Posts

Mapping the Petrochemical Build-Out Along the Ohio River

New maps show the build-out of oil and gas infrastructure that converts the upper Ohio River Valley’s fracked gas into petrochemical products

In 2004, Range Resources purchased land in Washington County, Pennsylvania and “fracked” the first well in the Marcellus Shale, opening the flood gates to a wave of natural gas development.

Since then, oil and gas companies have fracked thousands of wells in the upper Ohio River Valley, from the river’s headwaters in Pennsylvania, through Ohio and West Virginia, and into Kentucky.

Industry sold natural gas as a “bridge fuel” to renewable energy, but 15 years since the first fracked Marcellus well, it’s clear that natural gas is more of a barrier than a bridge. In fact, oil and gas companies are not bridging towards clean energy at all, but rather investing in the petrochemical industry- which converts fracked gas into plastic.

This article dives into the expanding oil, gas, and petrochemical industry in the Ohio River Valley, with six maps and over 16,000 data points detailing the build-out of polluting infrastructure required to make plastic and other petrochemical products from fossil fuels.

Fracking for plastic

The petrochemical industry is expanding rapidly, with $164 billion planned for new infrastructure in the United States alone. Much of the build-out involves expanding the nation’s current petrochemical hub in the Gulf Coast, yet industry is also eager to build a second petrochemical hub in the Ohio River Valley.

The shale rock below the Ohio River Valley releases more than methane gas used for energy. Fracked wells also extract natural gas liquids (NGLs) which the petrochemical industry manufactures into products such as plastic and resins. Investing in the petrochemical industry is one way to capitalize on gases that would otherwise be released to the atmosphere via venting and flaring. As companies continue to spend billions more on drilling than they’re bringing in, many are looking towards NGLs as their saving grace.

These maps look at a two-county radius along the upper Ohio River where industry is most heavily concentrated.

Step 1. Extraction

The petrochemical lifecycle begins at the well, and there are a lot of wells in the Ohio River Valley. The majority of the natural gas produced here is extracted from the Marcellus and Utica Shale plays, which also contain “wet gas,” or NGLs, such as ethane, propane, and butane.

Rig in Greene County, PA. Photo by Ted Auch.

12,507

active, unconventional wells in the upper Ohio River Valley

Of particular interest to the petrochemical industry is the ethane in the region, which can be “cracked” into ethylene at high temperatures and converted into polyethylene, the most common type of plastic. The Department of Energy predicts that production of ethylene from ethane in the Appalachian Basin will reach 640,000 barrels a day by 2025 – that’s 20 times the amount produced in 2013.

In our first map, we attempted to show only active and unconventional (fracked) wells, a difficult task as states do not have a uniform definition for “unconventional” or “active.” As such, we used different criteria for each state, detailed below.

This map shows 12,660 wells, including:

  • 12,507 shale oil and gas wells:
    • 5,033 wells designated as “active” and “unconventional” in Pennsylvania
    • 2,971 wells designated as “drilled,” “permitted,” or “producing,” and are drilled in the Utica-Point Pleasant and Marcellus Shale in Ohio
    • 4,269 wells designated as “active” or “drilled” in the Marcellus Shale in West Virginia
    • 234 wells designated as “horizontal” and are not listed as abandoned or plugged in Kentucky
  • 153 Class II injection wells, which are used for the disposal of fracking wastewater
    • 2 in Pennsylvania
    • 101 in Ohio
    • 42 in West Virginia
    • 8 in Kentucky

The map also shows the Marcellus and Utica Shale plays, and a line demarcating the portions of these plays that contain higher quantities of wet gas. These wet gas regions are of particular interest to the petrochemical industry. Finally, the Devonian-Ohio Shale play is visible as you zoom in.



View Map Full Screen | How FracTracker Maps Work

Step 2. Transportation

Burned hillside near Ivy Lane after the Revolution Pipeline Exploded

Site of the Revolution Pipeline explosion. Photo: Darrell Sapp, Post Gazette.

A vast network of pipelines transports the oil and gas from these wells to processing stations, refineries, power plants, businesses, and homes. Some are interstate pipelines passing through the region on their way to domestic and international markets.

A number of controversial pipeline projects cross the Ohio River Valley. Construction of the Mariner East II Pipeline is under criminal investigation, the Revolution Pipeline exploded six days after it came on line, protesters are blocking the construction of the Mountain Valley Pipeline, and the Atlantic Coast Pipeline is in the Supreme Court over permits to cross the Appalachian Trail.

Accurate pipeline data is not typically provided to the public, ostensibly for national security reasons.  The result of this lack of transparency is that residents along the route are often unaware of the infrastructure, or whether or not they might live in harm’s way. While pipeline data has improved in recent years, much of the pipeline data that exists remains inaccurate. In general, if a route is composed of very straight segments throughout the rolling hills of the Upper Ohio River Valley, it is likely to be highly generalized.

The pipeline map below includes:

  • natural gas interstate and intrastate pipelines
  • 8 natural gas liquid pipelines
  • 7 petroleum product pipelines
  • 3 crude oil pipelines
  • 18 pipeline projects that are planned or under construction for the region, including 15 natural gas pipelines and 3 natural gas liquids pipelines. To view a spreadsheet of these pipelines, click here.



View Map Full Screen | How FracTracker Maps Work

Step 3. Oil and Gas Transport and Processing

Pipelines transport oil and the natural gas stream to an array of facilities. Compressor stations and pumping stations aid the movement of the products through pipelines, while processing stations separate out the natural gas stream into its different components, including NGLs, methane, and various impurities.

At this step, a portion of the extracted fossil fuels are converted into sources of energy: power plants can use the methane from the natural gas stream to produce electricity and heat, and oil refineries transform crude oil into products such as gasoline, diesel fuel, or jet fuel.

A separate portion of the fuels will continue down the petrochemical path to be converted into products such as plastics and resins. Additionally, a significant portion of extracted natural gas leaks unintentionally as “fugitive emissions” (an estimated 2-3%) or is intentionally vented into the atmosphere when production exceeds demand.

This map shows 756 facilities, including:

  • 29 petroleum and natural gas power plants
    • 3 electric utilities
    • 24 independent power producers
    • 1 industrial combined heat and power (CHP) plant
    • 1 industrial power producer (non CHP)
  • 10 pumping stations, which assist in the transmission of petroleum products in pipelines
  • 645 compressor stations to push natural gas through pipelines
  • 21 gas processing plants which separate out NGLs, methane, and various impurities from the natural gas stream
  • 46 petroleum terminals, which are storage facilities for crude and refined petroleum products, often adjacent to intermodal transit networks
  • 3 oil refineries, which convert crude oil into a variety of petroleum-based products, ranging from gasoline to fertilizer to plastics
  • 2 petroleum ports, which are maritime ports that process more than 200 short tons (400,000 pounds) of petroleum products per year

*A small portion of these facilities are proposed or in construction, but not yet built. Click on the facilities for more information. 



View map full screen | How FracTracker Maps Work

Step 4. Storage

After natural gas is extracted from underground, transported via pipeline, and separated into dry gas (methane) and wet gas (NGLs), its components are often pumped back underground for storage. With the expansion of the petrochemical industry, companies are eager to find opportunities for NGL storage.

Underground storage offers a steady supply for petrochemical manufacturers and allows industry to adapt to fluctuations in demand. A study out of West Virginia University identified three different types of NGL storage opportunities along the Ohio and Kanawha River valleys:

  1. Mined-rock cavern: Companies can mine caverns in formations of limestone, dolomite, or sandstone. This study focused on caverns in formations of Greenbrier Limestone.
  2. Salt cavern: Developing caverns in salt formations involves injecting water underground to create a void, and then pumping NGLs into the cavern.
  3. Gas field: NGLs can also be stored in natural gas fields or depleted gas fields in underground sandstone reservoirs.

Above-ground tanks offer a fourth storage option.

Natural gas and NGL storage contains many risks. These substances are highly flammable, and accidents or leaks can be fatal. A historically industrialized region, the Ohio River Valley is full of coal mines, pipelines, and wells (including abandoned wells with unknown locations). All of this infrastructure creates passages for NGLs to leak and can cause the land above them to collapse. As many of these storage options are beneath the Ohio River, a drinking water supply for over 5 million people, any leak could have catastrophic consequences.

Furthermore, there are natural characteristics that make the geology unsuitable for underground storage, such as karst geological formations, prone to sinkholes and caves.

Notable Storage Projects

Appalachia Development Group LLC is heading the development of the Appalachia Storage & Trading Hub initiative, “a regional network of transportation, storage and trading of Natural Gas Liquids and chemical intermediates.” The company has not announced the specific location for the project’s storage component. Funding for this project is the subject of national debate; the company applied for a loan guarantee through a federal clean energy program, in a move that may be blocked by Congress.

Energy Storage Ventures LLC plans to construct the Mountaineer NGL Storage facility near Clarington, Ohio along the Ohio River. This facility involves salt cavern storage for propane, ethane, and butane. To supply the facility, the company plans to build three pipelines beneath the Ohio River: two pipelines (one for ethane and one for propane and butane) would deliver NGLs to the site from Blue Racer Natrium processing plant. A third pipeline would take salt brine water from the caverns to the Marshall County chlorine plant (currently owned by Westlake Chemical Corp).

The storage map below shows potential NGL storage sites to feed petrochemical infrastructure as well as natural gas storage for energy production:



View Map Full Screen | How FracTracker Maps Work

Step 5. Petrochemical Manufacturing

While conventional oil and gas extraction has occurred in the region for decades, and fracking for 15 years, the recent petrochemical build-out adds an additional environmental and health burdens to the Ohio River Valley. Our final map represents the facilities located “downstream” in the petrochemical process which convert fossil fuels into petrochemical products.

An image of plastic pellets

Polyethylene pellets, also called nurdles, manufactured by ethane crackers. Image source.

Ethane Crackers

Much of the petrochemical build-out revolves around ethane crackers, which convert ethane from fracked wells into small, polyethylene plastic pellets. They rely on a regional network of fracking, pipelines, compressor stations, processing stations, and storage to operate.

In 2017, Royal Dutch Shell began construction on the first ethane cracker to be built outside of the Gulf Coast in 20 years. Located in Beaver County, Pennsylvania, this plant is expected to produce 1.6 million tons of polyethylene plastic pellets per year. In the process, it will release an annual 2.2 million tons of carbon dioxide (CO2).

A second ethane cracker has been permitted in Belmont County, Ohio. Several organizations, including the Sierra Club, Center for Biological Diversity, FreshWater Accountability Project, and Earthworks have filed an appeal against Ohio EPA’s issuance of the air permit for the PTTGC Ethane Cracker.

Shell Ethane Cracker

The Shell Ethane Cracker, under construction in Beaver County, is expected to produce 1.6 million tons of plastic per year. Photo by Ted Auch, aerial assistance provided by LightHawk.

Methanol plants also convert part of the natural gas stream (methane) into feedstock for a petrochemical product (methanol). Methanol is commonly used to make formaldehyde, a component of adhesives, coatings, building materials, and many other products. In addition to methanol plants and ethane crackers, the map below also shows the facilities that make products from feedstocks, such as fertilizer (made from combining natural gas with nitrogen to form ammonia, the basis of nitrogen fertilizer), paints, and of course, plastic.

These facilities were determined by searching the EPA’s database of industrial sites using the North American Industry Classification System (NAICS).

In total, we mapped 61 such facilities:

  • 2 methanol plants (both in construction)
  • 3 ethane crackers (one in construction, one under appeal, and one uncertain project)
  • 12 petrochemical manufacturing facilities (NAICS code 32511)
  • 31 plastic manufacturing facilities
    • 2 plastic bag and pouch manufacturing facilities (NAICS code 326111)
    • 2 plastic packaging materials and unlaminated film and sheet manufacturing facilities (NAICS code 32611)
    • 2 plastic packaging film and sheet (including laminated) manufacturing facilities (NAICS code 326112)
    • 1 unlaminated plastic film and sheet (except packaging) manufacturing facility (NAICS code 326113)
    • 1 unlaminated plastics profile shape manufacturing facility (NAICS code 326121)
    • 2 laminated plastics plate, sheet (except packaging), and shape manufacturing facilities (NAICS code 32613)
    • 21 facilities listed as “all other plastics product manufacturing” (NAICS code 326199)
  • 11 paint and coating manufacturing facilities (NAICS code 325510)
  • 2 nitrogenous fertilizer manufacturing facilities (NAICS code 325311)



View Map Full Screen | How FracTracker Maps Work

Visualizing the Build-Out

How are these facilities all connected? Our final map combines the data above to show the connections between the fossil fuel infrastructure. To avoid data overload, not all of the map’s features appear automatically on the map. To add features, view the map full screen and click the “Layers” tab in the top right tool bar.



View Map Full Screen | How FracTracker Maps Work

A better future for the Valley

The expansion of oil and gas infrastructure, in addition to the downstream facilities listed above, has rapidly increased in the last few years. According to the Environmental Integrity Project, regulatory agencies in these four states have authorized an additional 15,516,958 tons of carbon dioxide equivalents to be emitted from oil and gas infrastructure since 2012. That’s in addition to emissions from older oil and gas infrastructure, wells, and the region’s many coal, steel, and other industrial sites.

View the Environmental Integrity Project’s national map of emission increases here, which also includes permit documents for these new and expanding facilities.

The petrochemical build-out will lock in greenhouse gas emissions and plastic production for decades to come, ignoring increasingly dire warnings about plastic pollution and climate change. A recent report co-authored by FracTracker Alliance found that the greenhouse gas emissions across the plastic lifecycle were equivalent to emissions from 189 coal power plants in 2019 – a number that’s predicted to rise in coming years.

[av_font_icon icon=’ue80e’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

What does the petrochemical build out look like in the Ohio River Valley?

 

But it doesn’t have to be this way. The oil and gas industry’s plan to increase plastic manufacturing capacity is a desperate attempt to stay relevant as fracking companies “hemorrhage cash” and renewable energy operating costs beat out those of fossil fuels. Investing instead in clean energy, a less mechanized and more labor intensive industry, will offer more jobs and economic opportunities that will remain relevant as the world transitions away from fossil fuels.

In fact, the United States already has more jobs in clean energy, energy efficiency, and alternative vehicles than jobs in fossil fuels. It’s time to bring these opportunities to the Ohio River Valley and bust the myth that Appalachian communities must sacrifice their health and natural resources for economic growth.

People gather at the headwaters of the Ohio River to advocate for the sustainable development of the region. Add your voice to the movement advocating for People Over Petro by signing up for the coalition’s email updates today!

Download the maps

 

 

 

 

 

 

 

This data in this article are not exhaustive. FracTracker will be updating these maps as data becomes available.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

Pennsylvanians Demand a Response to Rare Cancer Cases, Other Health Impacts

New research on fracking health impacts, combined with unusually high rates of pediatric cancer, sound alarm bells in Pennsylvania

FracTracker isn’t the only one digging deeper into the health impacts of fracking in the past few months. Last week, the Better Path Coalition organized a meeting at the Capitol Building in Harrisburg, Pennsylvania, to share new research with government officials, the press, and the public. These groundbreaking reports highlight the increasing body of evidence showing fracking’s adverse health and climate impacts.

Following the presentations on emerging research, Ned Ketyer, M.D., F.A.A.P, discussed the highly concerning proliferation of rare pediatric cancer cases in southwestern Pennsylvania.

Dr. Ketyer drew data from a report released last month by the Pittsburgh Post Gazette, which uncovered an unusually high number of childhood cancer diagnoses in southwestern Pennsylvania over the last decade. In just four counties (Washington, Greene, Fayette and Westmoreland), there were 27 people diagnosed with Ewing sarcoma, a rare bone cancer, between 2008 and 2018. Six of the 27 people diagnosed were from the Canon-McMillan School District in Washington County, where there are currently 10 students district-wide with other types of cancers.

The expected number of Ewing sarcoma diagnoses over this time period and for the population count of southwestern Pennsylvania would be 0.75 cases per year, or roughly eight cases over the course of a decade. The higher number of rare childhood cancers was the subject of a recent community meeting held by the Southwest Pennsylvania Environmental Health Project (EHP), where residents called on the state to further investigate the issue and take immediate action to eliminate any potential environmental causes. For more of EHP’s resources on this topic, click here.

Cancer in the Marcellus

The Pennsylvania Department of Health investigated three of these cases in Washington County and found that they did not meet the criteria definition of a cancer cluster. Still, the unusually high number of rare cancers over a small geography is cause for alarm and reason to suspect an environmental cause.

This four-county area has a legacy of environmental health hazards associated with coal mining activities and is home to a 40-year old uranium disposal site that sits in close proximity to the Canon-McMillan High School. But with the increase in cancer diagnoses over the past decade, many are looking towards fracking in the Marcellus Shale, the more recent environmental hazard to develop in the region, as a contributing cause.

Southwestern Pennsylvania is a hot spot for fracking activity. In these four counties, there are 3,169 active, producing unconventional gas wells. There are also the infrastructure and activity associated with unconventional development: compressor stations, processing stations (including Pennsylvania’s largest cryogenic plant), disposal sites for radioactive waste, and heavy truck traffic.

The environmental and health risks of these facilities were the focus of the presentations and discussions with Pennsylvania leaders last week.

A map of unconventional gas production in southwest Pennsylvania. Click on the image to open the map.

View map fullscreen | How FracTracker maps work

Call for action

At the culmination of the Harrisburg meeting, participants delivered a letter to Governor Wolf’s office, calling for an investigation into the causes of these childhood cancer cases. Signed by over 900 environmental organizations and individuals, the letter also asks for a suspension of new shale gas permitting until the Department of Health can determine that there is no link between drilling and the cancer outcomes.

Governor Wolf’s response to Karen Feridun, the organizer of this campaign, was a disappointing dismissal of this public health crisis. Stating that the environmental regulations his office has implemented “protect Pennsylvanians from negative environmental and health impacts,” Governor Wolf went on to say that his office “will continue to monitor and study cancer incidents in this area, especially as more data becomes available,” but did not agree to suspend new permitting.

Wolf’s decision to continue with status quo permitting while waiting for more data to become available is unacceptable, and will lead to more Pennsylvanians suffering from the industry’s health impacts.

The Governor’s response is even more disheartening as it follows his recent support for a full ban on fracking activity in the Delaware River Basin (including eastern Pennsylvania). The Governor’s support for the ban is an acknowledgement of the industry’s risks, and leaves us frustrated that the southwestern part of the state is not receiving equal protection.

When is enough evidence enough?

The continued permitting of unconventional wells disregards the scientific evidence of drilling’s harms discussed in Harrisburg.

Sandra Steingraber, Ph.D, of Concerned Health Professionals of New York, discussed the results of the sixth edition of “The Compendium of Scientific, Medical, and Media Findings Demonstrating Risks and Harms of Fracking.” The Compendium outlines the health risks of fracking infrastructure from almost 1,500 peer-reviewed studies and governmental reports. Notably, the report outlines the inherent dangers of fracking and finds that regulations are incapable of protecting public health from the industry.

Erica Jackson discussed FracTracker Alliance’s recently published Categorical Review of Health Reports. This literature review analyzed 142 publications and reports on the health impacts of fracking, and found that 89% contained evidence of an adverse health outcome or health risk associated with proximity to unconventional oil and gas development.

Brian Schwartz, M.D., M.S., the Director of Geisinger Health Institute at the Johns Hopkins Bloomberg School of Public Health, presented epidemiological studies linking unconventional development to increased radon concentrations on homes and health impacts including adverse birth outcomes, mental health disorders, and asthma exacerbations.

Lorne Stockman, Senior Research Analyst with Oil Change International, discussed  “Burning the Gas ‘Bridge Fuel’ Myth,” a new report that further solidifies the irrationality of continued oil and gas development based on its climate impacts. The report shows that greenhouse gas emissions from fracking exceed climate goals, and how perpetuating the myth of natural gas as a “bridge” to renewables locks in emissions for decades.

A welcome ray of hope, this report also proves that renewables are an economically viable replacement to coal and gas, costing less than fossil fuels to build and operate in most markets. Furthermore, renewables combined with increasingly competitive battery storage ensures grid reliability.

“Burden of proof always belongs to the industry”

Among the inundation of data, statistics, and studies, Dr. Steingraber offered a sobering reminder of the purpose behind the meeting:

“Public health is about real people. When we collect data on public health problems, behind every data point, behind every black dot floating on a white mathematical space on a graph captured in a study, there are human lives behind those data points. And when those points each represent the life of a child or a teenager, what the dots represent is terror, unimaginable suffering, followed by death, or terror, unimaginable suffering, followed by a life of trauma, pathology reports, bone scans, medical bills, side effects, and uncertainty that all together are known as cancer survival.”

An adolescent cancer survivor herself, Dr. Steingraber clearly articulated the ethical responsibility our elected officials have to hold industry accountable for its impacts:

“Burden of proof always belongs to the industry, and benefit of the doubt always belongs to the child. It’s wrong to treat children like lab rats and experiment on them until the body count becomes so high that it reaches all the levels of statistical significance that tells you that we have a real problem here.”

The evidence is in – we know enough to justify an end to fracking based on its health and climate impacts. It’s time for Pennsylvania’s industry and leaders to stop experimenting with residents’ health and take immediate action to prevent more suffering.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

Who Pays? Health and Economic Impacts of Fracking in Pennsylvania

Since the advent of unconventional shale gas drilling, some effects have been immediate, some have emerged over time, and some are just becoming apparent. Two reports recently published by the Delaware Riverkeeper Network advance our understanding of the breadth of the impacts of fracking in Pennsylvania. The first report, written by FracTracker, reviews research on the ways fracking impacts the health of Pennsylvanians. The second report by ECONorthwest calculates the economic costs of the industry.

“Fracking is heavily impacting Pennsylvania in multiple ways but the burden is not being fairly and openly calculated. These reports reveal the health effects and economic costs of fracking and the astounding burdens people and communities are carrying,” said Maya van Rossum, the Delaware Riverkeeper.

Learn what the latest science and analysis tells us about the costs of fracking, who is paying now, and what the future price is forecasted to be.

Access the full reports here:

 

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Health Impact Report

“Categorical Review of Health Reports on Unconventional Oil and Gas Development; Impacts in Pennsylvania,”  FracTracker Alliance, 2019 Issue Paper

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Economic Impact Report

“The Economic Costs of Fracking in Pennsylvania,” ECONorthwest, 2019 Issue Paper
 
 

 

From the Experts

“The FracTracker Alliance conducted a review of the literature studying the impact of unconventional oil and gas on health. Findings of this review show a dramatic increase in the breadth and volume of literature published since 2016, with 89% of the literature reporting that drilling proximity has human health effects. Pennsylvanian communities were the most studied sample populations with 49% of reviewed journal articles focused on Marcellus Shale development. These studies showed health impacts including cancer, infant mortality, depression, pneumonia, asthma, skin-related hospitalizations, and other general health symptoms were correlated with living near unconventional oil and gas development for Pennsylvania and other frontline communities.”

Kyle Ferrar, FracTracker Alliance Western Program Coordinator

 

Rig and house. Westwood Lake Park. Photo by J Williams, 2013.

“Fracking wells have an extensive presence across Pennsylvania’s landscape – 20 percent of residents live within 2 miles of a well. This is close enough to cause adverse health outcomes. Collectively we found annual costs of current fracking activity over $1 billion, with cumulative costs given continued fracking activity over the next 20 years of over $50 billion in net present value for the effects that we can monetize. The regional economic benefits also seem to be less than stated, as the long-term benefits for local economies are quite low, and can disrupt more sustainable and beneficial economic trajectories that might not be available after a community has embraced fracking.”

Mark Buckley, Senior Economist at the natural resource practice at
ECONorthwest

 

These reports on the health effects and economic impacts of unconventional oil and natural gas development yield disheartening results. There are risks of extremely serious health issues for families in impacted areas, and the long term economic returns for communities are negative.

Arming ourselves with knowledge is an important first step towards the renewable energy transformation that is so clearly needed. The stakes are too high to allow the oil and natural gas industries to dictate the physical, social, and economic health of Pennsylvanians.

DOGGR

Literally Millions of Failing, Abandoned Wells

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

In California’s Central Valley and along the South Coast, there are many communities littered with abandoned oil and gas wells, buried underground.

Many have had homes, buildings, or public parks built over top of them. Some of them were never plugged, and many of those that were plugged have since failed and are leaking oil, natural gas, and toxic formation waters (water from the geologic layer being tapped for oil and gas). Yet this issue has been largely ignored. Oil and gas wells continue to be permitted without consideration for failing and failed plugged wells. When leaking wells are found, often nothing is done to fix the issue.

As a result, greenhouse gases escape into the atmosphere and present an explosion risk for homes built over top of them. Groundwater, including sources of drinking water, is known to be impacted by abandoned wells in California, yet resources are not being used to track groundwater contamination.

Abandoned wells: plugged and orphaned

The term “abandoned” typically refers to wells that have been taken out of production. At the end of their lifetime, wells may be properly abandoned by operators such as Chevron and Shell or they may be orphaned.

When operators properly abandon wells, they plug them with cement to prevent oil, natural gas, and salty, toxic formation brine from escaping the geological formation that was tapped for production. Properly plugging a well helps prevent groundwater contamination and further air quality degradation from the well. The well-site at the surface may also be regraded to an ecological environment similar to its original state.

Wells that are improperly abandoned are either plugged incorrectly or are “orphaned” by their operators. When wells are orphaned, the financial liability for plugging the well and the environmental cleanup falls on the state, and therefore, the taxpayers.

You don’t see them?

In California’s Central Valley and South Coast abandoned wells are everywhere. Below churches, schools, homes, they even under the sidewalks in downtown Los Angeles!

FracTracker Alliance and Earthworks recently spent time in Los Angeles with an infrared camera that shows methane and volatile organic compound (VOC) emissions. We visited several active neighborhood drilling sites and filmed plumes of toxic and carcinogenic VOCs floating over the walls of well-pads and into the surrounding neighborhoods. We also visited sites where abandoned, plugged wells had failed.

In the video below, we are standing on Wilshire Blvd in LA’s Miracle Mile District. An undocumented abandoned well under the sidewalk leaks toxic and carcinogenic VOCs through the cracks in the pavement as mothers push their children in walkers through the plume. This is just one case of many that the state is not able to address.

California regulatory data shows that there are 122,466 plugged wells in the state, as shown below in the map below. Determining how many of them are orphaned or improperly plugged is difficult, but we can come up with an estimate based on the wells’ ages.

While there are no available data on the dates that wells were plugged, there are data on “spud dates,” the date when operators begin drilling into the ground. Of the 18,000 wells listing spud dates, about 70% were drilled prior to 1980. Wells drilled before 1980 have a higher risk of well casing failures and are more likely to be sources of groundwater contamination.

Additionally, wells plugged prior to 1953 are not considered effective, even by industry standards. Prior to 1950, wells either were orphaned or plugged and abandoned with very little cement. Plugging was focused on protecting the oil reservoirs from rain infiltration rather than to “confine oil, gas and water in the strata in which they are found and prevent them from escaping into other strata.” Of the wells with drilling dates in the regulatory data, 30% are listed as having been drilled prior to the use of cement in well plugging.

With a total of over 245,000 wells in the state database, and considering the lack of monitoring prior to 1950, it’s reasonable to assume there are over 80,000 improperly plugged and unplugged wells in California.

Map of California’s Plugged Wells

View map fullscreen | How FracTracker maps work

The regions with the highest counts of plugged wells are the Central Valley and the South Coast. The top 10 county ranks are listed below in Table 1. Kern County has more than half of the total plugged wells in the entire state.

Table 1. Ranks of Counties by Plugged Well Counts
  • Rank
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • County
  • Kern
  • Los Angeles
  • Orange
  • Fresno
  • Ventura
  • Santa Barbara
  • Monterey
  • San Luis Obispo
  • Solano
  • Yolo
  • Plugged Well Count
  • 65,733
  • 17,139
  • 7,259
  • 6,970
  • 4,302
  • 4,192
  • 2,266
  • 1,463
  • 1,456
  • 1,383

The issue is not unique to California. Nationally, an estimated 2.56 million oil and gas wells have been drilled and 1.93 million wells had been abandoned by 1975. Using interpolated data, the EPA estimates that as of 2016 there were 3.12 million abandoned wells in the U.S. and 69% of them were left unplugged.

In 2017, FracTracker Alliance organized an exercise to track down the locations of Pennsylvania’s abandoned wells that are not included in the PA Department of Environmental Protection’s digital records. Using paper maps and the FracTracker Mobile App, volunteers explored Pennsylvania woodlands in search of these hidden greenhouse gas emitters.

What are the risks?

Emissions

Studies by Kang et al. 2014, Kang et al 2016, Boothroyd et al 2016, and Townsend-Small et al. 2016 have all measured methane emissions from abandoned wells. Both properly plugged and improperly abandoned wells have been shown to leak methane and other VOCs to the atmosphere as well as into the surrounding groundwater, soil, and surface waters. Leaks were shown to begin just 10 years after operators plugged the wells.

Well density

The high density of aging and improperly plugged wells is a major risk factor for the current and future development of California’s oil and gas fields. When fields with old wells are reworked using new technology, such as hydraulic fracturing, CO2 flooding, or solvent flooding (including acidizing, water flooding, or steam flooding), the injection of additional fluid and gas increases pressure in a reservoir. Poorly plugged or aging wells often lack the integrity to avoid a blowout (the uncontrolled release of oil and/or gas from a well). There is a consistent risk that formation fluids will be forced to migrate up the plugged wellbores and bypass the existing plugs.

Groundwater

In a 2014 report, the U.S. Geological Service warned the California State Water Resources Control Board that the integrity of abandoned wells is a serious threat to groundwater sources, stating, “Even a small percentage of compromised well bores could correspond to a large number of transport pathways.”

The California Council on Science and Technology (CCST) has also suggested the need for additional research on existing aquifer contamination. In 2014, they called for widespread testing of groundwater near oil and gas fields, which has still not occurred.

Leaks

In addition to the contamination of underground sources of drinking water, abandoned well failures can even create a pathway for methane and fluids to escape to Earth’s surface. In many cases, such as in Pennsylvania, Texas, and California, where drilling began prior to the turn of the 20th century, many wells have been left unplugged. Of the abandoned wells that were plugged, the plugging process was much less adequate than it is today.

If plugged wells are allowed to leak, surface expressions can form. These leaks can travel to the Earth’s crust where oil, gas, and formation waters saturate the topsoil. A construction supervisor for Chevron named David Taylor was killed by such an event in the Midway-Sunset oil field near Bakersfield, CA. According to the LA Times, Chevron had been trying to control the pressure at the well-site. The company had stopped injections near the well, but neighboring operators continued high-pressure injections into the pool. As a result, migration pathways along old wells allowed formation fluids to saturate the Earth just under the well-site. Tragically, Taylor fell into a 10-foot diameter crater of 190° fluid and hydrogen sulfide.

California regulations

Following David Taylor’s death in 2011, California regulators vowed to make urgent reforms to the management of underground injection, and new rules finally went into effect on April 1, 2018. These regulations require more consistent monitoring of pressure and set maximum pressure standards. While this will help with the management of enhanced oil recovery operations, such as steam and water flooding and wastewater disposal, the issue of abandoned wells is not being addressed.

New requirements incentivizing operators to plug and abandon idle wells will help to reduce the number of orphan wells left to the state, but nothing has been done or is proposed to manage the risk of existing orphaned wells.

Conclusion

Why would the state of California allow new oil and gas drilling when the industry refuses to address the existing messes? Why are these messes the responsibility of private landholders and the state when operators declare bankruptcy?

New bonding rules in some states have incentivized larger operators to plug their own wells, but old low-producing or idle wells are often sold off to smaller operators or shell (not Shell) companies prior to plugging. This practice has been the main source of orphaned wells. And regardless of whether wells are plugged or not, research shows that even plugged wells release fugitive emissions that increase with the age of the plug.

If the fossil fuel industry were to plug the existing 1.666 million currently active wells, there would be nearly 5 million plugged wells that require regular inspections, maintenance, and for the majority, re-plugging, to prevent the flow of greenhouse gases. This is already unattainable, and drilling more wells adds to this climate disaster.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Getting Rid of All of that Waste – Increasing Use of Oil and Gas Injection Wells in Pennsylvania

Oil and gas development generates a lot of liquid waste.

Some of the waste comes that comes out of a well is from the geologic layer where the oil and gas resources are located. These extremely saline brines may be described as “natural,” but that does not make them safe, as they contain dangerous levels of radiation, heavy metals, and other contaminants.

Additionally, a portion of the industrial fluid that was injected into the well to stimulate production, known as hydraulic fracturing fluid, returns to the surface.  Some of these substances are known carcinogens, while others remain entirely secret, even to the personnel in the field who are employed to use the additives.

The industry likes to remind residents that they have used this technique for more than six decades, which is true. What separates “conventional” fracking from developing unconventional formations such as the Marcellus Shale is really a matter of scale.  Conventional formations are often stimulated with around 10,000 gallons of fluid, while unconventional wells now average more than 10 million gallons per well.

In 2017 alone, Pennsylvania oil and gas wells generated 57,653,023 barrels (2.42 billion gallons) of liquid waste.

Managing the waste stream

Liquid waste can be reused to stimulate other oil and gas wells, but reuse concentrates the contaminant load in the fluid. There is a limit to this concentration that operators can use, even for this industrial purpose.

Another strategy is to decrease the volume of the waste through evaporation and other treatment methods. This also increases the contaminant concentration. Pennsylvania used to permit “treatment” of wastewater at sewage treatment facilities, before being forced to concede that the process was completely ineffective, and resulted in contaminating streams and rivers throughout the Commonwealth.

In many states, much of this waste is disposed of in facilities known as salt water disposal (SWD) wells, a specific type of injection well. These waste facilities fall under the auspices of the US Environmental Protection Agency’s Underground Injection Control (UIC) program. Such wells are co-managed with states’ oil and gas regulatory agencies, although the specifics vary by state.

These photos show SWD wells in other states, but what about in Pennsylvania?

The oil and gas industry in Pennsylvania has not used SWD wells as a primary disposal method, as the state’s geology has been considered unsuitable for this process.  For example, on page 67 of this 2009 industry report, the authors saw treatment of flowback fluid at municipal facilities as a viable option (before the process was  banned in 2011), but underground injection as less likely (emphasis added):

The disposal of flowback and produced water is an evolving process in the Appalachians. The volumes of water that are being produced as flowback water are likely to require a number of options for disposal that may include municipal or industrial water treatment facilities (primarily in Pennsylvania), Class II injection wells [SWDs], and on-site recycling for use in subsequent fracturing jobs. In most shale gas plays, underground injection has historically been preferred. In the Marcellus play, this option is expected to be limited, as there are few areas where suitable injection zones are available.

The ban on surface “treatment” being discharged into Pennsylvania waters has increased the pressure for finding new solutions for brine disposal.  This is compounded by the fact that the per-well volume of fluid injected into shale gas wells in the region has nearly tripled in that time period. Much of what is injected comes back up to the surface and is added to the liquid waste stream.

Chemically-similar brine from conventional wells has been spread on roadways for dust suppression. This practice was originally considered a “beneficial use” of the waste product, but the Pennsylvania Department of Environmental Protection (DEP) halted that practice in May 2018.

None of these waste management decisions make the geology in Pennsylvania suddenly suitable for underground injection, however, they do increase the pressure on the state to find a disposal solution.

Concerns with SWD wells

There are numerous concerns with salt water disposal wells.  In October 2018, the DEP held a hearing in Plum Borough, on the eastern edge of Allegheny County, where there is a proposal to convert the Sedat 3A conventional well to an injection well. Some of the concerns raised by residents include:

  • Fluid and/or gas migration- There are numerous routes for fluids and gas to migrate from the injection formation to drinking water aquifers or even surface water.  Potential conduits include coal mines, abandoned gas wells, water wells, and naturally occurring fissures in crumbling sedimentary formations.
  • Induced seismicity- SWD wells have been linked to increased earthquake activity, either by lubricating or putting pressure on old faults that had been dormant. Earthquakes can occur miles away from the injection location, and in sedimentary formations, not just igneous basement rock.
  • Noise, diesel pollution, loss of privacy, and road degradation caused by a constant stream of industrial waste haulers to the well location.
  • Complicating existing issues-  Plum Borough and surrounding communities are heavily undermined, and in fact the well bore goes right through the Renton Coal Mine (another part of which has been on fire for decades).  Mine subsidence is already a widespread issue in the region, and many fear that even small seismic events could exacerbate this.
  • Possibility of surface spill-  Oil and gas is, sadly, a sloppy industry, with unconventional operations having accumulated more than 13,000 violations in Pennsylvania since 2008.  If a major spill were to happen at this location, there is the possibility of release into Pucketa Creek, which drains into the Allegheny River, the source of drinking water for multiple communities.
  • Radioactivity and other contaminants- Flowback fluids are often highly radioactive, contain heavy metals, and other contaminants that are challenging to effectively clean.  The migration of radon gas into homes above the injection formation is also a possibility.

The current state of SWDs in Pennsylvania

Pennsylvania has numerous data sources for oil and gas, but they are not always in agreement. To account for this, we have mapped SWDs (and a five mile buffer around them) from two different data sources in the map below. The first source is a subset of SWD wells from a larger dataset of oil and gas locations from the DEP’s mapping website. The second source is from a Waste Facility Report, represented in pink triangles that are offset at an angle to allow users to see both datasets simultaneously in instances where they overlap.

Map of existing, proposed, and plugged salt water disposal (SWD) injection wells in Pennsylvania.

 View map fullscreen How FracTracker maps work

According to the first data set of DEP’s oil and gas locations, Pennsylvania contains 13 SWDs with an active status, one SWD with a regulatory inactive status, and eight that are plugged. The Waste Facility Report shows 10 SWD wells total, including one well that was left out of the other data set in Annin Township, McKean County.

It is worth noting that Pennsylvania’s definition for an “active” well status is confusing, to put it charitably. It does not mean that a well is currently in operation, nor does it even mean that it is currently permitted for the activity, whether that is waste disposal or gas production, or some other function. An active status means that the well has been proposed for a given use, and the well hasn’t been plugged, or assigned some other status.

The Sedat 3A well in Plum, for example, has an active status, although the DEP has not yet granted it a permit to operate as a SWD well. Another  status type is “regulatory inactive,” which is given to a well that hasn’t been used for its stated purpose in 12 months, but may potentially have some future utility.

Karst, coal mines, and streams

While there are numerous factors worthy of consideration when siting SWD wells, this map focuses on three: the proximity of karst formations, coal mines and nearby streams that the state designates as either high quality or exceptional value.

Karst formations are unstable soluble rock formations like limestone deposits which are likely to contain numerous subsurface voids. These voids are concerning in this context. For one reason, there’s the possibility of contaminated fluids and gasses migrating into underground freshwater aquifers. Also, the voids are inherently structurally unstable, which could compound the impacts of artificially-induced seismic activity caused by fluid injections in the well.

Our analysis found over 78,000 acres (123 square miles) of karst geology within five miles of current, proposed, or plugged SWD wells in Pennsylvania.

Coal mines, while a very different sedimentary formation, have similar concerns because of subsurface voids. Mine subsidence is already a widespread problem in many of the communities surrounding SWD well sites.  Pennsylvania has several available data sets, including active underground mine permits and digitized mined areas, which are used in this map.  Active mine permits show current permitted operations, while digitized mine areas offer a highly detailed look at existing mines, including abandoned mines, although the layer is not complete for all regions of the state.

In Pennsylvania, there are 56,542 acres (88 square miles) of active mines within five miles of SWD wells. Our analysis found 97,902 acres (153 square miles) of digitized mined areas within five miles of SWD wells.  Combined, there are 139,840 acres (219 square miles) of existing and permitted mines within the 5 mile buffer zone around SWDs in Pennsylvania.

Streams with the designation “high quality” and “exceptional value” are the best streams Pennsylvania has to offer, in terms of recreation, fishing, and biological diversity. In this analysis, we have identified such streams within a five mile radius of SWD wells, irrespective of the given watershed of the well location.

While the rolling topography of Western Pennsylvania sheds rainwater in a complicated network of drainages, groundwater is not subject to that particular geography. Furthermore, groundwater regularly interacts with surface water through water wells, abandoned O&G wells, and natural seeps and springs. Therefore, it is possible for SWDs to contaminate these treasured streams, even if they are not located within the same watershed.

Altogether, there are 716 miles of high quality streams and 110 miles of exceptional value streams within 5 miles of the SWDs in this analysis.

Conclusion

For decades, geologists have concluded that the subsurface strata in Pennsylvania were not suitable for oil and gas liquid waste disposal in underground injection wells.  The fact that vast quantities of this waste are now being produced in Pennsylvania has not suddenly made it a suitable location for the practice.  If anything, additional shallow and deep wells have further fractured the sedimentary strata, thereby increasing the risk of contamination.

The only factor that has changed is the volume of waste being produced in the region. SWD wells in nearby Ohio and West Virginia have capacity issues from their own production wells, and it is not clear that the geologic formations across the border are that much better than in Pennsylvania. But as new wells are drilled and volumes of hydraulic fracturing fluid continue to spiral into the tens of millions of gallons per well, the pressure to open new SWD wells in the state will only increase.

Perhaps because of these pressures, DEP has become quite bullish on the technology:

Several successful disposal wells are operating in Pennsylvania and options for more sites are always being considered. The history of underground disposal shows that it is a practical, safe and effective method for disposing of fluids from oil and gas production.
Up against this attitude, residents are facing an uphill battle trying to prevent harm to their health and property from these industrial facilities in their communities.  Municipalities that have attempted to stand up for their residents have been sued by DEP to allow for these injection wells.  The Department’s actions, which put the interests of industry above the health of residents and the environment, is directly at odds with the agency’s mission statement:
The Department of Environmental Protection’s mission is to protect Pennsylvania’s air, land and water from pollution and to provide for the health and safety of its citizens through a cleaner environment. We will work as partners with individuals, organizations, governments and businesses to prevent pollution and restore our natural resources.
It’s time for DEP to live up to its promises.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Bird's eye view of an injection well (oil and gas waste disposal)

A Disturbing Tale of Diminishing Returns in Ohio

Utica oil and gas production, Class II injection well volumes, and lateral length trends from 2010-2018

The US Energy Information Administration (EIA) recently announced that Ohio’s recoverable shale gas reserves have magically increased by 11,076 billion cubic feet (BCF). This increase ranks the Buckeye State in the top 5 for changes in recoverable shale natural gas reserves between 2016 and 2017 (pages 31- 32 here). After reading the predictable and superficial media coverage, we thought it was time to revisit the data to ask a pertinent question: What is the fracking industry costing Ohio?

Recent Shale Gas Trends in Ohio

According to the EIA’s report, Ohio currently sits at #7 on their list of proven reserves. It is estimated there are 27,021 BCF of shale gas beneath the state (Figure 1).

Graph of natural gas reserves in different states 2016-2017

Figure 1. Proven and change in proven natural gas reserves from 2016 to 2017 for the top 11 states and the Gulf of Mexico (calculated from EIA’s “U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2017”).

There are a few variations in the way the oil and gas industry defines proven reserves:

…an estimated quantity of all hydrocarbons statistically defined as crude oil or natural gas, which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions. Reservoirs are considered proven if economic producibility is supported by either actual production or conclusive formation testing. – The Organization of Petroleum Exporting Countries

… the quantity of natural resources that a company reasonably expects to extract from a given formation… Proven reserves are classified as having a 90% or greater likelihood of being present and economically viable for extraction in current conditions… Proven reserves also take into account the current technology being used for extraction, regional regulations and market conditions as part of the estimation process. For this reason, proven reserves can seemingly take unexpected leaps and drops. Depending on the regional disclosure regulations, extraction companies might only disclose proven reserves even though they will have estimates for probable and possible reserves. – Investopedia

What’s missing from this picture?

Neither of the definitions above address the large volume of water or wastewater infrastructure required to tap into “proven reserves.” While compiling data for unconventional wells and injection wells, we noticed that the high-volume hydraulic fracturing (HVHF) industry is at a concerning crossroads. In terms of “energy return on energy invested,” HVHF is requiring more and more resources to stay afloat.

OH quarterly Utica oil & gas production along with quarterly Class II injection well volumes:

The map below shows oil and gas production from Utica wells (the primary form of shale gas drilling in Ohio). It also shows the volume of wastewater disposed in Class II salt water disposal injection wells.


 View map fullscreen | How FracTracker maps work

Publications like the aforementioned EIA article and language out of Columbus highlight the nominal increases in fracking productivity. They greatly diminish, or more often than not ignore, how resource demand and waste production are also increasing. The data speak to a story of diminishing returns – an industry requiring more resources to keep up gross production while simultaneously driving net production off a cliff (Figure 2).

Graph of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September, 2010 to December, 2018

Figure 2. Number of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September 2010 to December 2018

The Great Decoupling of New Year’s 2013

In the following analysis, we look at the declining efficiency of the HVHF industry throughout Ohio. The data spans the end of 2010 to middle of 2018. We worked with Columbus-area volunteer Gary Allison to conduct this analysis; without Gary’s help this work and resulting map, would not have been possible.

A little more than five years ago today, a significant shift took place in Ohio, as the number of producing gas wells increased while oil well numbers leveled off. The industry’s permitting high-water mark came in June of 2014 with 101 Utica permits that month (a level the industry hasn’t come close to since). The current six-month permitting average is 25 per month.

As the ball dropped in Times Square ringing in 2014, in Ohio, a decoupling between oil and gas wells was underway and continues to this day. The number of wells coming online annually increased by 229 oil wells and 414 gas wells.

Graph showing Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 3. Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Graph of Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 4. Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Permits

The ringing in of 2014 also saw an increase in the number of producing wells as a percentage of those permitted. In 2014, the general philosophy was that the HVHF industry needed to permit roughly 5.5 oil wells or 7 gas wells to generate one producing well. Since 2014, however, this ratio has dropped to 2.2 for oil and 1.4 for gas well permits.

Put another way, the industry’s ability to avoid dry wells has increased by 13% for oil and 18% for gas per year. As of Q2-2018, viable oil wells stood at 44% of permitted wells while viable gas wells amounted to 71% of the permitted inventory (Figure 4).

Production declines

from the top-left to the bottom-right

To understand how quickly production is declining in Ohio, we compiled annual (2011-2012) and quarterly (Q1-2013 to Q2-2018) production data from 2,064 unconventional laterals.

First, we present average data for the nine oldest wells with respect to oil and gas production on a per day basis (Note: Two of the nine wells we examined, the Geatches MAH 3H and Hosey POR 6H-X laterals, only produced in 2011-2012 when data was collected on an annual basis preventing their incorporation into Figures 6 and 7 belwo). From an oil perspective, these nine wells exhibited 44% declines from year 1 to years 2-3 and 91% declines by 2018 (Figure 5). With respect to natural gas, these nine wells exhibited 34% declines from year 1 to years 2-3 and 79% declines by 2018 (Figure 5).

Figure 5. Average daily oil and gas production decline curves for the above seven hydraulically fractured laterals in Ohio’s Utica Shale Basin, 2011 to Q2-2018

Four of the nine wells demonstrated 71% declines by the second and third years and nearly 98% declines by by Q2-2018 (Figure 6). These declines lend credence to recent headlines like Fracking’s Secret Problem—Oil Wells Aren’t Producing as Much as Forecast in the January 2nd issue of The Wall Street Journal. Four of the nine wells demonstrated 49% declines by the second and third years and nearly 81% declines by Q2-2018 (Figure 7).

Figure 6. Oil production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 7. Natural gas production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Fracking waste, lateral length, and water demand

from bottom-left to the top-right

An analysis of fracking’s environmental and economic impact is incomplete if it ignores waste production and disposal. In Ohio, there are 226 active Class II Salt Water Disposal (SWD) wells. Why so many?

  1. Ohio’s Class II well inventory serves as the primary receptacle for HVHF liquid waste for Pennsylvania, West Virginia, and Ohio.
  2. The Class II network is situated in a crescent shape around the state’s unconventional wells. This expands the geographic impact of HVHF to counties like Ashtabula, Trumbull, and Portage to the northeast and Washington, Athens, and Muskingum to the south (Figure 8).
Map of Ohio showing cumulative production of unconventional wells and waste disposal volume of injection wells

Figure 8. Ohio’s unconventional gas laterals and Class II salt water disposal injection wells. Weighted by cumulative production and waste disposal volumes to Q3-2018.

Disposal Rates

We graphed average per well (barrels) and cumulative (million barrels) disposal rates from Q3-2010 to Q3-2018 for these wells. The data shows an average increase of 24,822 barrels (+1.05 million gallons) per well, each year.

That’s a 51% per year increase (Figure 9).

A deeper dive into the data reveals that the top 20 most active Class II wells are accepting more waste than ever before: an astounding annual per well increase of 728,811 barrels (+30.61 million gallons) or a 230% per year increase (Figure 10). This divergence resulted in the top 20 wells disposing of 4.95 times the statewide average between Q3-2010 and Q2-2013. They disposed 13.82 times the statewide average as recently as Q3-2018 (Figure 11).

All of this means that we are putting an increasing amount of pressure on fewer and fewer wells. The trickle out, down, and up of this dynamic will foist a myriad of environmental and economic costs to areas surrounding wells. As an example, the images below are injection wells currently under construction in Brookfield, Ohio, outside Warren and minutes from the Pennsylvania border.

More concerning is the fact that areas of Ohio that are injection well hotspots, like Warren, are proposing new fracking-friendly legislation. These disturbing bills would lubricate the wheels for continued expansion of fracking waste disposal and permitting. House bills 578 and 393 and Senate Bill 165 monetize and/or commodify fracking waste by giving townships a share of the revenue. Such bills “…would only incentivize communities to encourage more waste to come into their existing inventory of Class II… wells, creating yet another race to the bottom.” Co-sponsors of the bills include Democratic Reps. Michael O’Brien, Glenn Holms, John Patterson, and Craig Riefel.

Lateral Lengths

The above trends reflect an equally disturbing trend in lateral length. Ohio’s unconventional laterals are growing at a rate of 9.1 to 15.6%, depending on whether you buy that this trend is linear or exponential (Figure 12). This author believes the trend is exponential for the foreseeable future. Furthermore, it’s likely that “super laterals” in excess of 3-3.5 miles will have a profound impact on the trend. (See The Freshwater and Liquid Waste Impact of Unconventional Oil and Gas in Ohio and West Virginia.)

This lateral length increase substantially increases water demand per lateral. It also impacts Class II well disposal rates. The increase accounts for 76% of the former and 88% of the latter when graphed against each other (Figure 13).

Figure 12. Ohio Utica unconventional lateral length from Q3-2010 to Q4-2018

Figure 13. Ohio Utica unconventional water demand and Class II SWD injection well disposal volumes vs lateral length from Q3-2010 to Q4-2018.

Conclusion

This relationship between production, resource demand, and waste disposal rates should disturb policymakers, citizens, and the industry. One way to this problem is to more holistically price resource utilization (or stop oil and gas development entirely).

Unfortunately, states like Ohio are practically giving water away to the industry.

Politicians are constructing legislation that would unleash injection well expansion. This would allow disposal to proceed at rates that don’t address supply-side concerns. It’s startling that an industry and political landscape that puts such a premium on “market forces” is unwilling to address these trends with market mechanisms.

We will continue to monitor these trends and hope to spread these insights to states like Oklahoma and Texas in the future.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance – with invaluable data compilation assistance from Gary Allison


Data Downloads

FracTracker is a proponent of data transparency, and so we often share the data we use to construct our maps analyses. Click on the links below to download the data associated with the present analysis:

  • OH Utica laterals

    Ohio’s Utica HVHF laterals as of December 2018 in length (feet) (zip file)
  • Wastewater disposal volumes

    Inventory of volumes disposed on a quarterly basis from 2010 to Q3-2018 for all 223 active Class II Salt Water Disposal (SWD) Injection wells in Ohio (zip file)

Pennsylvania Drilling Trends in 2018

With the new year underway, it’s an opportune moment to reflect on the state of unconventional oil and gas extraction in Pennsylvania and examine a few of the drilling trends. A logical place to start is looking at the new wells drilled in 2018.

As always, but perhaps even more so than in previous years, unconventional drilling in Pennsylvania is a tale of two shale plays, with hotspots in the southwestern and northeastern corners of the state. The northeastern hotspot seems to be extending westward, including 25 new wells in Jones Township in Elk County (an area shown in dark red near the “St Marys” label on the map). In the southwestern hotspot, the industry continues to encircle Allegheny County, closing in on the City of Pittsburgh like a constrictor.

Screen shot showing spud report for Indiana Township, Allegheny County from 1/1/2017 through 1/4/2019. We suspect these spud dates of 11/29/17 and 11/30/17 are incorrect.

Screen shot showing spud report for Indiana Township, Allegheny County from 1/1/2017 through 1/4/2019. We suspect these spud dates of 11/29/17 and 11/30/17 are incorrect.

Data error? As Pittsburgh-area residents reflect on the past year, some of them must be wondering why a new well pad in Indiana Township, just northeast of the city isn’t shown on the map above. The answer is that the data the Department of Environmental Protection (DEP) has for these wells indicate they were drilled November 29-3o, 2017, although we believe this to be incorrect. FracTracker obtained the data from the Spud Report on January 2, 2019, which indicates seven wells spudded in that two day span on the “Miller Jr. 10602” well pad. This activity drew considerable opposition from families in the Fox Chapel School district in May of 2018, and was therefore widely reported on by the media. An article published on WESA indicates an expected drill date of July 2018, for example.

It turns out the new year is also a good time to remember that our understanding of the oil and gas industry around us is shaped, molded, and limited by the availability and quality of the data. We brought the Indiana Township data error to the attention of DEP, which only confirmed that the operator (Range Resources) entered the spud dates into the DEP’s online system. Perhaps these well were drilled in November of 2018 not 2017? There is even a possibility these wells have yet to be drilled.

Here are a few more dissections of the data, such as it is:

Graph of unconventional (fracking) wells drilled in PA, YTD - Drilling trends

Figure 1: Unconventional wells drilled in PA by year: 2005 to 2018

Wells Drilled Over Time

Barring more widespread data issues, the status of a handful of wells in Indiana Township does not have much of an impact on the overall trend of drilling in the state. There were 779 wells on the report, representing just under 40% of the total from the peak year of 2011, when industry drilled 1,958 wells. The year 2019 was the fourth year in a row where the industry failed to drill 1,000 wells, averaging 719 per year over that span. In contrast, the five years between 2010 and 2014 saw an average of 1,497 wells per year, more than twice the more recent average. As mentioned in our Hazy Future report, projections based on very aggressive drilling patterns are already proving to be out of phase with reality, although petrochemical commodity markets might change drastically in the coming decades.

How long before wells are plugged?

We also like to periodically check to see how long these wells stay in service. In Pennsylvania, there are two relevant well statuses worth following: plugged and regulatory inactive. While there are a number of conditions that characterize regulatory inactive wells, they are essentially drilled wells that are not currently in production, but may have “future utility.” Therefore, the wells are not required to be permanently plugged at this time.

Unconventional wells drilled since 2005 in PA - Drilling trends

Figure 2: This chart shows the percentage of unconventional wells drilled since 2005 with a plugged or regulatory inactive status as of December 31, 2018.

In order to understand some of the finer points, it’s best to use Figure 1 (above) in conjunction with Figure 2. We can see that most of the wells drilled in the initial years of the Marcellus boom have already been plugged, although Figure 1 shows us that the sample size is fairly low for these years. In 2005, for example, 7 of the 9 (78%) unconventional wells drilled in the state that year are already plugged. The following year, 24 of the 37 (65%) wells drilled are now plugged, and an additional 4 (11%) wells have a regulatory inactive status as of the end of 2018. The following year, the combined plugged and inactive wells account for just over 50% of the 113 wells drilled that year, and this trend continues along a fairly predictable curve. An exception is the noticeable bump around the most active drilling years of 2010 and 2011, where there are slightly more wells with a plugged or inactive status than might be expected. It is interesting to note that even the most recent wells are not immune to being plugged, including 8 plugged wells and 4 inactive wells drilled in 2018 that were not able to get past their very first year in production.

Overall, of the 11,675 drilled wells accounted for on this graphic, 851 (7%) are plugged already, with an additional 572 (5%) of wells with an inactive status.  Unconventional wells that are 11 years old have a roughly 50% chance of being plugged or inactive, and we would therefore expect to see the number of these wells skyrocket in the coming years before leveling off, roughly mirroring the drilling boom and subsequent slowdown of Marcellus Shale extraction in Pennsylvania.

Conclusions

Many factors contribute to fluctuations in drilling trends for the Marcellus Shale and other unconventional wells in Pennsylvania. Very cold winters result in high consumption by residential and commercial users. New gas-fired power plants can increase the demand for additional drilling. Recessions and economic conditions are known to reduce the demand for energy as well, and drillers’ heavy debt burdens can slow down operations appreciably. Additionally, other fossil fuel and renewable energy sources compete with one another, altering the market conditions even further. And finally, every oil and gas play eventually reaches a point where the expected results from new wells are not worth the money required to get the hydrocarbons to the surface, and unconventional wells are much more expensive to develop than more traditional operations.

Because of all of these variables, month to month or even year to year fluctuations are not necessarily that telling.  On the other hand, a four-year period where drilling is roughly half of previous extraction is significant, and can’t be easily dismissed as a blip in the data.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

For Persevere Post

Please give to FracTracker Alliance in 2018

Fracking has made a real mess of things – sullying our air, befouling our water, disrupting communities. Ethane and other hydrocarbons feed plastic production, accelerating the global plastic pollution crisis while the planet warms out of control.

It’s an all-hands-on-deck moment.

Last week I traveled to Wyalusing, Pennsylvania, a quiet town along the Susquehanna, the mother river to the treasured Chesapeake Bay. Around Wyalusing, fracking consumes the landscape, and a planned 265-acre natural gas liquefaction complex promises more madness: around the clock trucking of volatile cargoes. Imagine watching a field behind your home morph into a sprawling industrial site with hazardous emissions. That story is real. Enough is enough – we need your help.

FracTracker works to illuminate the incursions of this rogue industry. Our maps, data, and analyses support the mounting pushback on infrastructure – from sand mines to pipelines, production wells to waste injection wells. The spectrum of harms is daunting, but our team is motivated to highlight risk and injustice wherever they arise, giving the public the tools and information they need in these David vs. Goliath battles.

Wyalusing is a Native American word meaning “home of the warrior.” Like the people standing their ground in that place today or the army of organizations across America with whom we collaborate, we’re all warriors fighting for a healthy future near and far.

Please give to FracTracker this holiday season. Your donation offers us hope and strength, powering actions that aid, inspire, and facilitate victory. It’s a gift that keeps on giving.

FracTracker will soon eclipse one million unique visitors to our website, underscoring that we are and shall remain a valued resource for advocacy, education, and research until the glorious day fossil fuels fade into history. Until then, on behalf of our staff and board, thank you for your ongoing support and warm wishes for a safe and joyous holiday season.

Appreciatively,

Brook Lenker
Executive Director

 

Thomas Fire Photo by Marcus Yam, LA Times

California’s Oil Fields Add Fuel to the Fire

Never has the saying “adding fuel to the fire” been so literal.

California wildfires have been growing at unheard of rates over the last five years, causing record breaking destruction and loss of life. Now that we’ve had a little rain and perhaps a reprieve from this nightmare wildfire season, it is important to consider the factors influencing the risk and severity of fires across the state.

Oil and gas extraction and consumption are major contributors to climate change, the underlying factor in the recent frequent and intense wildfires. A lesser-known fact, however, is that many wildfires have actually burned in oil fields in California – a dangerous circumstance that also accelerates greenhouse gas emissions. Our analysis shows where this situation has occurred, as well as the oil fields most likely to be burned in the future.

First, we looked at where wildfires are currently burning across the state, shown below in Map 1. This map is from CAL FIRE and is continuously updated.

Map 1. The CAL FIRE 2018 Statewide Incidents Map

CAL FIRE map showing the locations and perimeters of California wildfires

California’s recent fire seasons

The two largest wildfires in California recorded history occurred last year. The Mendocino Complex Fire burned almost a half million acres (1,857 square kilometers) in Mendocino National Forest. The Thomas Fire in the southern California counties of Ventura and Santa Barbara burned nearly 282,000 acres (1,140 square kilometers). A brutal 2017 fire season, however is now overshadowed by the ravages of 2018’s fires.

With the effects of climate change increasing the severity of California’s multi-year drought, each fire season seems to get worse. The Woolsey Fire in Southern California caused a record amount of property damage in the hills of Santa Monica and Ventura County. The Camp Fire in the historical mining town of Paradise resulted in a death toll that, as of early December, has more than tripled any other wildfire. And many people are still missing.

The Thomas Fire

A most precarious situation erupts when a wildfire spreads to an oil field. Besides having a surplus of their super flammable namesake liquid, oil fields are also storage sites for various other hazardous and volatile chemicals. The Thomas Fire was such a scenario.

The Thomas fire burned through the steep foothills of the coastal Los Padres mountains into the oil fields. When in the oil fields, the oil pumped to the surface for production and the stores of flammable chemicals provided explosive fuel to the wildfire. While firefighters were able to get the majority of the fire “contained,” the oil fields were too dangerous to access. According to the community, oil fires remained burning for weeks before they were able to be extinguished.

The Ventura office of the Division of Oil Gas and Geothermal Resources (DOGGR) reported that the Thomas Fire burned through the Taylor Ranch oil fields and a half dozen other oil fields including the Ventura, San Miguelito, Rincon, Ojai, Timbe Canyon, Newhall-Portrero, Honor Rancho and Wayside Canyon. DOGGR Ventura officials said Newhall-Potrero was “half burned over.” Thomas also burned within a 1/3 mile of the Sespe oil field. Schools and other institutions closed down throughout the Los Angeles Basin, but DOGGR said there was no impact on oil and gas operations that far south. The fire spurred an evacuation of the Las Flores Canyon Exxon oil storage facility but thankfully was contained before reaching the facility.

Wildfire threat for oil fields

Map 2. California Wildfires in Oil Fields


View map fullscreen | How FracTracker maps work

The Thomas Fire was not the first time or the last time an oil field burned in a California wildfire. Map 2 above shows state wildfires from the last 20 years overlaid with maps of California oil fields, oil wells, and high threat wildfire zones. The map shows just the oil fields and oil and gas wells in California that have been burned by a wildfire.

We found that 160 of California’s 517 oil fields (31%) have been burned by encroaching wildfires, affecting more than 10,000 oil and gas well heads.

An ominous finding: the state’s highest threat zones for wildfires are located close to and within oil and gas fields.

The map shows that wildfire risk is greatest in Southern California in Ventura and Los Angeles counties due to the arid environment and high population density. Over half the oil fields that have burned in California are in this small region.

Who is at fault?

Reports show that climate change has become the greatest factor in creating the types of conditions conducive to uncontrollable wildfires in California. Climate scientists explain that climate change has altered the natural path of the Pacific jet stream, the high-altitude winds that bring precipitation from the South Pacific to North America.

In a recent study, researchers from the University of Idaho and Columbia University found that the impact of global warming is growing exponentially. Their analysis shows that since 2000, human-caused climate change prompted 75% more aridity — causing peak fire season to expand every year by an average of nine days. The Fourth National Climate Assessment details the relationship between climate change and wildfire prevalence, and comes to the same conclusion: impacts are increasing.

On the cause of wildfires, the report explains:

Compound extremes can include simultaneous heat and drought such as during the 2011–2017 California drought, when 2014, 2015, and 2016 were also the warmest years on record for the state; conditions conducive to the very large wildfires, that have already increased in frequency across the western United States and Alaska since the 1980s.

Both 2017 and 2018 have continued the trend of warmest years on record, and so California’s drought has only gotten worse. The report goes on to discuss the threat climate change poses to the degradation of utilities’ infrastructure. Stress from climate change-induced heat and drought will require more resources dedicated to maintaining utility infrastructure.

The role of public utilities

The timing of this report could not be more ironic considering the role that utilities have played in starting wildfires in California. Incidents such as transformer explosions and the degradation of power line infrastructure have been implicated as the causes of multiple recent wildfires, including the Thomas Fire and the most recent Woolsey and Camp wildfires – three of the most devastating wildfires in state history. As public traded corporations, these utilities have investors that profit from their contribution to climate change which, in turn, has created the current conditions that allow these massive wildfires to spread. On the other hand, utilities in California may be the least reliant on fossil fuels. Southern California Edison allows customers to pay a surcharge for 100% renewable service, and Pacific Gas and Electric sources just 20% of their electricity from natural gas.

As a result of the fire cases, each of which might be attributed to negligence, stock prices for the two utilities plummeted but eventually rebounded after the California Public Utilities Commission (CPUC) assured investors that the utilities would be “bailed out” in the case of a possible financial failure to the reproach of the general public. The CPUC assured that the state could bail out utilities if they were forced to finance recovery for the fires they may have caused.

CPUC President, Michael Picker, stated:

The CPUC is one of the government agencies tasked with ensuring that investor-owned utilities operate a safe and reliable grid… An essential component of providing safe electrical service is the financial wherewithal to carry out safety measures.

Along with regulation and oversight, part of the agency’s work involves ensuring utilities are financially solvent enough to carry out safety measures.

Conclusion

January 1, 2019 will mark the seventh year of drought in California. Each fall brings anxiety and dread for state residents, particularly those that live in the driest, most arid forests and chaparral zones. Data show that the wildfires continue to increase in terms of intensity and frequency as the state goes deeper into drought induced by climate change.

While California firefighters have been incredibly resourceful, over 70% of California forest land is managed by the federal government whose 2019 USDA Forest Service budget reduces overall funding for the National Forest System by more than $170 million. Moving forward, more resources must be invested in supporting the health of forests to prevent fires with an ecological approach, rather than the current strategy which has focused predominantly on the unsustainable practice of fuel reduction and the risky tactics of “fire borrowing”. And of course, the most important piece of the puzzle will be addressing climate change.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Feature image by Marcus Yam, LA Times

Can Californians Escape Oil and Gas Pollution?

The city of Los Angeles is considering a 2,500-foot setback safety buffer between residences and oil and gas wells. Support for the proposal is being led by the grassroots group Stand Together Against Neighborhood Drilling (STAND-LA). The push for a setback follows a recent report by the Los Angeles County Department of Public Health. According to Stand LA:

The report, requested by both the Los Angeles County Supervisors and the Los Angeles City Council, outlines the health impacts faced by residents living, attending school or worshiping near one of Los Angeles County’s 3,468 active oil wells, 880 of which operate in the City of Los Angeles.

The Department outlines the clear health impacts on residents living near active oil wells, including: adverse birth outcomes, increased cancer risk, eye, nose and throat irritation, exacerbation of asthma and other respiratory illnesses, neurological effects such as headaches and dizziness, gastrointestinal effects such as nausea and abdominal pain, and mental health impacts such as depression, anxiety or fatigue.

This information is, of course, nothing new. Living near oil and gas extraction activities, and specifically actively producing wells, has been shown in the literature to increase risks of various health impacts – including asthma and other respiratory diseases, cardiovascular disease, cancer, birth defects, nervous disorders and dermal irritation, among others.1

Spatial Assessment

While Los Angeles would benefit the most from any type of setback regulation due to the county and city’s high population density, the rest of the state would also benefit from the same.

We conducted an assessment of the number of California citizens living proximal to active oil and gas production wells to see who all would be affected by such a change. Population counts were estimated for individuals living within 2,500 feet of an oil and gas production well for the entire state. An interactive map of the wells that fall within 2,500 feet of a residence in California is shown just below in Figure 1.

California 2,500’ oil and gas well buffer map

View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

Figure 1. California 2,500’ oil and gas well buffer, above. The map shows a 2,500’ buffer around active oil and gas wells in California. Wells that are located within 1,000’; 1,500’; and 2,500’ from a residence, hospital or school are also shown in the map. The counts of individuals located within 2,500’ of an active well are displayed for census tracts.

Population Statistics

The number and percentage of California residents living within 2,500 feet of an active (producing) oil and gas well are listed below:

  • Total At-Risk Population

    859,699 individuals in California live within 2,500 feet of an active oil and gas well

  • % Non-White

    Of the total, 385,067 are “Non-white” (45%)

  • % Hispanic

    Of the total, 341,231 are “Hispanic” (40%) as defined by the U.S. Census Bureau2

We calculated population counts within the setbacks for smaller census-designated areas, including counties and census tracts. The results of the calculations are presented in Table 1 below.

Table 1. Population Counts by County

County Total Pop. Impacted Pop. Impacted % Non-White Impacted % Hispanic
Los Angeles 9,818,605 541,818 0.54 0.46
Orange 3,010,232 202,450 0.25 0.19
Kern 839,631 71,506 0.34 0.43
Santa Barbara 423,895 8,821 0.44 0.71
Ventura 823,318 8,555 0.37 0.59
San Bernardino 2,035,210 6,900 0.42 0.59
Riverside 2,189,641 5,835 0.46 0.33
Fresno 930,450 2,477 0.34 0.50
San Joaquin 685,306 2,451 0.55 0.42
Solano 413,344 2,430 0.15 0.15
Colusa 21,419 1,920 0.39 0.70
Contra Costa 1,049,025 1,174 0.35 0.30

Table 1 presents the counts of individuals living within 2,500 feet of an active oil and gas well, aggregated by county. Only the top 12 counties with the highest population counts are shown. “Impacted Population” is the count of individuals estimated to live within 2,500 feet of an oil and gas well. The “% Non-white” and “% Hispanic” columns report the estimated percentage of the impacted population of said demographic. There may be some overlap in these categories.

Conclusions

California is unique in many ways, beautiful beaches and oceans, steep mountains, massive forests, but not least of all is the intensity of the oil and gas industry. Not only are some of the largest volumes of oil extracted from this state, but extraction occurs incredibly close to homes, sometimes within communities – as shown in the photo at the top of this post.

The majority of California citizens living near active production wells are located in Los Angeles County – well over half a million people. LA County makes up 61% of Californians living within 2,500 feet of an oil and gas well, and half of them are non-white minority, people of color.

Additionally, the well sample population used in this analysis is limited to only active production wells. Much more of California’s population is exposed to pollutants from the oil and gas support activities and wells. These pollutants include acidic vapors, hydrocarbons, and diesel particulate matter from exhaust.

Our numbers are, therefore, a conservative estimate of just those living near extraction wells. Including the other activities would increase both the total numbers and the demographic percentages because of the high population density in Los Angeles.

For many communities in California, therefore, it is essentially impossible for residents to escape oil and gas pollution.


The Analysis – How it was done!

Since the focus of this assessment was the potential for impacts to public health, the analysis was limited to oil and gas wells identified as active – meaning they are producing or are viable to produce oil and/or natural gas. This limitation on the dataset was justified to remain conservative to the most viable modes of exposure to contaminants from well sites. Under the assumption that “plugged,” “buried,” or “idle” wells that are not producing (or at least reporting production figures to DOGGR) do not purvey as much as a risk of air emissions, the main route of transport for pollutants to the surrounding communities is via air emissions from “producing” oil and gas wells. The status of wells was taken from DOGGR’s “AllWells.zip” dataset (downloaded 3/7/18).

Analysis Steps:

  1. The first step was to identify oil and gas wells in California affected by 2,500’ and shorter setbacks from occupied dwellings. To achieve this, the footprints of occupied dwellings were identified, and where there was not a data source available the footprints were digitized.
  2. Using GIS tools, 2,500’ buffers were generated from the boundary of the occupied dwellings and a subset of active oil and gas wells located within the buffer zone were generated.
  3. A combination of county and city zoning data and county parcel data was used to direct the selection of building footprint GIS data and the generation of additional building footprint data. Building footprint data is readily available for a number of California cities, but was not available for rural areas.
  4. Existing footprint data was vetted using zoning codes.
  5. Areas located within 2,500’ of well-heads were prioritized for screening satellite imagery in areas zoned for residential use.

Analytical Considerations

Buildings and facilities housing vulnerable populations were also included. Vulnerable populations include people such as children, the elderly, and the immunocompromised. These areas pose an elevated risk for such sensitive populations when they live near hazardous sites, such as oil fields in LA. A variety of these types of sites were included in the GIS analysis, including schools and healthcare facilities.

GIS techniques were used to buffer active oil and gas wells at 2,500 feet. GIS shapefiles and 2010 Decennial census data was downloaded from American Fact Finder via Census.gov for the entire state of California at the census block level.2 Census block GIS layers were clipped to the 2,500-foot buffers. Population data found in Summary File 1 for the 2010 census was attached to the clipped census block GIS layers.  Adjusted population counts were calculated according to the proportion of the area of the census block falling within the 2,500’ buffer.

References

  1. Shonkoff, Seth B.C.; Hays, Jake. 2015. Toward an understanding of the environmental and public health impacts of shale gas development: an analysis of the peer-reviewed scientific literature, 2009-2014. PSE Healthy Energy.
  2. U.S. Census Bureau. 2010 Census Summary File 1.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo by Leo Jarzomb | SGV Tribune

Events

Nothing Found

Sorry, no posts matched your criteria