker Alliance is continuing to focus on pipeline issues.

In this article we look at the record of oil spills, particularly those resulting from pipeline incidents that have occurred in North Dakota, in order to determine the risk presented by the soon-to-be completed Dakota Access Pipeline.

Standing Rock & the DAPL Protest

To give readers a little history on this pipeline, demonstrators in North Dakota, as well as across the country, have been protesting a section of the Dakota Access Pipeline (DAPL) near the Standing Rock Sioux Tribe’s lands since April 2016. The tribe’s momentum has shifted the focus from protests at the build site to legal battles and a march on Washington DC. The pipeline section they are protesting has at this point been largely finished, and is slated to begin pumping oil by April 2017. This final section of pipe crosses under Lake Oahe, a large reservoir created on the Missouri River, just 1.5 miles north of the Standing Rock Sioux Tribal Lands. The tribe has condemned the pipeline because it cuts through sacred land and threatens their environmental and economic well-being by putting their only source for drinking water in jeopardy.

Pipelines

… supposedly safest form of transporting fossil fuels, but …

Pipeline proponents claim that pipelines are the safest method of transporting oil over long distances, whereas transporting oil with trucks has a higher accident and spill rate, and transporting with trains presents a major explosive hazards.

However, what makes one form of land transport safer than the others is dependent on which factor is being taken into account. When considering the costs of human death and property destruction, pipelines are indeed the safest form of land transportation. However, for the amount of oil spilled, pipelines are second-worst, beaten only by trucks. Now, when it comes to environmental impact, pipelines are the worst.

What is not debatable is the fact that pipelines are dangerous, regardless of factor. Between 2010 and October 2016 there was an average of 1.7 pipeline incidents per day across the U.S. according to data from the Pipeline and Hazardous Materials Safety Administration (PHMSA). These incidents have resulted in 100 reported fatalities, 470 injuries, and over $3.4 billion in property damage. More than half of these incidents were caused by equipment failure and corrosion (See Figures 1 and 2).

incidentcounts

Figure 1. Impacts of pipeline incidents in the US. Data collected from PHMSA on November 4th, 2016 (data through September 2016). Original Analysis

pipeline incidents causes

Figure 2. Cause of pipeline incidents for all reports received from January 1, 2010 through November 4, 2016. Original Analysis

Recent Spills in North Dakota

To dig into the risks posed in North Dakota more specifically, let’s take a look at some spill data in the state.

Map 1. Locations of Spills in North Dakota, with volume represented by size of markers


View map fullscreen | How FracTracker maps work

In North Dakota alone there have been 774 oil spill incidents between 2010 and September 2016, spilling an average of 5,131 gallons of oil per incident. The largest spill in North Dakota in recent history, and one of the largest onshore oil spills in the U.S., took place in September 2013. Over 865,000 gallons of crude oil spilled into a wheat field and contaminated about 13 acres. The spill was discovered several days later by the farmer who owns the field, and was not detected by remote monitors. The state claims that no water sources were contaminated and no wildlife were hurt. However, over three years of constant work later, only about one third of the spill has been recovered.

This spill in 2013 may never be fully cleaned up. Cleanup attempts have even included burning away the oil where the spill contaminated wetlands.

More recently, a pipeline spilled 176,000 gallons of crude oil into a North Dakota stream about 150 miles away from the DAPL protest camps. Electronic monitoring equipment, which is part of a pipeline’s safety precautions, did not detect the leak. Luckily, a landowner discovered the leak on December 5, 2016 before it got worse, and it was quickly contained. However, the spill migrated nearly 6 miles down the Ash Coulee Creek and fouled a number of private and U.S. Forest lands. It has also been difficult to clean up due to snow and sub-zero temperatures.

Even if a spill isn’t as large, it can still have a major effect. In July 2016, 66,000 gallons of heavy oil, mixed with some natural gas, spilled into the North Saskatchewan River in Canada. North Battleford and the city of Prince Albert had to shut off their drinking water intake from the river and were forced to get water from alternate sources. In September, 2 months later, the affected communities were finally able to draw water from the river again.

Toxicology of Oil

Hydrocarbons and other hazardous chemicals

Crude oil is a mixture of various hydrocarbons. Hydrocarbons are compounds that are made primarily of carbon and hydrogen. The most common forms of hydrocarbons in crude oil are paraffins. Crude oil also contains naphthenes and aromatics such as benzene, and many other less common molecules. Crude oil can also contain naturally occurring radioactive materials and trace metals. Many of these compounds are toxic and carcinogenic.

hydrocarbons

Figure 3. Four common hydrocarbon molecules containing hydrogen (H) and carbon (C). Image from Britannica

Crude oil spills can contaminate surface and groundwater, air, and soil. When a spill is fresh, volatile organic compounds (VOCs), such as benzene, quickly evaporate into the air. Other components of crude oil, such as polycyclic aromatic hydrocarbons (PAHs) can remain in the environment for years and leach into water.

Plants, animals, and people can sustain serious negative physical and biochemical effects when they come in contact with oil spills. People can be exposed to crude oil through skin contact, ingestion, or inhalation. Expsure can irritate the eyes, skin, and respiratory system, and could cause “dizziness, rapid heart rate, headaches, confusion, and anemia.” VOCs can be inhaled and are highly toxic and carcinogenic. PAHs can also be carcinogenic and have been shown to damage fish embryos. When animals are exposed to crude oil, it can damage their liver, blood, and other tissue cells. It can also cause infertility and cancer. Crops exposed to crude oil become less nutritious and are contaminated with carcinogens, radioactive materials, and trace metals. Physically, crude oil can completely cover plants and animals, smothering them and making it hard for animals to stay warm, swim, or fly.

An Analysis of Spills in ND

Below we have analyzed available spill data for North Dakota, including the location and quantity of such incidents.

North Dakota saw an average of 111 crude oil spills per year, or a total of 774 spills from 2010 to October 2016. The greatest number of spills occurred in 2014 with a total of 163. But 2013 had the largest spill with 865,200 gallons and also the highest total volume of oil spilled in one year of 1.3 million gallons. (Table 1)

Table 1. Data on all spills from 2010 through October 2016. Data taken from PHMSA and North Dakota.

  2010 2011 2012 2013 2014 2015 Jan-Oct 2016
Number of Spills 55 80 77 126 163 117 156
Total Volume (gallons) 332,443 467,544 424,168 1,316,910 642,521 615,695 171,888
Ave. Volume/Spill (gallons) 6,044 5,844 5,509 10,452 3,942 5,262 1,102
Largest Spill (gallons) 158,928 106,050 58,758 865,200 33,600 105,000 64,863

The total volume of oil spilled from 2010 to October 2016 was nearly 4 million gallons, about 2.4 million of which was not contained. Most spills took place at wellheads, but the largest spills occurred along pipelines. (Table 2)

Table 2. Spills by Source. Data taken from PHMSA and North Dakota.

  Wellhead Vehicle Accident Storage Pipeline Equipment Uncontained All Spills
Number of Spills 694 1 12 54 13 364 774
Total Volume (gallons) 2,603,652 84 17,010 1,281,798 68,623 2,394,591 3,971,169
Ave. Volume/Spill (gallons) 3,752 84 1,418 23,737 5,279 6,579 5,131
Largest Spill (gallons) 106,050 84 10,416 865,200 64,863 865,200 865,200

A. Sensitive Areas Impacted

Spills that were not contained could potentially affect sensitive lands and waterways in North Dakota. Sensitive areas include Native American Reservations, waterways, drinking water aquifers, parks and wildlife habitat, and cities. Uncontained spill areas overlapped, and potentially contaminated, 5,875 square miles of land and water, and 408 miles of streams.

Drinking Water Aquifers – 2,482.3 total square miles:

  • Non-Community Aquifer – 0.3 square miles
  • Community Aquifer – 36 square miles of hydrologically connected aquifer
  • Surficial Aquifer – 2,446 square miles of hydrologically connected aquifer

A large area of potential drinking water (surficial aquifers) are at risk of contamination. Of the aquifers that are in use, aquifers for community use have larger areas that are potentially contaminated than those for non-community use.

Native American Tribal Reservation

  • Fort Berthold, an area of 1,569 square miles

Cities – 67 total square miles

  • Berthold
  • Dickinson
  • Flaxton
  • Harwood
  • Minot
  • Petersburg
  • Spring Brook
  • Stanley
  • West Fargo

Map 2. Areas where Oil Spills Present Public Health Threats


View map fullscreen | How FracTracker maps work

B. Waterways Where Spills Have Occurred

  • Floodplains – 73 square miles of interconnected floodplains
  • Streams – 408 miles of interconnected streams
  • Of the 364 oil spills that have occurred since 2010, 229 (63%) were within 1/4 mile of a waterway
  • Of the 61 Uncontained Brine Spills that have occurred since 2001, 38 (63%) were within 1/4 mile of a waterway.

If a spill occurs in a floodplain during or before a flood and is uncontained, the flood waters could disperse the oil over a much larger area. Similarly, contaminated streams can carry oil into larger rivers and lakes. Explore Map 3 for more detail.

Map 3. Oil Spills in North Dakota Waterways


View map fullscreen | How FracTracker maps work

C. Parks & Wildlife Habitat Impacts

1,684 total square miles

Habitat affected

  • National Grasslands – on 1,010 square miles of interconnected areas
  • United States Wildlife Refuges – 84 square miles of interconnected areas
  • North Dakota Wildlife Management Areas – 24 square miles of interconnected areas
  • Critical Habitat for Endangered Species – 566 square miles of interconnected areas

The endangered species most affected by spills in North Dakota is the Piping Plover. Explore Map 4 for more detail.

Map 4. Wildlife Areas Impacted by Oil Spills


View map fullscreen | How FracTracker maps work

Methods

Using ArcGIS software, uncontained spill locations were overlaid on spatial datasets of floodplains, stream beds, groundwater regions, sensitive habitats, and other sensitive regions.

The average extent (distance) spilled oil traveled from uncontained spill sites was calculated to 400 meters. This distance was used as a buffer to approximate contact of waterways, floodplains, drinking water resources, habitat, etc. with uncontained oil spills.

Oil Spills in North Dakota Analysis References:


Cover Photo: The site of a December 2016 pipeline spill in North Dakota. Credit: Scott Stockdill/North Dakota Department of Health via AP

Offshore oil and gas development in CA - Photo by Linda Krop Environmental Defense Center

More offshore drilling and “fracking” in California

Offshore oil and gas development is expanding in CA. This article explores the state’s regulatory framework, existing data, and data discrepancies.

Federal Regulations for Offshore Fracking

In the summer of 2016 the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) jointly released an environmental study that reviewed offshore fracking operations. The report found that operations have a minimal impact on marine health. For a review of California’s offshore oil and gas operations, see FracTrackers Alliance’s coverage of the collaborative report with the Environmental Defense Center, the Dirty Water Report.

As ThinkProgress reports, these two federal agencies will now resume the approval of offshore fracking permits. In response, Governor Jerry Brown made a plea to President Obama, to prevent fracking off California’s coast. Governor Brown asked President Obama to institute a permanent ban on all new offshore oil and gas drilling in federal waters, saying:

California is blessed with hundreds of miles of spectacular coastline; home to scenic state parks, beautiful beaches, abundant wildlife and thriving communities,” Brown wrote in a letter to Obama. “Clearly, large new oil and gas reserves would be inconsistent with our overriding imperative to reduce reliance on fossil fuels and combat the devastating impacts of climate change.

A new report by Liza Tucker at Consumer Watchdog has reviewed the state regulatory agency’s own policies under the Brown Administration. The report claims, “Brown has nurtured drilling and hydraulic fracturing in the state while stifling efforts to protect the public.” The report asks Governor Brown to “direct regulators to reject any drilling in a protected coastal sanctuary, ban offshore fracking, and phase out oil drilling in state waters” among other recommendations.

California Data & Discrepancies

FracTracker Alliance reviewed the data published by DOGGR on permitted offshore wells. (DOGGR refers to the Division of Oil, Gas, & Geothermal Resources, which regulates drilling in CA). Using API identification numbers as a timeline, we actually find that it is likely that 238 wells have been drilled offshore since the start of 2012. The DOGGR database only lists “spud” (drilling) and completion dates for 71 – a mere 1.3% of the 5,435 total offshore wells. DOGGR reports that 1,366 offshore wells are currently active production wells. It must be noted that these numbers are only estimations, since operators have a 2-year window to drill wells after receiving a permit and API number.

Using these methods of deduction, we find that since the beginning of 2012 the majority of offshore wells have been drilled offshore of Los Angeles County in the Wilmington Oil Field (204 in total); followed by 25 offshore in the Huntington Beach field; 7 in the West Montalvo field offshore of Ventura County, and 1 in the Belmont field, also offshore of Ventura County. These wells are shown as bright yellow circles in the map below. Additionally, the Center for Biological Diversity reports that at least 200 of the wells off California’s coast have been hydraulically fractured.

Offshore Oil and Gas Development and SB4-Approved Well Stimulations


View map fullscreen | How FracTracker maps work

In total, DOGGR data shows 5,435 offshore oil and gas wells. Of those listed as active, new or idle, they break down into well types as shown in Table 1 below.

Table 1. Offshore oil and gas well types

Well Type Count
Oil and Gas Production 1,539
Dry Gas 5
Waste Disposal 14
Steam Flood 2
Water Flood 813
Pressure Maintenance 3
Observation 8

New Fracking under SB4 Rules

The map above also shows several datasets that detail the stimulation activity that has been occurring in California since the passage of SB4 under Jerry Brown. Prior to the adoption of the new stimulation regulations on July 1, 2015, operators submitted applications and received permits for a total of 2,130 wells. These well permits are shown in the map labeled “CA SB4 Interim Well Stimulation Permits.” Since July of 2015, 596 of these permitted wells have been stimulated. In the map above, the layer “CA SB4 Well Stimulation Disclosures” shows the time series of these wells. An additional 31 well stimulation treatment permit applications have been submitted to DOGGR, since the adoption of the final rules on July 1, 2015. They are shown in the map, labeled “CA SB4 Well Stimulation Treatment Permit Applications.”


Offshore drilling cover photo by Linda Krop, Environmental Defense Center

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

New Frac Sand Resources on FracTracker.org

We’ve added several new frac sand resources for visitors to our website this month, including a map of frac sand mines, as well as geolocated data you can download. Explore these resources using the map and links below:

Updated Frac Sand Mining Map


View map fullscreen | How FracTracker maps work

On the map above you can view silica sands/frac sand mines, drying facilities, and value-added facilities in North America. Click view map fullscreen to see the legend, an address search bar, and other tools available on our maps.

Additional data shown on this map include addresses and facility polygons. Wisconsin provides sand production data for 24 facilities, so that information has been included on this map. The remaining Wisconsin and other state facilities do not have production or acreage data associated with them. (Most states lack disclosure requirements for releasing this kind of data. Additionally the USGS maintains a confidentiality agreement with all firms, preventing us from obtaining production data.)

The sandstone/silica geology polygons (areas on the map) include a breakdown of how much land is currently made up of agriculture, urban/suburban, temperate deciduous forest, and conifer forests. At the present time we only have this information for the primary frac-sand-producing state: Wisconsin. We should have details for Ohio and Minnesota soon.

Data Downloads

Click on the links below to download various geolocated datasets (zipped shape files) related to the frac sand industry:

  1. SIC and/or NAICS related violations and inspections
  2. Resin Coating Facilities
  3. Silica Sand Mine Time Series polygon expansion over time (in Wisconsin, Illinois, Arkansas, Minnesota, and Missouri)
  4. Existing Silica Sand Mine Points
  5. Existing Silica Sand Mine Polygon land-use
  6. St. Peter and Sylvanian Surficial Sandstone Geologies
  7. Frac Sand Mine Proposals – inventory of frac sand mine proposals in LaSalle County, IL; Monroe County, IL; Arkansas; and Minnesota
  8. Western Michigan frac sand mines within or adjacent to sensitive dunes
  9. Mid or downstream frac sand industry participants (PDF) – detailed descriptions of 34 US and 4 Canadian firms
Oil and gas production on public lands

Interactive maps show nearness of oil and gas wells to communities in 5 states

As an American, you are part owner of 640 million acres of our nation’s shared public lands managed by the federal government. And chances are, you’ve enjoyed a few of these lands on family picnics, weekend hikes or summer camping trips. But did you know that some of your lands may also be leading to toxic air pollution and poor health for you or your neighbors, especially in 5 western states that have high oil and gas drilling activity?

A set of new interactive maps created by FracTracker, The Wilderness Society, and partner groups show the threatened populations who live within a half mile of  federal oil and gas wells – people who may be breathing in toxic pollution on a regular basis.

Altogether, air pollution from oil and gas development on public lands threatens at least 73,900 people in the 5 western states we examined. The states, all of which are heavy oil and gas leasing areas, include ColoradoNew MexicoNorth DakotaUtah and Wyoming.

Close up of threat map in Colorado

Figure 1. Close up of threat map in Colorado

In each state, the data show populations living near heavy concentrations of wells. For example just northeast of Denver, Colorado, in the heavily populated Weld County, at least 11,000 people are threatened by oil and gas development on public lands (Figure 1).

Western cities, like Farmington, New Mexico; Gillette, Wyoming; and Grand Junction, Colorado are at highest risk of exposure from air pollution. In New Mexico, especially, concentrated oil and gas activity disproportionately affects the disadvantaged and minorities. Many wells can be found near population centers, neighborhoods and even schools.

Colorado: Wells concentrated on Western Slope, Front Range

Note: The threatened population in states are a conservative estimate. It is likely that the numbers affected by air pollution are higher.

In 2014, Colorado became the first state in the nation to try to curb methane pollution from oil and gas operations through comprehensive regulations that included inspections of oil and gas operations and an upgrade in oil and gas infrastructure technology. Colorado’s new regulations are already showing both environmental and financial benefits.

But nearly 16,000 people – the majority living in the northwestern and northeastern part of the state – are still threatened by pollution from oil and gas on public lands.

Many of the people whose health is endangered from pollution are concentrated in the fossil-fuel rich area of the Western Slope, near Grand Junction. In that area, three counties make up 65% of the total area in Colorado threatened by oil and gas development.

In Weld County, just northeast of Denver, more than 11,000 residents are threatened by air pollution from oil and gas production on federal lands. But what’s even more alarming is that five schools are within a half mile radius of wells, putting children at risk on a daily basis of breathing in toxins that are known to increase asthma attacks. Recent studies have shown children miss 500,000 days of school nationally each year due to smog related to oil and gas production.

State regulations in Colorado have helped improve air quality, reduce methane emissions and promote worker care and safety in the past two years, but federal regulations expected by the end of 2016 will have a broader impact by regulating pollution from all states.

New Mexico: Pollution seen from space threatens 50,000 people

With more than 30,000 wells covering 4.6 million acres, New Mexico is one of the top states for oil and gas wells on public lands. Emissions from oil and gas infrastructure in the Four Corners region are so great, they have formed a methane hot spot that has been extensively studied by NASA and is clearly visible from space.

Nearly 50,000 people in northwestern New Mexico – 40% of the population in San Juan County – live within a half mile of a well. 

Dangerous emissions from those wells in San Juan County disproportionately affect minorities and disadvantaged populations, with about 20% Hispanic, almost 40% Native American, and over 20% living in poverty.

Another hot spot of oil and activity is in southeastern New Mexico stretching from the lands surrounding Roswell to the southern border with Texas. Wells in this region also cover the lands outside of Carlsbad Caverns National Park, potentially affecting the air quality and visibility for park visitors. Although less densely populated, another 4,000 people in two counties – with around 50% of the population Hispanic – are threatened by toxic air pollution.

Wyoming: Oil and gas emissions add to coal mining pollution

Pollution from oil and gas development in Wyoming, which has about as many wells as New Mexico, is focused in the Powder River Basin. This region in the northeast of the state provides 40% of the coal produced in the United States.

Oil and gas pollution threatens approximately 4,000 people in this region where scarred landscapes and polluted waterways are also prevalent from coal mining. 

With the Obama administration’s current pause on federal coal leasing and a review of the federal coal program underway, stopping pollution from oil and gas on public lands in Wyoming would be a major step in achieving climate goals and preserving the health of local communities.

Utah: Air quality far below federal standards

Utah has almost 9,000 active wells on public lands. Oil and gas activity in Utah has created air quality below federal standards in one-third of Utah’s counties, heightening the risk of asthma and respiratory illnesses. Especially in the Uintah Basin in northeastern Utah – where the majority of oil and development occurs – a 2014 NOAA-led study found oil and gas activity can lead to high levels of ozone in the wintertime that exceed federal standards.

North Dakota: Dark skies threatened by oil and gas activity

The geology of western North Dakota includes the Bakken Formation, one of the largest deposits of oil and gas in the United States. As a result, high oil and gas production occurs on both private and public lands in the western part of the state.

Nearly 650 wells on public lands are clustered together here, directly impacting popular recreational lands like Theodore Roosevelt National Park.

The 70,000-plus-acre park – named after our president who first visited in 1883 and fell in love with the incredible western landscape – is completely surrounded by high oil and gas activity. Although drilling is not allowed in the park, nearby private and public lands are filled with active wells, producing pollution, traffic and noise that can be experienced from the park. Due to its remote location, the park is known for its incredible night sky, but oil and gas development increases air and light pollution, threatening visibility of the Milky Way and other astronomical wonders.

You own public lands, but they may be hurting you

Pollution from oil and gas wells on public lands is only a part of a larger problem. Toxic emissions from oil and gas development on both public and private lands threaten 12.4 million people living within a half mile of wells, according to an oil and gas threat map created by FracTracker for a project by Earthworks and the Clean Air Task Force.

Now that we can see how many thousands of people are threatened by harmful emissions from our public lands, it is more important than ever that we finalize strong federal regulations that will help curb the main pollutant of natural gas – methane – from being leaked, vented, and flared from oil and gas infrastructure on public lands.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

We need to clean up our air now

With U.S. public lands accounting for 1/5 of the greenhouse gas footprint in the United States, we need better regulations to reduce polluting methane emissions from the 96,000 active oil and gas wells on public lands.

Right now, the Bureau of Land Management is finalizing federal regulations that are expected by the end of 2016. These regulations are expected to curb emissions from existing sources – wells already in production – that are a significant source of methane pollution on public lands. This is crucial, since by 2018, it is estimated that nearly 90% of methane emissions will come from sources that existed in 2011.

Federal regulations by the BLM should also help decrease the risk to communities living near oil and gas wells and helping cut methane emissions by 40 to 45% by 2025 to meet climate change reduction goals.

Final regulations from the Bureau of Land Management will also add to other regulations from the EPA and guidance from the Obama administration to modernize energy development on public lands for the benefit of the American people, landscapes and the climate. In the face of a changing climate, we need to continue to monitor fossil fuel development on public lands and continue to push the government towards better protections for land, air, wildlife and local communities.


By The Wilderness Society – The Wilderness Society is the leading conservation organization working to protect wilderness and inspire Americans to care for our wild places. Founded in 1935, and now with more than 700,000 members and supporters, The Wilderness Society has led the effort to permanently protect 109 million acres of wilderness and to ensure sound management of our shared national lands.

South Belridge field by Sarah Leen, National Geographic

Trends in California’s Oil and Gas Development

By Kyle Ferrar, Western Program Coordinator

Over 38,000 oil and gas wells have likely been hydraulically fractured in California. The last permitted hydraulic fracturing operation in CA was approved in June 2015. Additionally, new aquifer exemption proposals will make it easier for operators to obtain hydraulic fracturing permits. One of the most interesting and troubling issues we found when analyzing the data on violations is that operators with the highest number of new well permits are also responsible for the majority of violations. In this article, we provide a look at these and other the trends of unconventional drilling in CA.

Updated CA Shale Viewer

First of all, the CA Shale Viewer has been updated! New data has been uploaded into the map about unconventional drilling in California, and new data resources have been used to identify shale gas activity (Fig. 1). Recent reports in CA have exposed what many researchers expected – hydraulic fracturing has been occurring in the state without any oversight or documentation for a long time.

In this presentation of the Updated CA Shale Viewer we showcase an analysis of these new data sources that better describe unconventional drilling in CA. We then look to new well permitting data to see what current spatial trends may mean for future oil and gas development. We also look at a sample of operator violations issued by the state regulatory agency to tell us a bit about who the bad actors may be.

Figure 1. CA Shale Viewer – Location of well stimulation & other unconventional oil & gas activity


View map fullscreen | How FracTracker maps work

Current Fracking Activity

Fracking in California has been put on hold at the moment as a result of low oil prices combined with the new permitting requirements for groundwater monitoring. In 2015, the CA Council on Science and Technology (CCST) released a report on hydraulic fracturing, as required by State Bill 4, proposed by Senator Pavley. The legislation required the Division of Oil, Gas and Geothermal Resources to create regulations for hydraulic fracturing and other stimulation activities such as acidizing. The report highlighted the necessity of protecting California’s groundwater resources. As another requirement of SB4, the state water resources control board adopted Model Criteria for Groundwater Monitoring in areas of Oil and Gas Well Stimulation, which includes three main components:

  1. Area-specific required groundwater monitoring near stimulation wells by operators
  2. Requirements for designated contractor sampling and testing
  3. Regional scale groundwater monitoring to be implemented by the State Water Board

With these requirements in place to protect groundwater, using hydraulic fracturing and other “extreme” high energy input techniques to extract oil is not currently economical in California. Operators have not submitted a permit application for hydraulic fracturing in CA since June 2015.

This status may change in the near future, though, as DOGGR has proposed groundwater monitoring exemptions for 3 large aquifer systems in Kern and Arroyo Grande counties. Such a proposal would mean that operators would not have to monitor for groundwater contamination in these areas when using hydraulic fracturing or other stimulation technologies like acidizing.

Previous Fracking Activity

One outcome of the aforementioned CCST report on hydraulic fracturing was a review of stimulation activity that has occurred in CA but went undocumented. Researchers at Lawrence Berkeley National Laboratory (LBNL) screened thousands of oil and gas well logs and records to calculate the extent to which hydraulic fracturing was actually being used in California’s oil fields. LBNL derived “Well Stimulation Treatment” probabilities based on the number of well records that reported utilizing hydraulic fracturing.

Probabilities were then derived for each pool, which is a geographically isolated formation within an oil field. Using these probabilities, FracTracker calculated a conservative estimate for the number of stimulated wells in the state at over 38,000. There are 228,010 unique Well ID’s listed in the DOGGR database. This puts the proportion of hydraulically fractured wells in California at 16.7% of the total 228,090 wells known.

New Wells

Whereas many other states break down their oil and gas data to show in what phase of development a well may be, CA identifies all wells between the permitted and producing/injecting phase as “new.” In Figure 2 below you can see the wells identified in 2016 as “new.” The DOGGR dataset shows there are currently 6,561 new wells in California as of July 2016. Counts of new well permits were calculated for individual operators and are listed below in Table 1.

Table 1. Top 10 operators according to new well permit counts in California, along with the number of new well permits currently active, the percent those permits represent of total new well permits in the state, and the percentage of violations the operator is responsible in the DOGGR dataset provided to FracTracker Alliance.

Order Operator Permit Count Permit % Violations %
1 Aera Energy LLC 2012 30.67% 22.34%
2 Chevron U.S.A. Inc. 968 14.75% 20.35%
3 California Resources Production Corporation 768 11.70% 5.89%
4 Linn Operating, Inc. 574 8.75% 12.04%
5 E & B Natural Resources Management Corporation 572 8.71% 1%
6 California Resources Elk Hills, LLC 374 5.70% 5.52%
7 Seneca Resources Corporation 185 2.82% 2.83%
8 Freeport-McMoRan Oil & Gas LLC 164 2.50% 15.22%
9 Vaquero Energy, Inc. 154 2.35% 0.22%
10 Macpherson Oil Company 116 1.77% 2.09%

There are 68 fields in CA that have added new wells in the new DOGGR dataset published in July 2016. The top 10 fields are listed in Table 2 below.

Table 2. Top 10 Oil Fields by Permit (New Well) Count

Order Oil Field Well Count
1 Belridge, South 1518
2 Midway-Sunset 903
3 Poso Creek 553
4 Lost Hills 488
5 Cymric 336
6 Kern River 294
7 Elk Hills 276
8 Kern Front 233
9 McKittrick 186
10 Belridge, North 174

In Figure 2 below, the counts of new wells in fields are shown in shades of yellow/red. The fields with the highest number of new wells are located in the Central Valley. The top 10 operators’ wells are also identified. The majority of new well permits are located in the South Belridge oil field, and the majority of those wells are operated by Aera Energy. As can be seen in the map, most new wells are located in fields in Kern county, but Santa Barbara and Fresno, and even Salinas counties have fields with 40 or more new well permits.

Figure 2. New Well Permitting Map of Unconventional Drilling in California


View map fullscreen | How FracTracker maps work

Violations

Who collects violations data?

In most states with heavy oil and gas drilling, data on violations is collected by the state regulatory agency, aggregated in datasets and spreadsheets, and made available to the public. FracTracker has done analyses with such data in the past.

In Pennsylvania for instance, a 2011 look at the data showed us that as the number of inspectors on the ground in the Marcellus Shale fields increases, the number of violations/well actually decrease. This was important information that challenged the cynical hypothesis: that more inspectors mean additional eyes on the ground to identify more violations during inspections. In reality, more inspectors actually mean that operators are held to higher standards, and further best management practices (BMPs) are employed. This trend at least seemed to be the case in Pennsylvania. As a regulatory agency, such knowledge is incredibly important, and even validates increased spending and budgets for more personnel.

In California, the issue of publishing violations data is again met with a similar response from the Division of Oil Gas and Geothermal Resources (DOGGR), specifically the “Oh, is that my job?” question.

How is it shared?

At FracTracker, we spent time working with regulatory officials at DOGGR to get some data on violations. We were informed that at some point in the future, the data may be aggregated and available digitally. Until then, however, a request for the data would have to be made to each of the six district offices individually and would take approximately a year to pull together scanned copies of violations notices in PDF format. Unfortunately, we at FracTracker do not have the capacity to process such files. Instead we asked for anything DOGGR had digitally available, and we were provided with a sample subset of 2,825 violations dating mostly from 2013 and 2014 and only in District 2, the Los Angeles Basin.

What does CA violations data look like?

Looking at the sample of data in Table 2, we see that the majority of violations are caused by the operators that also have the most new well permits. Aera Energy, in particular, is responsible for over 1/5 of all violations in our sample set. Limiting factors and sampling bias of the sample set of violations may impact this analysis, though, as all violations are limited to Los Angeles County.  Operators that mostly operate in the Central Valley will be under represented in the violations count. When more violations data becomes available we will be sure to expand this analysis.

Bans and Regulations on Unconventional Drilling in California

Although every state regulatory agency lambasts that they have the most comprehensive and conservative set of oil and gas extraction regulations, California regulators may actually be right. That is, save for New York which has banned hydraulic fracturing outright.

Regardless of the policy decisions made at the state-level, multiple local municipalities in CA have attempted to or succeeded in passing local bans. Six counties have passed outright bans on unconventional drilling in California, as can be seen in the FracTracker Local Actions map below (Fig. 3). Most recently the county of Alameda, home to the cities of Berkeley and Oakland, has passed a ban. The county of Monterey is also considering a ban on all oil and gas extraction, which has been approved as a local ballot initiative for November 2016.

Figure 3. Local Actions, Bans and Regulations Map


View map fullscreen | How FracTracker maps work

As the price of oil rebounds closer to $100/barrel, there will be more interest by operators to increase unconventional drilling in California. The addition of new aquifer exemptions will make it all the more appealing. These local movements are therefore incredibly important to ensure that “extreme” extraction methods like fracking don’t expand in the future.

Feature Photo: South Belridge field by Sarah Leen, National Geographic

Drilling rig in Ohio, December 2015

Ohio Shale Country Listening Project Part 1

Listening Project Partners: CURE, OOC, & FracTracker

The below industry quote divides the world into two camps when it comes to horizontal hydraulic fracturing: those who are for it and those who are against it:

Fracking has emerged as a contentious issue in many communities, and it is important to note that there are only two sides in the debate: those who want our oil and natural resources developed in a safe and responsible way; and those who don’t want our oil and natural gas resources developed at all.
– Energy from Shale (an industry-supported public relations website)

The writer imagines a world in black and white – with a clear demarcation line. In reality, it is not so simple, at least not when talking to the people who actually live in the Ohio towns where fracking is happening. They want the jobs that industry promises, but they worry about the rising costs of housing, food, and fuel that accompany a boomtown economy. They want energy independence, but worry about water contamination. They welcome the opening of new businesses, but lament the constant rumble of semi-trucks down their country roads. They are eager for economic progress, but do not understand why the industry will not hire more locals to do the work.

In short, the situation is complicated and it calls for a comprehensive response from Ohio’s local and state policy makers.

Through hefty campaign contributions and donations to higher learning institutions, the oil and gas industry exerts undue influence on Ohio’s politics and academic institutions. Many media outlets covering the drilling boom also have ties to the industry. Therefore, industry has been able to control the message and the medium. Those who oppose oil and gas in any way are painted as radicals. Indeed, some of Ohio’s most dedicated anti-fracking activists are unwavering in their approach. But most of the people living atop the Utica Shale simply want to live peacefully. Many would be willing to co-exist with the industry if their needs, concerns, and voices were heard.

This project attempts to give these Ohioans a voice and outsiders a more accurate representation about life in the Utica Shale Basin. The report does not engage in the debate about whether or not fracking should occur – but, rather, examines the situation as we currently find it.

Listening Project Summary

The Ohio Shale Country Listening Project is a collaborative effort to solicit, summarize, and share the perspectives and observations of those directly experiencing the shale gas boom in eastern Ohio. The project is led by the Ohio Organizing Collaborative (OOC)’s Communities United for Responsible Energy (CURE), with support from the Ohio Environmental Council (OEC), FracTracker Alliance, and the Laborers Local 809 of Steubenville. Policy Matters Ohio and Fair Shake Environmental Legal Services offered resources and time in drafting the final policy recommendations.

Over the course of six months, organizers from the Laborers Local 809 and OOC worked with a team of nearly 40 volunteers to survey 773 people living in the heart of Utica Shale country. Respondents are from eastern Ohio, ranging from as far north as Portage County to as far south as Monroe County. A small number of respondents hail from across the border in West Virginia and Pennsylvania, but the overwhelming majority are from Carroll (321), Columbiana (230), Jefferson (70), Harrison (30) and Belmont (28) counties.

Respondents were asked to talk about their family and personal history in the community where they live, their favorite things about their community and what changes they have noticed since the arrival of shale gas drilling using horizontal hydraulic fracturing or fracking. They were also asked to describe their feelings about oil and gas development as either positive or negative and what they believed their community would be like once the boom ends. Finally, respondents were also asked how concerned or excited they are about 11 possible outcomes or consequences of fracking.

Summary of Recommendations

  • Create incentives for companies to hire local workers; and increase transparency about who drilling and subcontracting companies are employing
  • Tax the oil and gas industry fairly with a severance tax rate of at least 5%; use this revenue to support affected communities to mitigate the effects of the boom and bust cycle
  • Increase the citizen participation in county decision-making on how additional sales tax or severance tax revenue is spent and how the county deals with the effects of the drilling boom
  • Increase transparency around production and royalties for landowners and the public
  • Set aside funding at the local level for air and water monitoring programs
  • Mitigate noise and emissions as much as possible with mandatory sound barriers and green completion on all fracking wells
  • Create mechanisms to protect sensitive areas from industry activity
  • Levy municipal impact fees to address issues associated with drilling
  • Better protect landowners during leasing negotiation process and from potential loss of income due to property damage

Conclusion

The more shale gas wells a community has, the less popular the oil and gas industry appears to be. Carroll County is the most heavily drilled county in Ohio, and more than half the respondents said they view the drilling boom negatively. Moreover, many residents say they are not experiencing the economic benefits promised by the oil and gas industry. They see rent, cost of gas, and groceries rising as the drilling and pipeline companies hire workers from out of state and sometimes even out of the country. Residents see more sales tax revenue coming into their counties but also see their roads destroyed by large trucks. They say they are experiencing more traffic delays and accidents than ever before. Ohioans love their community’s pastoral nature but are watching as the landscape and cropland get destroyed. As it is playing out now, the boom in shale gas drilling is not fulfilling the promises made by industry. Locals feel less secure and more financially strapped. Many feel their towns will soon be uninhabitable. It is up to state and local governments to hold industry accountable and make it pay for the impacts it creates.

Infrastructure associated with horizontal hydraulic fracturing. Images from Ted Auch and FracTracker’s Oil & Gas Photos Archive:

Inception & Evolution of the Listening Project

The Ohio Shale Country Listening Project started in February 2014 with a conversation between Ohio Organizing Collaborative (OOC) staff and a veteran organizer who once worked on mountain top removal in a large region of West Virginia. The OOC organizer lamented the difficulty of organizing across a large geography around a specific issue – in this case, fracking. How do you find out what the people want without dictating to the community? The more experienced organizer immediately responded: What about a listening project? She connected OOC to the Shalefield Organizing Project in Pennsylvania whose organizers helped OOC think through what a listening project might look like in Ohio.

The project took on several iterations. First, OOC planned to focus the listening project solely on Columbiana County, which at the time was the third most fracked county in Ohio. Next, community leaders in Carroll County, the most heavily drilled county in the state, suggested the project also focus there. Eventually, as it became clear that the shale play was moving further south in Ohio, the project expanded into other counties such as Belmont, Harrison, and Jefferson. While attending a public hearing on pipeline construction in Portage County, OOC staff met an organizer from the Laborers Local 809 out of Steubenville. The organizer expressed interest in joining the project. Meanwhile, OOC had been in discussions with the Ohio Environmental Coalition (OEC) about the need to share the stories of people living in the middle of a fracking boom. OEC agreed to join the project. Finally, FracTracker also came into the fold, eager to assist in analyzing and mapping data gathered during the effort.

ListeningProject_Volunteer

A listening project volunteer surveys a shopper at Rogers Open Air Market

OOC staff solicited the help from about 40 volunteers to form the “Listening Project Team” who surveyed their friends, family, coworkers, and neighbors. Volunteers met four times over the course of six months to discuss the project and strategize about how to reach more people with the survey. Most of the volunteer team came from Columbiana and Carroll Counties. The Laborers Local 809 also distributed the surveys to their members. Members of the team canvassed neighborhoods, attended local festivals, set up a booth at Rogers Open Air Market (photo left) and distributed an online version of the survey through Facebook and email. OOC staff spoke at college classes at Kent State-Salem and Kent State-East Liverpool, and solicited input from students in attendance.

Listening project respondents by location

The project’s initial goal was to hit a target of 1,000 – 1,500 survey responses. In the end the team fell short of this number, but were able to reach 773 people living in the Utica Shale area. This barrier is mostly due to the rural nature of the communities surveyed, which makes it more difficult to reach a large number of people in a short timeframe. The most responses came from Carroll County – 321 surveys. Columbiana County represented the second largest group of respondents with 230 surveys. Seventy people from Jefferson County, 30 people from Harrison County, 28 from Belmont County filled out the survey. The final 80 responses came from Mahoning, Stark, Summit and Tuscarawas Counties. Finally, nearly fifty responses came from Pennsylvania and West Virginia residents who live along the Ohio border (see Figure right). We promised survey respondents that all names and information would be kept confidential with survey responses presented only in aggregate.

Interview with Craig Stevens – Sentinel Award Winner

Kirk Jalbert, FracTracker’s Manager of Community Based Research & Engagement, interviews Craig Stevens, one of FracTracker’s 2015 Community Sentinels Award Winners.

CraigStevens&MarkRuffalo

Craig Stevens (on right) with actor Mark Ruffalo

Craig Stevens is a 6th generation landowner from Silver Lake Township in Susquehanna County, Pennsylvania. Craig and his neighbors have experienced first-hand the truck traffic, noise, air pollution, and water contamination issues that often accompany shale gas extraction. Beginning in 2011 Craig began arranging tours of Susquehanna Co. to share affected residents’ stories with the press. This work has attracted citizens, journalists, elected officials, and celebrities from all over the world who now see Susquehanna Co. as an example of what could happen in their own backyards. We spoke with Craig about his work.

Q: Perhaps we can start by telling the readers your story, how you come back to Pennsylvania and how this led to your advocacy work related to oil and gas development?

Craig: Well, I was born in California in 1960, lived there for 46 years. Then my dad got sick in 2006; he was diagnosed with terminal esophageal cancer. My brother and sister and I ended up inheriting the ancestral 115-acre property. I had visited there my whole life, every couple of years, but I knew nothing about oil and gas or coal or any extraction methods and pretty much grew up at the beach in Southern California. Nobody in the family wanted to keep the family property, so I moved up here in January of 2010. The first thing I did was to check the deed to make sure that it had been transferred to our names. That’s when I found a gas lease for the property. On my father’s deathbed, he told us not to have anything to do with the industry, that he had refused to sign a lease. But then I did my research and found out Chesapeake Energy had signed my 95 year old grandmother, who was living in a nursing home, to a ten year oil and gas lease. My grandmother was a tenant but did not own the property. In Pennsylvania, and many other states, you can’t transfer mineral rights to anybody that’s a life tenant because that is part of a real estate deal. But they did it, they recorded it on our deed, tying up all of our mineral rights and giving it to Chesapeake Energy.

The second thing that got me fired up was when I was riding my three-wheeler and found a company had staked out a half-mile area right down the middle of our property. They were looking to put in a 16-inch pipeline without our permission or knowledge. So I pulled all the stakes out, went into town, and found the company. They right there offered me money. They said, well, we are going to put this in and we appreciate it if your family signed up, because we need to get this gas to market. After I refused their offer they told me all my neighbors had signed along the route already and I was going to be holding things up. Then they said, the state wants us here and they are going to give us Certificate of Public Convenience, so we are going to take your property either way. So that was my introduction to the gas industry.

Q: You have said in the past that we need to think about how we deal with shale gas extraction’s impacts as a matter of helping each other deal with civil and human rights abuses. Can you explain what you mean by that?

A: I was raised always to think globally, but act locally. Because everything that happens in our lives happens in our backyard and that is where things go. I was very politically active from a young age. My father got us all politically active. My older brother and my younger sister, at 10 years old, 8 years old, we were going to city council meetings and town council and county commission meetings, just because my dad was interested in what was going on in his community. Back then my neighbors in Dimock, PA, were having a problem. So I thought, I better find out what’s happening. Not only help them, because they are having a problem that doesn’t look like it’s resolved, but also to help prevent it from coming to Silver Lake Township. I always try to help people that are having a problem, especially with big people and bullies. So it was natural for me to stand with them and I started to tell my own story at the same time.

The Citizens’ Perspective

Q: Tell me about some of the projects you have been involved in that bring the public into shale gas debates. For instance, I know you organize regular tours of gas fields. Who attends these tours? What do you think they learn from visiting gas communities?

A: We’ve had 40 sitting assembly members and 8 state senators from New York State visit Susquehanna Co. We have had hundreds of mayors and town supervisors and country commissioners come and see first hand from a citizens’ perspective. We have had 60 countries come and send their public television stations. One of our tours was with Sean Lennon, Yoko Ono, Susan Sarandan, Arun Gandhi (Gandhi’s grandson) and Josh Fox. They had 35 journalists with them, including Rolling Stone. When they come we tell these people, also go take an industry tour, so they can see the other side. We encourage it because we don’t want them to think we are just bashing them and that they don’t get to defend themselves. Our thing was, if we highlight what is happening in our little neck of the woods then we could educate by showing the truth and affect the debate. Of course we were attacked viciously by the oil and gas industry, and by Energy in Depth, but also by the local elected officials that were pro-gas.

Q: This obviously requires a community effort. How have people and organizations in the area come together through these actions, and have they been able to develop more power by not just working as individuals?

A: Well here is the interesting thing. When I moved here, there were about 50 people that would show up at public meetings to discuss their first-hand experiences. These were people from Dimock, PA, and other surrounding areas. Besides that, there really was no collective organizing in Northeastern Pennsylvania. But we found that, by telling our stories, we brought the interest of organizations like New Yorkers Against Fracking and Mark Ruffalo’s group, Water Defense. They started to adopt us. I and other families started to travel all over, not only in New York but also in New Jersey and Ohio, to educate people. I realized that I was meant to take these stories further out. I took them to all these State Houses — North Carolina, Florida, Maryland, New York, New Jersey, Ohio. In California I was allowed to go and sit with the Governor’s entire Cabinet in his executive office. I was very proud to go there since I grew up in California.

Q: In the bigger picture of protecting our environment, why do you think it’s important for concerned citizens to get involved in these kinds of activities?

A: I have four children who will not live on the same clean planet that I did; as dirty as we thought it was in the ‘60s and ‘70s when I grew up, this is going to make that look like the heyday of environmental cleanliness. I’m doing this because I really believe this is a generational suicide we’re experiencing. By not telling this story, I would be complicit. When people see the gas company’s commercials and hear the radio ads, it sounds like the truth because it’s coming from credible people. By facing up to these giants, and showing people that you can do it and win like in New York, that can start a grassroots fire all around the world. And that has happened if you look at what is happening in England and Poland and Spain and France and Germany. We are proud to be part of that movement.

Q: What would you say is the most valuable insight you have learned from working with people fighting the gas industry?

A: The most valuable lesson for me is that people power trumps corporate power. People sometimes just don’t realize that they have an inner strength – that an average person who knew nothing about this five and a half or six years ago can get involved and become leaders. I’m more excited today than ever. I went to Florida. They have some very bad chemical non-disclosure bills. Right now we have 15 counties and 35 cities in Florida that have passed resolutions for bans of fracking for oil or gas in Florida. Maryland is safe until October of 2017 because of their moratorium. So what we are doing is working. I try to remind people, and everyone out there should know this, that you are a federal citizen, the same you are a citizen of the state or Commonwealth or republic that you live in. You are protected constitutionally and legally as a federal taxpayer. So the federal government can’t just throw us to the wolves of these individual states. They have to act. If they don’t, then they need to step down and let somebody get in there that has the health and safety of their citizens at the top of their list of what they are supposed to be doing every day in their position of power.

 

 

The Ultimate Price of PA State Forest Drilling

By Ted Auch, Matt Kelso, and Sam Rubright

PA DCNR recently released a draft State Forest Resource Management Plan. The draft plan, last revised in 2007, is an important tool that the Bureau of Forestry (BOF) uses to help manage Pennsylvania’s approximately 2.2 million acre state forest system. Approximately 1.5 million acres of state forest lands lie within the shale gas fairway and gas extraction – along with related issues like water resources –  is among the numerous subjects addressed in the document.

In total, approximately 673,000 acres are available for oil and gas development in PA state forests, either because private interests own the mineral rights below the land or because DCNR has opened up state-lands for drilling where it controls the mineral rights.

Approximately 386,000 acres have been leased by DCNR to allow drilling. DCNR’s shale gas monitoring report in 2014 said that only 16% of available state forest lands have been developed, which means that 84% (or 328,700 acres) could still be accessed for oil and gas through DCNR leases. Another 287,000 acres of state forest land sits atop private mineral rights. Mineral rights supersede – or overrule – those of the surface rights.

By some estimates, the projected “drillout” of state forest lands may include an additional 2,000 to 3,000 unconventional natural gas wells. There are concerns that the draft plan also does not adequately address the full scale and scope of such drilling and the serious impacts associated with it.

Derived from available data, FracTracker has prepared the following portrait of the projected impact to Pennsylvania’s state forest estate with emphasis on the resource-intensive nature of hydraulic fracturing and its extensive footprint on this sensitive landscape.


View or print static infographic

Get Involved

If you are concerned about these risks and potential development, DCNR is holding twelve meetings to gather public input on this draft plan until Nov 12th. Written comments can also be submitted through November 30 at StateForestPlan2015@pa.gov.

More background information about PA’s Draft 2015 State Forest Resource Management Plan


Extra Resources: Projected Build out Statistics

Land Use

Table 1. Projected land use needed to add 2,000 to 3,000 more wells on PA state forestlands

 Facility Type  Unit Projected Drilled Wells
2,000 3,000
Well Pads # 606 909
Acres 2,477 3,716
Limit Of Disturbance (LOD)* Acres 7,130 10,695
Gathering Lines Acres 20,189 30,284
Addtl. Mid/Down-stream Facilities Acres 2,847 4,271
Compressor Stations** # 126-210 189-316
Acres 2,978-4,976 4,466-7,464
ESTIMATED TOTAL Acres 36,621 54,931

*Limit of Disturbance includes infrastructure, mounded earth, etc. needed to access and service the well pads.
**1 compressor station is needed for every 25-30 miles of gathering lines, at 15-30 acres per station.

In Ohio, well pads average 4-5 acres, 3.4 laterals per well pad, and 8.5 acres of gathering line per acre of well pad. However, each pad has what we are calling a “Limit of Disturbance,” which includes infrastructure, mounded earth, etc. LOD likely represents a conservative estimate of miscellaneous land disturbance as it does not include the access roads; it was not possible with our current datasets to discern which roads were specifically added to access the well pads. LODs are averaging 10-14 acres.

Using the 2,000-3,000 wells proposed, the total acreage that could be disturbed by new well pads, well pad LODs, gathering lines, compressor stations, and related mid/downstream facilities in PA’s state forests would be between and 36,621 and 54,931 acres depending on the number and size of compressor stations (i.e., averaging 24 acres) (Table 1).

Water Use

Table 2. Projected resource use and waste produced per well based on OH, WV, and PA historical figures.

Variable Unit Avg Increase / Quarter
Water Needed Gallons 3.5 MGs

PA Stats

Gallons 4.4 MGs

OH Stats*

Gallons 6.2-7.0 MGs 405-410 K

WV Stats

Gallons 7.9 MGs 450 K
Drill Cuttings** Tons 1,050 4.96
OH Stats Tons 700+ (estimate) 4.7-5.2
PA Stats Tons 1,400
Landfill Waste (Drilling Muds) Tons / Facility 28,098 15,319
Silica Sand Tons 4,303 86
Injection Waste Gallons / Quarter 117 MGs 5.4 MGs

* 7-9% of injected fluids returns to the surface as fracking waste
** significantly dependent upon lateral length

Events

Nothing Found

Sorry, no posts matched your criteria