Posts

Pennsylvanians Demand a Response to Rare Cancer Cases, Other Health Impacts

New research on fracking health impacts, combined with unusually high rates of pediatric cancer, sound alarm bells in Pennsylvania

FracTracker isn’t the only one digging deeper into the health impacts of fracking in the past few months. Last week, the Better Path Coalition organized a meeting at the Capitol Building in Harrisburg, Pennsylvania, to share new research with government officials, the press, and the public. These groundbreaking reports highlight the increasing body of evidence showing fracking’s adverse health and climate impacts.

Following the presentations on emerging research, Ned Ketyer, M.D., F.A.A.P, discussed the highly concerning proliferation of rare pediatric cancer cases in southwestern Pennsylvania.

Dr. Ketyer drew data from a report released last month by the Pittsburgh Post Gazette, which uncovered an unusually high number of childhood cancer diagnoses in southwestern Pennsylvania over the last decade. In just four counties (Washington, Greene, Fayette and Westmoreland), there were 27 people diagnosed with Ewing sarcoma, a rare bone cancer, between 2008 and 2018. Six of the 27 people diagnosed were from the Canon-McMillan School District in Washington County, where there are currently 10 students district-wide with other types of cancers.

The expected number of Ewing sarcoma diagnoses over this time period and for the population count of southwestern Pennsylvania would be 0.75 cases per year, or roughly eight cases over the course of a decade. The higher number of rare childhood cancers was the subject of a recent community meeting held by the Southwest Pennsylvania Environmental Health Project (EHP), where residents called on the state to further investigate the issue and take immediate action to eliminate any potential environmental causes. For more of EHP’s resources on this topic, click here.

Cancer in the Marcellus

The Pennsylvania Department of Health investigated three of these cases in Washington County and found that they did not meet the criteria definition of a cancer cluster. Still, the unusually high number of rare cancers over a small geography is cause for alarm and reason to suspect an environmental cause.

This four-county area has a legacy of environmental health hazards associated with coal mining activities and is home to a 40-year old uranium disposal site that sits in close proximity to the Canon-McMillan High School. But with the increase in cancer diagnoses over the past decade, many are looking towards fracking in the Marcellus Shale, the more recent environmental hazard to develop in the region, as a contributing cause.

Southwestern Pennsylvania is a hot spot for fracking activity. In these four counties, there are 3,169 active, producing unconventional gas wells. There are also the infrastructure and activity associated with unconventional development: compressor stations, processing stations (including Pennsylvania’s largest cryogenic plant), disposal sites for radioactive waste, and heavy truck traffic.

The environmental and health risks of these facilities were the focus of the presentations and discussions with Pennsylvania leaders last week.

A map of unconventional gas production in southwest Pennsylvania. Click on the image to open the map.

View map fullscreen | How FracTracker maps work

Call for action

At the culmination of the Harrisburg meeting, participants delivered a letter to Governor Wolf’s office, calling for an investigation into the causes of these childhood cancer cases. Signed by over 900 environmental organizations and individuals, the letter also asks for a suspension of new shale gas permitting until the Department of Health can determine that there is no link between drilling and the cancer outcomes.

Governor Wolf’s response to Karen Feridun, the organizer of this campaign, was a disappointing dismissal of this public health crisis. Stating that the environmental regulations his office has implemented “protect Pennsylvanians from negative environmental and health impacts,” Governor Wolf went on to say that his office “will continue to monitor and study cancer incidents in this area, especially as more data becomes available,” but did not agree to suspend new permitting.

Wolf’s decision to continue with status quo permitting while waiting for more data to become available is unacceptable, and will lead to more Pennsylvanians suffering from the industry’s health impacts.

The Governor’s response is even more disheartening as it follows his recent support for a full ban on fracking activity in the Delaware River Basin (including eastern Pennsylvania). The Governor’s support for the ban is an acknowledgement of the industry’s risks, and leaves us frustrated that the southwestern part of the state is not receiving equal protection.

When is enough evidence enough?

The continued permitting of unconventional wells disregards the scientific evidence of drilling’s harms discussed in Harrisburg.

Sandra Steingraber, Ph.D, of Concerned Health Professionals of New York, discussed the results of the sixth edition of “The Compendium of Scientific, Medical, and Media Findings Demonstrating Risks and Harms of Fracking.” The Compendium outlines the health risks of fracking infrastructure from almost 1,500 peer-reviewed studies and governmental reports. Notably, the report outlines the inherent dangers of fracking and finds that regulations are incapable of protecting public health from the industry.

Erica Jackson discussed FracTracker Alliance’s recently published Categorical Review of Health Reports. This literature review analyzed 142 publications and reports on the health impacts of fracking, and found that 89% contained evidence of an adverse health outcome or health risk associated with proximity to unconventional oil and gas development.

Brian Schwartz, M.D., M.S., the Director of Geisinger Health Institute at the Johns Hopkins Bloomberg School of Public Health, presented epidemiological studies linking unconventional development to increased radon concentrations on homes and health impacts including adverse birth outcomes, mental health disorders, and asthma exacerbations.

Lorne Stockman, Senior Research Analyst with Oil Change International, discussed  “Burning the Gas ‘Bridge Fuel’ Myth,” a new report that further solidifies the irrationality of continued oil and gas development based on its climate impacts. The report shows that greenhouse gas emissions from fracking exceed climate goals, and how perpetuating the myth of natural gas as a “bridge” to renewables locks in emissions for decades.

A welcome ray of hope, this report also proves that renewables are an economically viable replacement to coal and gas, costing less than fossil fuels to build and operate in most markets. Furthermore, renewables combined with increasingly competitive battery storage ensures grid reliability.

“Burden of proof always belongs to the industry”

Among the inundation of data, statistics, and studies, Dr. Steingraber offered a sobering reminder of the purpose behind the meeting:

“Public health is about real people. When we collect data on public health problems, behind every data point, behind every black dot floating on a white mathematical space on a graph captured in a study, there are human lives behind those data points. And when those points each represent the life of a child or a teenager, what the dots represent is terror, unimaginable suffering, followed by death, or terror, unimaginable suffering, followed by a life of trauma, pathology reports, bone scans, medical bills, side effects, and uncertainty that all together are known as cancer survival.”

An adolescent cancer survivor herself, Dr. Steingraber clearly articulated the ethical responsibility our elected officials have to hold industry accountable for its impacts:

“Burden of proof always belongs to the industry, and benefit of the doubt always belongs to the child. It’s wrong to treat children like lab rats and experiment on them until the body count becomes so high that it reaches all the levels of statistical significance that tells you that we have a real problem here.”

The evidence is in – we know enough to justify an end to fracking based on its health and climate impacts. It’s time for Pennsylvania’s industry and leaders to stop experimenting with residents’ health and take immediate action to prevent more suffering.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

Who Pays? Health and Economic Impacts of Fracking in Pennsylvania

Since the advent of unconventional shale gas drilling, some effects have been immediate, some have emerged over time, and some are just becoming apparent. Two reports recently published by the Delaware Riverkeeper Network advance our understanding of the breadth of the impacts of fracking in Pennsylvania. The first report, written by FracTracker, reviews research on the ways fracking impacts the health of Pennsylvanians. The second report by ECONorthwest calculates the economic costs of the industry.

“Fracking is heavily impacting Pennsylvania in multiple ways but the burden is not being fairly and openly calculated. These reports reveal the health effects and economic costs of fracking and the astounding burdens people and communities are carrying,” said Maya van Rossum, the Delaware Riverkeeper.

Learn what the latest science and analysis tells us about the costs of fracking, who is paying now, and what the future price is forecasted to be.

Access the full reports here:

 

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Health Impact Report

“Categorical Review of Health Reports on Unconventional Oil and Gas Development; Impacts in Pennsylvania,”  FracTracker Alliance, 2019 Issue Paper

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Economic Impact Report

“The Economic Costs of Fracking in Pennsylvania,” ECONorthwest, 2019 Issue Paper
 
 

 

From the Experts

“The FracTracker Alliance conducted a review of the literature studying the impact of unconventional oil and gas on health. Findings of this review show a dramatic increase in the breadth and volume of literature published since 2016, with 89% of the literature reporting that drilling proximity has human health effects. Pennsylvanian communities were the most studied sample populations with 49% of reviewed journal articles focused on Marcellus Shale development. These studies showed health impacts including cancer, infant mortality, depression, pneumonia, asthma, skin-related hospitalizations, and other general health symptoms were correlated with living near unconventional oil and gas development for Pennsylvania and other frontline communities.”

Kyle Ferrar, FracTracker Alliance Western Program Coordinator

 

Rig and house. Westwood Lake Park. Photo by J Williams, 2013.

“Fracking wells have an extensive presence across Pennsylvania’s landscape – 20 percent of residents live within 2 miles of a well. This is close enough to cause adverse health outcomes. Collectively we found annual costs of current fracking activity over $1 billion, with cumulative costs given continued fracking activity over the next 20 years of over $50 billion in net present value for the effects that we can monetize. The regional economic benefits also seem to be less than stated, as the long-term benefits for local economies are quite low, and can disrupt more sustainable and beneficial economic trajectories that might not be available after a community has embraced fracking.”

Mark Buckley, Senior Economist at the natural resource practice at
ECONorthwest

 

These reports on the health effects and economic impacts of unconventional oil and natural gas development yield disheartening results. There are risks of extremely serious health issues for families in impacted areas, and the long term economic returns for communities are negative.

Arming ourselves with knowledge is an important first step towards the renewable energy transformation that is so clearly needed. The stakes are too high to allow the oil and natural gas industries to dictate the physical, social, and economic health of Pennsylvanians.

PTTGC’s Ethane Cracker Project - Map by FracTracker Alliance

PTTGC’s Ethane Cracker Project: Risks of Bringing Plastic Manufacturing to Ohio

In 2012, a battle between Ohio, West Virginia, and Pennsylvania was underway. Politicians and businesses from each state were eagerly campaigning for the opportunity to host Royal Dutch Shell’s “world-class” petrochemical facility. The facility in question was an ethane cracker, the first of its kind to be built outside of the Gulf Coast in 20 years. In the end, Pennsylvania’s record-breaking tax incentive package won Shell over, and construction on the ethane cracker plant began in 2017.

Once completed, the ethane cracker will convert ethane from fracked wells into 1.6 million tons of polyethylene plastic pellets per year.

Shell Ethane Cracker

Shell’s ethane cracker, under construction in Beaver County, PA. Image by Ted Auch, FracTracker.
Aerial support provided by LightHawk.

Ohio and West Virginia, however, have not been left out of the petrochemical game. In addition to the NGL pipelines, cryogenic plants, and fractionation facilities in these states, plans for ethane cracker projects are also in the works.

In 2017, PTT Global Chemical (PTTGC) put Ohio in second place in the “race to build an ethane cracker,” when it decided to build a plant in Belmont County, Ohio.

But first, why is the petrochemical industry expanding in the Ohio River Valley?

Fracking has opened up huge volumes of natural gas in the Marcellus and Utica shales in Pennsylvania, Ohio, and West Virginia. Fracked wells in these states extract methane, which is then transported in pipelines and used as a residential, industrial, or commercial energy source. The gas in this region, however, contains more than just methane. Classified as “wet gas,” the natural gas stream from regional wells also contains natural gas liquids (NGLs). These NGLs include propane, ethane, and butane, and industry is eager to create a market for them.

Investing in plastic is one way for the industry to subsidize the natural gas production, an increasingly unprofitable enterprise. 

An image of plastic pellets

Plastic pellets, also called “nurdles,” the end product of ethane crackers.

Major processing facilities, such as cryogenic and fractionation plants, receive natural gas streams and separate the NGLs, such as ethane, from the methane. After ethane is separated, it can be “cracked” into ethylene, and converted to polyethylene, the most common type of plastic. The plastic is shipped in pellet form to manufacturers in the U.S. and abroad, where it is made into a variety of plastic products.

By building ethane crackers in the Ohio River Valley, industry is taking advantage of the region’s vast underground resources.

PTTGC ethane cracker: The facts

PTTGC’s website states that the company “is Thailand’s largest and Asia’s leading integrated petrochemical and refining company.” While this ethane cracker has been years in the making, the company states that “a final investment decision has not been made.” The image below shows land that PTTGC has purchased for the plant, totaling roughly 500 acres, in Dilles Bottom, Mead Township.

According to the Ohio EPA, the plant will turn ethylene into:Recycling "2" symbol for HDPE plastic

  • 700,000 tons of high density polyethylene (HDPE) per year
  • 900,000 tons Linear low-density polyethylene (LLDPE)

HDPE is a common type of plastic, used in many products such as bags, bottles, or crates. Look for it on containers with a “2” in the recycling triangle. LLDPE is another common type of plastic that’s weaker and more flexible; it’s marked with a “4.”

The ethane cracker complex will contain:

  • An ethylene plant
  • Four ethylene-based derivatives plants.
  • Six 552 MMBtu/hour cracking furnaces fueled by natural gas and tail gas with ethane backup
  • Three 400 MMBTU/hr steam boilers fueled by natural gas and ethane
  • A primary and backup 6.2 MMBtu/hour thermal oxidizer
  • A high pressure ground flare (1.8 MMBtu/hour)
  • A low pressure ground flare (0.78 MMBtu/hour)
  • Wastewater treatment systems
  • Equipment to capture fugitive emissions
  • Railcars for pygas (liquid product) and HDPE and LLDPE pellets
  • Emergency firewater pumps
  • Emergency diesel-fired generator engines
  • A cooling tower

Impacts on air quality

The plant received water permits last year, and air permits are currently under review. On November 29, 2018, the Ohio EPA held an information session and hearing for a draft air permit (the permit can be viewed here, by entering permit number P0124972).

FracTracker has previously reported on the air quality impacts, risks, and fragmented permitting process associated with the Shell ethane cracker in Pennsylvania. How does the PTTGC plant stack up?

The plant will be built in the community of Dilles Bottom, on the former property of FirstEnergy’s R.E. Burger Power Station, a coal power plant that shut down in 2011. The site was demolished in 2016 in preparation for PTTGC’s ethane cracker. In 2018, PTTGC also purchased property from Ohio-West Virginia Excavating Company. In total, the ethane cracker will occupy 500 acres.

R.E. Burger Power Station

R.E. Burger Power Station, which has been demolished for the PTTGC Ethane Cracker. Image Source

Table 1, below, is a comparison of the previous major source of air pollution source, the R.E. Burger Power Station, and predictions of the future emissions from the PTTGC ethane cracker. The far right column shows what percent of the former emissions the ethane cracker will release.

Table 1: Former and Future Air Emissions in Dilles Bottom, Ohio

Pollutant R.E.Burger Power Station
(2010 emissions)

PTTGC Ethane Cracker
(predicted emissions)

Percent of former emissions

CO (carbon monoxide) 143.33 544 379.5%
NOx (nitrogen oxides) 1861.2 164 8.81%
SO2 (sulfur dioxide) 12719 23 0.18%
PM10 (particulate matter, 10) 179.25 89 49.65%
PM2.5 (particulate matter, 2.5) 77.62 86 110.8%
VOCs (volatile organic compounds) 0.15 396 264000%

As you can see, the ethane cracker will emit substantially less sulfur dioxide and nitrogen dioxides compared with the R.E. Burger site. This makes sense, as these two pollutants are associated with burning coal. On the flip side, the ethane cracker will emit almost four times as much carbon monoxide and 263,900% more volatile organic compounds (percentages bolded in Table 1, above).

In addition to these pollutants, the ethane cracker will emit 38 tons per year of Hazardous Air Pollutants (HAPS), a group of pollutants that includes benzene, chlorine, and ethyl chloride. These pollutants are characterized by the EPA as being “known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects.”

Finally, the ethane cracker is predicted to emit 1,785,043 tons per year of greenhouse gasses. In the wake of recent warnings on the urgent need to limit greenhouse gas emissions from the Intergovernmental Panel on Climate Change and National Climate Assessment, this prediction is highly concerning.

While these emission numbers seem high, they still meet federal requirements and nearly all state guidelines. If the ethane cracker becomes operational, pollutant monitoring will be important to ensure the plant is in compliance and how emissions impact air quality. The plant will also attract more development to an already heavily industrialized area; brine trucks, trains, pipelines, fracked wells, compressor stations, cryogenic facilities, and natural gas liquid storage are all part of the ethane-to-plastic manufacturing process. The plastics coming from the plant will travel to facilities in the U.S. and abroad to create different plastic products. These facilities are an additional source of emissions.

Air permitting does not consider the full life cycle of the plant, from construction of the plant to its demolition, or the development associated with it.

As such, this plant will be major step back for local air quality, erasing recent improvements in the Wheeling metropolitan area, historically listed as one of the most polluted metropolitan areas in the country. Furthermore, the pollutants that will be increasing the most are associated with serious health effects. Over short term exposure, high levels of VOCs are associated with headaches and respiratory symptoms, and over long term exposure, cancer, liver and kidney damage.

Emergency preparedness

In addition to air quality impacts, ethane cracker plants also pose risks from fires, explosions, and other types of unplanned accidents. In 2013, a ruptured boiler at an ethane cracker in Louisiana caused an explosion that sent 30,000 lbs. of flammable hydrocarbons into the air. Three hundred workers evacuated, but sadly there were 167 suffered injuries and 2 deaths.

While researching Shell’s ethane cracker in Beaver County, FracTracker worked with the Emergency Operations Center (EOC) in St. Charles Parish, Louisiana, to learn about emergency planning around the petrochemical industry. Emergency planners map out two and five mile zones around facilities, called emergency planning zones, and identify vulnerabilities and emergency responders within them.

With this in mind, the map below shows a two and five-mile radius around PTTGC’s property, as reported by Belmont County Auditor. Within these emergency planning zones are the locations of schools, day cares, hospitals, fire stations, emergency medical services, hospitals, and local law enforcement offices, reported by Homeland Infrastructure Foundation Level Data.

The map also includes census data from the EPA that identifies potential environmental justice concerns. By clicking on the census block groups, you will see demographic information, such as income status, age, and education level. These data are important in recognizing populations that may already be disproportionately burdened by or more vulnerable to environmental hazards.

Finally, the map displays environmental data, also from the EPA, including a visualization of particulate matter along the Ohio River Valley, where massive petrochemical development is occurring. By clicking on a census block and then the arrow at the top, you will find a number of other statistics on local environmental concerns.

View map full screen  |  How FracTracker maps work

Emergency planning zones for Shell’s ethane cracker are available here.

Within the 5 mile emergency planning zone, there are:

  • 9 fire or EMS stations
  • 17 schools and/or day cares
  • 1 hospital
  • 6 local law enforcement offices

Within the 2 mile emergency planning zone, there are:

  • 3 fire or EMS stations
  • 7 schools and/or day cares
  • No hospitals
  • 3 local law enforcement offices

Sites of capacity, such as the fire and EMS stations, could provide emergency support in the case of an accident. Sites of vulnerability, such as the many schools and day cares, should be aware of and prepared to respond to the various physical and chemical risks associated with ethane crackers.

The census block where the ethane cracker is planned has a population of 1,252. Of this population, 359 are 65 years or older. That is well above national average and important to note; air pollutants released from the plant are associated with health effects such as cardiovascular and respiratory disease, to which older populations are more vulnerable.

Conclusion

PTTGC’s ethane cracker, if built, will drastically alter the air quality of Belmont County, OH, and the adjacent Marshall County, WV. Everyday, the thousands of people in the surrounding region, including the students of over a dozen schools, will breathe in its emissions.

This population is also vulnerable to unpredictable accidents and explosions that are a risk when manufacturing products from ethane, a highly flammable liquid. Many of these concerns were recently voiced by local residents at the air permit hearing.

Despite these concerns and pushback, PTTGC’s website for this ethane cracker, pttgcbelmontcountyoh.com, does not address emergency plans for the area. It also fails to acknowledge the potential for any adverse environmental impacts associated with the plant or the pipelines, fracked wells, and train and truck traffic it will attract to the region.

With this in mind, we call upon PTTGC to acknowledge the risks of its facility to Belmont County and provide the public with emergency preparedness plans, before the permitting process continues.

If you have thoughts or concerns regarding PTTGC’s ethane cracker and its impact on air quality, the Ohio EPA is accepting written comments through December 11, 2018. We encourage you to look through the data on this map or conduct your own investigations and submit comments on air permit #P0124972.

Written comments should be sent to:

Ohio EPA SEDO-DAPC, Attn: Kimbra Reinbold
2195 Front St
Logan, OH 43138
Kimbra.reinbold@epa.ohio.gov

(Include permit #P0124972 within your comment)

By Erica Jackson, Community Outreach and Communications Specialist

Virtual Pipelines - Potential Routes to Cayuga

Virtual pipelines: Convenient for Industry, a Burden on Communities

As the natural gas industry faces harsher and more widespread critiques from environmentalists and citizens, pipeline projects are facing delays, fines, and defeat. Aside from the questionable economics behind transporting gas and oil by pipeline, there are broad economic risks associated with pipeline accidents. With an increasing list of pipeline-related accidents in the public eye, including the two this past summer in Texas and Kansas, blasts this fall in Beaver County, PA, and in Boston, MA, scrutiny of new pipeline projects is on the uptick.

That being said, what is the alternative?

Virtual Pipelines?

Virtual Pipeline - Oil and gas truck

Loaded CNG transport vehicle

Industry, not deterred by resistance from regulators and environmentalists, has developed a new work-around method to get their product to market. Rather than build pipelines across rugged, remote, or highly-populated terrain, a new “solution” called “virtual pipelines” has come on the scene, with roots in New England in 2011.

The term “virtual pipeline,” itself, is so new that it is trademarked by Xpress Natural Gas (XNG), Boston, MA. XNG and other virtual pipeline companies use specially-designed tanker trucks to move compressed natural gas (CNG) or liquefied natural gas (LNG) via our public roads and highways. CNG in this system is under very high pressure — up to 3,600 psi when tank trailers are full. Rail and barge shipments are also considered part of the system, and trailers are designed to be easily loaded onto train cars or boats.

For the gas industry, virtual pipelines can be used in locales where gas is only needed for a limited time period, the pipeline network is not developed, or opposition by landowners is too contentious to make eminent domain an option, among other issues. These virtual pipeline trucks are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane.

Restricted only by permissible weight limits on roads (up to 80,000 pounds or more), 5-axle trucks may make in excess of 100 round trips a day from the fueling location to their destination — sometimes hundreds of miles away. These trucks, which may travel alone or in caravans, are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane. Manufacturers of these virtual pipeline rigs tout the safety considerations that go into their engineered design. These considerations include special pressure monitoring for the dozens of tanks and super-strength materials to protect against ruptures.

Specialized equipment has been created to load compressed gas tanks into the trailers that will carry them to their destinations. Here’s a promotional video from Quantum:

Loading CNG into specialized trailers for transport

Impacts on Communities

Following New York State’s rejection of the Constitution Pipeline in 2016 based on water quality concerns, industry has been looking for ways to move natural gas from Pennsylvania’s Marcellus gas fields to the Iroquois Pipeline. The current strategy is to load the gas in canisters from a special compressor facility, and re-inject the gas to a pipeline at the journey’s endpoint. The extent to which virtual pipelines may be utilized in New York State and New England is not well known, but the natural gas industry does speak in sanguine terms about this strategy as a solution to many of its transportation issues.

Citizen blogger/activist Bill Huston has compiled a list accidents that have occurred with CNG transport trucks along the virtual pipeline that runs from a “mother station” at Forest Lake, PA to Manheim, NY, near the Iroquois pipeline. While there have been no explosions or loss of life as a result of these accidents, there are a number of reported incidents of trucks tipping or rolling over, sliding off the road, or spontaneously venting.

To move CNG from “Point A” to “Point B,” truck traffic through populated areas is unavoidable. In central New York, public outcry about virtual pipelines is rising, due in large part to the safety issues associated with increased truck traffic on state highways. In rural New York, state highways run through towns, villages, and cities. They are not separated from population centers in the way that interstate highways typically are. Traffic from CNG transport trucks clogs roadways, in some cases burdening the pass-through communities with 100 or more tractor trailers a day. Routes pass directly in front of schools and health care facilities.

In short, virtual pipelines present a public safety hazard that has yet to be addressed.

Virtual Pipelines and the Cayuga Power Plant 

In Lansing, NY, there is an inefficient and economically-beleaguered power plant, currently run on coal, that the power utility would prefer to see shut down. The Cayuga Power Plant was cited in 2016 for exceeding mercury emissions by nearly 2000%. Its inherently inefficient design makes it a significant greenhouse gas contributor. Years ago, it provided considerable tax benefits to its host community of Lansing, and as such has some lingering support. After both a devastating fire in one stack and mechanical failure in another, the plant has been barely running for the past 3 or 4 years. It is currently used as a “peaker plant“, operating only during periods of excessive demand on the electric grid, during summer months.

New York State’s Governor, Andrew Cuomo, has stated that all coal-power plants will be shut down by 2020.

Cayuga Power Plant in Lansing, NY.

Nonetheless, the plant owners are pushing to re-power the Cayuga Power Plant with natural gas. Currently, however, there is no pipeline to deliver the gas to the plant.  Without support by the public nor the Public Service Commission for the construction of a supply pipeline, Cayuga Power Plant has revealed they plan to receive gas deliveries via truck.

Scenario Maps

FracTracker has modeled the five most likely scenarios that would take compressed natural gas from a loading station in northern Pennsylvania to the Cayuga Power Plant in Lansing. All of the scenarios bring the trucks through populated communities, in dangerous proximity to high-risk facilities where both human safety and evacuations are problematic. The routes also pass through intersections and road stretches that have some of the highest accident rates in the area.

Route 1: This route passes within a half mile of homes of 36,669 people in the Villages of Lansing, Candor, Spencer, Owego; Towns of Ithaca, Lansing, Newfield, Danby, Candor, Spencer, Tioga, Owego, Vestal; and the City of Ithaca. Within the half-mile evacuation zone of this route, should there be an accident, are:

  • 17 health care facilities
  • 20 day care centers
  • 4 private school
  • 21 public schools

Click on the tabs in the box above to explore the five potential truck routes with maps.

Interactive Map

For a full interactive map of the potential routes for CNG delivery to the Cayuga Power Plant, and the schools, health care facilities, etc. within a half-mile evacuation zone of the routes, view the interactive map below.

View map fullscreen | How FracTracker maps work

A Call for Alternative Energy

Despite the apparent convenience that virtual pipelines present for the fossil fuel industry, they are not the solution the future energy supply needs. Yes, they present an alternative to pipeline transportation — but they also play a disastrous role in continuing our descent into climate chaos caused by increasing greenhouse gas concentrations in the atmosphere.

Methane leakage is an unavoidable component of the entire life cycle of natural gas usage — from “cradle to grave” — or more precisely, from the moment a well is drilled to when the gas is combusted by its end-user. And methane, as a greenhouse gas, is up to 100 times more potent than carbon dioxide. The Intergovernmental Panel on Climate Change’s (IPCC) recent report (see summary here) is unflinching in its clarion call for immediate, and extreme, cut-backs in greenhouse gas production. If we choose not to heed this call, much of humanity’s future survival is called into question.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

More of the details about the Cayuga Power Plant will be explained in the upcoming weeks in a related guest blog by environmental activist and organizer, Irene Weiser, of Tompkins County, NY.

 

 

Community Sentinel Award for Environmental Stewardship

Four environmental stewards receive the 2018 Community Sentinel Award

WASHINGTON, DC – As oil and gas representatives descend on Pittsburgh this week for the annual Shale Insight conference, four advocates working to protect their communities from the harms of oil and gas development have been selected to receive the 2018 Community Sentinel Award for Environmental Stewardship, coordinated by FracTracker Alliance:

  • Ellen Gerhart – Pennsylvania
  • Natasha Léger – Colorado
  • Rebecca Roter – Pennsylvania, now Georgia
  • Youth award: Nalleli Cobo – California

This year’s recipients have founded grassroots organizations to protect communities from nearby drilling, paired traditional advocacy with scientific savvy, protested pipelines on land taken by eminent domain, and organized to stop urban drilling despite persistent health problems related to the drilling activity.

“The impacts of the oil and gas industry are visible across the United States, but hope abounds in the volunteers working in their communities and cherished places to document, report, and confront fossil fuel harms,” remarked Brook Lenker, Executive Director of FracTracker Alliance. “We are proud to honor Ellen, Natasha, Rebecca, and Nalleli this year, whose noble actions exemplify the transformative power of caring, committed, and engaged people.”

These four steadfast advocates were nominated by peers and selected by a committee of community defense leaders: Raina Rippel of Southwest Pennsylvania Environmental Health Project (Pennsylvania); Dan Shaffer of Allegheny-Blue Ridge Alliance and Dominion Pipeline Monitoring Coalition (Virginia); Dan Xie of Student PIRG (Florida); Jill Hunkler- Native American activist (Ohio); and Elena Sorokina of Crude Accountability (Washington, DC).

The award recipients will each receive $1,000 for their efforts and be recognized at an evening reception at the Renaissance Pittsburgh Hotel in Pittsburgh, Pennsylvania on Monday, November 26, 2018. The reception will also recognize heroes of the movement who recently passed away. Purchase tickets ($40).

This year’s major Community Sentinel sponsors include 11th Hour Project, The Heinz Endowments, and Foundation for Pennsylvania Watersheds. Award partners (to date) include Allegheny-Blue Ridge Alliance, Breathe Project, Center for Coalfield Justice, Crude Accountability, Earthworks, Food & Water Watch, Halt the Harm Network, Ohio Valley Environmental Coalition, Pipeline and Property Rights Center, Save the Hills Alliance, Sierra Club, Southwest Pennsylvania Environmental Health Project, and Viable Industries. View current sponsors and partners.

To learn more about the fourth annual Community Sentinel Award for Environmental Stewardship and to purchase tickets to the reception on November 26th, please visit: fractracker.org/sentinel-award.

# # #

About FracTracker Alliance

FracTracker Alliance is a national non-profit with regional offices in California, New York, Ohio, Pennsylvania, Washington DC. The organization’s mission is to study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation. Learn more at fractracker.org.

Press Contact
For Release on October 24, 2018
Samantha Rubright
malone@fractracker.org (preferred)
(202) 630-6426

Leaking tank in Arvin

Arvin, CA Setback Ordinance Passes Unanimously!

The small city of Arvin, CA has succeeded in taking a brave step forward to protect the public health of its community.

On July 17, 2018 the Arvin City Council voted 3-0 (two members were absent) in support of a setback ordinance. This is the first California oil and gas ordinance that has an actual effect, as it is the first in a region where drilling and fracking are actively occurring. The Arvin, CA setback ordinance prevents wells from being drilled in residential or commercially-zoned spaces. Also, setback distances of 300 feet for new development and 600 feet for new drilling operations have been established for sensitive sites, such as parks, hospitals, and schools.

(To see where other local actions have been taken in California, check out our coverage of local actions and map, which was recently updated.)

More details and maps of the setback ordinance and its development can be found in the initial FracTracker coverage of the proposal, below:

The measure was supported by Arvin Mayor Jose Gurrola. He described the front-lines experience of Arvin citizens:

The road to the update has been difficult for this community. Eight Arvin families were evacuated after a toxic gas leak from an underground oilfield production pipeline located near their homes in 2014. Some have now been re-occupied by concerned residents with no other options; other homes still stand empty. Meanwhile, a short distance away an older pump jack labors day and night next to homes pumping oil mixed with water to a nearby tank. Despite multiple complaints to state agencies of odors and noise by the residents, they are told by the agencies that there is nothing that can be done under the current regulations. The pump jack continues to creak along as children walk nearby on their way to school, covering their faces as the smell occasionally drifts their direction. – Jose Gurrola, Mayor of the City of Arvin

Fugitive Emissions Monitoring

In anticipation of the city council’s vote, FracTracker collaborated with Earthworks and the grassroots organization Central California Environmental Justice Network to visit the urban well sites within the city limits. Using Infrared FLIR technology, the sites were assessed for fugitive emissions and leaks. Visualizing emissions of volatile organic compounds (VOCs) at these sites provides a glimpse to what the community living near these wells are continually exposed. The infrared cameras used in these videos are calibrated to the wavelengths of the infrared spectrum where VOC hydrocarbons of interest are visible.

The map below shows the locations that were visited, as indicated by the three stars. Videos of each site are shown below the map.

Map 1. Arvin Setback Ordinance and FLIR Videos

View map fullscreen | How FracTracker maps work

FLIR Videos and Findings

Sun Mountain Simpson-1 Lease

In this FLIR video of Sun Mountain Simpson-1, fugitive emissions are obvious. The emissions are coming from the PV vent at the top of the produced water tank. These emissions are a mixture of a variety of volatile organic compounds, such as BTEX compounds and methane. This well site is located between homes, a small apartment complex, and a playground. While on the ground operating the FLIR camera I felt light headed, dizzy, and developed a headache. The emissions were reported to the San Joaquin Valley Air District (SJVAD), who sampled and found VOC concentrations at dangerous levels. The well operator was notified but refused to respond. Unfortunately, because this particular well produces under 50 barrels of oil/day, the site is exempt from any health related emissions regulations.

Sun Mountain Jewett 1-23 Lease

This well site is located near a number of single family homes and next two a park. The well site is also on the future location of the Arvin Community College. The FLIR video below is particularly interesting because it shows fugitive emissions from four different locations. The leaks include one at the well head that is potentially underground, one on separator equipment, and leaks from each of the tank PV hatches. When regulators were notified, they visited the site and fixed two of the leaks immediately. Fugitive emissions from the PV hatches were not addressed because this site is also exempt from regulations.

ABA Energy Corporation Richards Facility Tank Farm

The Richards Facility Tank Farm is a well site located outside the city limits on farmland. The facility is regulated as a point source of air pollution, therefore enforcement action can require the operator to fix leaks even from PV hatches on tanks. This FLIR video shows leaks from PV hatches, and a major leak from a broken regulator valve. A complaint was submitted to the SJVAD, and the operator was required to replace the broken regulator valve.


By Kyle Ferrar, Western Program Coordinator

Feature Image: Leaking tank at the Simpson 1 well site, Photo by Kyle Ferrar | FracTracker Alliance, 2018.

Can Californians Escape Oil and Gas Pollution?

The city of Los Angeles is considering a 2,500-foot setback safety buffer between residences and oil and gas wells. Support for the proposal is being led by the grassroots group Stand Together Against Neighborhood Drilling (STAND-LA). The push for a setback follows a recent report by the Los Angeles County Department of Public Health. According to Stand LA:

The report, requested by both the Los Angeles County Supervisors and the Los Angeles City Council, outlines the health impacts faced by residents living, attending school or worshiping near one of Los Angeles County’s 3,468 active oil wells, 880 of which operate in the City of Los Angeles.

The Department outlines the clear health impacts on residents living near active oil wells, including: adverse birth outcomes, increased cancer risk, eye, nose and throat irritation, exacerbation of asthma and other respiratory illnesses, neurological effects such as headaches and dizziness, gastrointestinal effects such as nausea and abdominal pain, and mental health impacts such as depression, anxiety or fatigue.

This information is, of course, nothing new. Living near oil and gas extraction activities, and specifically actively producing wells, has been shown in the literature to increase risks of various health impacts – including asthma and other respiratory diseases, cardiovascular disease, cancer, birth defects, nervous disorders and dermal irritation, among others.1

Spatial Assessment

While Los Angeles would benefit the most from any type of setback regulation due to the county and city’s high population density, the rest of the state would also benefit from the same.

We conducted an assessment of the number of California citizens living proximal to active oil and gas production wells to see who all would be affected by such a change. Population counts were estimated for individuals living within 2,500 feet of an oil and gas production well for the entire state. An interactive map of the wells that fall within 2,500 feet of a residence in California is shown just below in Figure 1.

California 2,500’ oil and gas well buffer map

View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

Figure 1. California 2,500’ oil and gas well buffer, above. The map shows a 2,500’ buffer around active oil and gas wells in California. Wells that are located within 1,000’; 1,500’; and 2,500’ from a residence, hospital or school are also shown in the map. The counts of individuals located within 2,500’ of an active well are displayed for census tracts.

Population Statistics

The number and percentage of California residents living within 2,500 feet of an active (producing) oil and gas well are listed below:

  • Total At-Risk Population

    859,699 individuals in California live within 2,500 feet of an active oil and gas well

  • % Non-White

    Of the total, 385,067 are “Non-white” (45%)

  • % Hispanic

    Of the total, 341,231 are “Hispanic” (40%) as defined by the U.S. Census Bureau2

We calculated population counts within the setbacks for smaller census-designated areas, including counties and census tracts. The results of the calculations are presented in Table 1 below.

Table 1. Population Counts by County

County Total Pop. Impacted Pop. Impacted % Non-White Impacted % Hispanic
Los Angeles 9,818,605 541,818 0.54 0.46
Orange 3,010,232 202,450 0.25 0.19
Kern 839,631 71,506 0.34 0.43
Santa Barbara 423,895 8,821 0.44 0.71
Ventura 823,318 8,555 0.37 0.59
San Bernardino 2,035,210 6,900 0.42 0.59
Riverside 2,189,641 5,835 0.46 0.33
Fresno 930,450 2,477 0.34 0.50
San Joaquin 685,306 2,451 0.55 0.42
Solano 413,344 2,430 0.15 0.15
Colusa 21,419 1,920 0.39 0.70
Contra Costa 1,049,025 1,174 0.35 0.30

Table 1 presents the counts of individuals living within 2,500 feet of an active oil and gas well, aggregated by county. Only the top 12 counties with the highest population counts are shown. “Impacted Population” is the count of individuals estimated to live within 2,500 feet of an oil and gas well. The “% Non-white” and “% Hispanic” columns report the estimated percentage of the impacted population of said demographic. There may be some overlap in these categories.

Conclusions

California is unique in many ways, beautiful beaches and oceans, steep mountains, massive forests, but not least of all is the intensity of the oil and gas industry. Not only are some of the largest volumes of oil extracted from this state, but extraction occurs incredibly close to homes, sometimes within communities – as shown in the photo at the top of this post.

The majority of California citizens living near active production wells are located in Los Angeles County – well over half a million people. LA County makes up 61% of Californians living within 2,500 feet of an oil and gas well, and half of them are non-white minority, people of color.

Additionally, the well sample population used in this analysis is limited to only active production wells. Much more of California’s population is exposed to pollutants from the oil and gas support activities and wells. These pollutants include acidic vapors, hydrocarbons, and diesel particulate matter from exhaust.

Our numbers are, therefore, a conservative estimate of just those living near extraction wells. Including the other activities would increase both the total numbers and the demographic percentages because of the high population density in Los Angeles.

For many communities in California, therefore, it is essentially impossible for residents to escape oil and gas pollution.


The Analysis – How it was done!

Since the focus of this assessment was the potential for impacts to public health, the analysis was limited to oil and gas wells identified as active – meaning they are producing or are viable to produce oil and/or natural gas. This limitation on the dataset was justified to remain conservative to the most viable modes of exposure to contaminants from well sites. Under the assumption that “plugged,” “buried,” or “idle” wells that are not producing (or at least reporting production figures to DOGGR) do not purvey as much as a risk of air emissions, the main route of transport for pollutants to the surrounding communities is via air emissions from “producing” oil and gas wells. The status of wells was taken from DOGGR’s “AllWells.zip” dataset (downloaded 3/7/18).

Analysis Steps:

  1. The first step was to identify oil and gas wells in California affected by 2,500’ and shorter setbacks from occupied dwellings. To achieve this, the footprints of occupied dwellings were identified, and where there was not a data source available the footprints were digitized.
  2. Using GIS tools, 2,500’ buffers were generated from the boundary of the occupied dwellings and a subset of active oil and gas wells located within the buffer zone were generated.
  3. A combination of county and city zoning data and county parcel data was used to direct the selection of building footprint GIS data and the generation of additional building footprint data. Building footprint data is readily available for a number of California cities, but was not available for rural areas.
  4. Existing footprint data was vetted using zoning codes.
  5. Areas located within 2,500’ of well-heads were prioritized for screening satellite imagery in areas zoned for residential use.

Analytical Considerations

Buildings and facilities housing vulnerable populations were also included. Vulnerable populations include people such as children, the elderly, and the immunocompromised. These areas pose an elevated risk for such sensitive populations when they live near hazardous sites, such as oil fields in LA. A variety of these types of sites were included in the GIS analysis, including schools and healthcare facilities.

GIS techniques were used to buffer active oil and gas wells at 2,500 feet. GIS shapefiles and 2010 Decennial census data was downloaded from American Fact Finder via Census.gov for the entire state of California at the census block level.2 Census block GIS layers were clipped to the 2,500-foot buffers. Population data found in Summary File 1 for the 2010 census was attached to the clipped census block GIS layers.  Adjusted population counts were calculated according to the proportion of the area of the census block falling within the 2,500’ buffer.

References

  1. Shonkoff, Seth B.C.; Hays, Jake. 2015. Toward an understanding of the environmental and public health impacts of shale gas development: an analysis of the peer-reviewed scientific literature, 2009-2014. PSE Healthy Energy.
  2. U.S. Census Bureau. 2010 Census Summary File 1.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo by Leo Jarzomb | SGV Tribune

The Falcon: High Consequence Areas & Potential Impact Zones

Part of the Falcon Public EIA Project

In this segment of the Falcon Public EIA Project we continue to explore the different ways that pipelines are assessed for potential risk – in this case, relative to population centers, drinking water systems, and sensitive habitats. We outline methods dictated by the Pipeline and Hazardous Materials Safety Administration (PHMSA) called “high consequence areas” (HCAs) and how they determine potential impact zones for highly volatile liquid (HVL) pipelines. These methods are then applied to the Falcon to understand its possible dangers.

Quick Falcon Facts

  • An estimated 940-foot potential impact radius (PIR)
  • 60 of 97 pipeline miles qualifying as High Consequence Areas (HCA)
  • More than 8,700 people living in the “vapor zone”
  • 5 schools, 6 daycare centers, and 16 emergency response centers in “vapor zone”
  • In proximity to 8 source-water (drinking water) protection areas
  • Affecting habitats populated by 11 endangered, protected, or threatened species

Map of Falcon High Consequence Areas

The following map will serve as our guide in breaking down the Falcon’s High Consequence Areas. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible as you zoom in. A number of additional layers are not shown by default, but can be turned on in the “layers” tab. Click the “details” tab in full-screen mode to read how the different layers were created.

View Map Fullscreen | How FracTracker Maps Work

High Consequence Areas

While Class Locations, discussed in a prior project article, dictate the construction and maintenance of a pipeline, high consequence areas (HCAs) designate when operators must implement integrity management programs (IMP) where pipeline failures could cause major impacts to populated areas, as well as drinking water systems and ecological resources — otherwise defined as unusually sensitive areas (USAs).

Populated Areas

Two considerations are used when determining pipeline proximity to population centers:

  1. High Population Areas – an urbanized area delineated by the Census Bureau as having 50,000 or more people and a population density of at least 1,000 people per square mile; and
  2. Other Populated Areas – a Census Bureau designated “place” that contains a concentrated population, such as an incorporated or unincorporated city, town, village, or other designated residential or commercial area – including work camps.

USAs: Drinking Water

PHMSA’s definition of drinking water sources include things such as:

  • Community Water Systems (CWS) – serving at least 15 service connections and at least 25 year-round residents
  • Non-transient Non-community Water Systems (NTNCWS) – schools, businesses, and hospitals with their own water supplies
  • Source Water Protection Areas (SWPA) for a CWS or a NTNCWS
  • Wellhead Protection Areas (WHPA)
  • Sole-source karst aquifer recharge areas

These locations are typically supplied by regulatory agencies in individual states.

With the exception of sole-source aquifers, drinking water sources are only considered if they lack an alternative water source. However, PHMSA is strict on what alternative source means, stating that they must be immediately usable, of minimal financial impact, with equal water quality, and capable of supporting communities for at least one month for a surface water sources of water and at least six months for a groundwater sources.

One very important note in all of these “drinking water” USA designations is that they do not include privately owned groundwater wells used by residences or businesses.

USAs: Ecological Resource

Ecological resource areas are established based on any number of qualities with different variations. In general terms, they contain imperiled, threatened, or endangered aquatic or terrestrial species; are known to have a concentration of migratory waterbirds; or are a “multi-species assemblage” area (where three or more of the above species can be found).

Calculating HCAs

Like Class locations, HCAs are calculated based on proximity. The first step in this process is to determine the pipeline’s Potential Impact Radius (PIR) — the distance beyond which a person standing outdoors in the vicinity of a pipeline rupture and fire would have a 99% chance of survival; or in which death, injury, or significant property damage could occur. PIR is calculated based on the pipeline’s maximum allowable operating pressure (MAOP), diameter, and the type of gas. An example of this calculation is demonstrated in FracTracker’s recent article on the Mariner East 2 pipeline’s PIR.

Once the PIR is known, operators then determine HCAs in one of two ways, illustrated in the image below:

  • Method 1: A Class 3 or Class 4 location, or a Class 1 or Class 2 location where “the potential impact radius is greater than 660 feet (200 meters), and the area within a potential impact circle contains 20 or more buildings intended for human occupancy”; or a Class 1 or Class 2 location where “the potential impact circle contains an “identified site.”
  • Method 2: An area within PIR containing an “identified site” or 20 or more buildings intended for human occupancy.

Calculating HCAs
(source: PHMSA)

In these definitions, “identified sites” include such things as playgrounds, recreational facilities, stadiums, churches, office buildings, community centers, hospitals, prisons, schools, and assisted-living facilities. However, there is a notable difference in how HCAs are calculated for natural gas pipelines vs. hazardous liquid pipelines.

Beyond just looking at what lies within the PIR, pipelines that contain gasses such as ethane potentially impact a much broader area as vapors flow over land or within a river, stream, lake, or other means. A truly accurate HCA analysis for an ethane pipeline leak requires extensive atmospheric modeling for likely vapor dispersions, such as seen in the example image below (part of a recent ESRI GIS conference presentation).

Vapor dispersion modelling
(source: TRC Solutions)

 

What HCAs Dictate

HCAs determine if a pipeline segment is included in an operator’s integrity management program (IMP) overseen by PHMSA or its state equivalent. IMPs must include risk assessments that identify the most likely impact scenarios in each HCA, enhanced management and repair schedules, as well as mitigation procedures in the event of an accident. Some IMPs also include the addition of automatic shut-off valves and leak detection systems, as well as coordination plans with local first responders.

The Falcon Risk Zones

Shell’s permit applications to the PA DEP state the pipeline:

…is not located in or within 100 feet of a national, state, or local park, forest, or recreation area. It is not located in or within 100 feet of a national natural landmark, national wildlife refuge, or federal, state, local or private wildlife or plant sanctuaries, state game lands. It is also not located in or within 100 feet of a national wild or scenic river, the Commonwealth’s Scenic Rivers System, or any areas designated as a Federal Wilderness Area. Additionally, there are no public water supplies located within the Project vicinity.

This is a partial truth, as “site” and “vicinity” are vague terms here. A number of these notable areas are within the PIR and HCA zones. Let’s take a closer look.

The PIR (or “Blast Zone”)

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Shell’s permit applications state a number of different pipeline dimensions will be used throughout the project. Most of the Falcon will be built with 12-inch steel pipe, with two exceptions: 1) The segment running from the Cadiz, OH, separator facility to its junction with line running from Scio, OH, will be a 10-inch diameter pipe; 2) 16-inch diameter pipe will be used from the junction of the Falcon’s two main legs located four miles south of Monaca, PA, to its end destination at the ethane cracker. We also know from comments made by Shell in public presentations that the Falcon’s maximum allowable operating pressure (MOAP) will be 1,440 psi. These numbers allow us to calculate the Falcon’s PIR which, for a 16″ ethane pipeline at 1,440psi, is about 940 feet. We’ve termed this the “blast zone” on our maps.

The HCA (or “Vapor Zone”)

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Shell’s analysis uses an HCA impact radius of 1.25 miles. This much larger buffer reflects the fact that vapors from hazardous liquid pipelines can travel unpredictably at high concentrations for long distances before ignition. This expanded buffer might be called the “vapor zone,” a term we used on our map. Within the HCA “vapor zone” we find that 60 of the Falcon’s 97 miles qualify as high consequence areas, with 35 miles triggered due to their proximity to drinking water sources, 25 miles trigger for proximity to populated areas, and 3 miles for proximity to ecological areas.

Populated Areas

Shell’s HCA buffer intersects 14 US Census-designated populated areas, shown in the table below. Falcon’s right-of-way directly intersects two of these areas: Cadiz Village in Harrison County, Ohio, and Southview CDP (Census Designated Place) in Washington County, PA. These areas are listed below. Additionally, we included on the FracTracker map the locations of public facilities that were found inside the HCA buffer. These include 5 public schools, 6 daycare centers, 10 fire stations, and 6 EMS stations.

Area Population State HCA
Pittsburgh Urbanized Area High PA Indirect
Weirton-Steubenville Urbanized Area High WV/OH/PA Indirect
Scio Village Other OH Indirect
Cadiz Village* Other OH Direct
Amsterdam Village Other OH Indirect
Shippingport Borough Other PA Indirect
Industry Borough Other PA Indirect
Hookstown Borough Other PA Indirect
Midway Borough Other PA Indirect
Clinton CDP Other PA Indirect
Imperial CDP Other PA Indirect
Southview CDP* Other PA Direct
Hickory CDP Other PA Indirect
Westland CDP Other PA Indirect
* Indicates an area the Falcon’s right-of-way will directly intersect

While it is difficult to determine the actual number of people living in the PIR and HCA vapor zone, there are ways one can estimate populations. In order to calculate the number of people who may live within the HCA and PIR zones, we first identified U.S. Census blocks that intersect each respective buffer. Second, we calculated the percentage of that census block’s area that lies within each buffer. Finally, we used the ratio of the two to determine the percentage of the block’s population that lies within the buffer.

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Based on 2010 Census data, we estimate that 2,499 people live within a reasonable projection of the Falcon’s PIR blast zone. When expanded to the HCA vapor zone, this total increases to 8,738 people. These numbers are relatively small compared to some pipelines due to the fact that a significant portion of the Falcon runs through fairly rural areas in most places.

PIR est. pop. HCA est. pop.
OHIO
Carroll County 11 47
Harrison County 274 915
Jefferson County 334 1,210
Total 619 2,172
WEST VIRGINIA
Hancock County 242 1,155
Total 242 1,155
PENNSYLVANIA
Allegheny County 186 969
Beaver County 990 3,023
Washington County 461 1,419
Total 1,637 5,410
Grand Total 2,499 8,738


Drinking Water Sources

Shell’s data identified a number of drinking water features considered in their HCA analysis. Metadata for this information show these sites were obtained from the Ohio Division of Drinking and Ground Waters, the West Virginia Source Water Assessment and Wellhead Protection Program, and the Pennsylvania DEP Wellhead Protection Program. The exact locations of public drinking water wells and intake points are generally protected by states for safety reasons. However, we duplicated the 5-mile buffer zones used on Shell’s map around these points, presumably denoting the boundaries of source water protection areas, wellhead protection areas, or intake points.

Drinking water buffers in Shell’s HCA analysis

As shown on FracTracker’s interactive map, five of these areas serve communities in the northern portions of Beaver County, shown in the image above, as well as the Cadiz and Weirton-Steubenville designated populated areas. Recall that HCA drinking water analysis only requires consideration of groundwater wells and not surface waters. This is an important distinction, as the Ambridge Reservoir is within the HCA zone but not part of Shell’s analysis — despite considerable risks outlined in our Falcon article on water body crossings.

Ecological Areas

Shell’s permits state that they consulted with the U.S. Fish and Wildlife Service (USFWS), Pennsylvania Game Commission (PGC), Pennsylvania Fish & Boat Commission (PFBC), and the Pennsylvania Department of Conservation and Natural Resources (DCNR) on their intended route in order to determine potential risks to protected species and ecologically sensitive areas.

DCNR responded that the pipeline had the potential to impact six sensitive plant species: Vase-vine Leather-Flower, Harbinger-of-spring, White Trout-Lily, Purple Rocket, Declined Trillium, and Snow Trillium. PFBC responded that the project may impact the Southern Redbelly Dace, a threatened temperate freshwater fish, within the Service Creek watershed. PGC responded that the pipeline had potential impact to habitats used by the Short-Eared Owl, Northern Harrier, and Silver-Haired Bat. Finally, the USFWS noted the presence of freshwater mussels in a number of water features crossed by the Falcon.

The presence of these species, as well as the proximity of protected lands illustrated on our map, factored into the Falcon’s HCA designations. A more detailed analysis of these issues is provided in the Falcon Public EIA Project article on Protected Habitats & Species of Concern.

* * *

Related Articles

By Kirk Jalbert, FracTracker Alliance

Brine or water roadspreading in WV

Does roadspreading of brine equate to oil and gas waste dumping?

air quality impact, which is why roadspreading of brine occurs

This 2015 photo from West Virginia illustrates that large trucks on dirt roads create a legitimate dust problem, which impacts both air and water quality.

The application of liquid oil and gas waste from conventional wells onto roadways for dust control and road stabilization is permitted in Pennsylvania, provided that operators adhere to plans approved by the Department of Environmental Protection (DEP). There are brine spreading guidelines that operators are required to follow, but overall, DEP considers roadspreading to be a beneficial use of the liquid oil and gas waste products.

Dust suppression is a legitimate concern, particularly in areas that see a lot of heavy truck traffic on dirt roads, such rural oil and gas fields. Prolonged exposure to airborne dust contributes to a number of different health problems, ranging from temporary irritation to debilitating diseases of the heart, lungs, and kidneys. This road dust can also impact aquatic life, from plants to aquatic insects to fish.

While applying liquid waste from the oil and gas industry undoubtedly seems like a convenient solution to dusty roads, is roadspreading really advisable?

PA Oil and Gas Liquid Waste Road Applications


View map fullscreen | How FracTracker maps work

In the map above, the areas in green are municipalities where liquid waste from Pennsylvania’s conventional wells were applied to roadways in 2016. The purple areas are counties where additional quantities of the liquid waste were applied in cases where the exact municipality was not specified on the 2016 waste report. The majority of the state’s oil and gas roadspreading remains in Pennsylvania, but some of the brine is spread on roads in New York, as well.

What’s in the brine?

In Pennsylvania, the large-scale extraction efforts from deep carbon-rich shales like the Marcellus and Utica formations are classified as unconventional oil and gas, whereas the shallower formations requiring smaller amounts of hydraulic fracturing stimulation to bring the wells into production are considered to be conventional.

While the chemical components of these brines vary from formation to formation, in general they are known for containing high-salinity toxic metals, such as barium and strontium, as well as volatile organic compounds including benzene. Bromide in the brine can interact with purification processes at treatment plants to create carcinogenic compounds called trihalomethanes. These compounds actually created a problem in the early parts of the Marcellus boom in Western Pennsylvania, when large enough quantities of bromide were added to the region’s rivers and streams. And of particular concern is naturally occurring radioactive materials (NORMs), which sometimes occur at very high concentrations, even in brines from conventional wells.

The Pennsylvania Geological Survey commissioned Evan Dresel and Arthur Rose from Penn State to investigate oil and gas brine from a sample of 40 wells in 1985, although the accompanying paper wasn’t published until 2010.  Their samples included dissolved solids of 343,000 milligrams per liter, and radium occurring at up to 5,300 picocuries per liter. As a point of comparison, the US Environmental Protection Agency mandates that drinking water not exceed 5 picocuries per liter, and the authors of this report express concern about the high levels shown in these brines.

Based on the six samples analyzed, radium shows a general correlation with barium and strontium and an inverse correlation with [sulfate], though the correlation is not perfect. The radium values are high enough that a possible radiation hazard exists, especially where radium could be adsorbed on iron oxides and accumulate in brine tanks.

The article’s preface, written in 2010, echoes the concern, stating, ” the very high radium contents indicate that caution should be used in handling these brines.” One imagines that the radium content might also be a concern for people walking their dogs along dirt roads where these brines are spread.

Testing for radiological contamination appears to be insufficient for liquid oil and gas waste. Ben Stout, PhD, a professor of Biology at Wheeling Jesuit University (and a FracTracker Alliance board member) sampled liquid waste from Marcellus Shale wells in 2009. Here is what he found:

In terms of radiation, 9 of the 13 samples exceeded the drinking water standard for radium. Furthermore, 7 of the 13 samples exceeded the drinking water standard for gross alpha particles, which are a strong indicator of radioactivity. Most notably, one sample from a frac pit at the Phillips #20 site in Westmoreland County, PA yielded a gross alpha reading of 4846 +/‐ 994 picocuries per liter (pCi/L), though the drinking water standard is 15 pCi/L. In fact, the same sample had combined radium readings well over 1,000 pCi/L, a multiple in excess of 200 times the (5 pCi/L) standard. It should be noted that none of the samples triggered a response from radiation meters.

What to do?

From environmental concerns of high salinity to health concerns about the toxic and radiological content of oil and gas brines, intentionally introducing this waste product to public spaces is a dubious practice. It is understandable that township supervisors would want to use readily available materials for dealing with dust control on dirt roads, but if you are concerned about the practice and your area is indicated on the map above, you may wish to contact them to find out where this waste is being spread in greater detail.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Right to a healthy home - Photo credit: Leann Leiter

The Right to a Healthy Home

Reframing Fracking in Our Communities

Imagine that tonight you head home to cook dinner. But, standing at your kitchen sink, you find that your tap water is suddenly running a funny color or gives off a bad smell. So instead of cooking, you order a pizza and decide to work outside in your garden. Just as you’re getting your hands dirty, however, you hear the roar of the compressor station that you see from your yard as its “blows off” some substance. Going back inside, and closing your windows to keep out the foul air, you think of the tap water and decide a shower is out of the question. Imagine that you resign yourself to just going to bed early – only to be kept awake by the bright and unnatural glow of gas being flared at the nearby wellhead.

Scenarios just like these can and do happen when hydraulic fracturing, or fracking, encroaches upon residential areas.

In Part 1 of this two-part series, we described how the many aspects of fracking can destroy a healthy home environment and argued for a frame that focuses on those impacts. A frame is a way of contextualizing, communicating about, and understanding an issue.

This article brings in the idea of rights, and lists several declared rights that fracking violates. Returning to the topic of framing, we then challenge the fracking-friendly frame, by calling into question three common ways of talking about fracking that ignore the rights of those impacted.

In short, the push to support fracking often ignores the rights of people living near it.

Healthy Homes for Human Flourishing

First, let’s explore why a having healthy home matters.

Everyone has a basic need for a safe, healthy place to live. The World Health Organization identifies the social determinants of health (SDH) as the “conditions in which people are born, grow, work, live, and age, and the wider set of forces and systems shaping the conditions of daily life.” Applied to healthy homes, these SDH include access to clean air and safe drinking water, and protection from intrusion and disaster. Health is not merely the absence of disease. Health can mean the ability to function, to live one’s life,[1] to flourish.

Human flourishing demands a healthy home environment. Picture again the scenario at the beginning of this article. Would you be able to care for yourself and your family members, to meet your basic needs, or to lead a satisfying life if your home didn’t seem like a safe place to live?

Using Rights to Make the Case

Many people who live near drilling often ask themselves that very question. These include people like Pam Judy, with a compressor station less than 800 feet from her house, who questions the long term effects of breathing in the 16 chemicals detected in air test conducted by the PA Department of Environmental Protection.

Greene County, PA resident Pam Judy and the compressor station near her home in Gas Rush Stories, part 5: A Neighbor from Kirsi Jansa on Vimeo.

Simply reading or watching the stories of those directly impacted by gas development makes a moving argument for the right to a healthy home environment – and that argument also has a lot of backing. Researchers[2] have made a powerful case that fracking can and has violated human rights, by impacting the health for those downwind or downstream and by denying civil liberties to those pushed aside or silenced during the debate. These same researchers showed specifically that fracking has violated the rights to privacy, family, home, and protection of property.

Various governments and non-governmental organizations around the world have likewise called out human rights violations due to fracking. Other human rights declarations are relevant here, too. Fracking’s impacts are incompatible with the rights to health and to housing. Here’s a sampling:

side-by-side-rights-table

This sampling of precedents includes statements and declarations by the United Nations and the Organization of American States. It shows that when it comes to human rights and fracking, a strong case has already been made by respected international organizations.

Challenging the fracking-friendly frame

A rights-based perspective, informed by precedents like those above, gives us a strong platform from which to examine and counter arguments that support or promote fracking. We can call those pro-fracking arguments a “fracking-friendly” frame.

A fracking-friendly frame denies or minimizes the human impacts. We can hear elements of the fracking-friendly frame underlying industry promises and political talking points, and witness how they leach into common dialogue between citizens.

Element #1: “Economic impacts”- but only the positives

An “economic impacts ” emphasis tends to focus on narrowly-defined economic benefits , while excluding other real, negative economic drawbacks , like the latter half of boom & bust cycles. Consider this infographic of the “economic impacts” of an Appalachian petrochemical hub scenario–an industry reliant upon the cheap and abundant fracked natural gas of the region. The document offers projected estimates for industry profits and employment levels potentially generated by the five ethane crackers planned for the region. But this document – and its focus on economics – says nothing about the negative consequences to the community. Due to air emissions from these facilities, health costs from fine particulate matter (PM 2.5) could amount to between $120 and $270 million each year, without even factoring in the additional impacts of ozone or toxics. A focus on economic impacts also says nothing about  the incalculable value of lives – and quality of life – lost, which could amount to between 14 and 32 additional deaths annually, plus increased asthma, heart attacks, and bronchitis.[3]

Element #2: “Choice”

A false assumption of choice is built into the fracking-friendly frame. This element assumes that people have a choice–if they don’t like the drilling next door, they can just move. Yet, as well water becomes degraded and countryside views become dominated by unprecedented industrial development, selling a home can be a difficult proposition. As one researcher summed it up,

the various forms of land damage from fracking often result in decreased property values, making resale and farming difficult , and also making it harder to acquire mortgages and insurance. Properties adjoining drilling sites are often simply unsellable, as no one wants to live with the noise, the bad air, and the possibility of water pollution.[4]

Others confirm this fallout to home values. A recent report assessing 16 other studies on how UOGD affects home prices points to significant potential decreases in housing values for those on well water (up to -$33,000) and those without ownership of their mineral rights (up to -$60,000). These unfortunate realities belie the idea of choice.

drilling-rig-home-town-of-mcdonald

pipeline-path-among-homes-washington-county

On left, a white fracking rig at the far left of the image sits near a cabin overlooking the town of McDonald, PA. On right, a pipeline cut descends a hillside and into a residential development outside of Houston, PA. Photo credit: Leann Leiter.

In interviews conducted with women living in close quarters to drilling activity, three health care professionals[5] discovered the sense of powerlessness experienced they felt. One woman contemplated moving away from the region in spite of opposition from her husband and her own attachment to her home. In my own interaction with affected families, many express powerful feelings about relocation like sadness about leaving land owned for generations, or an eagerness to escape a home that no longer feels safe. Many express a sense of injustice for being forced to make such painful choices.

Element #3: “Sacrifice of the few for the good of the many”

Another underlying assumption of a fracking-friendly frame is that of “sacrifice of the few for the good of the many.” It declares that a “few” people will have to live near fracking and bear the unfortunate consequences, so many others can have cheap oil and gas. The belief bubbles up among the public, such as in this comment collected during a survey[6] of people living in the Marcellus shale gas region:

Energy has to come from somewhere. The needs of the many may outweigh the inconvenience of the few who live near the exploration efforts. This is not an ideal situation for all residents, but it is the reality.

This person’s statement shows acceptance of the assumption that energy for all requires unevenly shared sacrifice, and indicates a drastic underestimation of the populations impacted. It also indicates a misperception of the impacts, which unfortunately go far beyond mere “inconvenience” for many residents.

We can break down these assumptions by questioning how many people make sacrifices in the name of gas extraction. An interactive map by FracTracker shows that over 12 million Americans live within a risky ½ mile of oil and gas facilities (including both fracking wells and other types). Mounting research indicates health threats for distances of ½ mile or greater. That meaning this ever-growing number of Americans have increased rates of asthma and prenatal harms, with the most vulnerable – the young, the elderly, and those with pre-existing conditions – at the highest risk. The 12 million figure, already a conservative estimate, would be significantly higher if factoring in other oil and gas infrastructure like pipelines or frac sand mining operations, each of which carry their own risks.

Populations in US near activity oil and gas drilling activity in 2016

Populations in US near activity oil and gas drilling activity in 2016. Click to explore the interactive map.

We can also question the nature of their sacrifice. In terms of health, research has shown correlations between how close women live to fracking operations and certain birth defects and noise-induced sleep disturbance and cardiovascular disease, as just a few examples. Facilities like well pads also come with risks to public safety, such as the Monroe County, Ohio well pad fire that burned unknown chemicals for five days near homes and resulted in 70,000 fish killed in a creek that flows to the Ohio River. Other fracking infrastructure likewise poses potential dangers from the 2.5 million miles of gas pipeline and additional 200,000 for hazardous liquids including  crude oil that crisscross the United States. Between 2010 and 2016 the US experienced 230 reported pipeline explosions, 635 fires, over 20,000 people evacuated, 470 injured, and 100 lives lost.

emergency-contacts-sign-at-pipeline-road-crossing

The view of nearby homes from a pipeline right-of-way, along with list of emergency contacts in case of incident. Safety precautions like these remind us of the potentially injurious nature of gas infrastructure. They also highlight the level of sacrifice being demanded of households near the hazard. Photo credit: Leann Leiter.

Building social support

These elements of a fracking-friendly frame function to isolate those who are experiencing negative effects in their own homes by minimizing, even denying, the impacts they are experiencing. Researchers in extractive regions have observed the power of this isolation. In some rural areas, isolation may be supported in part by cultural norms, such as an Appalachian appreciation for “minding one’s own business.” In at least one fracking-affected community, this widely-accepted norm hampers sharing among neighbors, prompting one resident’s complaint that “we’re all fighting like individuals.”[7] In a study of a community being driven from their homes by coal mining and power generation, another set of extractive, industrial activities, one participant lamented:

I think one of the problems of the mining and the industry is, they play on the basic everyday person’s lack of resources. There’s no social support for displacement, none whatsoever.[8]

A healthy homes frame, focused on universally shared human rights, powerfully counters the isolation. It reminds those who are suffering or have concerns about the changes to their home environment that they are not alone; others around the world are experiencing similar impacts to their households. Adopting this frame for understanding fracking is a show of support, one that acknowledges their plight.

Nearly everyone values and desires a healthy home, regardless of whether that home is an apartment, a nursing home, a cabin, or a mobile home. This frame extends beyond geographical, economical, and cultural barriers. It encourages social support from those currently removed from shale plays and the hydraulic fracturing used in extracting their resources. It empowers action, with the home front as a site of resistance, by articulating the range of rights being violated.

Focusing on what we’re fighting for

Re-centering the problems of fracking as they impact the right to a healthy home makes sense to those of us witnessing the degradation of the places people need in order to live and flourish. A rights-based approach focuses on what we’re fighting for, rather than giving extra airtime to the already-powerful frame we must fight against.

  • If you need assistance protecting your rights from planned fracking, the Delaware Riverkeeper Network offers a guide for communities and their local leaders to defending environmental rights at the municipal level.
  • For those already impacted, Fair Shake Environmental Legal Services provides “sliding scale” legal help to people in the Appalachian basin.
  • For communities at any stage of gas development, Environmental Health Project has created a Where to Turn for Help directory full of sources for air testing services, community organizing, health information, tracking and reporting fracking development and violations, and much more.

Whether or not you feel the direct impacts of fracking, we are all connected to this extensive process. Fracking’s commodity products – energy and plastics – are part of all of our lives; it’s climate-altering effect diminishes all of our futures. More importantly, we all have a crucial role to play. Here is how you can get further involved:

  • Communicate with your lawmakers – share with them this article series or your own take on fracking, and ask what frame they are using when they make decisions on this and other dangerous modes of energy extraction.
  • Join Halt the Harm Network to get connected to people, groups and events “working to fight the harms of oil and gas development.”
  • Follow @EnvironmentalHealthProject on Facebook and @EHPinfo on Twitter, and participate in the evolving discussion!

Bringing rights into the conversation on fracking challenges the fracking-friendly frame, and promotes instead protection for those in fracked households.


Special thanks to the many individuals and families who shared the experiences that informed this article series. 

References:

  1. Resick, L. K., Knestrick, J. M., Counts, M. M., & Pizzuto, L. K. (2013). The meaning of health among mid-Appalachian women within the context of the environment. Journal of Environmental Studies and Sciences , 3 (3), 290-296.
  2. Short, D., Elliot, J., Norder, K., Lloyd-Davies, E., & Morley, J. (2015). Extreme energy, ‘fracking’ and human rights: a new field for human rights impact assessments? , The International Journal of Human Rights, 19:6, 697-736, DOI:10.1080/13642987.2015.1019219
  3. John Graham, Senior Scientist at Clean Air Task Force, personal communication, June 9, 2017. Health impacts modeling completed using EPA Co-Benefits and Risk Assessment (COBRA) Screening Tool, using estimated PM 2.5 air emissions for permitted Shell ethane cracker in Beaver County, PA and four additional facilities planned in Ohio and West Virginia.
  4. Richard Heinberg cited in Short, D., Elliot, J., Norder, K., Lloyd-Davies, E., & Morley, J. (2015). Extreme energy, ‘fracking’ and human rights: a new field for human rights impact assessments? , The International Journal of Human Rights, 19:6, 697-736, DOI:10.1080/13642987.2015.1019219
  5. Resick, L. K., Knestrick, J. M., Counts, M. M., & Pizzuto, L. K. (2013). The meaning of health among mid-Appalachian women within the context of the environment. Journal of Environmental Studies and Sciences , 3 (3), 290-296.
  6. Cooley, R., & Casagrande, D. (2017). Marcellus Shale as Golden Goose. ExtrACTION: Impacts, Engagements, and Alternative Futures. Routledge.
  7. Resick, L. K., Knestrick, J. M., Counts, M. M., & Pizzuto, L. K. (2013). The meaning of health among mid-Appalachian women within the context of the environment. Journal of Environmental Studies and Sciences , 3 (3), 290-296.
  8. Connor et al., p. 54. Linda Connor, Glenn Albrecht, Nick Higginbotham, Sonia Freeman, and Wayne Smith. (2004). Environmental Change and Human Health in Upper Hunter Communities of New South Wales, Australia. EcoHealth 1 (Suppl.2), ,47-58. DOI: 10.1007/s10393-004-0053-2

By Leann Leiter, Fellow with the Environmental Health Project and FracTracker Alliance

Events

Nothing Found

Sorry, no posts matched your criteria