Posts

Piecing together the ethane cracker - Graphic by Sophie Riedel

Piecing Together an Ethane Cracker

How fragmented approvals and infrastructure favor petrochemical development

By Leann Leiter and Lisa Graves-Marcucci

Let’s think back to 2009, when oil and gas companies like Range Resources began drilling the northeast shale plays in earnest. Picture the various stages involved in drilling – such as leasing of land, clearing of trees, boring of wells, siting of compressor stations, and construction of pipelines to gather the gas. Envision the geographic scope of the gas infrastructure, with thousands of wells in Pennsylvania alone, and thousands of miles of pipelines stretching as far as Louisiana.

Figure 1. A pipeline right-of-way snakes behind a residential property in Washington County, PA. Photo credit: Leann Leiter.

Figure 1. A pipeline right-of-way snakes behind a residential property in Washington County, PA. Photo credit: Leann Leiter

Now, picture the present, where a homeowner looks out over her yard and wonders how a lease she signed with Shell several years prior made it possible for the company to run an ethane pipeline across her property and between her house and her garage.

Think forward in time, to 2022, the year when a world-scale ethane cracker is set to go online in Beaver County, Pennsylvania, to begin churning through natural gas liquids from wells in PA and others, producing a variety of disposable plastic products.

At each of these moments in gas development, which of the many stakeholders – industry leaders, local governments, state regulatory agencies, or landowners and residents – were granted a view of the full picture?

The proposed Shell ethane cracker in Beaver County is an illustration of the fragmented nature of gas development. From the extensive web of drilling infrastructure required to supply this massive facility, to several years of construction, this project is a case-study in piecemeal permitting. Such fragmentation creates a serious barrier to transparency and to the informed decision-making that relies upon it.

In the first two articles in this series on the petrochemical development in Beaver County, we focused on ethane cracker emergency scenarios and how the area might prepare. In this article, we draw the lens back to take in the larger picture of this region-altering project and highlight the effects of limited transparency.

The “Piecemeal” Nature of Gas Development

All across the Pennsylvania, proposed industrial development – even coal operations – have historically provided to the public, elected officials, and regulatory agencies the extent or footprint of their planned operations. Nonetheless, the oil and gas industry has in several instances undertaken a practice of developing its extensive infrastructure piece-by-piece. Operators of these facilities first acquire a GP-5 General Permit, which is only available to certain oil and gas operations with “minor” emissions and which allows them to avoid having the permit undergo public notice or comment. These operators then add emissions sources and increases through a series of minor amendments. While they are required to obtain a “major” source permit once their modifications result in major emissions, they avoid the scrutiny required for a major source by this fragmented process.

Unlike most other industrial permitting, the gas industry has enjoyed a much less transparent process. Instead of presenting their entire planned operation at the time of initial permit application, gas operators having been seeking – and receiving – incremental permits in a piecemeal fashion. This process puts local decision makers and the women, men, and children who live, work, and go to school near gas development at a severe disadvantage in the following ways:

  • Without full disclosure of the entirety of the planned project, neither regulatory bodies nor the public can conduct a full and factual assessment of land use impacts;
  • Incremental approvals allow for ever-expanding operations, including issuance of permits without additional public notification and participation;
  • Piecemeal approvals allow operations to continuously alter a community and its landscape;
  • The fragmented approval process prevents consideration of cumulative impacts; and
  • Without full transparency of key components of the proposed operations, emergency planning is hampered or non-existent.

From the Well to the Ethane Cracker

In the fragmented approval process of gas development, the proposed ethane cracker in Beaver County represents a pertinent example. Developers of this massive, multi-year, and many-stage project have only revealed the size and scope in a piecemeal fashion, quietly making inroads on the project (like securing land leases along the route of the pipeline required for the cracker, years in advance of permit approvals for the facility itself). By rolling out each piece over several years, the entirety of the petrochemical project only becomes clear in retrospect.

A World-Scale Petrochemical Hub

While Shell is still pursuing key approval from the PA Department of Environmental Protection, industry leaders treat the ethane cracker as a foregone conclusion, promising that this facility is but one step in turning the area into a “petrochemical hub.”

The cracker facility, alone, will push existing air pollution levels further beyond their already health-threatening state. Abundant vacant parcels around Shell’s cracker site are attractive sites for additional spin-off petrochemical facilities in the coming “new industry cluster.” These facilities would add their own risks to the equation, including yet-unknown chemical outputs emitted into the air and their resulting cumulative impacts. Likewise, disaster risks associated with the ethane cracker remain unclear, because in the piecemeal permitting process, the industry is not required to submit Preparedness, Prevention, and Contingency (PPC) Plans until after receiving approval to build.

Figure 2: Visualization shows a portion of the extensive US natural gas interstate pipeline system stretching from the petrochemical hubs in the bayous of the Gulf Coast Basin to Pittsburgh's Appalachian Basin. However, petrochemical development in the northeast may reverse or otherwise change that flow. Visualization created by Sophie Riedel, Carnegie Mellon University, School of Architecture. Data on interstate natural gas supply sourced from Energy Information Administration, Form EIA176 "Annual Report of Natural Gas and Supplemental Gas Supply and Disposition," 2007.

Figure 2. A portion of the extensive US natural gas interstate pipeline system stretching from the petrochemical hubs in the bayous of the Gulf Coast Basin to Pittsburgh’s Appalachian Basin. However, petrochemical development in the northeast may reverse or otherwise change that flow. Visualization created by Sophie Riedel, Carnegie Mellon University, School of Architecture. Data on interstate natural gas supply sourced from Energy Information Administration, Form EIA176 “Annual Report of Natural Gas and Supplemental Gas Supply and Disposition,” 2007.

92.3 Miles of Explosive Pipeline

More than just a major local expansion, communities downriver and downwind will be susceptible to the impacts, including major land disturbance, emissions, and the potential for “incidents,” including explosion. The pipeline required to feed the cracker with highly flammable, explosive ethane would tie the tri-state region into the equation, expanding the zone of risk into Ohio and crossing through West Virginia.

Figure 3: The Falcon Pipeline, which would be used to transport ethane to the cracker in Beaver County. At 92.3 miles long, it consists of two “legs,” starting from Scio and Cadiz, Ohio and Houston, PA, respectively, and extending up to the site of Shell’s ethane cracker. Credit: Shell Pipeline Company LP.

Figure 3. The Falcon Pipeline, which would be used to transport ethane to the cracker in Beaver County. At 92.3 miles long, it consists of two “legs,” starting from Scio and Cadiz, Ohio and Houston, PA, respectively, and extending up to the site of Shell’s ethane cracker. Credit: Shell Pipeline Company LP

Renewed Demand at the Wellhead

No one piece of the gas infrastructure stands alone; all work in tandem. According to the  Energy Information Administration (EIA), the new US ethane crackers will drive consumption of ethane up by a 26% by the end of 2018. Gas wells in the northeast already supply ethane; new ethane crackers in the region introduce a way to profit from this by-product of harvesting methane without piping it to the Gulf Coast. How this renewed demand for ethane will play out at fracked wells will be the result of complex variables, but it will undoubtedly continue to drive demand at Pennsylvania’s 10,000 existing unconventional oil and gas wells and those of other states, and may promote bringing new ones online.

quote-from-petchem-report

Figure 4. Excerpt from Executive Summary of IHS Markit Report, “Prospects to Enhance Pennsylvania’s Opportunities in Petrochemical Manufacturing.”

Along with drilling comes a growing network of gathering and transmission lines, which add to the existing 88,000 miles of natural gas pipeline in Pennsylvania alone, fragment wildlife habitat, and put people at risk from leaks and explosions. Facilities along the supply stream that add their own pollution and risks include pump stations along the route and the three cryogenic facilities at the starting points of the Falcon Pipeline (see Fig. 6).

Figure 4: Several yards of the 88,000 miles of gas pipelines cutting through Pennsylvania. Finleyville, PA. Credit: Leann Leiter.

Figure 5. Several yards of the 88,000 miles of gas pipelines cutting through Pennsylvania. Finleyville, PA. Credit: Leann Leiter

The infrastructure investment required for ethane crackers in this region could reach $3.7 billion in processing facilities, pipelines for transmitting natural gas liquids including ethane, and storage facilities. A report commissioned by Team Pennsylvania and the PA Department of Community and Economic Development asserts that “the significant feedstock and transportation infrastructure required” will “exceed what is typically required for a similar facility” in the Gulf Coast petrochemical hub, indicating a scale of petrochemical development that rivals that of the southern states. This begs the question of how the health impacts in Pennsylvania will compare to those in the Gulf Coast’s “Cancer Alley.”

Figure 6. Houston, PA Cryogenic and Fractionation Plant, one of three such facilities supplying feedstock to the proposed Shell ethane cracker. Credit: Garth Lenz, iLCP.

Figure 6. Houston, PA Cryogenic and Fractionation Plant, one of three such facilities supplying feedstock to the proposed Shell ethane cracker. Credit: Garth Lenz, iLCP

Water Impacts, from the Ohio River to the Arctic Ocean

Shell’s facility is only one of the ethane crackers proposed for the region that, once operational, would be permitted to discharge waste into the already-beleaguered Ohio River. This waterway, which traverses six separate states, supplies the drinking water for over 3 million people. Extending the potential water impact even further, the primary product of the Shell facility is plastics, whose inevitable disposal would unnecessarily add to the glut of plastic waste entering our oceans. Plastic is accumulating at the alarming rate of 3,500 pieces a day on one island in the South Pacific and as far away as the waters of the Arctic.

Figure 7: View of the Ohio River, downriver from the site of Shell’s proposed ethane cracker. Existing sources of industrial pollution to the river include the American Electric power plants, coal loading docks, barges, coal ash lagoons, and dry coal ash beds shown in this picture, and at least two fracking operations within the coal plant areas. Credit: Vivian Stockman/ohvec.org; flyover courtesy SouthWings.org.

Figure 7. View of the Ohio River, downriver from the site of Shell’s proposed ethane cracker. Existing sources of industrial pollution to the river include the American Electric power plants, coal loading docks, barges, coal ash lagoons, and dry coal ash beds shown in this picture, and at least two fracking operations within the coal plant areas. Credit: Vivian Stockman/ohvec.org; flyover courtesy SouthWings.org.

How does fragmentation favor industry?

The gas and petrochemical industry would likely defend the logistical flexibility the piecemeal process affords them, allowing them to tackle projects, make investments, and involve new players as needed overtime. But in what other ways do the incredibly fragmented approval processes, and the limited requirements on transparency, favor companies like Shell and their region-changing petrochemical projects? And what effect does the absence of full transparency have on local communities like those in Beaver County? We conclude that it:

  • “Divides and conquers” the region. The piecemeal approach to gas development, and major projects like the Shell ethane cracker, deny any sense of solidarity between the people along the pipeline route resisting these potentially explosive channels cutting through their yards, and residents of Beaver County who fear the cracker’s emissions that will surround their homes.
  • Makes the project seem a foregone conclusion, putting pressure on others to approve. For example, before Shell formally announced its intention to build the facility in Potter Township, it rerouted a state-owned road to facilitate construction and increased traffic flow. Likewise, though a key permit is still outstanding with the PA DEP, first responders, including local volunteer firefighters, have already begun dedicating their uncompensated time to training with Shell. While this is a positive step from a preparedness standpoint, it is one of many displays of confidence by Shell that the cracker is a done deal.
  • Puts major decisions in the hands of those with limited resources to carry them out and who do not represent the region to be affected. In the case of the Shell ethane cracker, three township supervisors in Potter Township granted approvals for the project. The impacts, however, extend well beyond Potter or even Beaver county and include major air impacts for Allegheny County and the Pittsburgh area. Effects will also be felt by landowners and residents in numerous counties and two states along the pipeline route, those near cryogenic facilities in Ohio and Pennsylvania, plus those living on the Marcellus and Utica shale plays who will see gas well production continue and potentially increase.


Figures 8a and 8b. Potter Township Supervisors give the go-ahead to draft approval of Shell’s proposed ethane cracker at a January meeting, while confronted with public concern about deficiencies in Shell’s permit applications. Photos courtesy of the Air Quality Collaborative.

Fragmented Transparency, Compromised Decision-making

The piecemeal, incremental, and fragmented approval processes for the ethane cracker – and other gas-related facilities in the making – create one major problem. They make it nearly impossible for locals, elected officials, and regulatory agencies to see the whole picture as they make decisions. The bit-by-bit approach to gas development amounts to far-reaching development with irreversible impacts to environmental and human health.

We ask readers, as they contemplate the impacts closest to them – be it a fracked well, a hazardous cryogenic facility, the heavily polluted Ohio River, a swath of land taken up for the pipeline’s right-of-way, or Shell’s ethane cracker itself – to insist that they, their elected officials, and regulators have access to the whole picture before approvals are granted. It’s hard to do with a project so enormous and far-reaching, but essential because the picture includes so many of us.

Sincere Appreciation

To The International League of Conservation Photographers, The Ohio Environmental Council, and The Air Quality Collaborative for sharing photographs.

To Sophie Riedel for sharing her visualizations of natural gas interstate pipelines.

To Lisa Hallowell at the Environmental Integrity Project, and Samantha Rubright and Kirk Jalbert at FracTracker, for their review of and and invaluable contributions to this series.

Photo courtesy of Claycord.com

Tracking Refinery Emissions in California’s Bay Area Refinery Corridor

Air quality in the California Bay Area has been steadily improving over the last decade, and the trend can even be seen over just the course of the last few years. In this article we explore data from the ambient air quality monitoring networks in the Bay Area, including a look at refinery emissions.

From the data and air quality reports we find that that many criteria pollutants such as fine particulate matter (PM2.5) and oxides of nitrogen (NOX) have decreased dramatically, and areas that were degraded are now in compliance.

While air pollution from certain sectors such as transportation have been decreasing, the north coast of the East Bay region is home to a variety of petrochemical industry sites. This includes five petroleum refineries. The refineries not only contribute to these criteria pollutants, but also emit a unique cocktail of toxic and carcinogenic compounds that are not monitored and continue to impact cardiovascular health in the region. This region, aptly named the “refinery corridor” has a petroleum refining capacity of roughly 800,000 BPD (barrels per day) of crude oil.

Petroleum refineries in California’s East Bay have always been a contentious issue, and several of the refineries date back to almost the turn of the 20th century. The refineries have continuously increased their capacities and abilities to refine dirtier crude oil through “modernization projects.” As a result, air quality and health impacts became such a concern that in 2006 and again in 2012, Gayle McLaughlin, a Green Party candidate, was elected as Mayor of the City of Richmond. Richmond, CA became the largest city in the U.S. with a Green Party Mayor. While there have been many strides in the recent decade to clean up these major sources of air pollution, health impacts in the region including cardiovascular disease and asthma, as well as cancer rates, are still disproportionately high.

Regulations

To give additional background on this issue, let’s discuss some the regulations tasked with protecting people and the environment in California, as well as climate change targets.

New proposals for meeting California’s progressive carbon emissions standards were proposed in January of 2017. A vote to decide on the plan to meet the aggressive new climate target and reduce greenhouse gas emissions 40% across all sectors of the economy will happen this month, May 2017! Over the last ten years the refineries have invested in modernization projects costing more than $2 billion to reduce emissions.

However – a current proposal will actually allow the refineries to process more crude oil by setting a standard for emissions by volume of crude/petroleum refined, rather than an actual cap on emissions. The current regulatory approach focuses on “source-by-source” regulations of individual equipment, which ignores the overall picture of what’s spewing into nearby communities and the atmosphere. Even the state air resources board has supported a move to block the refineries from accepting more heavy crude from the Canadian tar sands.

New regulatory proposals incentivize refineries to continue expanding operations to refine more oil, resulting in a larger burden on the health of these already disproportionately impacted environmental justice communities. Chevron, in particular, is upgrading their Richmond refinery in a way as to allow it to process dirtier crude in larger volumes from the Monterey Shale and Canada’s Tar Sands. Since the production volumes of lighter crudes are shrinking, heavier dirtier crudes are becoming a larger part of the refinerys’ feedstocks. Heavier crudes require more energy to refine and result in larger amounts of hazardous emissions.

Upgrades are also being implemented to address greenhouse gas emissions. While the upgrades address the carbon emissions, regulatory standards without strict caps for other pollutants will allow emissions of criteria and toxic air pollutants such as VOC’s, nitrosamines, heavy metals, etc… to increase. In fact, newly proposed emissions standards for refineries will make it easier for the refineries to increase their crude oil volumes by regulating emissions on per-barrel standards. Current refining volumes can be seen below in Table 1, along with their maximum capacity.

Table 1. Bay Area refineries average oil processed and total capacity

Refinery Location Ave. oil processed
Barrels Per Day (2012 est.)
Max. capacity (BPD)
Chevron U.S.A. Inc. Richmond Refinery Richmond 245,271 >350,000
Tesoro Refining & Marketing, Golden Eagle Refinery Martinez 166,000 166,000
Shell Oil Products US, Martinez Refinery Martinez 156,400 158,000
Valero Benicia Refinery Benicia 132,000 150,000
Phillips 66, Rodeo San Francisco Refinery Rodeo 78,400 100,000

Source: California Energy Commission. One barrel of oil = 42 U.S. gallons.

Environmental Health Inequity

The Bay Area, and in particular the city of Richmond, have been noted in the literature as a place where environmental racism and environmental health disparity exist. The city’s residents of color disproportionately live near the refineries and chemical plants, which is noted in early works on environmental racism by pioneers of the idea, such as Robert Bullard (Bullard 1993a,b).

Since the issue has been brought to national attention by environmental justice groups like West County Toxics Coalition, progress has been made to try to bring justice, but it has been limited. People of color are still disproportionately exposed to toxic, industrial pollution in that area. A recent study showed 93% of respondents in Richmond were concerned about the link between pollution and health, and 81% were concerned about a specific polluter, mainly the Chevron Refinery (Brody et al. 2012). Recent health reports continue to show the trend that these refinery communities suffer disproportionately from cases of asthma and cardiovascular disease and higher mortality rates from a variety of cancers.

Health Impact Studies

Manufacturing and refining are known to produce particularly toxic pollution. Additionally, there has been research done on the specific makeup of pollution in the refinery corridor. The best study to do this is the Northern California Household Exposure Study (Brody et al. 2009). They examined indoor and outdoor air in Richmond, a refinery corridor community, and Bolinas, a nearby but far more rural community. They found 33% more compounds in Richmond, along with higher concentrations of each compound. The study also found very high concentrations of vanadium and nickel in Richmond, some of the highest levels in the state. Vanadium and nickel have been shown to be some of the most dangerous PM2.5 components as we previously stated, which gives reason to believe the air pollution in Richmond is more toxic than in surrounding areas.

Another very similar study compared the levels of endocrine disrupting compounds in Richmond and Bolinas homes, and found 40 in Richmond homes and only 10 in Bolinas (Rudel et al. 2010). This supports the idea that a large variety of pollutants with synergistic effects may be contributing to the increased mortality and hospital visits for communities in this region. This small body of research on pollution in Richmond suggests that the composition of air pollution may be more toxic and thus trigger more pollution-related adverse health outcomes than in surrounding communities.

Air Quality Monitoring

As discussed above and in FracTracker’s previous reports on the refinery corridor, the refinery emissions are a unique cocktail whose synergistic effects may be driving much of the cardiovascular disease, asthma, and cancer risk in the region. Therefore, the risk drivers in the Bay Area need to be prioritized, in particular the compounds of interest emitted by the petrochemical facilities.

The targets for emissions monitoring are compounds associated with the highest risk in the neighboring communities. An expert panel was convened in 2013 to develop plans for a monitoring network in the refinery corridor. Experts found that measurements should be collected at 5 minute intervals and displayed to the public real-time. The gradient of ambient air concentrations is determined by the distance from refinery, so a network of three near-fence-line monitors was recommended. Major drivers of risk are supposed to be identified by air quality monitoring conducted as a part of Air District Regulation 12m Rule 15: Petroleum Refining Emissions tracking. According to the rule, fence-line monitoring plans by refinery operators:

… must measure benzene, toluene, ethyl benzene, and xylenes (BTEX) and HS concentrations at refinery fence-lines with open path technology capable of measuring in the parts per billion range regardless of path length. Open path measurement of SO2, alkanes or other organic compound indicators, 1, 3-butadiene, and ammonia concentrations are to be considered in the Air Monitoring Plan.

The following analysis found that the majority of hazardous pollutants emitted from refineries are not monitored downwind of the facility fence-lines, much less the list explicitly named in the regulations above.

As shown below in Figure 1, the most impacted communities are in those directly downwind of the facility. According to the BAAQMD, each petroleum refinery is supposed to have fence-line monitoring. Despite this regulation developed by air quality and health experts, only two out of the five refineries have even one fence-line monitor. Real-time air monitoring data at the Chevron Richmond fence-line monitor and the Phillips 66 Rodeo fence-line monitor can be found on fenceline.org. Data from these monitors are also aggregated by the U.S. EPA, and along with the other local monitors, can be viewed on the EPA’s interactive mapping platform.

Figure 1. Map of Hydrogen Sulfide Emissions from the Richmond Chevron Refinery
Refinery emissions - H2S gradient

Hazardous Emissions and Ambient Pollution

Since the majority of hazardous chemicals emitted from the refineries are not measured at monitoring sites, or there are not any monitoring sites at the fence-line or downwind of the facility, our mapping exercises instead focus on the hazardous air pollution for which there is data.

As shown in the map of hydrogen sulfide (H2S) above, the communities immediately neighboring the refineries are subjected to the majority of hazardous emissions. The map shows the rapidly decreasing concentration gradient as you get away from the facility. H2S would have been a good signature of refinery emissions throughout the region if there were more than three monitors. Also, those monitors only existed until 2013, when they were replaced with a singular monitor in a much better location, as shown on the map. The 2016 max value is much higher because it is more directly downwind of Chevron Refinery.

The interpolated map layer was created using 2013 monitoring data from three monitors that have since been removed. The 2016 monitoring location is in a different location and has a maximum value more than twice what was recorded at the 2013 location.

Table 2. Inventory of criteria pollutant emissions for the largest sectors in the Bay Area

Annual average tons per day
PM10 PM2.5 ROG NOX SOX CO
Area wide 175.51 52.90 87.95 19.92 0.62 161.86
Mobile 20.33 16.27 183.12 380.52 14.93 1541.50
Total Emissions 16.30 12.14 106.58 50.59 45.95 44.31

Table adapted from the BAAQMD Refinery Report. PM10 = particulate matter less than 10 microns in diameter  (about the width of a human hair); PM2.5 = PM less than 2.5 microns in diameter; ROG = reactive organic gases; NOX = nitrogen oxides; SOX = sulfur oxides; CO = carbon monoxide.

Additionally, exposure assessment can also rely on using surrogate emissions to understand where the plumes from the refineries are interacting with the surrounding communities. It is particularly important to also discriminate between different sources of pollution. As we see in Table 2 above, the largest volume of particulate matter (PM), NOX, and CO emissions actually come from mobile sources, whereas the largest source of sulfur dioxide and other oxides (SOX) is from stationary sources. Since the relationship between PM2.5 and health outcomes is most established, the response to ambient levels of PM2.5 in the refinery corridor gives insight into the composition of PM as well as the presence of other species of hazardous air pollution. On the other hand, SO2 can be used as a surrogate for the footprint of un-monitored air toxics.

Pollutants’ Fingerprints

Particulate Matter

Figure 2. Map of fine particulate matter (PM2.5) for the Bay Area Air Quality Management District

View map fullscreen | How FracTracker maps work

Figure 2 above displays ambient levels of PM2.5, and as the map shows, the highest levels of particulate matter surround the larger metro area of downtown Oakland and also track with the larger commuting corridors. The map shows evidence that the largest contributor to PM2.5 is truly the transportation (mobile) sector. PM2.5 is one hazardous air pollutant which negatively impacts health, causing heart attack, or myocardial infarction (MI), among other conditions. PM2.5 is particulate matter pollution, meaning small particles suspended in the air, specifically particles under 2.5 microns in diameter. Exposure to high levels of PM2.5 increases the risk of MI within hours and for the next 1-2 days (Brooks et al. 2004; Poloniecki et al. 1997).While refineries may not be the largest source of PM in the Bay Area, they are still large point sources that contribute to high local conditions of smog.

The chemical make-up of the particulate matter also needs to be considered. In addition, the toxicity of PM from the refineries is of particular concern. Since particulate matter acts like small carbon sponges, the source of PM affects its toxicity. The cocktail of hazardous air toxics emitted by refineries absorb and adsorb to the surfaces of PM. When inhaled with PM, these toxics including heavy metals and carcinogens are delivered deep into lung tissue.

Pooled results of many studies showed that for every 10 micrograms per meter cubed increase in PM2.5 levels, the risk of MI increases 0.4-1% (Brooks et al. 2010).  However, this relationship has not been studied in the context of EJ communities. EJ communities are generally low income communities of color (Bullard 1993), which have higher exposures to pollution, more sources of stress, and higher biological markers of stress (Szanton et al. 2010; Carlson and Chamberlein 2005). All of these factors may affect the relationship between PM2.5 and MI, and increase the health impact of pollution in EJ communities relative to what has been found in the literature.

Sulfur Dioxide

Figure 3 below shows the fingerprint of the refinery emissions on the refinery corridor, using SO2 emissions as a surrogate for the cocktail of toxic emissions. The relationship between SOand health endpoints of cardiovascular disease and asthma have also been established in the literature (Kaldor et al. 1984).

In addition to assessing SO2 as a direct health stressor, it is also the most effective tracer of industrial emissions and specifically petroleum refineries for a number of reasons. Petroleum refineries are the largest source of SO2 in the BAAQMD by far (Table 1), and there are more monitors for SO2 than any of the other emitted chemical species that can be used to fingerprint the refineries. The distribution of SO2 is therefore representative of the cocktail of a combination of the hazardous chemicals released in refinery emissions.

Figure 3. Map of Sulfur Dioxide for the Bay Area Air Quality Management District

View map fullscreen | How FracTracker maps work

Further Research

The next step for FracTracker Alliance is to further explore the relationship between health effects in the refinery communities and ambient levels of air pollution emitted by the refineries. Our staff is currently working with the California Department of Public Health to analyze the response of daily emergency room discharges for a variety of health impacts including cardiovascular disease and asthma.

References

Brody, J. G., R. Morello-Frosch, A. Zota, P. Brown, C. Pérez, and R. A. Rudel. 2009. Linking Exposure Assessment Science With Policy Objectives for Environmental Justice and Breast Cancer Advocacy: The Northern California Household Exposure Study. American Journal of Public Health 99:S600–S609.

Brook, R. D., B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S. C. Smith, and I. Tager. 2004. Air Pollution and Cardiovascular Disease. Circulation 109:2655–2671.

Brooks, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, L. Whitsel, and J. D. Kaufman. 2010. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 121:2331–2378.

Bullard, R. D. 1993a. Race and Environmental Justice in the United States Symposium: Earth Rights and Responsibilities: Human Rights and Environmental Protection. Yale Journal of International Law 18:319–336.

Bullard, R. D. 1993b. Confronting Environmental Racism: Voices from the Grassroots. South End Press.

Carlson, E.D. and Chamberlain, R.M. (2005), Allostatic load and health disparities: A theoretical orientation. Res. Nurs. Health, 28: 306–315. doi:10.1002/nur.20084

Kaldor, J., J. A. Harris, E. Glazer, S. Glaser, R. Neutra, R. Mayberry, V. Nelson, L. Robinson, and D. Reed. 1984. Statistical association between cancer incidence and major-cause mortality, and estimated residential exposure to air emissions from petroleum and chemical plants. Environmental Health Perspectives 54:319–332.

Poloniecki, J. D., R. W. Atkinson, A. P. de Leon, and H. R. Anderson. 1997. Daily Time Series for Cardiovascular Hospital Admissions and Previous Day’s Air Pollution in London, UK. Occupational and Environmental Medicine 54:535–540.

Rudel, R. A., R. E. Dodson, L. J. Perovich, R. Morello-Frosch, D. E. Camann, M. M. Zuniga, A. Y. Yau, A. C. Just, and J. G. Brody. 2010. Semivolatile Endocrine-Disrupting Compounds in Paired Indoor and Outdoor Air in Two Northern California Communities. Environmental Science & Technology 44:6583–6590.

Szanton SL, Thorpe RJ, Whitfield KE. Life-course Financial Strain and Health in African-Americans. Social science & medicine (1982). 2010;71(2):259-265. doi:10.1016/j.socscimed.2010.04.001.


By Daniel Menza, Data & GIS Intern, and Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo credit: Claycord.com

The BP Whiting, IN Oil Refinery

US Oil Refineries and Economic Justice

How annual incomes in the shadow of oil refineries compare to state and regional prosperity

North American Oil Refinery Capacity (Barrels Per Day (BPD))

Figure 1. North American Oil Refinery Capacity

Typically, we analyze the potential economic impacts of oil refineries by simply quantifying potential and/or actual capacity on an annual or daily basis. Using this method, we find that the 126 refineries operating in the U.S. produce an average of 100,000-133,645 barrels per day (BPD) of oil – or 258 billion gallons per year.

In all of North America, there are 158 refineries. When you include the 21 and 27 billion gallons per year produced by our neighbors to the south and north, respectively, North American refineries account for 23-24% of the global refining capacity. That is, of course, if you believe the $113 dollar International Energy Agency’s 2016 “Medium-Term Oil Market Report” 4.03 billion gallon annual estimates (Table 1 and Figure 1).

Table 1. Oil Refinery Capacity in the United States and Canada (Barrels Per Day (BPD))

United States Canada Mexico Total
Refinery Count 126 17 6 158
Average Capacity 133,645 BPD 104,471 BPD 228,417 BPD 139,619 BPD
Low Foreland & Silver Eagle Refining in NV & WY, 2-3K BPD Prince George & Moose Jaw Refining in BC and SK, 12-15K BPD Pemex’s Ciudad Madero Refinery, 152K BPD
High Exxon Mobil in TX & LA, 502-560K BPD Valero and Irving Oil Refining in QC & NS, 265-300K BPD Pemex’s Tula Refinery, 340K BPD
Median 100,000 BPD 85,000 BPD 226,500 109,000
Total Capacity 16.8 MBPD 1.8 MBPD 1.4 MBPD 22.1 MBPD

Census Tract Income Disparities

However, we would propose that an alternative measure of a given oil refinery’s impact would be neighborhood prosperity in the census tract(s) where the refinery is located. We believe this figure serves as a proxy for economic justice. As such, we recently used the above refinery location and capacity data in combination with US Census Bureau Cartographic Boundaries (i.e., Census Tracts) and the Census’ American FactFinder clearinghouse to estimate neighborhood prosperity near refineries.

Methods

Our analysis involved merging oil refineries to their respective census tracts in ArcMAP 10.2, along with all census tracts that touch the actual census tract where the refineries are located, and calling that collection the oil refinery’s sphere of influence, for lack of a better term. We then assigned Mean Income in the Past 12 Months (In 2014 Inflation-Adjusted Dollars) values for each census tract to the aforementioned refinery tracts – as well as surrounding regional, city, and state tracts – to allow for a comparison of income disparities. We chose to analyze mean income instead of other variables such as educational attainment, unemployment, or poverty percentages because it largely encapsulates these economic indicators.

As the authors of the UN’s International Forum of Social Development paper Social Justice in an Open World wrote:

In today’s world, the enormous gap in the distribution of wealth, income and public benefits is growing ever wider, reflecting a general trend that is morally unfair, politically unwise and economically unsound… excessive income inequality restricts social mobility and leads to social segmentation and eventually social breakdown…In the modern context, those concerned with social justice see the general  increase  in  income  inequality  as  unjust,  deplorable  and  alarming.  It is argued that poverty reduction and overall improvements in the standard of living are attainable goals that would bring the world closer to social justice.

Environmental regulatory agencies like to separate air pollution sources into point and non-point sources. Point sources are “single, identifiable” sources, whereas non-point are more ‘diffuse’ resulting in impacts spread out over a larger geographical area. We would equate oil refineries to point sources of socioeconomic and/or environmental injustice. The non-point analysis would be far more difficult to model given the difficulties associated with converting perceived quality of life disturbance(s) associated with infrastructure like compressor stations from the anecdotal to the empirical.

Results

Primarily, residents living in the shadow of 80% of our refineries earn nearly $16,000 less than those in the surrounding region – or, in the case of urban refineries, the surrounding Metropolitan Statistical Areas (MSAs). Only residents living in census tracts within the shadow of 25 of our 126 oil refineries earn around $10,000 more annually than those in the region.

On average, residents of census tracts that contain oil refineries earn 13-16% less than those in the greater region and/or MSAs (Figure 2). Similarly, in comparing oil refinery census tract incomes to state averages we see a slightly larger 17-21% disparity (Figure 3).

Digging Deeper

United States Oil Refinery Income Disparities (Note: Larger points indicate oil refinery census tracts that earn less than the surrounding region or city)

Figure 4. United States Oil Refinery Income Disparities (Note: Larger points indicate oil refinery census tracts that earn less than the surrounding region or city.)

Oil refinery income disparities seem to occur not just in one region, but across the U.S. (Figure 4).

The biggest regional/MSA disparities occur in northeastern Denver neighborhoods around the Suncor Refinery complex (103,000 BPD), where the refinery’s census tracts earn roughly $42,000 less than Greater Denver residents1. California, too, has some issues near its Los Angeles’ Valero and Tesoro Refineries and Chevron’s Bay Area Refinery, with a combined daily capacity of nearly 600 BPD. There, two California census associations in the shadow of those refineries earn roughly $38,000 less than Contra Costa and Los Angeles Counties, respectively. In the Lone Star state Marathon’s Texas City, Galveston County refinery resides among census tracts where annual incomes nearly $33,000 less than the Galveston-Houston metroplex. Linden, NJ and St. Paul, MN, residents near Conoco Phillips and Flint Hills Resources refineries aren’t fairing much better, with annual incomes that are roughly $35,000 and nearly $33,000 less than the surrounding regions, respectively.

Click on the images below to explore each of the top disparate areas near oil refineries in the U.S. in more detail. Lighter shades indicate census tracks with a lower mean annual income ($).

Conclusion

Clearly, certain communities throughout the United States have been essentially sacrificed in the name of Energy Independence and overly-course measures of economic productivity such as Gross Domestic Product (GDP). The presence and/or construction of mid- and downstream oil and gas infrastructure appears to accelerate an already insidious positive feedback loop in low-income neighborhoods throughout the United States. Only a few places like Southeast Chicago and Detroit, however, have even begun to discuss where these disadvantaged communities should live, let alone how to remediate the environmental costs.

Internally Displaced People

There exists a robust history of journalists and academics focusing on Internally Displaced People (IDP) throughout war-torn regions of Africa, the Middle East, and Southeast Asia – to name a few – and most of these 38 million people have “become displaced within their own country as a result of violence.” However, there is a growing body of literature and media coverage associated with current and potential IDP resulting from rising sea levels, drought, chronic wildfire, etc.

The issues associated with oil and gas infrastructure expansion and IDPs are only going to grow in the coming years as the Shale Revolution results in a greater need for pipelines, compressor stations, cracker facilities, etc. We would propose there is the potential for IDP resulting from the rapid, ubiquitous, and intense expansion of the Hydrocarbon Industrial Complex here in the United States.

N. American Hydrocarbon Industrial Complex Map


View map fullscreenHow FracTracker maps work | Download map data

Footnotes and Additional Reading

  1. The Suncor refinery was implicated in a significant leak of tar sands crude associated benzene into the South Platte River as recently as 2013. According to Suncor’s website this refinery “supplies about 35% of Colorado’s gasoline and diesel fuel demand and is a major supplier of jet fuel to the Denver International Airport. The refinery is also the largest supplier of paving-grade asphalt in Colorado.”
  2. New York Times story on the growing footprint of BP’s Whiting Refinery: Surrounded by Industry, a Historic Community Fights for Its Future

By Ted Auch, PhD – Great Lakes Program Coordinator, FracTracker Alliance

Richmond, CA crude by rail protest

CA Refineries: Sources of Oil and Crude-by-Rail Terminals

CA Crude by Rail, from the Bakken Shale and Canada’s Tar Sands to California Refineries
By
Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community Based Research & Engagement

Refineries in California plan to increase capacity and refine more Bakken Shale crude oil and Canadian tar sands bitumen. However, CA’s refinery communities that already bear a disparate amount of the burden (the refinery corridor along the north shore of the East Bay) will be more impacted than they were previously. New crude-by-rail terminals will put additional Californians at risk of accidents such as spills, derailments, and explosions. Additionally, air quality in refinery communities will be further degraded as refineries change to lower quality sources of crude oil. Below we discuss where the raw crude oil originates, why people are concerned about crude-by-rail projects, and what CA communities are doing to protect themselves. We also discuss our GIS analysis, showing the number of Californians living within the half-mile blast zones of the rail lines that currently are or will be supported by the new and existing crude by rail terminal projects.

Sources of Raw Crude Oil

Sources of Refinery HAPs

Figure 1. Sources of crude oil feedstock refined in California over time (CA Energy Commission, 2015)

California’s once plentiful oil reserves of locally extracted crude are dwindling and nearing depletion. Since 1985, crude extraction in CA has dropped by half. Production from Alaska has dropped even more, from 2 million B/D (barrels per day) to around 500,000 B/D. The 1.9 million B/D refining capacity in CA is looking for new sources of fuels. Refineries continue to supplement crude feedstock with oil from other sources, and the majority has been coming from overseas, specifically Iraq and Saudi Arabia. This trend is shown in figure 1.

Predictions project that sources of raw crude oil are shifting to the energy intensive Bakken formation and Canadian Tar Sands. The Borealis Centre estimates an 800% increase of tar sands oil in CA refineries over the next 25 years (NRDC, 2015). The increase in raw material from these isolated locations means new routes are necessary to transport the crude to refineries. New pipelines and crude-by-rail facilities would be necessary, specifically in locations where there are not marine terminals such as the Central Valley and Central Coast of CA. The cheapest way for operators in the Canadian Tar Sands and North Dakota’s Bakken Shale to get their raw crude to CA’s refinery markets is by railroad (30% less than shipping by marine routes from ports in Oregon and Washington), but this process also presents several issues.

CA Crude by Rail

More than 1 million children — 250,000 in the East Bay — attend school within one mile of a current or proposed oil train line (CBD, 2015). Using this “oil train blast zone” map developed by ForestEthics (now called Stand) you can explore the various areas at risk in the US if there was an oil train explosion along a rail line. Unfortunately, there are environmental injustices that exist for communities living along the rail lines that would be transporting the crude according to another ForestEthics report.

To better understand this issue, last year we published an analysis of rail lines known to be used for transporting crude along with the locations of oil train incidents and accidents in California. This year we have updated the rail lines in the map below to focus on the Burlington Northern Santa Fe (BNSF) and Union Pacific (UP) railroad lines, which will be the predominant lines used for crude-by-rail transport and are also the focus of the CA Emergency Management Agency’s Oil by Rail hazard map.

The specific focus of the map in Figure 2 is the five proposed and eight existing crude-by-rail terminals that allow oil rail cars to unload at the refineries. The eight existing rail terminals have a combined capacity of 496,000 barrels. Combined, the 15 terminals would increase CA’s crude imports to over 1 million B/D by rail. The currently active terminals are shown with red markers. Proposed terminals are shown with orange markers, and inactive terminals with yellow markers. Much of the data on terminals was taken from the Oil Change International Crude by Rail Map, which covers the entire U.S.

Figure 2. Map of CA Crude by Rail Terminals

View Map Fullscreen | How Our Maps Work | Download Rail Terminal Map Data

Additional Proposals

The same type of facility is currently operating in the East Bay’s refinery corridor in Richmond, CA. The Kinder Morgan Richmond terminal was repurposed from handling ethanol to crude oil, but with no public notice. The terminal began operating without conducting an Environmental Impact Report (EIR) or public review of the permit. Unfortunately, this anti-transparent process was similar to a tactic used by another facility in Kern County. The relatively new (November 2014) terminal in Taft, CA operated by Plains All American Pipeline LLC also did not conduct an EIR, and the permit is being challenged on the grounds of not following the CA Environmental Quality Act (CEQA).

EIRs are an important component of the permitting process for any hydrocarbon-related facility. In April 2015 in Pittsburg, for example, a proposed 50,000 B/D terminal at the WesPac Midstream LLC’s railyard was abandoned due to community resistance and criticism over the EIR from the State Attorney General, along with the larger proposal of a 192,000 B/D marine terminal.

Still, many other proposals are in the works for this region. Targa Resources, a midstream logistics company, has a proposed a 70,000 B/D facility in the Port of Stockton, CA. Alon USA has a permitted project for revitalizing an idle Bakersfield refinery because of poor economics and have a permit to construct a two-unit train/day (150,000 B/D) offloading facility on the refinery property. Valero dropped previous plans for a rail oil terminal at its Wilmington refinery in the Los Angeles/Long Beach port area, and Questar Pipeline has preliminary plans for a  rail oil terminal in the desert east of the Palm Springs area for a unit-train/day.

Air Quality Impacts of Refining Tar Sands Oil

Crude-by-rail terminals bring with them not only the threat of derailments and the risk of other such accidents, but the terminals are also a source of air emissions. Terminals – both rail and marine – are major sources of PAH’s (polycyclic aromatic hydrocarbons). The Sacramento Valley Railroad (SAV) Patriot rail oil terminal at a business park on the former McClellan Air Force Base property actually had its operating permit withdrawn by Sacramento air quality regulators due to this issue (read more). The terminal was unloading and reloading oil tanker cars.

FracTracker’s recent report, Emissions in the Refinery Corridor, shows that the refineries in this region are the major point source for emissions of both cancer and non-cancer risk drivers in the region. These air pollution sources get worse, however. According to the report by NRDC, changing the source of crude feedstock to increased amounts of Canadian Tar Sands oil and Bakken Shale oil would:

… increase the levels of highly toxic fugitive emissions; heavy emissions of particulate, metals, and benzene; result in a higher risk of refinery accidents; and the accumulation of petroleum coke* (a coal-like, dusty byproduct of heavy oil refining linked to severe respiratory impacts). This possibility would exacerbate the harmful health effects faced by the thousands of low-income families that currently live around the edges of California’s refineries. These effects are likely to include harmful impacts to eyes, skin, and the nervous and respiratory systems. Read NRDC Report

Petroleum coke (petcoke) is a waste product of refining tar sands bitumen (oil), and will burden the communities near the refineries that process tar sands oil. Petcoke has recently been identified as a major source of exposures to carcinogenic PAH’s in Alberta Canada (Zhang et al., 2016). For more information about the contributions of petcoke to poor air quality and climate change, read this report by Oil Change International.

The contribution to climate change from accessing the tar sands also needs to be considered. Extracting tar sands is estimated to release on average 17% average more green-house gas (GHG) emissions than conventional oil extraction operations in the U.S., according to the U.S. Department of State. (Greenhouse gases are gases that trap heat in the atmosphere, contributing to climate change on a global scale.) The refining process, too, has a larger environmental / public health footprint; refining the tar sands to produce gasoline or diesel generates an average of 81% more GHGs (U.S. Dept of State. Appendix W. 2015). In total this results in a much larger climate impact (NRDC, NextGen Climate, Forest Ethics. 2015).

Local Fights

People opposed to CA crude by rail have been fighting the railway terminal proposals on several fronts. In Benicia, Valero’s proposal for a rail terminal was denied by the city’s Planning Commission, and the project’s environmental impact report was denied, as well. The city of Benicia, however, hired lawyers to ensure that the railway projects are built. The legality of railway development is protected regardless of the impacts of what the rails may be used to ship. This legal principle is referred to as “preemption,” which means the federal permitting prevents state or local actions from trying to limit or block development. In this case, community and environmental advocacy groups such as Communities for a Better Environment, the Natural Resources Defense Council, and the Stanford-Mills Law Project all agree the “preemption” doctrine doesn’t apply here. They believe preemption does not disallow the city or other local governments from blocking land use permits for the refinery expansion and crude terminals that unload the train cars at the refinery.  The Planning Commission’s decision is being appealed by Valero, and another meeting is scheduled for September, 2016.

The fight for local communities along the rail-lines is more complicated when the refinery is far way, under the jurisdiction of other municipalities. Such is the case for the Phillips 66 Santa Maria Refinery, located on California State Highway 1 on the Nipomo Mesa. The Santa Maria refinery is requesting land use permits to extend track to the Union Pacific Railway that transits CA’s central coast. The extension is necessary to bring the rail cars to the proposed rail terminal. This project would not just increase traffic within San Luis Obispo, but for the entirety of the rail line, which passes directly through the East Bay. The project would mean an 80-car train carrying 2 million gallons of Bakken Crude would travel through the East Bay from Richmond through Berekely and Emeryville to Jack London Square and then south through Oakland and the South Bay.  This would occur 3 to 5 times per week. In San Luis Obispo county 88,377 people live within the half-mile blast zone of the railroad tracks.

In January, the San Luis Obispo County Planning Department proposed to deny Phillips 66 the permits necessary for the rail spur and terminals. This decision was not easy, as Phillips 66, a corporation ranked Number 7 on the Fortune 500 list, has fought the decision. The discussion remained open with many days of meetings, but the majority of the San Luis Obispo Planning Commission spoke in favor of the proposal at a meeting Monday, May 16. There is overwhelming opposition to the rail spur project coming from 250 miles away in Berkeley, CA. In 2014, the Berkeley and Richmond city councils voted to oppose all transport of crude oil through the East Bay. Without the rail spur approval, Phillips 66 declared the Santa Maria refinery would otherwise transport oil from Kern County via 100 trucks per day. Learn more about this project.

GIS Analysis

GIS techniques were used to estimate the number of Californians living in the half mile “at risk” blast zone in the communities hosting the crude-by-rail lines. First, we estimated the total population of Californians living a half mile from the BNSF and UP rail lines that could potentially transport crude trains. Next, we limited our study area to just the East Bay refinery corridor, which included Contra Costa and the city of Benicia in Solano County. Then, we estimated the number of Californians that would be living near rail lines if the Phillips 66 Santa Maria refinery crude by rail project is approved and becomes operational. The results are shown below:

  1. Population living within a half mile of rail lines throughout all of California: 6,900,000
  2. Population living within a half mile of rail lines in CA’s East Bay refinery communities: 198,000
  3. Population living within a half mile of rail lines along the UP lines connecting Richmond, CA to the Phillips 66 Santa Maria refinery: 930,000

CA Crude by Rail References

  1. NRDC. 2015. Next Frontier for Dangerous Tar Sands Cargo:California. Accessed 4/15/16.
  2. Oil Change International. 2015. Rail Map.
  3. Global Community Monitor. 2014. Community Protest Against Crude Oil by Rail Blocks Entrance to Kinder Morgan Rail Yard in Richmond
  4. CEC. 2015. Sources of Oil to California Refineries. California Energy Commission. Accessed 4/15/16.
  5. Zhang Y, Shotyk W, Zaccone C, Noernberg T, Pelletier R, Bicalho B, Froese DG, Davies L, and Martin JW. 2016. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. Environmental Science and Technology. 50 (4), pp 1711–1720.
  6. U.S. Dept of State. 2015. Final Supplemental Environmental Impact Statement for Keystone XL Pipeline. Accessed 5/15/16.
  7. U.S. Dept of State. 2015. Appendix W Environmental Impact Statement for Keystone XL Pipeline Appendix W. Accessed 5/15/16.
  8. NRDC, NextGen Climate, Forest Ethics. 2015. West Coast Tar Sands Invasion. NRDC 2015. Accessed 4/15/16.

** Feature image of the protest at the Richmond Chevron Refinery courtesy of Global Community Monitor.

Air Pollution in the Bay Area’s Refinery Corridor

Emissions from Refineries and other Sources
By
Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community Based Research & Engagement

Key Takeaways

  • Refineries and petrochemical industry in the Bay Area’s refinery corridor are responsible for the majority of the risk-driving point source emissions in this region.
  • The Chevron Richmond refinery has the largest refining capacity and emits the most hazardous air pollutants (HAPs).
  • The Tesoro refinery in Martinez and the Shell refinery in Martinez emit the most HAPs per barrel of oil (based on refining capacity).
  • The Valero refinery in Benicia, the Tesoro refinery in Martinez, and the Shell refinery in Martinez emit the most criteria air pollutants (CAPs).
  • If refineries increase their capacity and process more crude, the emissions of these various pollutants will invariably increase.
  • New emissions rules need to prioritize ambient air quality and hold the Air District and elected officials accountable for policies that increase risk.

Overview of the Bay Area’s Refinery Corridor

The Bay Area Air Quality Management District is revising the rules for facilities that emit a variety of hazardous pollutants into the air. The current draft of the new rules could actually increase the amount polluters are allowed to emit. The communities at risk are speaking out to support policies that would reduce the amount of air pollutants rather than increase the limits. In support of these communities, the FracTracker Alliance has focused on analyzing the sources of air pollutants in the region. The East Bay Oil Refinery Corridor is located along the North Shore of the East Bay, stretching from Richmond, CA east to Antioch, CA. The region has been named a “sacrifice zone” for the heavy concentration of petrochemical industrial sites. In addition to the five refineries along the north coast, these communities host a variety of other heavy industries and waste sites. The locations of these facilities have been mapped previously by the FracTracker Alliance, here. In the report we found that people of color, specifically African Americans, are disproportionately represented in the community demographics. Novel results indicate that Hispanic students may be disproportionately impacted by the presence of the petrochemical industry. In this post, we continue the analysis of risk in the region by providing an analysis of the contributions to air pollution from these facilities.

Regulations

Refineries and other sources of air pollution are regulated by the U.S. EPA’s Clean Air Act (CAA). The CAA regulates two classes of pollutants:

  1. Criteria air pollutants (CAPs) – including sulfur dioxide, oxides of nitrogen, carbon monoxide, and particulate matter; and
  2. Hazardous air pollutants (HAPs), which includes a list of 594 carcinogenic and non-carcinogenic chemicals that pose a risk to those exposed.

In addition, California regulates green-house-gas (GHG) emissions, and refineries are the second largest industrial source of GHGs. These regulations get applied when facilities need to obtain a permit for a new source of air pollution, or if a facility is making a structural change that could significantly affect emissions. Facilities are required to use “Maximum Available Control Technology” as it relates to industry best practices to control emissions. With these existing engineering controls, refinery emissions are released into the air from the multiple sources/processes shown below in Figure 1. Notice that a large amount of emissions are simply from “Leaks.”

Sources of Refinery HAPs

Figure 1. Breakdown of emissions from petroleum refineries (US EPA, 2011)

The new rules drafted by the BAAQMD to regulate emissions from the East Bay Oil Refinery Corridor would not cap emissions at any level. The current proposal outlines limits on emissions per barrel, promoting efficiency rather than focusing on emissions reductions. Air quality in the refinery corridor could be improved only if this approach was proposed in conjunction with emission limits or reductions. But as the currently proposed rules stand, emissions could actually increase. Enforcement procedures for infractions are also limited. If a refinery’s emissions violate the per barrel standards, the refinery has a whole 3 years to address the violation. Also, these new rules come at a time when refineries are moving to increase the volume of crude coming in from other regions, such as Canada’s tar sands and the Bakken Shale. These regions produce much lower “quality” crude oil, with much higher emissions. This all amounts to more air pollution rather than less.

Community and environmental activist groups such as the Communities for a Better Environment (CBE) and the Bay Area Refinery Corridor Coalition have raised specific issues with the proposed rules as they stand. First, they allow for increase emissions when Air District data forecasts increasing refinery emissions, despite declining local and domestic fuels demand. Refining the lower quality crude is more energy intensive, which also results in increased emissions. In order to offset the increased emissions, CBE reports that refineries can just increase total refining production to decrease per barrel averages. This would in affect increase emissions to meet regulatory requirements. In addition, transporting the crude via new shipping routes would put additional communities at elevated risk of railway accidents (CBE, 2015).

Ambient Air Quality

Air quality in the Bay Area has been continuously improving over the last few decades, but these refinery communities are still at a significantly higher risk of dying from heart disease and strokes. The largest disparity is felt by the African-American populations. Data for Richmond, CA shows they are 1.5 times more likely to die from these diseases than the Contra Costa county average (Casanova, Diemoz, Lifshay, McKetney, 2010). Emissions reductions not only favor the local communities such as the refinery corridor that are most impacted, but also all of the downwind communities, specifically the Central Valley. The Air District’s 2012 report of PM provides a summary of these trends. PM is an important because it is “the air pollutant that causes by far the greatest harm to public health in the bay area. It is a useful indices because there is a linear correlation between increasing ambient concentrations and mortality. Figure 2 shows the progress the Bay Area has made, overall. This graph is based on regional monitors and not those in the refinery communities, where improvements have not been as drastic. In Figure 3 below, the graph shows major pollutant drivers of seven health risks and how health impacts have been reduced over this time period. What we see from the bar graph, is that non-diesel anthropogenic point sources of PM contribute the most to risk for the majority of health endpoints considered. Across the entire bay area, refineries account for 6% of all PM (BAAQMD, 2012).

An overview of other chemicals associated with the petrochemical industry in ambient air and their resulting health effects are outlined in tables 1-3 below. This is by no means a comprehensive list, but these are chemicals of primary concern, specific to petroleum refinery emissions, and are known risk drivers for the region.

Fig 2 PM

Figure 2. Measurements of PM, averaged across the entire bay area, over time – showing an overall improvement in air quality.

Fig 3 health impacts

Figure 3. Contribution of different species of air pollution to health impacts. The analysis is specific to the bay area and compares health risks estimates from the past (1980s) to estimates in 2012.

Table 1. Health impacts from criteria air pollutants

Criteria Air Pollutants
Compound Health Effect
Sulfur Dioxide (SO2) and Oxides of Nitrogen (NOx) Array of adverse respiratory effects, airway inflammation in healthy people, increased respiratory symptoms in people with asthma
Carbon Monoxide (CO) Harmful health effects associated with the reduction of oxygen delivery to the body’s organs (heart and brain) and tissues
Particulate Matter Increased respiratory symptoms, irritation of the airways, coughing, or difficulty breathing, decreased lung function; aggravated asthma; development of chronic bronchitis; irregular heartbeat; nonfatal heart attacks; and premature death in people with heart or lung disease

Table 2. Health impacts from hazardous air pollutants known to be emitted from petroleum refineries

Hazardous Air Pollutants
Compound Acute Chronic
Benzene, Toluene, Ethylbenzene, Xylenes Neurological effects, Irritation of the eye, skin and respiratory tract Blood disorders (reduced number of red blood cells and aplastic anemia), cancer.
1,3-Butadiene Irritation of the eyes, throat and respiratory tract Cardiovascular effects, leukemia, cancer
Naphthalene Hemolytic anemia, damage to the liver, neurological effects Cataracts, damage to the retina, hemolytic anemia, cancer
PAHs Skin disorders, depression of the immune system Skin disorders (dermatitis, photosensitization), depression of the immune system, damage to the respiratory tract, cataracts, cancer

Table 3. Health impacts from other pollutants emitted from petroleum refineries

Other Pollutants
Compound Mechanism Health Effect
Volatile Organic Compounds (VOC) Combine with NOx in sunlight to create ozone Significantly reduce lung function and induce respiratory inflammation in normal. Healthy people during periods of moderate exercise, symptoms include chest pain, coughing, nausea, and pulmonary congestion
Greenhouse Gases (GHG), including Methane (CH4), Carbon Dioxide (CO2), Nitrous Oxide (N2O) Compounds with high global warming potential contribute to climate change Increase in average temperatures, higher levels of ground-level ozone, increased drought, harm to water resources, ecosystems and wildlife, health risk to sensitive populations

North Coast Emissions

With these gains in ambient air quality it is hard to fathom why regulators would consider allowing refineries to increase emissions inventories. For this analysis, the focus was to map and compare emissions inventories from numerous industrial sites, with a particular focus on the petroleum refineries.

Current refinery capacities as of 2014 are shown in Figure 4, below. The Richmond Chevron has the largest refining capacity in the region, by far. Refining capacity is the maximum amount of crude oil the refinery is allowed to refine, according to their permit. Refining capacity numbers are used in place of actual refined crude volumes for this analysis, because actual crude volumes are considered proprietary information and are not published by the California Energy Commission (CEC).

The Richmond refinery has a raw crude (atmospheric crude is the technical term) refinement capacity over twice as large as the Phillips 66 San Francisco Refinery, and almost 40% larger than the Tesoro (Golden Eagle) refinery, which is the second largest in the region. According to the newly proposed rules, this would allow the Richmond refinery to emit the most pollutants.

The raw total emissions data is shown in Figure 5. The Phillips 66 refinery in Rodeo contributes the least to ambient air quality degradation. The Chevron Richmond refinery processes 40 – 100% more than the four other refineries, and emits 10 – 570% more than the other refiners. This large difference in capacity and emissions means that Chevron Richmond is more efficient than some, but much less efficient than others. To understand the efficiency differences between the refineries, the total HAPs emissions were adjusted by the refining capacity, shown below in Figure 6. With this data we can rank the refining efficiency specifically for HAPs emissions, based on facility capacity. The Tesoro refinery in Martinez and the Shell refinery in Martinez emit the most HAPs per barrel oil (based on refining capacity). From highest emitter to lowest emitter per barrel of crude, the facilities can be ranked:

  1. Tesoro Refining & Marketing Co LLC (Golden Eagle Refinery in Martinez)
  2. Shell Oil Products (Martinez Refinery)
  3. Chevron Products Co Richmond Refinery
  4. Valero Refining Co – California Benicia Refinery
  5. Phillips 66 San Francisco Refinery (Rodeo Refinery)
fig 4 capacity

Figure 4. Operating capacity of refineries. The bars show the maximum amount of crude the refineries are allowed to process daily, in barrels (1 barrel = 42 gallons).

fig 5 total

Figure 5. Total amount of HAPs emissions from East Bay refineries

These refineries along with the other industrial sites in the region have been mapped below in Figure 7. The data has been displayed to show the HAPs emissions from these facilities. The amounts of emissions are shown with graduated circles. The larger the circle, the higher the emissions. The cumulative summation of HAPs is a good value for comparing between facilities with diverse emission inventories (the list of all species of emitted pollutants), but different HAP chemicals have very different effects, both in magnitude and in health impacts. Different chemicals will affect different body systems, as described above in Tables 1-3 above. We have therefore incorporated individual chemical data into the map as well (Figure 7, below). The data displayed shows the total sum of HAPs emitted (in lbs/year) from petrochemical industrial facilities in the region. Explore the map to see emission sources for a selection of important pollutants. Smaller industrial sites/sources have been left out of the map.

Figure 7. Map of the East Bay’s Refinery Corridor with emissions data

View Map Fullscreen | How Our Maps Work
If you open the map into its own page, you can toggle between individual chemical emissions from these facilities. Use the layers tab to change the chemicals displayed. For more information on the individual chemicals, continue reading below.

This unique selection of pollutants was chosen by identifying the highest health risk drivers in the region. They are known to increase both cancer and non-cancer risk for residents in the bay area. The graphs that follow show the emissions inventories reported by each refinery. The refineries are organized on the X –axis according to increasing refining capacity, as they are in Figure 4, above.

Analysis of the graphs show that the Richmond Chevron facility is a largely responsible for 1,2,4-trimethylbenzene, naphthalene, hydrogen cyanide, PAH’s, vanadium, lead and nickel compounds. The Tesoro refinery is mostly responsible for almost all of the 1,3-butadiene, and most responsible for hydrogen sulfide and VOCs. Shell is mostly responsible for the ethylbenzene, much of the mercury and sulfur dioxide emissions, and the most VOCs. Valero in Benicia is responsible for much of the 1,2,4-trimethylbenzene, all BTEX compounds, the most nickel compounds, and the most oxides of nitrogen. And finally, the Phillips 66 refinery in Rodeo with the lowest operating capacity also had the lowest emissions in almost every case except lead, which was very large compared to all refineries except Chevron Richmond. The Valero refinery in Benicia, the Tesoro refinery in Martinez, and the Shell refinery in Martinez emit the most criteria air pollutants (CAPs), including PM2.5 (particulate matter with a diameter less than 2.5 um), sulfur dioxide, and oxides of nitrogen.

Figure 8 – 22. Emissions totals of various air pollutants from East Bay refineries

Marine Terminals

Emissions from marine terminals are also a significant source of HAPs and particulate matter. In the map in Figure 7, the marine terminals are shown with yellow markers. Their relative contributions of total hazardous pollutants are much less than the refineries and other sources, but when we look at specific risk drivers, such as 1,3-butadiene and benzene, we find that their contributions are quite sizable. Marine terminals are also a key component for the refineries looking to access more low-grade crude. Increasing the refining capacity of the refinery will also increase the emissions from the terminals.

The Tesoro Golden Eagle Refinery in Martinez, CA was recently approved for a 30-year lease on a new marine terminal. The new terminal will allow Tesoro to switch to processing lower-cost, lower-quality crude oil from California, Bakken crude, and Canadian tar sands. When crude is transported via ocean liner, besides the issue of air pollution there is the additional risk of an ocean spill. Tom Griffith, Martinez resident and co-founder of the Martinez Environmental Group and founding member of the Bay Area Refinery Corridor Coalition recently summed up the threat, saying:

When you take a close look at what is going on in the marine oil terminals along the refinery corridor from Richmond to Stockton, it’s chilling to imagine what could happen if a huge oil tanker carrying tar sands crude crashed in the Bay! (Earthjustice, 2015)

Incidents

Chevron Fire 2012

Figure 23. Fires at Chevron Richmond Refinery 2012. Photo by John Sebastian Russo for the SF Chronicle

Like oil spills from tankers, there are other risks of industrial accidents for refineries that need to be considered. Accidents or incidents may occur that result in a sudden, large release of air pollution. Looking at the emissions data, the Richmond Chevron refinery with the largest production capacity may seem to be an efficient station compared to the other refineries. However, an explosion and large fire in 2012 there sent 15,000 community members to local hospitals with respiratory distress. The SF Chronicle’s coverage of the story can be found here. (Fire shown in photo right.) The incident resulted from pipes corroding and failing, and the facility failing to make the decision to shut down the process. The resulting plume of smoke is shown in the cover photo of this article. Other major explosions and fires have occurred in the recent past, as well, including a flaring incident in 2014, a fire in 2007, and two other explosion and fire events in 1999 and 1989.

Of course these events are not unique to the Chevron refinery. The Tesoro Golden Eagle refinery has a reputation of being the most dangerous refinery in the country for occupational hazards, and has one of the worst track records of violations.

Conclusions

If refineries increase their capacity and process more crude, the emissions of these various pollutants will invariably increase. Increased emissions elevate risk for surrounding communities, and in the bay area these communities already bare a disparate burden. Additionally, many of the pollutants will be transported with the prevailing wind that blows from the coast up the river delta and into the central valley. In FracTracker’s recent analysis of impacted communities in the refinery corridor, maps of air quality showed that the refinery communities are some of the most impacted in the entire bay area.

In addition, California’s Central Valley has some of the worst air quality in the U.S. Click here to view maps of state air quality of disproportionate impacts by us using CalEnviroScreen 2.0. While many of the HAPs have a greater local impact, others such as ozone have regional impacts, while others like mercury are transported globally.

What we find in this report is that the refineries and petrochemical industry in the refinery corridor are responsible for the majority of the risk-driving emissions in this region. When the risk and total emissions are averaged for the entire Bay Area, the risk outcomes are much less than for those living in the communities hosting the industries. New emissions rules should prioritize contributions of emissions to ambient air pollution loads. The biggest issue with using a “per barrel” emissions limit is that it prioritizes the refining capacity rather than mitigating the existing health impacts. These types of policy decisions deal directly with risk management. The Air Management District must decide what amount of cancer and disease are acceptable to keep the refineries in the communities. An upper limit on emissions makes it easier to set a risk limit, an upper bound for health impacts. The upper limit also holds the Air Management District and elected officials accountable for their policy decisions.

References

  1. U.S.EPA. 2011. Addressing Air Emissions from the Petroleum Refinery Sector U.S. EPA. Accessed 3/15/16.
  2. CBE. 2015. Playing It Safe: Supplemental comment on air district staff proposal, rules 12-15 and 12-16; Evidence of increasing bay area refinery GHG and pm2.5 emissions.. Communities for a Better Environment
  3. Casanova, D. Diemoz, L. Lifshay, J. McKetney, C. 2010. Community Heath Indicators for Contra Costa County. Community Health Assessment, Planning and Evaluation (CHAPE) Unit of Contra Costa Health Services’ Public Health division. Accessed 4/15/16.
  4. BAAQMD. 2012. Summary of PM Report. Bay Area Air Quality Management District. Accessed 4/15/16.

** Feature image of the Richmond Chevron Refinery courtesy of D.H. Parks

** Feature image of the Richmond Chevron Refinery courtesy of Paul Chinn | The Chronicle

Petrochemical Industry Presence in East Bay CA’s North Coast Refinery Corridor

Who Lives Near the Refineries?
By

Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community-Based Research & Engagement

Key Takeaways

  • Communities living along the North Coast of the East Bay region in California are the most impacted by the presence of the petrochemical industry in their communities.
  • Emissions from these facilities disproportionately degrade air quality in this corridor region putting residents at an elevated risk of cancer and other health impacts.
  • People of color are more likely to live near the refineries and are therefore disproportionately affected.

Refinery Corridor Introduction

The North Coast of California’s East Bay region hosts a variety of heavy industries, including petroleum refineries, multiple power plants and stations, chemical manufacturing plants, and hazardous waste treatment and disposal facilities. Nationwide, the majority of petroleum refineries are located in heavily industrialized areas or near crude oil sources. The north coast region is unique. Access to shipping channels and the location being central to the raw crude product from North Dakota and Canada to the North, and California’s central valley oil fields to the south has resulted in the development of a concentrated petrochemical infrastructure within the largely residential Bay Area. The region’s petrochemical development includes seven fossil fuel utility power stations that produce a total of 4,283 MW, five major oil refineries operated by Chevron, Phillips 66, Shell Martinez, Tesoro, and Valero, and 4 major chemical manufacturers operated by Shell, General Chemical, DOW, and Hasa Inc. This unequal presence has earned the region the title, “refinery corridor” as well as “sacrifice zone” as described by the Bay Area Refinery Corridor Coalition.

The hazardous emissions from refineries and other industrial sites are known to degrade local air quality. It is therefore important to identify and characterize the communities that are affected, as well as identify where sensitive populations are located. The communities living near these facilities are therefore at an elevated risk of exposure to a variety of chemical emissions. In this particular North Coast region, the high density of these industrial point sources of air pollution drives the risk of resultant health impacts. According to the U.S.EPA, people of color are twice as likely to live near refineries throughout the U.S. This analysis by FracTracker will consider the community demographics and other sensitive receptors near refineries along the north coast corridor.

In the map below (Figure 1) U.S. EPA risk data in CalEnviroscreen is mapped for the region of concern. The map shows the risk resulting specifically from industrial point sources. Risk along the North Coast is elevated significantly. Risk factors calculated for the region show that these communities are elevated above the average. The locations of industrial sites are also mapped, with specific focus on the boundaries or fencelines of petrochemical sites. Additional hazardous sites that represent the industrial footprint in the region have been added to the map including sites registered with Toxic Release Inventory (TRI) permits as well as Superfund and other Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites. The Toxmap TRI sites are facilities that require a permit to emit hazardous air pollutants. The superfund and other CERCLA sites are locations where a historical footprint of industry has resulted in contamination. The sites are typically abandoned or uncontrolled hazardous waste sites that are part of register for tax-funded clean-ups.

Figure 1. Interactive map of risk in the East Bay’s North Coast refinery corridor

View Map Fullscreen | How Our Maps Work

Oil refineries in particular are unique sources of air emissions. There are 150 large domestic refineries throughout the United States. They are shown in the map in Figure 2 below. The majority (90%) of the refined products from these refineries are fuels; motor vehicle gasoline accounts for 40%. The refinery sites have hundreds of stacks, or point sources, and they emit a wide variety of pollutants, as outlined by the U.S. EPA:

  • Criteria Air Pollutants (CAPs)
    • Sulfur Dioxide (SO2)
    • Nitrogen Oxides (NOx)
    • Carbon Monoxide (CO)
    • Particulate Matter (PM)
  • Volatile Organic Compounds (VOCs)
  • Hazardous Air Pollutants (HAPs)
    • Carcinogens, including benzene, naphthalene, 1,3-butadiene, PAH
    • Non-carcinogenic HAP, including HF and HCN
    • Persistent bioaccumulative HAP, including mercury and nickel
  • Greenhouse Gases (GHG)
  • Hydrogen Sulfide (H2S)

Figure 2. Map of North American Petroleum Refineries


View Map Fullscreen | How Our Maps Work

BAAQMD Emissions Index

Figure 3. BAAQMD emissions index visualization

Disparate health impacts are therefore a known burden for these Bay Area communities. The region includes the cities of Richmond, Pinole, Hercules, Rodeo, Crockett, Port Costa, Benicia, Martinez, Mt. View, Pacheco, Vine Hill, Clyde, Concord, Bay Point, Antioch, and Oakley. In addition to preserving the ecological system health of this intercostal region is also important for both the ecological biodiversity of the marsh as well as commercial and recreational purposes. These wetlands provide a buffer, able to absorb rising waters and abate flooding.

The Bay Area Air Quality Management District’s (BAAQMD) Cumulative Impacts report identified areas where air pollution’s health impacts are relatively high in the San Francisco Bay Area. The report is does not limit their analysis to the North Coast, but shows that these regions with the most impacts are also the most vulnerable due to income, education level, and race and ethnicity. The report shows that there is a clear correlation between socio-economic disadvantages and racial minorities and the impacted communities. Figure 3 shows the regions identified by the BAAQMD as having the highest pollution indices.

Analysis

This analysis by FracTracker focuses specifically on the north shore of the East Bay region. Like the BAAQMD report, National Air toxic Assessment (NATA) data to identify census tracts with elevated risk. Specifically, elevated cancer and non-cancer risk from point sources emitting hazardous air pollutants (HAPs) as regulated by the U.S. EPA were used. CalEnviroScreen 2.0 data layers were also incorporated, specifically the U.S. EPA’s Risk Screening Environmental Indicators (RSEI) data. RSEI uses toxic release inventory (TRI) data, emission locations and weather to model how chemicals spread in the air (in 810m-square grid units), and combines air concentrations with toxicity factors.

The census tracts that were identified as disproportionately impacted by air quality are shown in the map below (Figure 4). The demographics data for these census tracts are presented in the tables below. Demographics were taken from the U.S. census bureau’s 2010 Census Summary File 1 Demographic Profile (DP1). The census tracts shapefiles were downloaded from here.

Figure 4. Interactive Map of Petrochemical Sites and Neighboring Communities in the East Bays North Coast Industrial Corridor

View Map Fullscreen | How Our Maps Work

Buffers were created at 1,000 ft; 2,000 ft; and 3,000 ft buffers from petrochemical sites. These distances were developed as part of a hazard screening protocol by researchers at the California Air Resources Board (ARB) to assess environmental justice impacts. The distances are based on environmental justice literature, ARB land use guidelines, and state data on environmental disamenities (Sadd et al. 2011). A demographical profile was summarized for the population living within a distance of 3,000 feet, and for the census tracts identified as impacted by local point sources in this region. The analysis is summarized in Table 1 below. Additional data on the socioeconomic status of the census tracts is found in Table 2.

Based on the increased percentage of minorities and indicators of economic hardship shows that the region within the buffers and the impacted census tracts host a disproportionate percentage of vulnerable populations. Of particular note is 30% increase in Non-white individuals compared to the rest of the state. We see in Table 2 that this is disparity is specifically for Black or African American communities, with an over 150% increase compared to the total state population. The number of households reported to be in poverty in the last 12 months of 2014 and those households receiving economic support via EBT are also elevated in this region. Additional GIS analysis shows that 7 healthcare facilities, 7 residential elderly care facilities, 32 licensed daycares, and 17 schools where a total of 10,474 students attended class in 2014. Of those students, 54.5% were Hispanic and over 84% identified as “Non-white.”

Table 1. Demographic Summaries of Race. Data within the 3,000 ft buffer of petrochemical sites was aggregated at the census block level.

Total Population Non-White Non-White (%ile)  Hispanic or Latino  Hispanic or Latino (%ile)
Impacted Census Tracts 387,446 212,307 0.548 138,660 0.358
3,000 ft. Buffer 77,345 41,696 0.539 30,335 0.392
State Total 37,253,956 0.424 0.376

Table 2. Additional Status Indicators taken from the 2010 census at the census tract level

Indicators (Census Tract data) Impacted Count Impacted Percentile State Percentile
Children, Age under 5 27,854 0.072 0.068
Black or African American 60,624 0.156 0.062
Food Stamps (households) 0.1103 0.0874
Poverty (households) 0.1523 0.1453

Conclusion

The results of the refinery corridor analysis show that the communities living along the North Coast of the East Bay region are the most impacted by the presence of the petrochemical industry in their communities. Emissions from these facilities disproportionately degrade air quality in this corridor region putting residents at an elevated risk of cancer and other health impacts. The communities in this region are a mix of urban and single family homes with residential land zoning bordering directly on heavy industry zoning and land use. The concentration of industry in this regions places an unfair burden on these communities. While all of California benefits from the use of fossil fuels for transportation and hydrocarbon products such as plastics, the residents in this region bear the burden of elevated cancer and non-cancer health impacts.

Additionally, the community profile is such that residents have a slightly elevated sensitivity when compared to the rest of the state. The proportion of the population that is made up of more sensitive receptors is slightly increased. The region has suburban population densities and more children under the age of 5 than average. The number of people of color living in these communities is elevated compared to background (all of California). The largest disparity is for Black or African American residents. There are also a large number of schools located within 3,000 ft of at least one petrochemical site, where over half the students are Hispanic and the vast majority are students of color. Overall, people of color are disproportionately affected by the presence of the petrochemical industry in this region. Continued operation and any increases in production of the refineries in the East Bay disproportionately impact the disadvantaged and disenfranchised.

With this information, FracTracker will be elaborating on the work within these communities with additional analyses. Future work includes a more in depth look at emissions and drivers of risk on the region, mapping crude by rail terminals, and working with the community to investigate specific health endpoints. Check back soon.

References

  1. U.S.EPA. 2011. Addressing Air Emissions from the Petroleum REfinery Sector U.S. EPA. Accessed 3/15/16.
  2. Sadd et al. 2011. Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California. International Journal of Environmental Research and Public Health. 2011;8(5):1441-1459. doi:10.3390/ijerph8051441.

** Feature image of the Richmond Chevron Refinery courtesy of Paul Chinn | The Chronicle

Ethane Cracker Discussion in Regional Air Pollution Report

Pittsburgh Regional Environmental Threats Analysis (PRETA) Air: Hazardous Air Pollutants

Although now we are an independent non-profit, FracTracker.org actually started as a project of CHEC at the University of Pittsburgh Graduate School of Public Health. At that time, Matt, Kyle, and I worked with researchers such as Drew Michanowicz and Jim Fabisiak of Pitt, as well as Jill Kriesky now of the Southwest PA Environmental Health Project, on a data mapping and analysis project called PRETA. The Pittsburgh Regional Environmental Threats Analysis (PRETA) is intended to inform stakeholders about Southwest Pennsylvania’s major environmental health risks and provide ways to manage them. CHEC worked with key decision makers and other academics to identify, prioritize, and assess these risks. The top three risks identified were ozone, particulate matter (PM), and hazardous air pollutants (HAPs). Due to the extensive time that research like this takes, the final report about hazardous air pollutants was just recently released.

Relevant to our oil and gas readers, the HAPs report included a piece about the proposed ethane cracker slated to be built in Beaver County, PA. Below is an excerpt of PRETA HAPs that discusses how the air quality in our region may change as a result of the removal of the present zinc smelter on that site, in place of the new cracker facility.

 

Read Full Report (PDF)

Excerpt: The Proposed Monaca, PA Ethane Cracker

Future Trends: New Sources of HAPs in Western Pennsylvania?

All of the previous risk analyses and data discussed [earlier in the report] were drawn using historical data collected in previous years. There is considerable delay around emissions inventory collection, air monitoring data collection, atmospheric modeling, and the calculated risk estimates’ being made public. Hence, these analyses speak best toward past and present trends. They often are less useful in predicting future risks, especially when sources and technologies are constantly changing. For example, better pollution mitigation and retrofitting processes should curtail future emissions from present levels. In addition, changing the profile of various industries within a region also will alter atmospheric chemistry and subsequent risks in future scenarios.

In recent years, there has been an unprecedented expansion of unconventional natural gas development (UNGD) in Western Pennsylvania, Ohio, and West Virginia driven in part by the recent feasibility of hydraulic fracturing, which is part of a drilling procedure that allows for the tapping of the vast methane deposits contained in the Marcellus and Utica shales beneath Pennsylvania and surrounding states. Primarily, drillers are seeking to extract methane (CH4), the primary component of natural gas. However, a portion of the natural gas present in our area is considered “wet gas,” which includes heavier hydrocarbons like ethane, propane, and butane that are typically dissolved in a liquid phase or condensate. These compounds are separated from the methane to be marketed as such products as liquid propane or used as feedstock in numerous other chemical processes. Therefore, a high demand remains for wet gas deposits regardless of fluctuating natural gas (methane) market prices. Thus, a large-scale expansion in other industries (e.g., chemical manufacturing) is anticipated to follow UNGD; new industrial facilities are needed to support the refining of wet gas condensates. For example, an ethane cracker converts or “cracks” ethane, a by-product of natural gas, into ethylene so that it can be used in the production of plastics.

Located in Monaca, Pa. (Beaver County), about 12 miles east of the West Virginia border, is an aging zinc smelter owned by the Horsehead Corporation. The present Horsehead facility is currently the largest zinc refining site in the United States, producing metallic zinc and zinc oxide from recycled material and steelmaking waste. The plant opened in the 1920s to take advantage of the by-products of steel manufacturing and has expanded and modernized over time. It employed about 600 workers until recently, when the company announced its relocation to a new state-of-the-art facility in North Carolina in the near future. The scope of this metal-refining operation was such that it was a significant source of metals and criteria air pollutants.

Recently, Shell Chemical, U.S. subsidiary of Royal Dutch Shell PLC, announced plans to build an ethane cracker in the northeast to take advantage of UNGD. Lured by substantial tax benefits and other economic incentives, Shell chose the former zinc smelting site in Monaca as its proposed new location for such a facility and, in March 2012, received the approval from Pennsylvania officials to build this petrochemical complex. The cracker, according to industry representatives, will be a multibillion-dollar structure and provide thousands of jobs for Pennsylvanians 43, 44. However, many of these jobs depend on the influx of concurrent industries and technologies, which are projected to follow in the wake of sufficient petrochemical refining facilities like the ethane cracker. Thus, it is not likely to be the sole source of pollutants in the area once constructed. Though plant construction remains years away, regional air pollutant composition and chemistry are poised to change as well. Adding to the issue is the fact that the zinc smelter, ranked as one of the worst air polluters in the country in 2002 45, will be decommissioned and have its operations moved to North Carolina.

Here, we will attempt to compare the pollutant profiles of the old and new air pollution sources in order to deduce potential air pollutant changes to existing air quality in the region. Previous emission inventories are available for the Horsehead zinc smelter (EPA Toxic Release Inventory for 2008) 46. Although the proposed cracker facility’s engineering specifics are not available yet, using the records of a similar existing wet gas processing plant, we can approximate the proposed cracker’s yearly emissions. In this case, we have chosen the similarly sized Williams Olefins Cracker Facility currently operating in Geismar, La., whose emissions profiles for 2008 also were available 46. This plant, owned by Williams Partners, L.P., processes approximately 37,000 barrels of ethane and 3,000 barrels of propane per day and annually produces 1.35 billion pounds of ethylene.

Table 5 from PRETA HAPs report

In assessing the emission inventories at the two sites, we first sought to compare those pollutants that were common to both facilities. Table 5 (above) compares the annual release of criteria pollutants for which National Ambient Air Quality Standards (NAAQS) exist. These include ozone, sulfur dioxide, nitrogen oxides, particulate matter (PM10, PM2.5), lead, and carbon monoxide, for which health-based regulatory standards exist for their concentration in ambient air1. Not surprisingly, the zinc smelter released large amounts of lead into the air (five tons per year). The proposed ethane cracker, on the other hand, would release only trace amounts of lead into the air and about 0.1 percent of the sulfur dioxide, 3 percent of the carbon monoxide, and 50 percent of the nitrogen oxides of the zinc smelter. Overall, release of PM would be of a similar order of magnitude at the two sites. Thus, the representative cracker facility by itself emits less NAAQS criteria pollutants than the smelter facility.

Table 6 from PRETA HAPs report

Similarly, Table 6 (above) examines similarly reported HAPs released from both of the facilities in question. A comparison of available emissions inventories of HAPs reveals a list of common pollutants, including acrolein, benzene, ethylbenzene, xylene, and volatile organic compounds (VOCs). Note the projected increase in release of acrolein and VOCs by the proposed ethane cracker. The latter are a rather broad class of organic chemicals that have high vapor pressure (low boiling point), allowing appreciable concentrations in the air as a gaseous phase 47, 48. Examples of VOCs include formaldehyde, d-limonene, toluene, acetone, ethanol (ethyl alcohol), 2-propanol (isopropyl alcohol), and hexanal, among others. They are common components of paints, paint strippers, and other solvents; wood preservatives; aerosol sprays; cleansers and disinfectants; moth repellents and air fresheners; stored fuels and automotive products; hobby supplies; and dry-cleaned clothing. They also possess a diverse range of health effects, including, but not limited to, eye and throat irritation, nausea, headaches, nosebleeds, and skin rashes at low doses, and kidney, liver, and central nervous system damage at high doses. Some are known or suspected carcinogens. These chemicals are more often known for their role in indoor air pollution and have been linked to allergies and asthma 49. Recall that acrolein is already the primary driver of noncancer respiratory risk in the PRETA area, and releases from the proposed cracker would theoretically add to that burden.

Table 7 from PRETA HAPs Report 2013

Table 7 shows a compiled list of HAPs that were released from the Geismar plant in 2008 but not from the zinc smelter, highlighting the potential change in the pollutant mixture. For comparison, the pollutants highlighted in yellow represent those that are several orders of magnitude greater than those emitted by the Clairton Coke Works in 2008. Note the rather large emissions of formaldehyde and acetaldehyde that were discussed above as the number one and number five existing cancer drivers in the area.

Other VOCs of note include ethylene glycol, ethylene oxide, methyl-tert-butyl ether and propionaldehyde. While all these pollutants may have toxic effects on their own, one of the primary concerns, especially in outdoor air, should be their ability to form secondary pollutants. For example, we have noted previously that both acetaldehyde and formaldehyde can be formed via photo-oxidation reactions of other hydrocarbons and VOCs. Thus, the direct emissions reported in the table are likely to be significant underestimations of the true burden of acetaldehyde and formaldehyde in the area near the cracker. It also should be mentioned that a complex nonlinear sensitivity exists among VOCs, NOX, and the production rate of ozone (O3). Most urban areas are considered NOX saturated or VOC sensitive and therefore have low VOC/NOX ratios. In these environments, ozone actually decreases with increasing NOX and increases with increasing VOCs—a potentially likely situation within the urban areas of Southwestern Pennsylvania.

In conclusion, it would appear that the replacement of the existing zinc smelter with the proposed ethane cracker has the potential to significantly transform the current pollutant mixture in the region. The elimination of lead and other heavy metal emissions would be replaced by increases in formaldehyde and acetaldehyde. In addition, it does not appear that the proposed ethane cracker alone would increase any of the NAAQS criteria air pollutants, with the possible exception of ozone. On the other hand, the rather large releases of several known cancer drivers, such as formaldehyde and acetaldehyde, from the proposed cracker could increase cancer risk in the immediate proximity. In addition, the large influx of VOCs and fugitive emissions from these operations warrants further predictive analysis, especially with regard to current pollution-mitigating strategies that may not be anticipating a transforming pollutant mix.

Introduction of the ethane cracker & its effect on regional air quality in SW PA

Authors and Credits

University of Pittsburgh Graduate School of Public Health
Center for Healthy Environments and Communities
Pittsburgh, PA | August 2013

Authors

Drew Michanowicz, MPH, CPH
Kyle Ferrar, MPH
Samantha Malone, MPH, CPH
Matt Kelso, BA
Jill Kriesky, PhD
James P. Fabisiak, PhD

Technical Support

Department of Communications Services
Marygrace Reder, BA
Alison Butler, BA

Full HAPs Report (PDF) | Ozone (PDF) | Particulate Matter (PDF)
For questions related to the full report, please contact CHEC.

References Mentioned in Excerpt

43. Detrow , S. (2012). What’s an ethane cracker? StateImpact – Pennsylvania. Accessed 12-18-12: http://stateimpact.npr.org/pennsylvania/tag/ethane-cracker.

44. Kelso, M. (2012). Jobs impact of cracker facility likely exaggerated. FracTracker Alliance. Accessed 12-18-12: www.fractracker.org/2012/06/jobs-impact-of-cracker-facility-likely-exaggerated.

45. SCORECARD: The Pollution Information Site. (2002). Environmental Release Report: Zinc Corp. of America Monaca Smelter. Accessed 12-18-12: http://scorecard.goodguide.com/envreleases/facility.tcl?tri_id=15061ZNCCR300FR#major_chemical_releases.

46. U.S. EPA. (2008). Technology Transfer Network, Clearinghouse for Inventories and Emissions Factors The National Emissions Inventory. The National Emissions Inventory. Accessed 1-25-13: www.epa.gov/ttn/chief/net/2008inventory.html.

47. U.S. EPA. (2012). An Introduction to Indoor Air Quality (IAQ). Volatile Organic Compounds. Accessed 12-18-12: www.epa.gov/iaq/voc.html.

48. U.S. EPA. (2012). Volatile Organic Compounds (VOCs). Accessed 12-18-12: www.epa.gov/iaq/voc2.html.

49. Nielsen, G.D., S.T. Larsen, O. Olsen, M. Lovik , L.K. Poulsen, C. Glue , and P. Wolkoff. (2007). Do indoor chemicals promote development of airway allergy? Indoor Air 17: pp. 236–255.

Read Full Report (PDF)