Posts

Can Californians Escape Oil and Gas Pollution?

The city of Los Angeles is considering a 2,500-foot setback safety buffer between residences and oil and gas wells. Support for the proposal is being led by the grassroots group Stand Together Against Neighborhood Drilling (STAND-LA). The push for a setback follows a recent report by the Los Angeles County Department of Public Health. According to Stand LA:

The report, requested by both the Los Angeles County Supervisors and the Los Angeles City Council, outlines the health impacts faced by residents living, attending school or worshiping near one of Los Angeles County’s 3,468 active oil wells, 880 of which operate in the City of Los Angeles.

The Department outlines the clear health impacts on residents living near active oil wells, including: adverse birth outcomes, increased cancer risk, eye, nose and throat irritation, exacerbation of asthma and other respiratory illnesses, neurological effects such as headaches and dizziness, gastrointestinal effects such as nausea and abdominal pain, and mental health impacts such as depression, anxiety or fatigue.

This information is, of course, nothing new. Living near oil and gas extraction activities, and specifically actively producing wells, has been shown in the literature to increase risks of various health impacts – including asthma and other respiratory diseases, cardiovascular disease, cancer, birth defects, nervous disorders and dermal irritation, among others.1

Spatial Assessment

While Los Angeles would benefit the most from any type of setback regulation due to the county and city’s high population density, the rest of the state would also benefit from the same.

We conducted an assessment of the number of California citizens living proximal to active oil and gas production wells to see who all would be affected by such a change. Population counts were estimated for individuals living within 2,500 feet of an oil and gas production well for the entire state. An interactive map of the wells that fall within 2,500 feet of a residence in California is shown just below in Figure 1.

California 2,500’ oil and gas well buffer map

View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

Figure 1. California 2,500’ oil and gas well buffer, above. The map shows a 2,500’ buffer around active oil and gas wells in California. Wells that are located within 1,000’; 1,500’; and 2,500’ from a residence, hospital or school are also shown in the map. The counts of individuals located within 2,500’ of an active well are displayed for census tracts.

Population Statistics

The number and percentage of California residents living within 2,500 feet of an active (producing) oil and gas well are listed below:

  • Total At-Risk Population

    859,699 individuals in California live within 2,500 feet of an active oil and gas well

  • % Non-White

    Of the total, 385,067 are “Non-white” (45%)

  • % Hispanic

    Of the total, 341,231 are “Hispanic” (40%) as defined by the U.S. Census Bureau2

We calculated population counts within the setbacks for smaller census-designated areas, including counties and census tracts. The results of the calculations are presented in Table 1 below.

Table 1. Population Counts by County

County Total Pop. Impacted Pop. Impacted % Non-White Impacted % Hispanic
Los Angeles 9,818,605 541,818 0.54 0.46
Orange 3,010,232 202,450 0.25 0.19
Kern 839,631 71,506 0.34 0.43
Santa Barbara 423,895 8,821 0.44 0.71
Ventura 823,318 8,555 0.37 0.59
San Bernardino 2,035,210 6,900 0.42 0.59
Riverside 2,189,641 5,835 0.46 0.33
Fresno 930,450 2,477 0.34 0.50
San Joaquin 685,306 2,451 0.55 0.42
Solano 413,344 2,430 0.15 0.15
Colusa 21,419 1,920 0.39 0.70
Contra Costa 1,049,025 1,174 0.35 0.30

Table 1 presents the counts of individuals living within 2,500 feet of an active oil and gas well, aggregated by county. Only the top 12 counties with the highest population counts are shown. “Impacted Population” is the count of individuals estimated to live within 2,500 feet of an oil and gas well. The “% Non-white” and “% Hispanic” columns report the estimated percentage of the impacted population of said demographic. There may be some overlap in these categories.

Conclusions

California is unique in many ways, beautiful beaches and oceans, steep mountains, massive forests, but not least of all is the intensity of the oil and gas industry. Not only are some of the largest volumes of oil extracted from this state, but extraction occurs incredibly close to homes, sometimes within communities – as shown in the photo at the top of this post.

The majority of California citizens living near active production wells are located in Los Angeles County – well over half a million people. LA County makes up 61% of Californians living within 2,500 feet of an oil and gas well, and half of them are non-white minority, people of color.

Additionally, the well sample population used in this analysis is limited to only active production wells. Much more of California’s population is exposed to pollutants from the oil and gas support activities and wells. These pollutants include acidic vapors, hydrocarbons, and diesel particulate matter from exhaust.

Our numbers are, therefore, a conservative estimate of just those living near extraction wells. Including the other activities would increase both the total numbers and the demographic percentages because of the high population density in Los Angeles.

For many communities in California, therefore, it is essentially impossible for residents to escape oil and gas pollution.


The Analysis – How it was done!

Since the focus of this assessment was the potential for impacts to public health, the analysis was limited to oil and gas wells identified as active – meaning they are producing or are viable to produce oil and/or natural gas. This limitation on the dataset was justified to remain conservative to the most viable modes of exposure to contaminants from well sites. Under the assumption that “plugged,” “buried,” or “idle” wells that are not producing (or at least reporting production figures to DOGGR) do not purvey as much as a risk of air emissions, the main route of transport for pollutants to the surrounding communities is via air emissions from “producing” oil and gas wells. The status of wells was taken from DOGGR’s “AllWells.zip” dataset (downloaded 3/7/18).

Analysis Steps:

  1. The first step was to identify oil and gas wells in California affected by 2,500’ and shorter setbacks from occupied dwellings. To achieve this, the footprints of occupied dwellings were identified, and where there was not a data source available the footprints were digitized.
  2. Using GIS tools, 2,500’ buffers were generated from the boundary of the occupied dwellings and a subset of active oil and gas wells located within the buffer zone were generated.
  3. A combination of county and city zoning data and county parcel data was used to direct the selection of building footprint GIS data and the generation of additional building footprint data. Building footprint data is readily available for a number of California cities, but was not available for rural areas.
  4. Existing footprint data was vetted using zoning codes.
  5. Areas located within 2,500’ of well-heads were prioritized for screening satellite imagery in areas zoned for residential use.

Analytical Considerations

Buildings and facilities housing vulnerable populations were also included. Vulnerable populations include people such as children, the elderly, and the immunocompromised. These areas pose an elevated risk for such sensitive populations when they live near hazardous sites, such as oil fields in LA. A variety of these types of sites were included in the GIS analysis, including schools and healthcare facilities.

GIS techniques were used to buffer active oil and gas wells at 2,500 feet. GIS shapefiles and 2010 Decennial census data was downloaded from American Fact Finder via Census.gov for the entire state of California at the census block level.2 Census block GIS layers were clipped to the 2,500-foot buffers. Population data found in Summary File 1 for the 2010 census was attached to the clipped census block GIS layers.  Adjusted population counts were calculated according to the proportion of the area of the census block falling within the 2,500’ buffer.

References

  1. Shonkoff, Seth B.C.; Hays, Jake. 2015. Toward an understanding of the environmental and public health impacts of shale gas development: an analysis of the peer-reviewed scientific literature, 2009-2014. PSE Healthy Energy.
  2. U.S. Census Bureau. 2010 Census Summary File 1.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo by Leo Jarzomb | SGV Tribune

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Drilling on PA state lands

Energy development is happening on your state lands, Pennsylvania

Decisions to drill or mine on public lands, however, are often extremely complicated.

By Allison M. Rohrs, Saint Francis University, Institute for Energy

The Commonwealth of Pennsylvania has historically been, and continues to be, home to an abundant array of energy resources like oil, gas, coal, timber, and windy ridgetops. Expectedly, these natural resources are found both on publicly and privately held land.

In Pennsylvania, the bulk of public lands are managed by two separate state agencies: The Department of Conservation and Natural Resources (DCNR), which manages the state’s forest and park system, and the Pennsylvania Game Commission (PGC), which manages the state’s game lands. Both of these state agencies manage oil, gas, and coal extraction as well as timbering on state property. Interestingly, neither of the agencies have utility-scale renewable energy generation on their land.

Some of Pennsylvania’s best wind resources can be found on the mountain ridges in the Commonwealth’s state forests and game lands, however, all proposals to build utility-scale wind farms have been denied by state agencies.

(Note: there are other state and federal agencies managing lands in PA, however, we focused our research on these two agencies specifically.)

Surprised to see that state lands have been greatly developed for different fossil industries but denied for wind energy, The Institute for Energy set out on a yearlong endeavor to collect as much information as we could about energy development on PA public lands. Using formal PA Right to Know requests, we worked with both DCNR and PGC to examine development procedures and management practices. We reviewed hundreds of available state agency reports, scientific documents, and Pennsylvania energy laws and regulations. We also worked with FracTracker Alliance to develop interactive maps that depict where energy development has occurred on state lands.

After a comprehensive review, we realized, like so much in life, the details are much more complicated than a simple yes or no decision to develop an energy project on state lands. Below is a brief summary of our findings, organized by energy extraction method:

Land/Mineral Ownership in Pennsylvania

One of the most significant issues to understand when discussing energy resources on state lands is the complexity of land ownership in Pennsylvania. In many instances, the development of an energy resource on publicly owned land is not a decision, but instead an obligation. In Pennsylvania, property rights are often severed between surface and subsurface ownership. In many cases, surface owners do not own the mineral rights beneath them, and, by PA law, are obligated to allow reasonable extraction of such resource, whether it be coal, oil, or gas. In Pennsylvania, approximately 85% of state park mineral rights are owned by someone other than the Commonwealth (severed rights).

Fee Simple - Mineral rights on state lands

Legal Authority to Lease

It is critical to note that DCNR and PGC are two entirely separate agencies with different missions, legal structures, and funding sources. This plays a significant role in decisions to allow oil, gas, and coal development on their properties. Both agencies have explicit legal authority under their individual statutes that allow them to lease the lands for mineral extraction. This becomes more of an issue when we discuss wind development, where legal authority is less clear, particularly for DCNR.

Oil and Gas Extraction

Oil and gas wells have been spudded on state parks, state forests, and state game lands. The decision to do so is multifaceted and ultimately decided by three major factors:

  1. Mineral ownership of the land,
  2. Legal authority to lease the land, and
  3. Potential impacts to the individual agency.

There is currently a moratorium on new surface leases of DCNR Lands. Moratoriums of such nature have been enacted and removed by different governors since 2010. Although there are no new lease agreements, extraction and production is still occurring on DCNR land from previously executed lease agreements and where the state does not own the mineral rights.

The Game Commission is still actively signing surface and non-surface use agreements for oil and gas extraction when they determine the action is beneficial to achieving their overall mission.

Revenues from the oil and gas industry play a significant role in the decision to drill or not. Both agencies have experienced increasing costs and decreasing revenues, overall, and have used oil and gas development as a way to bridge the gap.

Funds raised from DCNR’s oil and gas activities go back to the agency’s conservation efforts, although from 2009 to 2017, the State Legislature had directed much of this income to the state’s general fund to offset major budget deficits. Just this year, the PA Supreme Court ruled against this process and has restored the funds back to DCNR for conservations purposes.

All revenues generated from oil and gas development on state game lands stays within the Game Commission’s authority.

Along with positive economic benefits, there remains potential health and environmental risks unique to development on these public lands. Some studies indicate that users of these public lands could have potential exposure to pollution both in the air and in the water from active oil and gas infrastructure. The ease of public access to abandoned and active oil and gas infrastructure is a potential risk, as well. On the environmental side, many have argued that habitat fragmentation from oil and gas development is contradictory to the missions of the agencies. Both agencies have independent water monitoring groups specific to oil and gas activities as well as state regulated DEP monitoring. The potential negative effects on ground and surface water quality is an issue, however, mainly due the vast size of public lands and limited dwellings on these properties.

Use the map below to explore the PA state parks, forests, and game lands that have active oil and gas infrastructure.

Oil and Gas Wells on State Lands in PA


View map fullscreen | How FracTracker maps work

Coal Mining

Thousands of acres of state forests and game lands have been mined for coal. Like oil and gas, this mineral is subject to similar fee simple ownership issues and is governed by the same laws that allow oil and gas extraction. DCNR, has not signed any virgin coal mining leases since the 1990s, but instead focuses on reclamation projects. There are coal mining operations, however, on forest land where DCNR does not own the mineral rights. The Game Commission still enters into surface and non-surface use agreements for mining.

In many circumstances, mining activity and abandoned mines were inherited by the state agencies and left to them to reclaim. Environmental and health impacts of mining specific to state land are generally attributed more to legacy mining and not to new mining operations.

Acid mine drainage and land subsidence has destroyed rivers and riparian habitats on these lands purposed for conservation.

The ease of public access and limited surveillance of public lands also makes abandoned mines and pits a dangerous health risk. Although threats to humans and water quality exist, abandoned mines have been noted for actually creating new bat habitat for endangered and threatened bat species.

Originally, we sought to quantify the total acreage of public lands affected by coal mining and abandoned mines; however, the dataset required to do so is not yet complete.

The Pennsylvania Department of Environmental Protection is currently in the process of digitizing over 84,000 hand drawn maps of mined coal seams in PA, an expected 15-year project.

Today, they have digitized approximately 30,000. The static map below demonstrates the areas with confirmed coal mining co-located on state lands:
Public lands and coal mining map - PA

Renewables

The discussion about renewable energy development in PA is almost as complex as the fossil industries. There are no utility-scale renewables on state owned land. Both DCNR and the Game Commission have been approached by developers to lease state land for wind development, however all proposals have been denied.

Even when DCNR owns the surface rights, they still cite the lack of legal authority to lease the land for wind, as their statute does not explicitly state “wind turbines” as a lawful lease option.

The Game Commission does have the legal authority to lease its land for wind development, but has denied 19 out of 19 requests by developers to do so, citing many environmental and surface disturbances as the primary reason.

Infographic regarding state land potential for wind energy

The development of wind projects in PA has slowed in the past five years, with only one new commercial wind farm being built. This is due to a variety of reasons, including the fact that many of windiest locations on private lands have been developed.

We estimate that 35% of the state’s best wind resource is undevelopable simply because it is on public land.

Like all energy development, wind energy has potential environmental and health impacts, too. Wind could cause habitat fragmentation issues on land purposed for conservation. The wind energy industry also has realized negative effects on bird and bat species, most notably, the endangered Indiana bat. Health impacts unique to public lands and wind development include an increased risk of injury to hunters and recreators related to potential mechanical failure or ice throw off the blades. Unlike fossil energies, however, wind energy has potential to offset air emissions.

We estimate that wind development on PA public lands could offset and estimated 14,480,000 tons of CO2 annually if fully developed.

Commercial wind turbines are currently being installed at hub heights of 80-100 meters where the annual average wind resource is 6.5 m/s or greater. The following map demonstrates areas of Pennsylvania where the wind speeds are 6.5 m/s or greater at 100 meters, including areas overlapping state lands, where no utility scale development has occurred.

PA Wind Potential on State Lands


View map fullscreen | How FracTracker maps work

Additional Renewables

Biomass is organic material, such as wood, that is considered renewable because of its ability to be replenished. The harvesting of such wood (timber) occurs on both DCNR and PGC lands and provides funding for these agencies.

Small-scale wind, solar, hydro, geothermal, and biomass projects do exist on PA public lands for onsite consumption, however no renewables exist on a commercial or utility scale.

Both the fossil and renewable energy industries are forecasted to grow in Pennsylvania in the years to come. The complex decisions and obligations to develop energy resources on PA public lands should include thoughtful management and fair use of these public lands for all energy resources.


For more information and details, check out the entire comprehensive report on our website: www.francis.edu/energy.

This work was supported by The Heinz Endowments.

Indian Creek - Part of Bears Ears National Monument

Nationally treasured federal lands face threats by oil, gas, and other extractive uses

Should public, federal lands be opened up even further for extracting minerals, oil, and gas for private ventures? FracTracker’s Karen Edelstein discusses the past, present, and potential future of many of America’s cherished natural resources and wonders.

The United States is blessed with some of the most diverse natural landscapes in the world. Through foresight of great leaders over the decades, starting in 1906 — Theodore Roosevelt, Franklin Roosevelt, Benjamin Harrison, and Jimmy Carter – to name just a few — well over a half billion acres of wilderness have been set aside as national parks, refuges, monuments, and roadless areas. Some of the most famous of these protected areas include the Grand Canyon, Acadia, and Grand Tetons National Parks. In all, the federal government owns 28% of the 2.27 billion acres of land that the United States comprises. These federal lands are administered by the Bureau of Land Management (BLM): 248.3 million acres, the US Forest Service: 192.9 million acres, US Fish and Wildlife Service: 89.1 million acres, and National Park Service: 78.9 million acres. In addition, the US Department of Defense administers 11.4 million acres.

Why are federal lands at risk?

While most people assume that federal wild lands are forever protected from development and commercial exploitation, quite the opposite is true. For most of the past century, federal lands have hunted, fished, logged and grazed by private individuals and enterprises. In addition, and in the cross-hairs of discussion here, is the practice of leasing lands to industrial interests for the purpose of extracting minerals, oil, and gas from these public lands.

Provisions for land conservation and restrictions on oil and gas extraction, in particular, became more stringent since the inception of the Environmental Protection Agency (EPA) in 1970. However, environmentalists have watched in horror as the current administration in Washington has gutted the EPA, and installed climate change-deniers and corporate executives in high levels of office throughout a range of federal agencies. Notable is the appointment of Ryan Zinke as US Secretary of the Interior. Zinke, a former businessman, has a long record of opposing environmental viewpoints around extraction of oil, coal, and gas and cutting regulations. The League of Conservation Voters gives his voting record a lifetime score of 4 percent on environmental issues. As recently as this week, Joel Clement–one of Zinke’s senior advisors–resigned his post, citing, Zinke’s poor leadership, wasting of tax-payer dollars, and denial of climate change science.

Early in his tenure as Secretary of the Interior, Zinke initiated a review of 27 national monuments, a move that environmentalists feared could lead to the unraveling of protections on millions of acres of federal land, and also relaxed regulations on oil and gas exploration in those areas. Public comment on the plans to review these national monuments was intense; when the public comment period closed on July 10, 2017, the Interior Department had received over 2.4 million comments, the vast majority of which supported keeping the existing boundaries and restrictions as they are.

Federal lands under threat by Trump Administration


View map fullscreen | How FracTracker maps work

The above map shows which sites are under consideration for oil, gas, or coal extraction, or face boundary reduction of up to 88%. Click here to view this map full-screen with a legend, zoom in and click on areas of interest, etc.

Who should be allowed to use these resources?

Ranchers, loggers, and recreational hunters and anglers felt that the 1906 Antiquities Act had been over-interpreted, and therefore advocated for Zinke’s proposal. (The Act was the first U.S. law to provide protection for any general kind of cultural or natural resource.)

However, environmental advocates such as the National Parks Conservation Association (NPCA), the Natural Resources Defense Council (NRDC), and others were adamantly opposed to opening up federal lands resources for extraction, citing the need for environmental protection, public access, and, importantly, concerns that the lands would be more easily transferred to state, local, or private interests. Environmentalists also argue that the revenue generated by tourism at these pristine sites would far exceed that generated by extractive resource activities. Attorneys and staff from NPCA and NRDC argued legislation in effect since the 1970s requires role for Congress in changing the boundaries of existing monuments. The President or his cabinet do not have that sole authority.

The Wilderness Society estimates that already, 90% of the land in the US West, owned by the Bureau of Land Management, is open for oil and gas leasing, while only 10% is set aside for other uses (Figure 2). According to information from Sourcewatch, in 2013, these lands included 12 National Monuments, Parks, Recreation Areas, and Preserves that had active drilling, and another 31 that might see possible drilling in the future.

Source: The Wilderness Society

Figure 2. Percent of land already available for oil and gas leasing in the West. Source: The Wilderness Society

What Zinke has Proposed

True to expectation, in August of 2017, Zinke issued a recommendation to shrink the boundaries of several national monuments to allow coal mining and other “traditional uses” — which appear to include large-scale timbering, as well as potentially oil and gas drilling. Sites include Bears Ears and Grand Staircase-Escalante in Utah (encompassing more than 3.2 million acres in lands considered sacred to Dine/Navajo people), Cascade-Siskiyou in Oregon, and Gold Butte in Nevada. According to Zinke’s report, Grand Staircase-Escalante contains “an estimated several billion tons of coal and large oil deposits”. Zinke lifted Obama-era restrictions on coal leasing on federal lands this past March, 2017. However, just last week, a federal judge ruled that the current Administration’s efforts to suspend methane emission restrictions from pipelines crossing public lands were illegal. These are merely a few of the Obama-era environmental protections that Zinke is attempting to gut.

Zinke has proposed decreasing the size of Bears Ears National Monument from the current 1.35 million acres to a mere 160,000, a reduction of 88%. The Bears Ears Inter-Tribal Coalition, made up of thirty Native American tribes, condemned the recommendation as a “slap in the face to the members of our Tribes and an affront to Indian people all across the country.” The Navajo Nation intends to sue the President’s administration if this reduction at Bears Ears is enacted.

Bears Ears National Monument, designated by President Barack Obama, contains tens of thousands of cultural artifacts, and is facing not only a threat of boundary shrinkage, but also a relaxing use restrictions within the Monument area. The current President has referred to Obama’s designation of the monument as “an egregious abuse of power.” Grand Staircase-Escalante was designated by President Bill Clinton, and the Cascade-Siskiyou National Monument was designated by Clinton and expanded by President Obama.

The recommendation details were not made public in August, however, and only came to light in September through a leaked memo, published in The Washington Post. In the memo, Secretary Zinke noted that the existing boundaries were “arbitrary or likely politically motivated or boundaries could not be supported by science or reasons of resource management.” The memo goes on to say that “[i]t appears that certain monuments were designated to prevent economic activity such as grazing, mining and timber production rather than to protect specific objects.” In addition, Zinke is advocating for the modification for commercial fishing uses of two marine national monuments: the Pacific Remote Islands, and Rose Atoll.

Lacking Specificity

According to the Washingon Post, Zinke:

… plans to leave six designations in place: Colorado’s Canyons of the Ancients; Idaho’s Craters of the Moon; Washington’s Hanford Reach; Arizona’s Grand Canyon-Parashant; Montana’s Upper Missouri River Breaks; and California’s Sand to Snow.

Perplexingly, the report is silent on 11 of the 27 monuments named in the initial proposal. One of which is the Papahanaumokuakea Marine National Monument — over 725,000 square miles of ocean — in the northwestern Hawaiian Islands.

The report also requests tribal co-management of “cultural resources”  at Bears Ears, Rio Grande del Norte, and Organ Mountain-Desert Peaks. While one could imagine that greater involvement of indigenous people in the federal government’s management of the sacred landscapes to be a potentially positive improvement, the report is silent on the details. More information on tribal co-management and other options can be gleaned from a series of position papers written by the Property and Environment Research Center.

Of other note: Zinke is also suggesting the establishment of three new national monuments, including the 130,000-acre Badger-Two Medicine area in Montana, a sacred site of the Blackfeet Nation. Badger-Two Medicine was the site of a more than 30-year battle to retire 32,000 acres of oil and gas leases. The tribe prevailed, and the leases were canceled in November, 2016.

With potential lawsuits pending about boundary changes, galvanized push-back from environmental and tribal interests on resource management definitions for the targeted monuments, and general unpredictability on policy details and staffing in Washington, the trajectory of how this story will play out remains uncertain. FracTracker will continue to monitor for updates, and provide additional links in this story as they unfold.

Check out National Geographic’s bird’s eye view of these protected areas for a stunning montage, descriptions, and more maps of the monuments under consideration.


Federal Lands Map Data Sources

National Monuments under consideration for change by Secretary Zinke:
Accessed from ArcGIS Online by FracTracker Alliance, 28 August 2017. Data apparently from federal sources, such as BLM, NPS, etc. Dataset developed by Kira Minehart, GIS intern with Natural Resources Defense Council.0=not currently targeted for policy or boundary change1= targeted for expanded resource use, such as logging, fishing, etc. 2=targeted for shrinkage of borders, and expanded resource use.

National Park Service lands with current or potential oil and gas drilling:
Downloaded by FracTracker Alliance on 9 November 2016, from National Park Service.  Drilling information from here. List of sites threatened by oil and gas drilling from here (23 January 2013).

Badger-Two Medicine potential Monument:
Shapefile downloaded from USGS by FracTracker Alliance on 28 August 2017. This map layer consists of federally owned or administered lands of the United States, Puerto Rico, and the U.S. Virgin Islands. For the most part, only areas of 320 acres or more are included; some smaller areas deemed to be important or significant are also included. There may be private inholdings within the boundaries of Federal lands in this map layer. Some established Federal lands which are larger than 320 acres are not included in this map layer, because their boundaries were not available from the owning or administering agency. Complete metadata available here.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance
Allegheny County, PA map of zoning designations

Allegheny County, PA – Drilling, Leasing, and Zoning Trends

By Kirk Jalbert, Manager of Community-Based Research and Engagement
and Matt Kelso, Manager of Data and Technology

FracTracker recently updated its Pennsylvania Shale Viewer to reflect the latest data on unconventional oil and gas permits and active wells in the state. Within this data, we noticed an increase in permitting over the past year for Allegheny County, PA. We have worked on a number of recent initiatives aimed at expanding conversations about unconventional oil and gas drilling by mapping mineral rights leasing and zoning ordinances in Allegheny County. In this article, we bring these various analyses together.

The analysis below can assist residents and public officials in preparing for what appears to be a pending wave of new development.

Untapped Reserves

Over the past decade, unconventional oil and gas development has predominantly occurred in areas where shale formations are densest and most productive. For instance, the map below illustrates wells and permits in Southwestern Pennsylvania that track along the Marcellus Shale. An outlier on the map is Allegheny County when compared to its neighbors such as Washington and Greene Counties just to the south—two of the most drilled in the Commonwealth.

swpa_ac_og

Unconventional wells and permits in Southwest Pennsylvania

A few factors may explain these spatial anomalies. First, oil and gas companies are generally reluctant to operate in heavily populated areas. This is partly due to the complications of acquiring leases and easements in tightly packed communities.

Infrastructure is second consideration. In the absence of compressor stations and midstream pipelines, companies can’t get their product to market.

A third factor is the stronger political opposition often found in urban centers. For example, Pittsburgh’s 2010 fracking ban pushed back against drillers and had a chilling effect in bordering municipalities. Many of Allegheny County’s municipalities have, thus, had the luxury of putting oil and gas-related land use decisions on the back burner. Nevertheless, operators have maintained interest in extracting untapped shale reserves that lie beneath their borders.

Recent Permitting & Drilling Trends

Within Allegheny County, PA, there are now 24 well pads containing a combined 248 permitted wells, of which 109 currently have an active status. On average, these numbers show a 20% increase in well permits annually (40-50 per year) since 2014. This figure compares to less than 10 per year prior to 2012. Furthermore, while only partway through 2017, we’ve already reached this 20% increase in new permits (41 since 8/24), with the overwhelming number of these being issues for Findlay and Forward Townships. A table and graph of permitting activity since 2008 is seen below.

ac_permits_table_08242017

ac_permits_graph_08242017

Table and graph of permitted wells in Allegheny County

Interestingly, the number of active wells over the past few years does not track with increasing number of permits. In fact, active wells peaked in 2014-2015 and have steadily declined since, as is seen in the table and graph below. We credit these opposing trends to operators placing their wells into inactive status during a period of lower gas prices. Meanwhile, operators are increasing their applications for new wells in preparation for a predicted rebound as well as new pipelines and processing facilities coming online for delivering to new markets.

ac_dw_table_08242017

ac_dw_graph_08242017

Table and graph of active wells in Allegheny County

Predicting Development: Mineral Rights Leasing

The locations of permits and active wells are not always good indicators of long-term future development. A better picture can be painted with data on properties leased for eventual drilling. In 2016, FracTracker built the Allegheny County Lease Mapping Project, which revealed the extent of oil and gas leasing agreements across the region. From that work came some interesting findings.

There are 467,200 acres in Allegheny County. We found 63,014 acres (18% of the county) are under some kind of oil and gas agreement – this includes mineral rights leases, as well as other agreement such as pipeline rights of ways. It is important to note that as many as 15% of the records we obtained in executing the project could not be mapped due to missing metadata (many block/lot numbers were no longer provided with online records after 2010), so these are conservative estimates.

The list below shows the top five municipalities found to have the most leases. Of note is how West Deer, North Fayette, and Elizabeth townships all have a significant number of leases, but do not yet register in permitting activity.

Most Leased Municipalities in Allegheny County, PA

  1. West Deer Township (5,325 leases)
  2. North Fayette Township (5,070 leases)
  3. Elizabeth Township (4,070 leases)
  4. Fawn Township (3,872 leases)
  5. Forward Township (3,801)

We also discovered that more than 70% of leased properties were zoned residential or agricultural, despite the fact that unconventional oil and gas development is a highly disruptive and industrialized activity. The list below shows a breakdown of zoning designations.

Leased Properties Zoning

    • Residential (37%)
    • Agricultural (34%)
    • Commercial (23%)
    • Industrial (3%)
    • Other (3%)

Status of Protective Zoning

In 2013, the Pennsylvania Supreme Court upended state laws governing local oil and gas zoning rights with its landmark Robinson Township v. Commonwealth of Pennsylvania decision. The court struck down parts of Act 13 that imposed statewide zoning standards for oil and gas development. Zoning ordinances with stronger ordinances are now being adopted by some townships. However, many others have zoning codes that reflect pre-Robinson language, which allows mineral extraction everywhere, regardless of whether it is a compatible land use.

Drawing the connections between drilling trends, leasing activity, and protective zoning is, therefore, significant. Over the past six months, FracTracker has worked with Food & Water Watch to put our lease mapping data and state drilling data in context with assessments of Allegheny County’s municipal oil and gas zoning ordinances. The map below illustrates these overlaps.

Map of Allegheny County Drilling, Leasing, and Zoning


View map fullscreen | How FracTracker maps work

Analysis

Allegheny County contains 130 municipalities. Food & Water Watch was able to obtain and review zoning codes for 104 of these 130. At least 56 municipalities have no zoning ordinances specific to oil and gas development. Of greatest concern, when placed in context with leasing and permitting data, FracTracker found that leases already existed in 43 of these 56 municipalities without oil and gas ordinances, although 8 of these 43 were found to have other less restrictive language regulating specific oil and gas activities, such as seismic testing. Fawn Township, one of the most permitted and most leased municipalities in the county, was found to have no oil and gas zoning ordinance.

Conclusions

It’s important to recognize that there is a significant difference between conventional oil and gas development and today’s heavily industrialized unconventional extraction industry. In many of Allegheny County’s municipalities there seems to be a presumption that there is no need to prepare zoning codes for drilling, despite data that suggest increased oil and gas development may be just around the corner.

With the deeper understanding of Allegheny County’s permitting trends, leasing activities, and the state of protective zoning presented in this article, municipalities would be wise to assess where they stand. Reviewing and updating their respective zoning codes to determine if they sufficiently address concerns related to unconventional drilling could be the most effective way to protect the interests of their residents.

Water supplies article

Risks to Water Supplies in PA’s Susquehanna Basin

In this series of articles on the Susquehanna River Basin, FracTracker has explored the relationship between oil and gas extraction and the overall health of the watershed relative to oil and gas extraction impacts. We began with a basic overview of likely relationships, followed by an analysis of oil and gas violations relative to resources available for monitoring water quality changes. In the most recent article we assessed the corresponding effects of extraction on deforestation and habitat loss. With the rapid expansion of oil and gas drilling over the past decade, many have also formed legitimate concerns about threats to public and private water supplies. In the final article of the series we look closely at this issue, at the complexities of assessing risks to water supplies, while also highlighting recent research shedding new light on the nature of these risks.

Pennsylvania’s Hydrological System

The Susquehanna River is home to more than 3.3 million people who depend on the river and its tributaries for drinking water. The basin also feeds thousands of businesses that require water for their operations, such as manufacturing facilities, farms, golf courses, and more. In some instances, water supplies are fed by groundwater wells, which are in turn fed by underground aquifers of different depths. In other cases, water supplies are drawn from intake points in nearby lakes, rivers, and streams.

Map of PA's groundwater aquifer system.

Figure 1: Map of PA’s groundwater aquifer system.

While many believe underground and surface water systems are somehow discrete, this is far from the case. Groundwater is a major contributor to rivers, lakes, and wetlands – as they are all connected through the hydrological cycle. Some precipitation runs directly into streams. But much of it filters through soil and rock into shallow and deep aquifers. Aquifers then carry water over the course of months, years, and even centuries, into larger water bodies. The most common discharge points are from springs and from low-lying wetlands. The figures above (figure 1) and below (figure 2) illustrate Pennsylvania’s four major aquifer types, compiled by Penn State Extension.

Figure 3: Types of groundwater aquifers in PA.

Figure 2: Types of groundwater aquifers in PA.

Assessing Groundwater Supply Risks

Managing the overall health of the hydrological cycle is of critical importance to the 3.3 million people who live in the Susquehanna River Basin. However, oil and gas extraction poses significant risks to the state’s water sources. As we have detailed in prior articles in this series, accidents and spills can cause chemicals and hydraulic fracturing fluids to run off into nearby watersheds. Growing evidence also suggests that groundwater can be contaminated by migrating hydraulic fracturing fluids.

Figure 4: Number of household and public water supply groundwater wells by state (DCNR).

Figure 3: Number of household and public water supply groundwater wells by state (DCNR).

In one study, conducted by Columbia University in 2016, researchers found elevated levels of dissolved calcium, chlorine, sulfates and iron in lowland drinking wells within one kilometer of a drilling site compared to baseline averages. In lowland wells more than a kilometer away, they found elevated levels of methane, sodium, and manganese. Elevated levels dropped off in wells on higher ground, which suggests the hydraulic fracturing process affects shallow and deep groundwater sources along different timelines.

According to the PA Department of Conservation and Natural Resources (DCNR), Pennsylvania ranks second in the nation for total number of groundwater wells, second for number of private drinking wells, and third for number of public water supplies dependent on groundwater wells (figure 4). However, determining how many groundwater wells may be at risk to oil and gas extraction is complicated for a variety of reasons. First, DCNR acknowledges that only about half (480,000) of the 1 million groundwater wells in the state are documented. Registration of groundwater wells only began in 1955, and detailed information including latitude and longitudinal coordinates only came into being in the 1980s. These records are now maintained in the PA Groundwater Inventory System (PAGWIS). It is worth noting that the PA Department of Environmental Protection (DEP) does not regulate private drinking water wells. They are only required to respond to pollution complaints.

Correlating O&G Wells to Complaints Data

Despite these data gaps, we can still learn a lot from the wells that are documented in PAGWIS. For instance, we compared the location of groundwater wells to oil and gas related complaints and found some interesting correlations. The below map can be used to explore these relationships.

Map of at-risk groundwater wells, public water supplies, and citizen complaints


View Map Fullscreen | How FracTracker Maps Work

The first stage our analysis involved narrowing the PGWIS registered groundwater wells in the Susquehanna Basin to those that are actively used for drinking water, agriculture, and irrigation (66,306 total). We then limited to those within 1 kilometer of an oil and gas well, essentially mirroring the distances used by the Columbia University study. We found 2,551 groundwater wells within this “risk zone” of 1 kilometer.

For our second stage, we utilized research conducted by Public Herald, an investigative reporting team that spent three years reviewing oil and gas related complaints submitted to the DEP from 2004-2016. They found 9,442 total complaints, of which 43% were water related (surface and groundwater), and that the frequency of complaints track with the rise and fall of unconventional oil and gas development (figure 5).

Figure 5: Relationship of complaints to O&G development (Public Herald).

Figure 4: Relationship of complaints to O&G development (Public Herald).

From the Public Herald dataset, we found 1,573 total complaints were in the Susquehanna River Basin, of which 65% were water related complaints — a much higher percentage than the larger dataset’s average. We then compare the location of these complaints to our “risk zone” groundwater wells and found a statistically significant correlation between the number of groundwater wells within 1km of oil and gas activity and higher numbers of complaints by residents. What do these findings tell us?

In short, where we see more groundwater wells in proximity to an oil and gas well, we also see more water related complaints to the DEP.

The below graph illustrates this relationship (figure 6).

Figure 6: Relationship of complaints to at-risk groundwater wells.

Figure 5: Relationship of complaints to at-risk groundwater wells.

Groundwater to Surface Water Risks

DCNR estimates that Pennsylvania’s streams and wetlands get about 2/3 of their flow from groundwater sources. Meanwhile, there are 786 public water suppliers in the Susquehanna River Basin that are fed by different arrangements of groundwater and surface water sources. These suppliers are included in the interactive map for reference.

Assessing risks to public water supply systems is equally complicated to that of groundwater wells. The DEP regulates public water suppliers under the Safe Drinking Water Act, but the general public is not permitted to know the location of actual water sources or intake points due to security risks. This restriction poses a problem for nongovernmental organizations when doing analyses that would benefit from knowing the locations of these source points. Nevertheless, like our breakdown of risk zone groundwater wells, we can still learn a great deal from what we do know of public water supplies.

Figure 6: Wellsboro, PA, public water supply along with O&G wells and water-related citizen complaints in the supply watershed.

Figure 6: Wellsboro, PA, public water supply with O&G wells and citizen complaints in the supply’s watershed.

For instance, the town of Wellsboro, in Tioga County, is home to an estimated 3,300 people. The Wellsboro Municipal Authority supplies water to Wellsboro residents as well as to 1,000 people in surrounding Charleston and Delmar Townships. According to DEP records, groundwater and surface water sources for this system come from Hamilton Lake and tributaries of the Charleston Creek Watershed, much of which is designated as high-quality coldwater fisheries. Nevertheless, there are seven unconventional oil and gas wells in this watershed, one of which is only 400ft from Charleston Creek, just upstream from Hamilton Lake.

The area is also one of the brightest hot-spots for complaints to the DEP in the Public Herald dataset, with 40 water related complaints in Charleston and Delmar townships.

These relationships should be of particular concern to residents who believe their water is protected from extraction industry activities. In addition, while recent research suggests homes values can be negatively affected in neighborhoods dependent on private well water near drilling activity, correlations between potential groundwater and surface water pollution suggest that any changes in home value are more a matter of perceived rather than actual risk—homes on public water supplies should also be considered at risk in communities experiencing extraction.

Conclusion

Returning to the hydrological cycle, we can assume that pollutants from oil and gas extraction, like precipitation, will eventually find their way into larger water bodies, either directly through runoff into watershed tributaries or through groundwater migrations. While this article has primarily focused on the Pennsylvania headwaters of the Susquehanna, home to 570,000 residents, and risks to their water sources, groundwater complaints are not the exclusive problem of residents who are dependent on private drinking water wells. “We all live downstream” as the saying goes, and those who rely on the watershed for their drinking water and other water resource needs throughout the watershed should be concerned by the correlations illustrated in our analysis.


By Kirk Jalbert, Manager of Community based Research & Engagement, FracTracker Alliance

Feature image: Hydrologic cycle graphic by Watershed-Watch.org

Forest fragmentation in PA

Forest Fragmentation and O&G Development in PA’s Susquehanna Basin

In this forest fragmentation analysis, FracTracker looked at existing vegetation height in the northern portion of Pennsylvania’s Susquehanna River Basin. The vegetation height data is available from LANDFIRE, a resource used by multiple federal agencies to assess wildfire potential by categorizing the vegetation growth in 30 by 30 meter pixels into different categories. In the portion of Pennsylvania’s Susquehanna Basin where we looked, there were 29 total categories based on vegetation height. For ease of analysis, we have consolidated those into eight categories, including roads, developed land, forest, herbs, shrubs, crops, mines and quarries, and open water.

Methods

We compared the ratio of the total number of each pixel type to the type that was found at vertical and horizontal wells in the region. In this experiment, we hypothesized that we would see evidence of deforestation in the areas where oil and gas development is present. Per our correspondence with LANDFIRE staff, the vegetation height data represents a timeframe of about 2014, so in this analysis, we focused on active wells that were drilled prior to that date. We found that the pixels on which the horizontal wells were located had a significantly different profile type than the overall pixel distribution, whereas conventional wells had a more modest departure from the general characteristics of the region.

Figure 1 - Vegetation profile of the northern portion of Pennsylvania's Susquehanna River Basin. The area is highly impacted by O&G development, a trend that is likely to continue in the coming years.

Figure 1 – Vegetation profile of the northern portion of Pennsylvania’s Susquehanna River Basin. The area is highly impacted by O&G development, a trend that is likely to continue in the coming years.

In Figure 1, we see that the land cover profile where vertical wells (n=6,198) are present is largely similar to the overall distribution of pixels for the entire study area (n=40,897,818). While these wells are more than six times more likely to be on areas classified as mines, quarries, or barren, it is surprising that the impact is not even more pronounced. In terms of forested land, there is essentially no change from the background, with both at about 73%. However, the profile for horizontal wells (n=3,787) is only 51% forested, as well as being four times more likely than the background to be categorized as herbs, which are defined in this dataset as having a vegetation height of around one meter.

Why Aren’t the Impacts Even More Pronounced?

While the impacts are significant, particularly for horizontal wells, it is a bit surprising that evidence of deforestation isn’t even more striking. We know, for example, that unconventional wells are usually drilled in multi-well pads that frequently exceed five acres of cleared land, so why aren’t these always classified as mines, quarries, and barren land, for example? There are several factors that can help to explain this discrepancy.

First, it must be noted that at 900 square meters, each pixel represents almost a quarter of acre, so the extent of these pixels will not always match with the area of disturbance. And in many cases, the infrastructure for older vertical wells is completely covered by the forest canopy, so that neither well pad nor access road is visible from satellite imagery.


View map fullscreenHow FracTracker maps work

The map above shows horizontal and vertical wells in a portion of Centre County, Pennsylvania, an area within our study region. Note that many of the vertical wells, represented by purple dots, appear to be in areas that are heavily forested, whereas all of the horizontal wells (yellow dots) are on a defined well pad in the lower right part of the frame. Panning around to other portions of Centre County, we find that vertical wells are often in a visible clearing, but are frequently near the edge, so that the chances of the 30 by 30 meter pixel that they fall into is much more likely to be whatever it would have been if the well pad were not there.

We must also consider that this dataset has some limitations. First of all, it was built to be a tool for wildfire management, not as a means to measure deforestation. Secondly, there are often impacts that are captured by the tool that were not exactly on the well site. For this reason, it would make sense to evaluate the area around the well pad in future versions of the analysis.

Figure 2 - A close up of a group of wells in the study area. Note that the disturbed land (light grey) does not always correspond exactly with the well locations.

Figure 2 – A close up of a group of wells in the study area. Note that the disturbed land (light grey) does not always correspond exactly with the well locations.

In Figure 2, we see a number of light grey areas –representing quarries, strip mines, and gravel pits –with an O&G well just off to the side. Such wells did not get classified as being on deforested land in this analysis.

And finally, after clarifying the LANDFIRE metadata with US Forest Service personnel involved in the project, we learned that while the map does represent vegetation cover circa 2014, it is actually build on satellite data collected in 2001, which has subsequently been updated with a detailed algorithm. However, the project is just beginning a reboot of the project, using imagery from 2015 and 2016. This should lead to much more accurate analyses in the future.

Why Forest Fragmentation Matters

The clearing of forests for well pads, pipelines, access roads, and other O&G infrastructure that has happened to date in the Susquehanna Basin is only a small fraction of the planned development. The industry operates at full capacity, there could be tens of thousands of new unconventional wells drilled on thousands of well pads in the region through 2030, according to estimates by the Nature Conservancy. They have also calculated an average of 1.65 miles of gathering lines from the well pad to existing midstream infrastructure. With a typical right-of-way being 100 feet wide, these gathering lines would require clearing 20 acres. It isn’t unusual for the total disturbance for a single well pad and the associated access road to exceed ten acres, making the total disturbance about 30 acres per well pad. Based on the vegetation distribution of the region, we can expect that 22 of these acres, on average, are currently forested land. Taking all of these factors into consideration, a total disturbance of 100,000 to 200,000 acres in Pennsylvania’s Susquehanna River Basin due to oil and gas extraction, processing, and transmission may well be a conservative estimate, depending on energy choices we make in the coming years.

This forest fragmentation has a number of deleterious effects on the environment. First, many invasive plant species, such as bush honeysuckle and Japanese knotweed, tend to thrive in recently disturbed open areas, where competing native plants have been removed. The practice also threatens numerous animal species that thrive far from the forest’s edge, including a variety of native song birds. The disturbed lands create significant runoff into nearby rivers and streams, which can have an impact on aquatic life. And the cumulative release of carbon into the atmosphere is staggering – consider that the average acre of forest in the United States contains 158,000 pounds of organic carbon per acre. As the area is 73% forested, the total cumulative impact could result in taking 5.8 to 11.6 million tons of organic carbon out of forested storage. Much of this carbon will find its way into the atmosphere, along with the hydrocarbons that are purposefully being extracted from drilling operations.

Mobile app update release feature image

FracTracker Mobile App Now Includes Activity Feed and Mapped Pipelines

Explore and Document Drilling Activity Near You with the FracTracker App

The oil and gas industry – from its wells to pipelines to refineries – has a variety of ways of impacting the communities and environment that surround its infrastructure. Given the scope of the industry, it’s almost impossible to see how oil and gas affects people and for them to share their experiences with others. Until today. FracTracker is excited to announce that we have completely rebuilt and significantly improved our frack-tracking mobile app. This app can serve as a documenting and tracking tool for reporters, residents, researchers, and groups concerned about oil and gas and its impacts.

Screenshots

Updated App Features

The free app, available for iPhone and Android users, still offers the ability to see drilling near you in the U.S. and add reports and photos about this activity onto a shared map. Based on feedback from many of our partners and readers, we have added and updated several features, as well.

  • Profile – Sign in to the app with an email address and password, with the option to add other information to your profile. This area is also where you can privately view your previous and pending reports.
  • Activity Feed – Shows the most recent submissions by app users. Scroll down to view older reports.
  • Save As Draft – Not ready to submit your report? Save it as a draft and return to submit it later.
  • Real-Time Submissions – We will no longer be curating incoming reports before they go live – so the activity feed and map show real-time submissions.
  • Flagging Tool – Mark a submission as inappropriate. A FracTracker moderator will review the report and take the appropriate action.
  • Indicate Senses Affected – Classify a report by the sense(s) impacted – e.g. Nearby drilling activity is loud, or an impoundment is causing noxious odors.
  • Pipelines Mapped – In addition to active wells and user reports, we have added national pipelines to the map. Please note that many of the pipeline locations are approximate because detailed, public pipeline data is lacking. Help us make this information more accurate by posting photos of pipelines near you.

Feedback Loops

Several organizations and community groups helped to test and improve the app during its redesign, including residents living amongst the oil and gas fields on the Front Range of Colorado and Southwest Pennsylvania, as well as with students at Drexel University.

When we redesigned our mobile app, we felt it was important to go into communities that are living amongst the oil and gas industry. Together, we identified what they needed most when reporting their concerns and potential impacts. The results are a very versatile app. People living around urban refinery hubs, as well as those living in rural extraction regions, will find this tool incredibly useful.

We’d love to hear your feedback about these changes once you have had a chance to explore the app’s updated features.

The app was developed by FracTracker Alliance in collaboration with Viable Industries, L.L.C.

Mobile App Contact

Kirk Jalbert, PhD, MFA
Manager of Community-Based Research and Engagement
FracTracker Alliance
jalbert@fractracker.org

34 states with active drilling activity in US map

34 states have active oil & gas activity in U.S. based on 2016 analysis

Each year, FracTracker Alliance compiles a national well file to try to assess how many wells have been drilled in the U.S. We do this by extracting data from the various state regulatory agencies that oversee drilling in oil and gas producing states. We’re a little late posting the results of our 2016 analysis, but here it is.

Based on data from 2014-2015, 34 states * saw drilling activity, amounting to approximately 1.2 million facilities across the U.S. – from active production wells, to natural gas compressor stations, to processing plants.

The process we used to count these wells and related facilities for the 2016 analysis changed a bit this time around, which obviously impacts the total number of wells in the dataset. 2016’s compilation was created in consultation with Earthworks, for the purpose of informing the Oil and Gas Threat Map project. The scope was more restrictive than previous editions (see our 2014 and 2015 analyses), focusing only on wells that we were reasonably confident were actively producing oil and gas wells, thus excluding wells with inactive or uncertain statuses, as well salt water disposal (SWD) and other Class II injection (INJ) well types.

There are facilities included in this dataset that we don’t normally tally, as well (See Table 1 below). Earthworks was able to determine the latitude and longitude coordinates of a number of compressors and other processing plants, which are included in the dataset below and final map.

In all, the facility counts are reduced from about 1.7 million in 2015 to about 1.2 million in 2016, but this is more a reflection of the definition than substantial changes in the active well inventory in the U.S. You can explore this information by state, and additional results of this project, using Earthworks’ Threats Maps. Additionally, the national well file is available to download below.

You’ll notice that we don’t refer to the wells in this analysis as “fracked” wells. The primary reason for not using such terminology is because no one common definition exists across those states for what constitutes a hydraulically fractured well. In PA, for example, such wells are considered “unconventional” because drilling occurs in an unconventional formation and usually involves some sort of well stimulation. Contrastingly, in CA, often drillers use “acidizing” not fracking – a similar process that breaks up the ground using acidic injected fluids instead of the high pressure seen in traditional fracking. As such, we included all active oil and gas production instead of trying to limit the analysis to just wells that have been stimulated. We will likely continue to use this process until a federal or national definition of what constitutes a “fracked” well is determined.

Table 1. Facilities by State and Type

State Count of Facilities by Type Grand Total
Compressor Processor Well
AK 7 3,356 3,363
AL 17 7,016 7,033
AR 231 8 13,789 14,028
AZ 40 40
CA 7 21 92,737 92,765
CO 426 49 50,881 51,356
FL 2 102 104
ID 6 6
IL 5 48,748 48,753
IN 7,374 7,374
KS 9 90,526 90,535
KY 5 11,769 11,774
LA 6,486 94 2,555 9,135
MI 19 16,525 16,544
MO 2 687 689
MS 6 4,556 4,562
MT 5 9,768 9,773
ND 19 13,024 13,043
NE 1 16,202 16,203
NM 902 37 57,839 58,778
NV 176 176
NY 12,244 12,244
OH 29 10 90,288 90,327
OK 856 96 29,042 29,994
OR 56 56
PA 452 11 103,680 104,143
SD 408 408
TN 15,956 15,956
TX 758 315 397,776 398,849
UT 18 20,608 20,626
VA 9,888 9,888
WI 1 1
WV 20 16,118 16,138
WY 325 48 38,538 38,911
Grand Total 10,472 825 1,182,278 1,193,575
* NC facilities are not included because the state did not respond to multiple requests for the data. This exclusion likely does not significantly affect the total number of wells in the table, as historically NC only had 2 oil and gas wells.
You Are Here feature image

You Are Here!

Events

Nothing Found

Sorry, no posts matched your criteria