Brine or water roadspreading in WV

Does roadspreading of brine equate to oil and gas waste dumping?

air quality impact, which is why roadspreading of brine occurs

This 2015 photo from West Virginia illustrates that large trucks on dirt roads create a legitimate dust problem, which impacts both air and water quality.

The application of liquid oil and gas waste from conventional wells onto roadways for dust control and road stabilization is permitted in Pennsylvania, provided that operators adhere to plans approved by the Department of Environmental Protection (DEP). There are brine spreading guidelines that operators are required to follow, but overall, DEP considers roadspreading to be a beneficial use of the liquid oil and gas waste products.

Dust suppression is a legitimate concern, particularly in areas that see a lot of heavy truck traffic on dirt roads, such rural oil and gas fields. Prolonged exposure to airborne dust contributes to a number of different health problems, ranging from temporary irritation to debilitating diseases of the heart, lungs, and kidneys. This road dust can also impact aquatic life, from plants to aquatic insects to fish.

While applying liquid waste from the oil and gas industry undoubtedly seems like a convenient solution to dusty roads, is roadspreading really advisable?

PA Oil and Gas Liquid Waste Road Applications

View map fullscreen | How FracTracker maps work

In the map above, the areas in green are municipalities where liquid waste from Pennsylvania’s conventional wells were applied to roadways in 2016. The purple areas are counties where additional quantities of the liquid waste were applied in cases where the exact municipality was not specified on the 2016 waste report. The majority of the state’s oil and gas roadspreading remains in Pennsylvania, but some of the brine is spread on roads in New York, as well.

What’s in the brine?

In Pennsylvania, the large-scale extraction efforts from deep carbon-rich shales like the Marcellus and Utica formations are classified as unconventional oil and gas, whereas the shallower formations requiring smaller amounts of hydraulic fracturing stimulation to bring the wells into production are considered to be conventional.

While the chemical components of these brines vary from formation to formation, in general they are known for containing high-salinity toxic metals, such as barium and strontium, as well as volatile organic compounds including benzene. Bromide in the brine can interact with purification processes at treatment plants to create carcinogenic compounds called trihalomethanes. These compounds actually created a problem in the early parts of the Marcellus boom in Western Pennsylvania, when large enough quantities of bromide were added to the region’s rivers and streams. And of particular concern is naturally occurring radioactive materials (NORMs), which sometimes occur at very high concentrations, even in brines from conventional wells.

The Pennsylvania Geological Survey commissioned Evan Dresel and Arthur Rose from Penn State to investigate oil and gas brine from a sample of 40 wells in 1985, although the accompanying paper wasn’t published until 2010.  Their samples included dissolved solids of 343,000 milligrams per liter, and radium occurring at up to 5,300 picocuries per liter. As a point of comparison, the US Environmental Protection Agency mandates that drinking water not exceed 5 picocuries per liter, and the authors of this report express concern about the high levels shown in these brines.

Based on the six samples analyzed, radium shows a general correlation with barium and strontium and an inverse correlation with [sulfate], though the correlation is not perfect. The radium values are high enough that a possible radiation hazard exists, especially where radium could be adsorbed on iron oxides and accumulate in brine tanks.

The article’s preface, written in 2010, echoes the concern, stating, ” the very high radium contents indicate that caution should be used in handling these brines.” One imagines that the radium content might also be a concern for people walking their dogs along dirt roads where these brines are spread.

Testing for radiological contamination appears to be insufficient for liquid oil and gas waste. Ben Stout, PhD, a professor of Biology at Wheeling Jesuit University (and a FracTracker Alliance board member) sampled liquid waste from Marcellus Shale wells in 2009. Here is what he found:

In terms of radiation, 9 of the 13 samples exceeded the drinking water standard for radium. Furthermore, 7 of the 13 samples exceeded the drinking water standard for gross alpha particles, which are a strong indicator of radioactivity. Most notably, one sample from a frac pit at the Phillips #20 site in Westmoreland County, PA yielded a gross alpha reading of 4846 +/‐ 994 picocuries per liter (pCi/L), though the drinking water standard is 15 pCi/L. In fact, the same sample had combined radium readings well over 1,000 pCi/L, a multiple in excess of 200 times the (5 pCi/L) standard. It should be noted that none of the samples triggered a response from radiation meters.

What to do?

From environmental concerns of high salinity to health concerns about the toxic and radiological content of oil and gas brines, intentionally introducing this waste product to public spaces is a dubious practice. It is understandable that township supervisors would want to use readily available materials for dealing with dust control on dirt roads, but if you are concerned about the practice and your area is indicated on the map above, you may wish to contact them to find out where this waste is being spread in greater detail.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Radium Watersheds a Risk

By Greg Pace – Columbus Community Bill of Rights, and Julie Weatherington-Rice – Environmental Consultant


Figure 1. Map of Columbus, OH Watersheds and Class II Injection Wells

Most Ohio residents are unaware of the frack fluid deep underground injection occurring north of Columbus, underneath the region’s source water protection watersheds (Figure 1).

Materials injected are liquids that have as much as ten times the salt concentration of sea-water. Mixed with this “brine” solution is a combination from hundreds of chemicals that are used in different stages of horizontal hydraulic fracturing, the process used to extract natural gas, petroleum, and hydrocarbon liquids used to make industrial materials such as plastics. BTEX compounds including benzene are always present in the wastewater, along with formaldehyde, bromides, ethylene glycol (antifreeze), and arsenic, with many other carcinogenic and otherwise highly-toxic substances.

Radioactivity of Shale Gas Wastewater

One of the biggest questions in this mix of toxic disposal is how much radioactive content exists. Radium-226 is most worrisome, as it has a very long half-life (1,600 years). It is water-soluble and, once it enters the human body, seeks to find a home in our bones where it will emit its cell-formation-destabilizing effects for the remainder of our lifetime. This radionuclide is known to cause leukemia, bone cancers, blood disorders, and other diseases.

The state of Ohio does not monitor the content of materials that are injected into our Class II injection wells deep in the ground. This oil and gas waste can come from anywhere, including Pennsylvania’s Marcellus shale, which is the most highly-radioactive geology of all the shale plays in the country. Radium-226 readings as high as 15,000 pico-curies per liter have been read in Marcellus shale brines. The EPA drinking water limit for radium-226 is 5 pico-curies per liter, which puts the Marcellus reading at 3,000 times higher than the drinking water limit.

Exposure through drinking water is a pathway to human disease from radium-226. Once oil and gas waste is disposed of underground in a sandstone or limestone layer, the fluids are subject to down-gradient movement, wicking through capillary action, and seepage over time. This means that the highly radioactive wastewater could eventually end up in our underground drinking water sources, creating radium watersheds. This practice is putting our watersheds at risk from radioactive contamination for hundreds of years, at least.

Can injected fluids migrate?

Depending on whether you confer with a geologist who works with the oil and gas industry, or from an independent geologist, you will get a different opinion on the likelihood of such a pollution event occurring. Industry geologists mostly claim that deep injection leaves very low risk of water contamination because it will not migrate from the planned area of injection. On the other hand, independent geologists will tell you that it is not a matter of if the liquids will migrate, but how and when. The ability to confirm the geology of the underground area layer of injection “storage” is not exact, therefore accuracy in determining the probability for migration over time is poor.

Figure 2. Ohio Utica Brine Production and Class II Injection Well Disposal

View Map Fullscreen | How FracTracker maps work

We do know, however, that all underground systems in Ohio leak – Research by The Ohio State University and the US Geological Survey show that the age of the water in brine formations is far younger than the age of the rock deposits they are found in. See where wastewater is being created and disposed of in Ohio using the dynamic map above (Figure 2).

Spill Risks to Columbus, OH Water

According to area geologist, Dr. Julie Weatherington-Rice, the source for Columbus’s water to the north is mostly from surface water. This water comes from the Delaware and Morrow county watersheds that feed into sources such as the Hoover and Alum Creek reservoirs. The major threat from injection wells to our watershed is from spills, either from trucks or from storage at the injection well sites themselves.

Dead fish floating in Vienna area pond contaminated by injection well system spill Source: MetropolitanEnegineering Consulting & Forensics-Expert Engineers

Figure 3. Dead fish floating in Vienna area pond contaminated by injection well system spill. Source: MetropolitanEnegineering Consulting & Forensics-Expert Engineers

In April 2015, as much as 8,000 gallons of liquid leaked from a malfunctioning pipe in the storage apparatus of an oil/gas waste storage and injection well site in Vienna, OH. This caused a wildlife kill in two ponds (Figure 3), and the spill was not contained until 2/3 mile downstream in a tributary. The firm who owned the facility was found negligent in that they did not install a required containment liner for spills. The incident was discovered by neighboring residents, but apparently employees knew of the leak weeks before. Of note in this incident was that Ohio Department of Natural Resources, the regulatory agency that oversees all oil/gas production activity in Ohio including injection, stated that there was “minimal impact to wildlife.”

Brine tanker rollover near Barnesville, OH spilled 5,000 gal. of produced brine. Source: Barnesville, OH Fire Department

Figure 4. Brine tanker rollover near Barnesville, OH spilled 5,000 gal. of produced brine. Source: Barnesville, OH Fire Department

In March, 2016, a tanker truck carrying produced waste from a hydraulically fractured well pad overturned outside of the Village of Barnesville, Ohio (Figure 4). The truck spilled 5,000 gallons of liquid waste into a field that led into a tributary, leading the fluids to enter one of the city’s three drinking water supply reservoirs. The water source was shut down for more than two months while regulators determined if water levels were safe for consumption. There was a noted spike in radium-226 levels during water testing immediately after the spill.

Of greatest concern is that, although many millions of gallons of frack waste have been injected into the wells north of Columbus over the past few years, we expect that this activity will increase. For the first time, the United States began exporting its own natural gas in 2016, to regions such as Europe and South America. As the industry consolidates from the depression of oil prices over the past two years and begins to ramp up again, we expect the extraction activity in the Marcellus and especially Utica to increase to levels beyond what we have seen since 2011. The levels of injection will inevitably follow, so that injection wells in Ohio will receive much more than in the past. The probability of spills, underground migration, and human-induced earthquakes may increase steeply, as well.

An Aging Disposal Infrastructure

On our Columbus Community Bill of Rights website, we show pictures of some of the Class II injection wells in Morrow County, most of them converted from legacy production wells. These old wells are located in played out oil/gas fields that may still be producing or have abandoned but not plugged (closed) wells, allowing other routes for injected liquids to migrate into shallow ground water and to the surface. The dilapidated condition of these converted Class II wells makes it hard to believe that they are used to inject millions of gallons of wastewater under high pressure. While many of the wells in the state are as deep as 9,000 feet, all of the injection wells we have seen in Morrow County are only 3,000-4,000 feet deep. This situation puts surface water at greater risk over time, as it is probable that, over the generations, some of the fluids will migrate and wick into the higher subterranean strata.

Figure 5. Ohio Class II Injection Wells by Type

View Map Fullscreen | How FracTracker maps work

One well (Power Fishburn unit, photo below) showed signs of poor spill control when we took our October 2015 injection well tour. While we were there, a brine tanker arrived and began pumping their load into the well. The driver took pictures of our license plates while we were there watching him. A year later, there is a whole new structure at the well, including a new storage tower, and an extensively beefed-up spill control berm. Maybe we need to visit all of the facilities when they come by to use them!

Another well (Mosher unit, photo below) which hadn’t been used since 2014 according to available records, showed signs of a spill around the well. The spill control berms look as if they probably had flooded at some point. This well sits on the edge of a large crop field.

Figures 6a and 6b. Photos of Class II injection wells. Click on the images to expand them.

North of Columbus, the city of Delaware’s underground source water is at risk of becoming contaminated from underground migration of disposed wastewater over time, through wicking and seepage effects (as explained earlier in this article). They are also vulnerable to their reservoir being contaminated from surface spill migration through their watershed.

Google maps rendition of Ohio Soil Recycling facility in south Columbus, Ohio, that accepts shale drill cuttings for remediation to cap the landfill. Source: Google Maps/author

Figure 7. Google maps rendition of Ohio Soil Recycling facility in south Columbus, Ohio, that accepts shale drill cuttings for remediation to cap the landfill. Source: Google Maps/author

South of Columbus is another threat – drill cuttings from the drilling process have been authorized for disposal at a “remediation” landfill adjacent to the Alum Creek (Figure 7). The bioremediation treatment used is not indicated to solve the problem of removing radionuclides from the materials. This landfill had been remediated under the Ohio EPA twice when it was a toxic drum dump, after toxins were found to have been leaching into the watershed creek. Columbus’s Alum Creek well, as well as Circleville, are at risk of contamination in their drinking water if radionuclides from the cuttings leach into Alum Creek. Again, this is a long-term legacy of risk to their water.

Radiation Regulatory and Monitoring Gaps

Since The Ohio legislature deemed the radioactive content of shale cuttings to be similar to background levels in the 2013 state budget bill, cuttings can be spread around to all licensed landfills in Ohio with absolutely no accountability for the radium and other heavy metal levels in them. Unfortunately, the measuring protocol used in the pilot study for the Columbus facility to demonstrate to Ohio EPA that radium-226 was below EPA drinking water limits has been shown in a University of Iowa study to be unreliable.  The inadequate protocol was shown to indicate as little as 1% of the radium levels in shale waste samples tested.

As such, there have been hundreds of incidents where truckloads of cuttings have been turned away at landfills with crude radiation monitors. In 2013 alone, 2 loads were turned away in Ohio landfills, and over 220 were turned away from Pennsylvania landfills.

Ohio has a long way to go before it can be considered a clean energy state. The coal industry polluted significant water sources in the past. The fracking industry seems to be following suit, where contaminations will surprise us long into the future and in broader areas.

Map Data for Download

Oil and Gas Wastes are Radioactive – and Lack Regulatory Oversight

Highlighting the maps of radioactive oil and gas exploration and production wastes created in collaboration with the Western Organization of Research Councils

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance
Scott Skokos, Western Organization of Research Councils

Oil and gas waste can be radioactive, but it is not considered “hazardous,” at least according to the federal government. In this article, we summarize several of the hazardous risks resulting from the current federal policy that fails to regulate this massive waste stream, and the gaps left by states. Of the six states mapped in this assessment, only the state of Montana has initiated any type of rule-making process to manage the waste.

When it comes to unconventional oil and gas waste streams:

Nobody can say how much of any type of waste is being produced, what it is, and where it’s ending up. – Nadia Steinzor, Earthworks

To address some of these gaps, FracTracker Alliance has been working with the Western Organization of Resources Councils (WORC) to map out exactly where radioactive oil and wastes are being dumped, stored, and injected into the ground for disposal. The work is an extension to WORC’s comprehensive No Time to Waste report.

Why is accurate waste data so hard to come by? The Earthworks report, Wasting Away explains that the U.S. EPA intentionally exempted oil and gas exploration and production wastes from the federal regulations known as the Resource Conservation and Recovery Act (RCRA) despite concluding that such wastes “contain a wide variety of hazardous constituents.” As a result, there is very little waste tracking and reporting of oil and gas waste data nationally.

State Waste Management Maps

Some data is available at the state level, so we at FracTracker have compiled, cleaned, and mapped what little data we could find.

State-specific maps have been created for Montana, North Dakota, Colorado, and Wyoming – see below:

ND Radioactive Waste mapNorth Dakota – View map fullscreen

co-radioactive-featureColorado – View map fullscreen

Sources of Radioactivity

When we hear about “radioactive waste” associated with the energy industry, nuclear power stations and fission reactors are usually what come to mind. But, as the EPA explains, fracking has transformed the nature of the oil and gas waste stream. Components of fracking waste differ from conventional oil and gas exploration and production wastes in a number of ways:

  • In general, the waste stream has additional hazardous components, and that transformation includes increased radioactivity.
  • Fracking has allowed for more intrusive drilling, penetrating deep sedimentary formations using millions of gallons of fluid.
  • Drilling deeper produces more drill cuttings.
  • The process of hydraulic fracking introduces millions more gallons of fluid into the ground that then return to the surface. These returns are ultimately contaminated and require disposal.
  • The formations targeted for unconventional development are mostly ancient seabeds still filled with salty “brines” known as “formation waters.”
  • In addition to the hazardous chemicals in the fracking fluid pumped into the wells for fracking, these unconventional formations contain larger amounts of heavy metals, carcinogens and other toxics. This also includes more radioisotopes such as Uranium, Thorium, Radium, Potassium-40, Lead-210, and Polonium-210 than the conventional formations that have supplied the majority of oil and gas prior to the shale boom.

A variety of waste products make up the waste stream of oil and gas development, and each is enhanced with naturally occurring radioactive materials (NORM). This waste stream must be treated and disposed of properly. All the oil and gas equipment – such as production equipment, processing equipment, produced water handing equipment, and waste management equipment – also need to be considered as sources of radioactive exposure.

Figure 1 below explains where the waste from fracking goes after it leaves the well pad.

Radioactive Oil and Gas Pathway Life Cycle

Figure 1. Breakdown of the radioactive oil and gas waste life-cycle

Three facets of the waste stream particularly enhanced with NORMs by fracking include scales, produced waters, and sludges.

A. Scales

When injected into the ground, fracking fluid mixes with formation waters, dissolving metals, radioisotopes and other inorganic compounds. Additionally the fracking liquids are often supplemented with strong acids to reduce “scaling” from precipitate build up (to prevent clogging up the well). Regardless, each oil well generates approximately 100 tons of radioactive scale annually. As each oil and gas reservoir is drained, the amount of scale increases. The EPA reports that lead-210 and polonium-210 are commonly found in scales along with their decay product radon at concentrations estimated to be anywhere from 480 picocuries per gram (pCi/g) to 400,000 pCi/g). Scale can be disposed of as a solid waste, or dissolved using “scale inhibitors.” These radioactive elements then end up in the liquid waste portion of the waste stream, known as produced waters.

B. Produced Waters

In California, strong acids are used to further dissolve formations to stimulate additional oil production. Acidic liquids are able to dissolve more inorganic elements and compounds such as radioisotopes. While uranium and thorium are not soluble in water, their radioactive decay products such as radium dissolve in the brines. The brines return to the surface as “produced water.” As the oil and gas in the formation are removed, much of what is pumped to the surface is formation water.

Consequently, declining oil and gas fields generate more produced water. The ratio of produced water to oil in conventional well was approximately 10 barrels of produced water per barrel of oil. According to the American Petroleum Institute (API), more than 18 billion barrels of waste fluids from oil and gas production are generated annually in the United States. There are several options for managing the liquid waste stream. The waste could be treated using waste treatment facilities, reinjected into other wells to enhance production (a cheaper option), or injected for disposal. Before disposal of the liquid portion, all the solids in the solution must be removed, resulting in a “sludge.”

C. Sludges

The U.S. EPA reports that conventional oil production alone produces 230,000 million tons – or five million ft3 (141 cubic meters) – of TENORM sludge each year. Unconventional processes produce much more sludge waste than conventional processes. The average concentration of radium in sludges is estimated to be 75 pCi/g, while the concentration of lead-210 can be over 27,000 pCi/g. Sludges present a high risk to the environment and a higher risk of exposure for people and other receptors in those environments because sludges are typically very water soluble.

Federal Exemptions

According to the EPA, “because the extraction process concentrates the naturally occurring radionuclides and exposes them to the surface environment and human contact, these wastes are classified as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM).” Despite the conclusions that oil and gas TENORM pose a risk to the environment and humans, the EPA exempts oil and gas exploration and production wastes from the definition of “hazardous” under Resource Conservation and Recovery Act (RCRA) law. In fact, most wastes from all of the U.S. fossil fuel energy industry, including coal-burning and natural gas, are exempt from the disposal standards that hazardous waste normally requires.

The Center for Public Integrity calls this radioactive waste stream “orphan waste,” because no single government agency is fully managing it.

Fortunately, the EPA has acknowledged that federal regulations are currently inadequate, though this is nothing new. A U.S. EPA report from the 1980’s reported as much, and gave explicit recommendations to address the issue. For 30 years nothing happened! Then in August, 2015, a coalition of environmental groups (including the Environmental Integrity ProjectNatural Resources Defense CouncilEarthworksResponsible Drilling AllianceWest Virginia Surface Owners’ Rights Organization, and the Center for Health, Environment and Justice) filed a lawsuit against the EPA, and has since reached a settlement.

Just last month (January 10, 2017) the U.S. EPA agreed to review federal regulations of oil and gas waste – a process they were meant to do every 3 years for the last 30 years. The EPA has until March 15, 2019, to determine whether or not regulatory changes are warranted for “wastes associated with the exploration, development, or production of crude oil, natural gas, or geothermal energy.” With the recent freeze on all U.S. EPA grants, however, it is not clear whether these regulations will receive the review they need.

State Regulations

Regulation of this waste stream is left up to the states, but most states do not require operators to manage the radioactivity in oil and gas wastes, either. Because of the federal RCRA exemptions most state policies ignore the radioactive issue altogether. Operators are free to dispose of the waste at any landfill facility, unless the landfill tells them otherwise. For detailed analyses of state policies, see pages 10-45 of the No Time to Waste report. FracTracker has also covered these issues in Pennsylvania and Ohio.

Another issue that screams for federal consideration of this waste stream is that states do not have the authority to determine whether or not the wastes can cross their borders. States also do not have the jurisdiction to decide whether or not facilities in their state can accept waste from across state lines. That determination is reserved for federal jurisdiction, and there are not any federal laws regulating such wastes. In fact, these wastes are strategically exempt from federal regulation for just these reasons.

Why can’t the waste be treated?

This type of industrial waste actually cannot be treated, at least not entirely. Unlike organic pollutants that can be broken down, inorganic constituents of the waste cannot be simply disintegrated out of existence. Inorganic components include heavy metals like arsenic and bromides, as well as radioactive isotopes of radium, lead, and uranium. Such elements will continue to emit radiation for hundreds-to-thousands of years. The best option available is to find a location to “isolate” and dispose of these wastes – a sacrifice zone.

Current management practices do their best to separate the liquid portions from the solid portions, but that’s about it. Each portion can then be disposed independently of each other. Liquids are injected into the ground, which is the cheapest option where it is available. If enough of the dissolved components (heavy metals, salts, and radioisotopes) can be removed, wastewaters are discharged into surface waters. The compounds and elements that are removed from the liquid waste stream are hyper-concentrated in the solid portion of the waste, described as “sludge” in the graphic above. This hazardous material can be disposed of in municipal or solid waste landfills if the state regulators do not require the radioactivity or toxicity of this material to be a consideration for disposal. There are not federal requirements, so unless there is a specific state policy regarding the disposal, it can end up almost anywhere with little oversight. These chemicals do not magically disappear. They never disappear.


There are multiple pathways for contamination from facilities that are not qualified to manage radioactive and hazardous wastes. At least seven different environmental pathways provide potential risks for human exposure. They include:

  1. Radon inhalation,
  2. External gamma exposure,
  3. Groundwater ingestion,
  4. Surface water ingestion,
  5. Dust inhalation,
  6. Food ingestion, and
  7. Skin beta exposure from particles containing the radioisotopes.

According to the EPA, the low-level radioactive materials in drilling waste present a definitive risk to those exposed. High risk examples include dust suppression and leaching. If dust is not continuously suppressed, radioactive materials in dust pose a risk to people at these facilities or those receptors or secondary pathways located downwind of the facilities. Radioactive leachate entering surface waters and groundwaters is also a significant threat. A major consideration is that radioactive waste can last in these landfills far longer than the engineered lifespans of landfills, particularly those that are not designed to retain hazardous wastes.

Cases of Contamination

North Dakota

In North Dakota, the epicenter of the Bakken Oil Fields, regulators were not ready for the massive waste streams that came from the fast growing oil fields. This  allowed thousands of wastewater disposal wells be drilled to dispose of salty wastewater without much oversight, and no places in state for companies to dispose of radioactive solid waste. Many of the wastewater disposal wells were drilled haphazardly, and as a result many contaminated surrounding farmland with wastewater. With regard to radioactive solid waste, the state until recently had a de facto ban on solid radioactive waste disposal due to their radioactivity limit being 5 picocuries per gram. The result of this de facto ban made it so companies either had to make one of two decisions: 1. Haul their radioactive solid waste above the limit out of state to facilities in Idaho or Colorado; or 2. Risk getting caught illegally dumping waste in municipal landfills or just plain illegal dumping in roadsides, buildings, or farmland.

In 2014, a massive illegal dumping site was discovered in Noonan, ND when North Dakota regulators found a gas station full of radioactive waste and filter socks (the socks used to filter out solid waste from wastewater, which contain high levels of radioactivity). Following the Noonan, ND incident North Dakota regulators and politicians began discussions regarding the need for new regulations to address radioactive solid waste.

In 2015, North Dakota moved to create rules for the disposal of solid radioactive waste. Its new regulations increase the radioactivity limit from 5 picocuries per gram to 50 picocuries per gram, and sets up new requirements for the permitting of waste facilities accepting radioactive waste and the disposal of radioactive waste in the waste facilities. Dakota Resource Council, a member group of WORC, challenged the rules in the courts, arguing the rules are not protective enough and that the agency responsible for the rules pushed through the rules without following the proper procedures. Currently the rules are not in effect until the litigation is settled.


In Pennsylvania, the hotbed of activity for Marcellus Shale gas extraction, the regulatory body was ill equipped and uninformed for dealing with the new massive waste stream when it first arrived on scene. Through 2013, the majority of wastewater was disposed of in commercial and municipal wastewater treatment facilities that discharge to surface waters. Numerous facilities engaged in this practice without amending their federal discharge permits to include this new waste stream.

Waste treatment facilities in Pennsylvania tried to make the waste streams less innocuous by diluting the concentrations of these hazardous pollutants. They did this by mixing the fracking wastes with other waste streams, including industrial discharges and municipal waste. Other specialized facilities also tried to remove these dissolved inorganic elements and filter them from the discharge stream.

As a result of site assessments by yours-truly and additional academic research, these facilities realized that such hazardous compounds do not simply dilute into receiving waters such as the Allegheny, Monongahela, and Ohio rivers. Instead, they partition (settle) into sediments where they are hyper-concentrated. As a result of the lawsuits that followed the research, entire river bottoms in Pennsylvania had to be entirely dug up, removed, and disposed of in hazardous waste landfills.

Action Plans Needed

Massive amounts of solid and liquid wastes are still generated during drilling exploration and production from the Marcellus Shale. There is so much waste, operators don’t know what to do with it. In Pennsylvania, there is not much they can do with it, but it is not just Pennsylvania. Throughout the Ohio River Valley, operators struggle to dispose of this incredibly large waste stream.

Ohio, West Virginia, and Pennsylvania have all learned that this waste should not be allowed to be discharged to surface waters even after treatment. So it goes to other states – those without production or the regulatory framework to manage the wastes. Like every phase of production in the oil and gas industry, operators (drillers) shop around for the lowest disposal costs. In Estill County, Kentucky, the State Energy and Environment Department just recently cited the disposal company Advance Disposal Services Blue Ridge Landfill for illegally dumping hydraulic fracturing waste. The waste had traveled from West Virginia Marcellus wells, and ended up at an ignorant or willfully negligent waste facility.

In summary, there is inadequate federal oversight of potentially hazardous waste coming from the oil and gas industry, and there are serious regulatory gaps within and between states. Data management practices, too, are lacking. How then, is the public health community supposed to assess the risk that the waste stream poses to people? Obviously, a more thorough action plan is needed to address this issue.

Feature image: Drill cuttings being prepared to be hauled away from the well pad. Photo by Bill Hughes, OVEC

Landfill disposal of drill cuttings

Landfill Disposal of WV Oil and Gas Waste – A Report Review

By Bill Hughes, WV Community Liaison

As oil and gas drilling increases in West Virginia, the resulting waste stream must also be managed. House Bill 107 required the Secretary of the West Virginia Department of Environmental Protection to investigate the risks associated with landfill disposal of solid drilling waste. On July 1, 2015, a massive report was issued that details the investigation and its results: Examination of Leachate, Drill Cuttings and Related Environmental, Economic and Technical Aspects Associated with Solid Waste Facilities in West Virginia, by Marshall University.

While I must commend the State for looking into this important issue, much more needs to be done, and I have serious concerns about the validity of several aspects of this study. Since the report is almost 200 pages long, I will summarize its findings and my critiques below.

Summary of Waste Disposal Concerns in Report

The page numbers that I reference below refer to the page numbers found within the PDF version of the full study.

  1. Marcellus shale cuttings are radioactive: pgs. 17, 139, 142, 154
  2. We do not know if there is a long term problem: pg. 19
  3. About 30 million tons of waste in next few decades: pg. 176
  4. Landfill liners leak: pg. 20
  5. Owning & operating their own landfill would be expensive & risky for gas companies: pgs. 186-7
  6. Toxicity and biotic risk from drill cuttings is uncharted territory: pg. 78
  7. Landfill leachate is toxic to plants & invertebrates: pgs. 16, 95, 97
  8. Other landfills also have radioactive waste: pgs. 14-15
  9. We have no idea if this will get worse: pgs. 96, 154
  10. If all systems at landfills work as designed, leachate might not affect ground water: pg. 41


WV Field Visits 2013

Drilling rig behind a wastewater pond in West Virginia

Any formal report comprised of 195 pages generated by a reputable school like Marshall University with additional input from Glenville State College – supported by over 2,300 pages of semi-raw data and graphs and charts and tables – requires some serious investigation prior to making comprehensive and final conclusions. However, some initial observations are needed to provide independent perspective and to help reflect on how sections of this report might be interpreted.

The overarching perspective that must be kept in mind is that the complete study was first limited by exactly what the legislature told the WV Department of Environmental Protection DEP to do. Secondly, the DEP then added other research guidelines and determined exactly what needed to be in the study and what did not belong. There were also budget and time constraints. The most constricting factor was the large body of existing data possessed by the DEP that was provided to the researchers and report writers. Because of the time restrictions, only a small amount of additional raw data could be added.

And most importantly, similar to the WVU Water Research Institute (WVU WRI) report from two years ago, it must be kept in mind that these types of studies, initiated by those elected to our well-lobbied legislature and funded and overseen by a state agency, do not occur in a political power vacuum. It was surely anticipated that the completed report might have the ability to affect the growing natural gas industry – which is supported by most in the political administration. Therefore, we must be cautious here. The presence and influence of political and economic factors need to be considered. Also, for universities to receive research contracts and government paid study requests, the focus must include keeping the customer satisfied.

My comments below on the report’s methods and findings are organized into three broad and overlapping categories:

  • GOOD  –  positive aspects, good suggestions, important observations
  • GENERAL  –  general comments
  • FLAW  –  problems, flaws, limitations
  • MOVING FORWARD  – my suggestions & recommendations

I. Water Quality: EPA Test Protocols & Datasets

Marcellus Shale (at the surface)

Marcellus Shale (at the surface)

GENERAL  It is obvious that a very smart and well-trained set of researchers put a lot of long, detailed thought into analyzing all of the available data. There must be tens of thousands of data points. Meticulous attention was put into how to assemble all of the existing years’ worth of leachate chemical and radiological information.

GOOD  There is an elaborate and detailed discussion of how to best analyze everything and how to utilize the best statistical methods and generate a uniform and integrated report. This was made difficult with non-uniform time intervals, some non-detect values, and some missing items. The researchers used a credible process, explaining how they applied the various appropriate statistical analysis methods to all the data. They provided some trends and observations and draw some conclusions.

FLAW 1  The most glaring flaw and the greatest limitation pertaining to the data sets is the nature of the very data set, which was provided to the researchers from the DEP. It is to the commendable credit of the DEP that the leachate at landfills receiving black shale drill cuttings from the Marcellus and other shale formations were, from the beginning, required to start bi-monthly testing of leachate samples at landfills that were burying drill waste products. And in general, when compared to on-site disposal as done for conventional wells, it was initially a good requirement to have the drill cuttings put into some type of landfill; that way we could keep track of where the drill cuttings are located when there are future problems.

To the best of my knowledge, until the states in the Marcellus region started allowing massive quantities of black shale waste material to be put into local landfills, we have never knowingly deposited large quantities of known radioactive industrial waste products into generic municipal waste landfills. The various waste products and drill cuttings of Marcellus black shales have been known for decades by geologists and radiochemists to be radioactive. We know better than to depose of hazardous radioactive waste in an improper way. Therefore, it is very understandable that we might not know how to best solve the problems of this particular waste product. This was and still is new territory.

FLAW 2  All of the years of leachate test samples were processed for radioactivity using what is called the clean drinking water test protocols, also referred to as the EPA 900 series. Three years ago, given the unfamiliarity of regulatory agencies with the uniqueness of this waste problem, we chose the wrong test protocol for assessing leachate samples. We speculated that the commonly used and familiar clean drinking water test procedure would work. So now we have a massive set of test results all derived from using the wrong test protocol for the radiologicals. Fortunately, all of the chemistry test results should still be reasonably useful and accurate.

At first, three years ago, this was understandable and possibly not an intentional error. Now it is widely known by hydrogeologists and radiochemists, however, that the plain EPA 900 series of test methods for determining the radioactivity of contaminated liquids do not work on liquids with high TDS — Total Dissolved Solids. Method 900.0 is designed for samples with low dissolved solid like finished drinking water supplies.

Despite this major and significant limitation, the effort by Marshall University still has some utility. For example, doing comparisons between and among the various landfills accepting drill waste might provide some interesting observations and correlations. It is clearly known now, however, that the protocols that were used for all samples from the start when testing for gross alpha, gross beta and radium-226 and radium-228 in leachate, can only result in very inaccurate, under-reported data. Therefore, it is not possible to draw any valid conclusions on several very important topics, including:

  • surface water quality,
  • potential ground water contamination,
  • exposure levels at landfills and public health implications,
  • and policy and regulations considerations.

Labs certified to test for radiological compounds and elements are very familiar with the 900 series of EPA test procedures. These protocols are intended to be used on clean drinking water. They are not intended to be used on “sludgy” waters or liquids contaminated with high dissolved solids like all the many liquid wastes from black shale operations like flowback and produced water and brines and leachate. The required lab process for sample size, preparation, and testing will guarantee that the results will be incorrect.

In no place in the final 195 page report have I seen any discussion of which EPA test protocol was used for the newer samples and why was it used. It has also not yet been seen in the 2,300+ pages of supportive statistical and analytical results, either. The fact that the wrong protocol was used three years ago is very understandable. However, this conventional EPA 900 series was still being used on the additional very recent (done in fall of 2014 and spring of 2015) samples that were included in the final report. The researchers, without any justification or discussion or explanations continued to use the wrong test protocol.

The clean drinking water procedures should have been used along with the 901.1M (gamma spec) process, for comparison. It is understandable for the new data to be consistent and comparable with the very large existing dataset that a case could be made for using the incorrect protocol and the proper one also. There should have been a detailed discussion of what and why any test method was being used, however. That discussion is usually one of the first topics investigated and explained in the Methods section. Having that type of discussion and justification seems to represent a basic science method and accepted research process – and that omission is a serious flaw.

MOVING FORWARD  We all know that if we want to bake an appetizing and attractive cake we must use the correct measuring cups for the ingredients. If we want to take our child’s temperature we need an accurate thermometer. When our doctor helps us understand our blood test results, we all want to be confident the right test was used at the lab. The proper test instrument, recently calibrated and designed for the specific sample, is crucial to get useable test results from which conclusions can be drawn and policy enacted.

It seems that the best suggestion so far to test high TDS liquids similar to leachate would be to use what is referred to as Gamma-ray Spectrometry with a high purity germanium instrument with at least a 21-day hold period (30 days are better), while the sample is sealed then counted for at least 16 hours. Many of the old leachate test results indicate high uncertainties that might be attributed to short hold times and short counting times. This procedure is referred to as the 901.1 M (modified). If the sample is sealed, the sample will reach about 99% equilibrium after 30 days. Radon 222 (a gas) must not be allowed to escape.

The potential environmental impacts to water quality section of this report seems to demonstrate that if you do not want to find out something, there are always justifiable options to avoid some inconvenient facts. Given the very narrow scope as defined, some the Marshall University folks did not seem to have the option to stray into important scientific foundational assumptions and, for the most part, just had to work with the stale data sets given to them. All of which, as we have known for close to a year now, have used the wrong test protocol. Therefore we have incorrect results of limited value.

II. Marcellus is Radioactive

GOOD 1  Of course, geologists have known that the Marcellus Shale is radioactive for many decades, but also for decades there has been great reluctance by the natural gas exploration and production companies to acknowledge this fact to the public. And finally we now have a public report that clearly and unambiguously states that Marcellus shale is radioactive. Interestingly enough, it was not much more than a year ago that some on the WV House of Delegates Judiciary Committee, seemed to be echoing the industry’s intentional deception by declaring that:

…it was only dirt and rock…

So this report represents progress and provides a very valuable contribution to beginning to recognize some of the potential problems with shale wastes and their disposal challenges.

GOOD 2  Another very important advance is that finally after eight years of drilling here in Wetzel County, we now have a test sample from near the horizontal bore. The WVU WRI study researchers were never given access to any samples taken from the horizontal bore material itself, however. That was, of course, what they were supposed to have been allowed to do, but they were only given access to study material from the vertical section of the well bore. This report describes how we are getting closer to actually testing good samples of the black shale. It seems that we have gotten closer – but let’s see how close.

Page 11 describes that only three Antero wells in Doddridge County were chosen as the place to try to obtain samples from the horizontal bore. Considering that over 1,000 deviated/horizontal wells or wells with laterals have been drilled in the past few years, that number represents a very small fraction of wells drilled: less than .3%. Even if a high quality sample could have been obtained it might be a challenge to extrapolate test results to the waste being produced from the other wells in WV. These limitations are completely ignored in the report, however. Given the available documentation from the DEP, this seems to be a serious flaw that compromises the reliability of the entire report.

III. Samples From Vertical vs. Horizontal Well Bores

FLAW  The actual samples tested from at least two of the three wells used in the study do not seem to be from the horizontal bore material. The sample from the third well might have come from the horizontal bore, but just barely. There is no way to know for sure. I will try to show this within the below chart using information provided by Antero to DEP Office of Oil & Gas. This information is in state records on Antero’s well plats, which become part of the well work application and also part of the final permit.

Table 1. Details about the samples taken from three Antero wells in Doddridge County, WV – and my concerns about the sampling process*

Antero well ID API # Sample’s drilling depth Marcellus depth** Horizontal bore length** Comments / Issues
Morton 1H 47-017-06559 6,856 ft. 7,900 TVD*** 10,600 ft. ~1,044 ft. short of reaching Marcellus formation
McGee 2H 47-017-06622 6,506 ft. 6,900 TVD 8,652 ft. ~394 ft. short of reaching Marcellus
Wentz1 H 47-017-06476 8,119 ft. 7,900 TVD 8,300 ft. Just drilled into Marcellus by 219 ft.
* Original chart found on page 11 of report
** Based on information from Antero’s well plat
*** TVD = Total Vertical Depth

Antero is an active driller in Doddridge County. If any company knows where to find the Marcellus formation it is that company. Well plats are very detailed, technical documents provided to the DEP by the operator regarding the well location, watershed, and leased acres and property boundaries. We need to trust that the information on those plats is accurate and has been reviewed and approved by the permitting agency. Those plats also give the depth of the Marcellus and the length and heading of the lateral or horizontal bore. The Marshall University report gives the drilling depth when the sample was taken on the surface. Using these available well plat records from the DEP it appears that at two of the wells the sample (and its test results included in the report) came from material produced when the experienced drilling operator was not yet into the shale formation.

On the third well, Wentz 1H, the numbers seem to indicate that the sample was taken when the driller said that they were just barely within the shale layer – by 219 feet. Since the drill cuttings take some time to return to the surface from over 7,000 feet down, drilling just a few hundred feet would not at all guarantee that the returned cuttings were totally from the black shale. The processing of the drill cuttings at the shaker table and separator and centrifuge and the mixing in the tubs all cast some doubt on whether the sample, wherever it was taken from, was truly from the horizontal bore material.

On page 11 there is a clear and unambiguous statement:

Three representative sets of drill cuttings from the horizontal drilling activities within the Marcellus Shale formation were collected.

A successful attempt to get three such samples might have then allowed an appropriate waste characterization to be done as needed to accomplish the five required research topics listed in the report’s cover letter. Only an accurate chemical and radiological waste characterization would have allowed scientifically justifiable conclusions to be formulated and then allow for accurate legislation and regulations. It does not seem that West Virginia yet has the required scientific data upon which to confidently formulate laws and regulations to protect public health with regard to shale waste disposal.

Would it not seem prudent – if one wanted a good, representative sample – to make absolutely sure that the operator was, in fact, drilling in the black shale and that the cuttings returning to the surface were, in fact, from the Marcellus bore? That approach would have been eminently defensible and easily accomplished by just waiting for drilling to progress into the lateral bore far enough that the drill cuttings returning to the surface were in fact from the black shale. There might be plausible explanations for this apparent inconsistency or error. Of course, it might be speculated that the Antero-provided information on the well plats is incorrect and not intended to be accurate, or perhaps the driller is not really sure yet where the Marcellus layer starts. There may be many other possible scenarios of explanations. Time will tell.

IV. Research Observations Review

Landfill disposal of drill cuttings

Landfill disposal of drill cuttings

GOOD There are a number of recommendations and suggestions in the study on landfills and leachate related conditions. It seems that a number of these proposals are very accurate and should be implemented. For example:

The report clearly restates that drill cuttings are known to contain radioactive compounds. Since all landfill liners will eventually leak, and since landfills already have ground water test wells for monitoring for potential ground water contamination due to leaking liners, then the well samples should be tested for radiological isotopes. Good idea. They are not required to do that now, but this recommendation should be implemented immediately (pgs. 17 and 21).

GOOD The report recommends that the Publicly Owned Treatment Works (POTW) or in the case of Wetzel County, the on-site wastewater treatment plants, should also test their effluent for radioactive isotopes. This is very important since there is no way to efficiently filter out many of the radioactive isotopes. Such contaminants will pass through traditional wastewater treatment plants.

It is also very useful that the report recommends that all the National Pollution Discharge Elimination System (NPDES) limits at the POTWs be reviewed and required to take into consideration the significantly more challenging chemical and radiological makeup of the shale waste products.

V. Economic Considerations on an Industry Supported Mono-Fill

The legislature asked that the DEP evaluate the feasibility of the natural gas industry to build, own, or operate its own landfill solely for the disposal of the known radioactive waste. This request seems to be a very reasonable approach, since for decades we have only put known radioactive waste products into dedicated landfills that are exclusively and specifically designed for the long term storage of the special waste material.

The discussion of the economic considerations is extremely complete and detailed. They are given in Appendix I and take into consideration a very thorough economic feasibility study of such a proposed endeavor. This section seems to have been compiled by a very talented professional team.

FLAW  However, some of the basic assumptions are a bit askew. For example:

The initial Abstract of the financial analysis states that two new landfills would be needed because we do not want to have the well operators to drive any further than they do now. Interesting. This seems to be not too different than a homeowner while in search for privacy and quiet, builds a home far out into the country and then expects the public sewage lines to be extended miles to his new home so he would not have to incur the cost of a septic system. Homebuilders in rural settings should know they will have to incur expenses for their waste disposal needs. Should gas companies expect that communities to provide cheap waste disposal for them?

More than 15 pages later, the most important aspect is clearly stated that, “…the most salient benefit of establishing a separate landfill sited specifically to receive (radioactive) drill cuttings would be the preservation of existing disposal capacity of existing fills for future waste disposal”. Meaning for my (our) grandchildren. See page 175.

Comprehensive and sound financial details later explain that having the natural gas operators build, operate, and eventually close their own radioactive waste depository landfill would involve a lot of their capital and involve some risk to them. It is stated that their money would be better used drilling more wells. The conclusion then seems to be that, all around, it is simply cheaper and less risky for the gas industry to put all their waste products into our Municipal Waste Landfills, and later residents should incur the costs and risk to build another land fill for their household garbage when needed.

VI. Report Omissions

  1. Within the report section dealing with the leachate test results, it is casually mentioned that not only do the landfills receiving shale waste materials have radioactive contaminated leachate, but the other tested landfills do, as well. However, rather than raising a very red flag and expressing concern over a problem that no one has looked into, the report implies we should not worry about any radioactive waste because it might be in all landfills (pg. 139).
  2. Nowhere within the radiological discussion is there any mention of what might be called speciation of radioactive isotopes. The report does state that the test for both gross alpha and gross beta, are considered a “scanning procedure.” The speciation process is sort of a slice and dice procedure, showing exactly what isotopes are responsible for the activity that is being indicated. This process, however, does not seem to have been done on the landfill leachate test samples. The general scanning process cannot do that. Appendix H, pages 141-142, contains detailed facts on radiation dose, risk, and exposure. This might have been a good place to also discuss the proper EPA testing protocols, used or not used, and why.
  3. A short discussion of the DEP-required landfill entrance radiation monitors is included on page 146. The installed monitors are the goalpost type. Trucks drive between them at the entrance and when they cross the scales. It seems that the report should have emphasized that that type of monitor will primarily only detect high-energy gamma radiation. However what is omitted on page 144 is that the primary form of decay for radium-226 is releasing alpha particles. The report is ambiguous in saying the decay products of radium-226 include both alpha particles and some gamma radiation, but radium-266 is not a strong gamma emitter. It is very unlikely that a normal steel enclosed roll-off box would ever trip the alarm setting with a load of drill cuttings. However those monitors are still useful since they will detect the high-energy gamma radiation from a truck carrying a lot of medical waste (pg. 17).
  4. It is stated on page 144 that the greatest health risk due to the presence of radium-226 is the fact that its daughter product is radon-222. Radium-226 has a half-life of 1,600 years, compared to radon’s 3.8 days. This difference might seem to imply that radon is less of a concern. Given the multitude of radium-226 going into our landfills means that we will be producing radon for a very long time.

VII. Resource Referenced in Article

Examination of Leachate, Drill Cuttings and Related Environmental, Economic and Technical Aspects Associated with Solid Waste Facilities in West Virginia, by Marshall University.

Landfill disposal of drill cuttings

Has radioactivity risk from oil and gas activity been underrated?

Reviewing a Pennsylvania TENORM Study

By Juliana Henao, Communications Intern

Technologically-enhanced, naturally-occurring radioactive materials, also known as TENORM, are produced when radionuclides deep in the earth are brought to the surface by human activity such as oil and gas drilling. The radioactive materials, which include uranium (U), thorium (th), potassium-40 (K-40) and their decay products, occur naturally in the environment. These materials are known to dissolve in produced water, or brine, from the hydraulic fracturing process (e.g. fracking), can be found in drilling muds, and can accumulate in drilling equipment over time.

According to the EPA, ~30% of domestic oil and gas wells produce TENORM. Surveys have shown that 90% of the wells show some TENORM concentrations, while others have nothing at all. However, with increasing natural gas exploration and production in Pennsylvania’s Marcellus Shale, there is a parallel increase in TENORM. According to Dr. Marvin Resnikoff, an international expert on radiation, drilling companies and geologists locate the Marcellus Shale layer by way of its higher level of radiation.

Bringing more of this TENORM to the surface has the potential to greatly impact public health and the environment. Since 2013, the Pennsylvania Department of Environmental Protection (PA DEP) has been gathering raw data on TENORM associated with oil and gas activity in the state. The study was initiated due to the volume of waste containing high TENORM concentrations in the state’s landfills, something that is largely unregulated at the state and federal level.  In January 2015, the PA DEP released a report that outlined their findings and conclusions, including potential exposures, TENORM disposal practices, and possible environmental impacts.

Radioactivity Study Overview

Drilling mud being collected on the well pad

This review touches on the samples tested, the findings, and the conclusions drawn after analysis. The main areas of concern included potential exposure to workers, members of the public, and the environment.

The samples gathered by the DEP came from 38 well sites, conventional and unconventional, by testing solids, liquids, ambient air, soils, and natural gas near oil and gas activity in Pennsylvania. All samples contained TENORM or were in some way impacted by TENORM due to oil and gas operations. The samples were mainly tested for radioactive isotopes, specifically radium, through radiological surveys.

The PA DEP concluded in the cases of well sites, wastewater treatment plants (POTW), centralized wastewater treatment plants, zero liquid discharge plants, landfills, natural gas in underground storage, natural gas fired power plants, compressor stations, natural gas processing plants, radon dosimetry (the calculation and assessment of the radiation dose received by the human body), and oil and gas brine-treated roads that there is little potential for internal radiation exposure to workers and members of the public. In spite of this, each section of the report typically concluded with: however, there is a potential for radiological environmental impacts…

Examples of these findings include:

  • There is little potential for radiological exposure to workers and members of the public from handling and temporary storage of produced water on natural gas well sites. However, there is a potential for radiological environmental impacts from spills of produced water from unconventional natural gas well sites and from spills that could occur from the transportation of this fluid.
  • There is little potential for radiological exposure to workers and members of the public from sediment-impacted soil at landfills that accepted O&G waste for disposal.  However, there may be a radiological environmental impact to soil from the sediments from landfill leachate treatment facilities that treat leachate from landfills that accept O&G waste for disposal.
  • Radium 226 was detected within the hydraulic fracturing fluid ranging from 64.0-21,000 pCi/L. Radium-228 was also detected ranging from 4.5-1,640 pCi/L. The hydraulic fracturing fluid was made up of a combination of fresh water, produced water, and reuse flowback fluid. There is little potential impact for radiological exposure to workers and members of the public from handling and temporary storage of flowback fluid on natural gas well sites. However, there is a potential for radiological environmental impacts from spills of flowback fluid on natural gas well sites and from spills that could occur from the transport of this fluid.
  • Nine influent and seven effluent leachate samples were collected at the nine selected landfills.  Radium was detected in all of the leachate samples. Radium-226 concentrations were detected in produced water samples ranging from 40.5 – 26,600 pCi/L. Radium-228 concentrations were also detected ranging from 26.0 – 1,900 pCi/L. The Ra-226 activity in unconventional well site produced water is approximately 20 times greater than that observed in conventional well site produced water. The ratio of Ra-226 to Ra-228 in unconventional well site produced water is approximately eight times greater than that found in conventional well site produced water.  (Sections 3.3.4 and 3.6.3) (PA DEP TENORM study report section 9.0)

According to Melody Fleck from Moshannon Group- Sierra Club Executive Committee:

While the report comprehensively covers the processes from drilling to end users, the number of samples collected and analyzed are very sparse for a state-wide study. Just to give an idea, only 8 well sites were sampled during the flowback phase and of the 8 only 4 had enough volume to analyze. Of 14 drill mud samples collected, only 5 were analyzed as liquids, and alpha & beta analysis was only done on one sample.

Obtaining the proper sample size is often a major barrier for field studies. Additional research needs to be conducted with a larger sample size and more rigorous exposure monitoring to determine specific risk metrics for workers and the public.

Current Handling of TENORM

From drilling to distribution, there are many topics of concern associated with TENORM; however, we will focus on the current treatment of TENORM waste, the release of data, and the transparency of this issue.

On a federal level, there are no specific regulations governing many aspects of TENORM, such as sludge or solids containing TENORM from water treatment plants. Additionally, if concentrations of U or Th make up less than .05% by weight, they are seen as an “unimportant quantity” and are exempt from NRE regulation. Currently, 13 states regulate TENORM with varying degrees of standards. Hazardous waste facilities in each state can choose to accept TENORM materials as long as they don’t exceed certain concentrations.

Today, about 12 of PA’s 50 landfills accept such radioactive waste from oil and gas activity at a 1:50 dilution ratio (related to their other intake sources). Under RCRA’s Land Disposal Restrictions, “dilution is prohibited as treatment for both listed and characterized wastes.”

According to the DEP report, hydraulic fracturing produces an enormous stream of waste by-products. Safe disposal of this waste has not yet been devised. A few of the conclusions concerning TENORM disposal and treatment in the report listed some areas of concern, identified below:

  1. Filter cake [1] and its radiological environmental impact if spilled, and
  2. The amount of radioactive waste entering the landfills in PA, which reached 430,317 tons in the first 10 months of 2014.

In unison with the conclusions were recommendations, where the report “recommends considering limiting radioactive effluent discharge from landfills, and adding radium-226 and radium-228 to annual sample analysis of leachate from landfills.” Additionally, the report states that if something such as filter cake spills, it will bring into question the safety of long-term disposal and suggest a protocol revision.

Public Health Concerns

The report identified two places where there is a higher than average radioactive exposure risk for workers and community members of the public: specifically at centralized wastewater treatment plants and zero liquid discharge plants that treat oil and gas wastewater. An additional unknown is whether there is a potential inhalation or ingestion hazard from fixed alpha and beta surface radioactivity if materials are disturbed. As a general precaution, they recommend the evaluation of worker’s use of protective equipment under certain circumstances.

Although research has not come to a consensus regarding a safe level of radiation exposure, it should not be assumed that any exposure is safe. Past research has evaluated two types of radiation exposure: stochastic and non-stochastic, both of which have their own risks and are known to be harmful to the human body. The EPA has defined stochastic effects as those associated with long-term, low level exposure to radiation, while non-stochastic effects are associated with short-term, high-level exposure. From past scientific research, radiation is known to cause cancer and alter DNA, causing genetic mutations that can occur from both stochastic and non-stochastic exposure. Radiation sickness is also common, which involves nausea, weakness, damage to the central nervous system, and diminished organ function. Exposure levels set by the EPA and other regulatory agencies fall at 100 millirem (mrem) per year to avoid acute health effects. As a point of reference, medical X-rays deliver less than 10 mrem, and yearly background exposure can be about 300 mrem.

In the report, Radiological Dose and Risk Assessment of Landfill Disposal of TENORM in North Dakota, Argonne National Laboratory researchers suggest that the exposure to workers be limited and monitored. In many of their studies, they found the doses exceed the 100 mrem/year level in the workers when the appropriate attire is not worn during working hours, which raised some concern.

The DEP deems certain radiation levels “allowable”, but it should be noted that allowable doses are set by federal agencies and may be arbitrary. Based on the PA DEP’s report, consumers of produced gas can get up to 17.8% of their yearly radiation allowance, while POTW workers could get up to 36.3% of their yearly allowable dose. According to the Nuclear Information and Resource Service, radiation bio-accumulates in ecosystems and in the body, which introduces a serious confounder in understanding the risk posed by a dose of 17.8% per year.

Transparency of Radiation Risk

The DEP has been gathering data for their TENORM report since 2012. In July of 2014, Delaware Riverkeeper Network filed a Right-to Know request to obtain the information that the DEP had collected in order for their expert to analyze the raw data. The department refused to release the information, insisting that “the release of preliminary invalidated data, including sample locations, could likely result in a substantial and demonstrable risk of physical harm, pose a security risk and lead to erroneous and/or misleading characterizations of the levels and effects of the radioactive risks.” Essentially, the DEP was equating the risks of radioactive material to the risks of releasing raw data — two incomparable risks. DRN appealed, claiming that they simply sought the raw information, which is presumed public unless exempt, and would have no risk on the public. PA DEP was ordered to release their records to DRN within 30 days.


One observation that you could take from this report is the lack of regulatory advancement. The study is filled with suggestions, like:

  • Radium should be added to the PA spill protocol to ensure cleanups are adequately characterized,
  • A limited potential was found for recreationists on roads with oil and gas brine from conventional natural gas wells–further study should be conducted, and
  • More testing is needed to identify areas of contamination and any area should be cleaned up.

Intent doesn’t make the changes; action does. Will any regulations change, at least in Pennsylvania where radioactive materials are returning to the surface on a daily basis? There seems to be no urgency when it comes to regulating TENORM and its many issues at the state level. Are workers, citizens, and the environment truly being protected or will we wait for a disaster to spur action?


[1] This is the residue deposited on a permeable medium when a slurry, such as a drilling fluid, is forced against the medium under pressure. Filtrate is the liquid that passes through the medium, leaving the cake on the medium.