Posts

PTTGC’s Ethane Cracker Project - Map by FracTracker Alliance

PTTGC’s Ethane Cracker Project: Risks of Bringing Plastic Manufacturing to Ohio

In 2012, a battle between Ohio, West Virginia, and Pennsylvania was underway. Politicians and businesses from each state were eagerly campaigning for the opportunity to host Royal Dutch Shell’s “world-class” petrochemical facility. The facility in question was an ethane cracker, the first of its kind to be built outside of the Gulf Coast in 20 years. In the end, Pennsylvania’s record-breaking tax incentive package won Shell over, and construction on the ethane cracker plant began in 2017.

Once completed, the ethane cracker will convert ethane from fracked wells into 1.6 million tons of polyethylene plastic pellets per year.

Shell Ethane Cracker

Shell’s ethane cracker, under construction in Beaver County, PA. Image by Ted Auch, FracTracker.
Aerial support provided by LightHawk.

Ohio and West Virginia, however, have not been left out of the petrochemical game. In addition to the NGL pipelines, cryogenic plants, and fractionation facilities in these states, plans for ethane cracker projects are also in the works.

In 2017, PTT Global Chemical (PTTGC) put Ohio in second place in the “race to build an ethane cracker,” when it decided to build a plant in Belmont County, Ohio.

But first, why is the petrochemical industry expanding in the Ohio River Valley?

Fracking has opened up huge volumes of natural gas in the Marcellus and Utica shales in Pennsylvania, Ohio, and West Virginia. Fracked wells in these states extract methane, which is then transported in pipelines and used as a residential, industrial, or commercial energy source. The gas in this region, however, contains more than just methane. Classified as “wet gas,” the natural gas stream from regional wells also contains natural gas liquids (NGLs). These NGLs include propane, ethane, and butane, and industry is eager to create a market for them.

Investing in plastic is one way for the industry to subsidize the natural gas production, an increasingly unprofitable enterprise. 

An image of plastic pellets

Plastic pellets, also called “nurdles,” the end product of ethane crackers.

Major processing facilities, such as cryogenic and fractionation plants, receive natural gas streams and separate the NGLs, such as ethane, from the methane. After ethane is separated, it can be “cracked” into ethylene, and converted to polyethylene, the most common type of plastic. The plastic is shipped in pellet form to manufacturers in the U.S. and abroad, where it is made into a variety of plastic products.

By building ethane crackers in the Ohio River Valley, industry is taking advantage of the region’s vast underground resources.

PTTGC ethane cracker: The facts

PTTGC’s website states that the company “is Thailand’s largest and Asia’s leading integrated petrochemical and refining company.” While this ethane cracker has been years in the making, the company states that “a final investment decision has not been made.” The image below shows land that PTTGC has purchased for the plant, totaling roughly 500 acres, in Dilles Bottom, Mead Township.

According to the Ohio EPA, the plant will turn ethylene into:Recycling "2" symbol for HDPE plastic

  • 700,000 tons of high density polyethylene (HDPE) per year
  • 900,000 tons Linear low-density polyethylene (LLDPE)

HDPE is a common type of plastic, used in many products such as bags, bottles, or crates. Look for it on containers with a “2” in the recycling triangle. LLDPE is another common type of plastic that’s weaker and more flexible; it’s marked with a “4.”

The ethane cracker complex will contain:

  • An ethylene plant
  • Four ethylene-based derivatives plants.
  • Six 552 MMBtu/hour cracking furnaces fueled by natural gas and tail gas with ethane backup
  • Three 400 MMBTU/hr steam boilers fueled by natural gas and ethane
  • A primary and backup 6.2 MMBtu/hour thermal oxidizer
  • A high pressure ground flare (1.8 MMBtu/hour)
  • A low pressure ground flare (0.78 MMBtu/hour)
  • Wastewater treatment systems
  • Equipment to capture fugitive emissions
  • Railcars for pygas (liquid product) and HDPE and LLDPE pellets
  • Emergency firewater pumps
  • Emergency diesel-fired generator engines
  • A cooling tower

Impacts on air quality

The plant received water permits last year, and air permits are currently under review. On November 29, 2018, the Ohio EPA held an information session and hearing for a draft air permit (the permit can be viewed here, by entering permit number P0124972).

FracTracker has previously reported on the air quality impacts, risks, and fragmented permitting process associated with the Shell ethane cracker in Pennsylvania. How does the PTTGC plant stack up?

The plant will be built in the community of Dilles Bottom, on the former property of FirstEnergy’s R.E. Burger Power Station, a coal power plant that shut down in 2011. The site was demolished in 2016 in preparation for PTTGC’s ethane cracker. In 2018, PTTGC also purchased property from Ohio-West Virginia Excavating Company. In total, the ethane cracker will occupy 500 acres.

R.E. Burger Power Station

R.E. Burger Power Station, which has been demolished for the PTTGC Ethane Cracker. Image Source

Table 1, below, is a comparison of the previous major source of air pollution source, the R.E. Burger Power Station, and predictions of the future emissions from the PTTGC ethane cracker. The far right column shows what percent of the former emissions the ethane cracker will release.

Table 1: Former and Future Air Emissions in Dilles Bottom, Ohio

Pollutant R.E.Burger Power Station
(2010 emissions)

PTTGC Ethane Cracker
(predicted emissions)

Percent of former emissions

CO (carbon monoxide) 143.33 544 379.5%
NOx (nitrogen oxides) 1861.2 164 8.81%
SO2 (sulfur dioxide) 12719 23 0.18%
PM10 (particulate matter, 10) 179.25 89 49.65%
PM2.5 (particulate matter, 2.5) 77.62 86 110.8%
VOCs (volatile organic compounds) 0.15 396 264000%

As you can see, the ethane cracker will emit substantially less sulfur dioxide and nitrogen dioxides compared with the R.E. Burger site. This makes sense, as these two pollutants are associated with burning coal. On the flip side, the ethane cracker will emit almost four times as much carbon monoxide and 263,900% more volatile organic compounds (percentages bolded in Table 1, above).

In addition to these pollutants, the ethane cracker will emit 38 tons per year of Hazardous Air Pollutants (HAPS), a group of pollutants that includes benzene, chlorine, and ethyl chloride. These pollutants are characterized by the EPA as being “known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects.”

Finally, the ethane cracker is predicted to emit 1,785,043 tons per year of greenhouse gasses. In the wake of recent warnings on the urgent need to limit greenhouse gas emissions from the Intergovernmental Panel on Climate Change and National Climate Assessment, this prediction is highly concerning.

While these emission numbers seem high, they still meet federal requirements and nearly all state guidelines. If the ethane cracker becomes operational, pollutant monitoring will be important to ensure the plant is in compliance and how emissions impact air quality. The plant will also attract more development to an already heavily industrialized area; brine trucks, trains, pipelines, fracked wells, compressor stations, cryogenic facilities, and natural gas liquid storage are all part of the ethane-to-plastic manufacturing process. The plastics coming from the plant will travel to facilities in the U.S. and abroad to create different plastic products. These facilities are an additional source of emissions.

Air permitting does not consider the full life cycle of the plant, from construction of the plant to its demolition, or the development associated with it.

As such, this plant will be major step back for local air quality, erasing recent improvements in the Wheeling metropolitan area, historically listed as one of the most polluted metropolitan areas in the country. Furthermore, the pollutants that will be increasing the most are associated with serious health effects. Over short term exposure, high levels of VOCs are associated with headaches and respiratory symptoms, and over long term exposure, cancer, liver and kidney damage.

Emergency preparedness

In addition to air quality impacts, ethane cracker plants also pose risks from fires, explosions, and other types of unplanned accidents. In 2013, a ruptured boiler at an ethane cracker in Louisiana caused an explosion that sent 30,000 lbs. of flammable hydrocarbons into the air. Three hundred workers evacuated, but sadly there were 167 suffered injuries and 2 deaths.

While researching Shell’s ethane cracker in Beaver County, FracTracker worked with the Emergency Operations Center (EOC) in St. Charles Parish, Louisiana, to learn about emergency planning around the petrochemical industry. Emergency planners map out two and five mile zones around facilities, called emergency planning zones, and identify vulnerabilities and emergency responders within them.

With this in mind, the map below shows a two and five-mile radius around PTTGC’s property, as reported by Belmont County Auditor. Within these emergency planning zones are the locations of schools, day cares, hospitals, fire stations, emergency medical services, hospitals, and local law enforcement offices, reported by Homeland Infrastructure Foundation Level Data.

The map also includes census data from the EPA that identifies potential environmental justice concerns. By clicking on the census block groups, you will see demographic information, such as income status, age, and education level. These data are important in recognizing populations that may already be disproportionately burdened by or more vulnerable to environmental hazards.

Finally, the map displays environmental data, also from the EPA, including a visualization of particulate matter along the Ohio River Valley, where massive petrochemical development is occurring. By clicking on a census block and then the arrow at the top, you will find a number of other statistics on local environmental concerns.

View map full screen  |  How FracTracker maps work

Emergency planning zones for Shell’s ethane cracker are available here.

Within the 5 mile emergency planning zone, there are:

  • 9 fire or EMS stations
  • 17 schools and/or day cares
  • 1 hospital
  • 6 local law enforcement offices

Within the 2 mile emergency planning zone, there are:

  • 3 fire or EMS stations
  • 7 schools and/or day cares
  • No hospitals
  • 3 local law enforcement offices

Sites of capacity, such as the fire and EMS stations, could provide emergency support in the case of an accident. Sites of vulnerability, such as the many schools and day cares, should be aware of and prepared to respond to the various physical and chemical risks associated with ethane crackers.

The census block where the ethane cracker is planned has a population of 1,252. Of this population, 359 are 65 years or older. That is well above national average and important to note; air pollutants released from the plant are associated with health effects such as cardiovascular and respiratory disease, to which older populations are more vulnerable.

Conclusion

PTTGC’s ethane cracker, if built, will drastically alter the air quality of Belmont County, OH, and the adjacent Marshall County, WV. Everyday, the thousands of people in the surrounding region, including the students of over a dozen schools, will breathe in its emissions.

This population is also vulnerable to unpredictable accidents and explosions that are a risk when manufacturing products from ethane, a highly flammable liquid. Many of these concerns were recently voiced by local residents at the air permit hearing.

Despite these concerns and pushback, PTTGC’s website for this ethane cracker, pttgcbelmontcountyoh.com, does not address emergency plans for the area. It also fails to acknowledge the potential for any adverse environmental impacts associated with the plant or the pipelines, fracked wells, and train and truck traffic it will attract to the region.

With this in mind, we call upon PTTGC to acknowledge the risks of its facility to Belmont County and provide the public with emergency preparedness plans, before the permitting process continues.

If you have thoughts or concerns regarding PTTGC’s ethane cracker and its impact on air quality, the Ohio EPA is accepting written comments through December 11, 2018. We encourage you to look through the data on this map or conduct your own investigations and submit comments on air permit #P0124972.

Written comments should be sent to:

Ohio EPA SEDO-DAPC, Attn: Kimbra Reinbold
2195 Front St
Logan, OH 43138
Kimbra.reinbold@epa.ohio.gov

(Include permit #P0124972 within your comment)

By Erica Jackson, Community Outreach and Communications Specialist

Clearing land for shale gas pipeline in PA

Rapid Pipeline Development Affecting Pennsylvanians

In recent years, Pennsylvanians have had to endure numerous massive pipeline projects in the Commonwealth. Some of these, such as the Mariner East 2, the Revolution, and the Atlantic Sunrise, have been beset with continuous problems. In fact, both the Mariner East 2 and the Revolution projects had their operations suspended in 2018. The operators have struggled to grapple with a variety of issues – ranging from sinkholes near houses, erosion and sediment issues, hundreds of bentonite spills into the waters and upland areas of Pennsylvania, and more.

Part of the reason for the recent spate of incidents is the fact that so many pipelines are being built right now. These lines are traversing through undermined areas and land known to have underground karst formations, which are prone to subsidence and sinkholes. With more than 90,000 miles of pipelines and 84,000 miles of streams in Pennsylvania, substantial erosion and runoff issues are unfortunately quite common.

Map of pipeline routes in southwestern PA, various pipeline incidents, and karst formations:

Click here to learn more about recent pipeline incidents in Pennsylvania, along with how users of the FracTracker App have helped to chronicle problems associated with them.

Residents keeping track

Many residents have been trying to document issues in their region of Pennsylvania for a long time. Any pipeline incident should be reported to the Department of Environmental Protection (DEP), but in some instances, people want other residents to know and see what is going on, and submission to DEP does not allow for that. FracTracker’s Mobile App allow users to submit a detailed report, including photographs, which are shared with the public. App users have submitted more than 50 photographs of pipelines in Pennsylvania, including these images below.

The FracTracker Mobile App uses crowd-sourced data to document and map a notoriously nontransparent industry. App users can also report violations, spills, or whatever they find striking. For example, the first image shows construction of the Mariner East 2 in extreme proximity to high density housing. While regulators did approve this construction, and it is therefore not a violation, the app user wanted others to see the impact to nearby residents. Other photos do show incidents, such as the second photo on the second row, showing the sinkhole that appeared along the Mariner East 1 during the construction of the nearby Mariner East 2 pipeline.

Please note that app submissions are not currently shared with DEP, so if you happen to submit an incident on our app that you think they should know about, please contact their office, as well. The FracTracker Mobile App provides latitude and longitude coordinates to make it easier for regulators to find the issue in question.

Why have there been so many problems with pipelines in recent years? 

Drillers in Pennsylvania’s Marcellus Shale and other unconventional formations predicted that they would find a lot of natural gas, and they have been right about that. However, the large resulting supply of natural gas from this industrial-scaled drilling is more than the region can use. As a result, gas prices remain low, making drilling unprofitable in many cases, or keep profit margins very low in others.

The industry’s solution to this has been two-pronged. First, there is a massive effort underway to export the gas to other markets. Although there are already more than 2.5 million miles of natural gas pipelines in the United States, or more than 10 times the distance from the Earth to the Moon, it was apparently an insufficient network to achieve the desired outcome in commodity prices.  The long list of recent and proposed pipeline projects, complete with information about their status, can be downloaded from the Energy Information Administration (Excel format).

The industry’s other grand effort is to create demand for natural gas liquids (NGLs, mostly ethane, propane, and butane) that accompanies the methane produced in the southwestern portion of the state. The centerpiece of this plan is the construction of multiple ethane crackers, such as the one currently being built in Beaver County by Royal Dutch Shell, for the creation of a new plastics industry in northern Appalachia. These sites will be massive consumers of NGLs which will have to be piped in through pressurized hazardous liquid routes, and would presumably serve to lock in production of unconventional gas in the region for decades to come.

Are regulators doing enough to help prevent these pipeline development problems?

In 2010, the Pipeline and Hazardous Materials Safety Administration (PHMSA) led the formation of an advisory group called Pipelines and Informed Planning Alliance (PIPA), comprised mostly of industry and various state and local officials. Appendix D of their report includes a long list of activities that should not occur in pipeline rights-of-way, from all-terrain vehicle use to orchards to water wells. These activities could impact the structural integrity of the pipeline or impede the operator’s ability to promptly respond to an incident and excavate the pipe.

However, we find this list to be decidedly one-directional. While the document states that these activities should be restricted in the vicinity of pipelines, it does not infer that pipelines shouldn’t be constructed where the activities already occur:

This table should not be interpreted as guidance for the construction of new pipelines amongst existing land uses as they may require different considerations or limitations. Managing land use activities is a challenge for all stakeholders. Land use activities can contribute to the occurrence of a transmission pipeline incident and expose those working or living near a transmission pipeline to harm should an incident occur.

Pipeline being constructed near a home

While we understand the need to be flexible, and we certainly agree that every measure should be taken by those engaging in the dozens of use types listed in the PIPA report, it equally makes sense for the midstream industry to take its own advice, and refrain from building pipelines where these other land uses are already in place, as well. If a carport is disallowed because, “Access for transmission pipeline maintenance, inspection, and repair activities preclude this use,” then what possible excuse can there be to building pipelines adjacent to homes?

What distance is far enough away to escape catastrophic failure in the event of a pipeline fire or blast?

This chart shows varying hazard distances from natural gas pipelines, based on the pipe’s diameter and pressure. Source:  Mark J. Stephens, A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines

It turns out that it depends pretty dramatically on the diameter and pressure of the pipe, as well as the nature of the hydrocarbon being transported. A 2000 report estimates that it could be as little as a 150-foot radius for low-pressure 6-inch pipes carrying methane, whereas a 42-inch pipe at 1,400 pounds per square inch (psi) could be a threat to structures more than 1,000 feet away on either side of the pipeline. There is no way that the general public, or even local officials, could know the hazard zone for something so variable.

While contacting Pennsylvania One Call before any excavation is required, many people may not consider a large portion of the other use cases outlined in the PIPA document to be a risk, and therefore may not know to contact One Call. To that end, we think that hazard placards would be useful, not just at the placement of the pipeline itself, but along its calculated hazard zone, so that residents are aware of the underlying risks.

Valve spacing

If there is an incident, it is obviously critical for operators to be able to respond as quickly as possible. In most cases, a part of this process will be shutting off the flow at the nearest upstream valve, thereby stopping the flow of the hydrocarbons to the atmosphere in the case of a leak, and cutting the source of fuel in the event of a fire. Speed is only one factor in ameliorating the problem, however, with the spacing between shutoff valves being another important component.

Comprehensive datasets on pipeline valves are difficult to come by, but in FracTracker’s deep dive into the Falcon ethane pipeline project, which is proposed to supply the Shell ethane cracker facility under construction Beaver County, we see that there are 18 shutoff valves planned for the 97.5 mile route, or one per every 5.4 miles of pipe. We also know that the Falcon will operate at a maximum pressure of 1,440 psi, and has pipe diameters ranging from 10 to 16 inches. The amount of ethane that could escape is considerable, even if Shell were able to shut the flow off at the valve instantly. It stands to reason that more shutoff valves would serve to lessen the impact of releases or the severity of fires and explosions, by reducing the flow of fuel to impacted area.

Conclusion

Groups promoting the oil and gas industry like to speak of natural gas development as clean and safe, but unless we are comparing the industry to something else that is dirtier or more dangerous, these words are really just used to provoke an emotional response.  Even governmental agencies like PHMSA are using the rhetoric.

PHMSA’s mission is to protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives.

If the safe transportation of hazardous materials sounds oxymoronic, it should.  Oil and gas, and related processed hydrocarbons, are inherently dangerous and polluting.

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 29 8 19 12 778 $6,769,061
Gas Transmission / Gathering 30 0 2 2 292 $51,048,027
Hazardous Liquids 49 0 0 1 48 $9,115,036
Grand Total 108 8 21 15 1,118 $66,932,124

Impacts of pipeline incidents in Pennsylvania from January 1, 2010 through July 13, 2018.  National totals for the same time include 5,308 incidents resulting  125 fatalities, 550 injuries, 283 explosions, and nearly $4 billion in property damage.

Current investments in large-scale transmission pipelines and those facilitating massive petrochemical facilities like ethane crackers are designed to lock Pennsylvania into decades of exposure to this hazardous industry, which will not only adversely the environment and the people who live here, but keep us stuck on old technology.  Innovations in renewable energy such as solar and wind will continue, and Pennsylvania’s impressive research and manufacturing capacity could make us well positioned to be a leader of that energy transformation.  But Pennsylvania needs to make that decision, and cease being champions of an industry that is hurting us.


By Matt Kelso, Manager of Data and Technology

This is the second article in a two-part series. Explore the first article: PA Pipelines and Pollution Events.

Map of offshore drilling in California

The Feds Trump California’s State Ban on Offshore Oil Drilling

Offshore drilling in the United States federal waters has caused the most environmentally destructive disasters in North America. Yet, new policy is pushing for the expansion of offshore drilling, particularly off the coast of California.

Offshore Drilling History

In 1969, Union Oil’s offshore rig Platform A had a blowout that leaked 100,000 barrels into the Santa Barbara Channel, one of the most biologically diverse marine environments in the world. The spill lasted ten days and killed an estimated 3,500 sea birds, as well as an untold number of marine mammals. Unbelievably, the Santa Barbara spill is only the third largest spill in U.S. waters. It follows the 1989 Exxon Valdez and the 2010 Deepwater Horizon spills. These incidents keep getting bigger.

More offshore drilling means a higher risk of catastrophe, additional contamination of air and water locally, and more greenhouse gas emissions globally.

Federal Moratorium on California Offshore Leases

Up until the beginning of 2018, further oil and gas development using offshore oil rig platforms seemed quite unlikely. After the 1969 oil spill from Platform A and the subsequent ban on further leasing in state waters, the risk of another devastating oil spill was too large for even the federal government to consider new leases. The fact that the moratorium lasted through 16 years of Bush presidencies is truly a victory. Across the aisle, expanding offshore operations has been opposed. In Florida, even Republican Governor Rick Scott teamed up with environmental groups to fight the Department of Interior’s recent sales of offshore leases.

Trump’s New Gas Leasing Program

Now, the U.S. Bureau of Ocean Energy Management (BOEM) is preparing a new 2019-2024 national Outer Continental Shelf (OCS) oil and gas leasing program to replace the existing 2017-2022 program. This is an unusual practice, and part of Trump’s America-First Offshore Energy Strategy. The Trump administration opened up most of the US coastal waters for new oil and gas drilling with a recent draft proposal offering 47 new offshore block lease sales to take place between 2019 and 2024.

Where might these new leases occur?

The offshore federal waters that are open for oil and gas leases are shown in dark blue in the map below (Figure 1). Zoom out to see the extent.

Figure 1. Map of Offshore Oil and Gas Extraction


View map fullscreen | How FracTracker maps work | Map Data Download (CSV)

California’s Offshore Oil

Southern California has a legacy of oil extraction, particularly Los Angeles. It’s not just the federal government that is keen on continuing this legacy. While the state has not permitted the leasing of new blocks in offshore waters, Governor Brown’s policies have been very friendly to the oil and gas industry. According to Oil Change International’s Sky’s the Limit report: “Under the Brown administration, the state has permitted the drilling of more than 20,000 new wells,” including 5,000 offshore wells in state waters. About 2,000 of these offshore wells have been drilled since 2012.

This map developed in collaboration with Consumer Watch Dog juxtaposes the offshore wells drilled in CA state waters with those drilled in federal waters.

Southern California is the main target for future offshore leasing. The Monterey Shale formation, which underlies the city of Los Angeles and expands north offshore to the Ventura Coast, is thought to contain the largest conventional oil plays left IN THE WORLD! The map above shows the locations of state and federal offshore oil and gas wells and the rigs that service them. It also shows historical wells off the coast of Northern California.

Northern California, both onshore and offshore, sits on top of major reserves of natural gas, which may also be developed given the political climate. With an increase in the price of natural gas, operators will be developing these gas fields. Some operators, such as Chevron, have already drilled natural gas wells in northern California, but have left the wells “shut in” (capped) until production becomes more profitable.

For a more comprehensive coverage on environmental impacts of offshore operations, including those to sensitive species, check out the Environmental Defense Center’s Dirty Water Report and read our additional coverage of California’s existing offshore drilling, and offshore fracking.

Air Pollution from Oil Rigs

FracTracker, in collaboration with Earthworks, recently teamed up with the Center for Biological Diversity and Greenpeace International to get up close to offshore oil rigs. As a certified Optical Gas Imaging Thermographer, Kyle Ferrar (Western Program Coordinator for FracTracker Alliance and California Community Empowerment Project Organizer for Earthworks), took footage of the offshore oil rigs.

Using infrared technology, we were able to visualize and record emissions and leaks of volatile hydrocarbons and other greenhouse gases coming from these offshore sites. We documented many cases of intense flaring from the rigs, including several cases where the poorly burning flare allowed hydrocarbons to be leaked to the atmosphere prior to complete combustion of CO2.

More complete coverage of this trip can be found here on the Greenpeace website.

Below you can view a compilation of the footage we were able to capture from small pontoon boats.

Conclusion

FracTracker has looked at offshore oil and gas drilling from many different angles. We have looked to the past, and found the most egregious environmental damages in U.S. history. We have analyzed the data and shown where, when, and how much offshore drilling is happening in California. We have demonstrated that much of the drilling and many of the proposed leases are in protected and sensitive habitats. We have looked at policy and found that both Governor Brown and President Trump are aligned to promote more oil and gas development. We have even looked at the rigs in person in multiple spectrums of light and found that these operations continuously leak and emit greenhouse gases and other air toxins.

No matter which way you look at offshore oil and gas drilling, it is clearly one of the most threatening methods of oil and gas extraction in use today.


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Virtual Pipelines - Potential Routes to Cayuga

Virtual pipelines: Convenient for Industry, a Burden on Communities

As the natural gas industry faces harsher and more widespread critiques from environmentalists and citizens, pipeline projects are facing delays, fines, and defeat. Aside from the questionable economics behind transporting gas and oil by pipeline, there are broad economic risks associated with pipeline accidents. With an increasing list of pipeline-related accidents in the public eye, including the two this past summer in Texas and Kansas, blasts this fall in Beaver County, PA, and in Boston, MA, scrutiny of new pipeline projects is on the uptick.

That being said, what is the alternative?

Virtual Pipelines?

Virtual Pipeline - Oil and gas truck

Loaded CNG transport vehicle

Industry, not deterred by resistance from regulators and environmentalists, has developed a new work-around method to get their product to market. Rather than build pipelines across rugged, remote, or highly-populated terrain, a new “solution” called “virtual pipelines” has come on the scene, with roots in New England in 2011.

The term “virtual pipeline,” itself, is so new that it is trademarked by Xpress Natural Gas (XNG), Boston, MA. XNG and other virtual pipeline companies use specially-designed tanker trucks to move compressed natural gas (CNG) or liquefied natural gas (LNG) via our public roads and highways. CNG in this system is under very high pressure — up to 3,600 psi when tank trailers are full. Rail and barge shipments are also considered part of the system, and trailers are designed to be easily loaded onto train cars or boats.

For the gas industry, virtual pipelines can be used in locales where gas is only needed for a limited time period, the pipeline network is not developed, or opposition by landowners is too contentious to make eminent domain an option, among other issues. These virtual pipeline trucks are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane.

Restricted only by permissible weight limits on roads (up to 80,000 pounds or more), 5-axle trucks may make in excess of 100 round trips a day from the fueling location to their destination — sometimes hundreds of miles away. These trucks, which may travel alone or in caravans, are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane. Manufacturers of these virtual pipeline rigs tout the safety considerations that go into their engineered design. These considerations include special pressure monitoring for the dozens of tanks and super-strength materials to protect against ruptures.

Specialized equipment has been created to load compressed gas tanks into the trailers that will carry them to their destinations. Here’s a promotional video from Quantum:

Loading CNG into specialized trailers for transport

Impacts on Communities

Following New York State’s rejection of the Constitution Pipeline in 2016 based on water quality concerns, industry has been looking for ways to move natural gas from Pennsylvania’s Marcellus gas fields to the Iroquois Pipeline. The current strategy is to load the gas in canisters from a special compressor facility, and re-inject the gas to a pipeline at the journey’s endpoint. The extent to which virtual pipelines may be utilized in New York State and New England is not well known, but the natural gas industry does speak in sanguine terms about this strategy as a solution to many of its transportation issues.

Citizen blogger/activist Bill Huston has compiled a list accidents that have occurred with CNG transport trucks along the virtual pipeline that runs from a “mother station” at Forest Lake, PA to Manheim, NY, near the Iroquois pipeline. While there have been no explosions or loss of life as a result of these accidents, there are a number of reported incidents of trucks tipping or rolling over, sliding off the road, or spontaneously venting.

To move CNG from “Point A” to “Point B,” truck traffic through populated areas is unavoidable. In central New York, public outcry about virtual pipelines is rising, due in large part to the safety issues associated with increased truck traffic on state highways. In rural New York, state highways run through towns, villages, and cities. They are not separated from population centers in the way that interstate highways typically are. Traffic from CNG transport trucks clogs roadways, in some cases burdening the pass-through communities with 100 or more tractor trailers a day. Routes pass directly in front of schools and health care facilities.

In short, virtual pipelines present a public safety hazard that has yet to be addressed.

Virtual Pipelines and the Cayuga Power Plant 

In Lansing, NY, there is an inefficient and economically-beleaguered power plant, currently run on coal, that the power utility would prefer to see shut down. The Cayuga Power Plant was cited in 2016 for exceeding mercury emissions by nearly 2000%. Its inherently inefficient design makes it a significant greenhouse gas contributor. Years ago, it provided considerable tax benefits to its host community of Lansing, and as such has some lingering support. After both a devastating fire in one stack and mechanical failure in another, the plant has been barely running for the past 3 or 4 years. It is currently used as a “peaker plant“, operating only during periods of excessive demand on the electric grid, during summer months.

New York State’s Governor, Andrew Cuomo, has stated that all coal-power plants will be shut down by 2020.

Cayuga Power Plant in Lansing, NY.

Nonetheless, the plant owners are pushing to re-power the Cayuga Power Plant with natural gas. Currently, however, there is no pipeline to deliver the gas to the plant.  Without support by the public nor the Public Service Commission for the construction of a supply pipeline, Cayuga Power Plant has revealed they plan to receive gas deliveries via truck.

Scenario Maps

FracTracker has modeled the five most likely scenarios that would take compressed natural gas from a loading station in northern Pennsylvania to the Cayuga Power Plant in Lansing. All of the scenarios bring the trucks through populated communities, in dangerous proximity to high-risk facilities where both human safety and evacuations are problematic. The routes also pass through intersections and road stretches that have some of the highest accident rates in the area.

Route 1: This route passes within a half mile of homes of 36,669 people in the Villages of Lansing, Candor, Spencer, Owego; Towns of Ithaca, Lansing, Newfield, Danby, Candor, Spencer, Tioga, Owego, Vestal; and the City of Ithaca. Within the half-mile evacuation zone of this route, should there be an accident, are:

  • 17 health care facilities
  • 20 day care centers
  • 4 private school
  • 21 public schools

Click on the tabs in the box above to explore the five potential truck routes with maps.

Interactive Map

For a full interactive map of the potential routes for CNG delivery to the Cayuga Power Plant, and the schools, health care facilities, etc. within a half-mile evacuation zone of the routes, view the interactive map below.

View map fullscreen | How FracTracker maps work

A Call for Alternative Energy

Despite the apparent convenience that virtual pipelines present for the fossil fuel industry, they are not the solution the future energy supply needs. Yes, they present an alternative to pipeline transportation — but they also play a disastrous role in continuing our descent into climate chaos caused by increasing greenhouse gas concentrations in the atmosphere.

Methane leakage is an unavoidable component of the entire life cycle of natural gas usage — from “cradle to grave” — or more precisely, from the moment a well is drilled to when the gas is combusted by its end-user. And methane, as a greenhouse gas, is up to 100 times more potent than carbon dioxide. The Intergovernmental Panel on Climate Change’s (IPCC) recent report (see summary here) is unflinching in its clarion call for immediate, and extreme, cut-backs in greenhouse gas production. If we choose not to heed this call, much of humanity’s future survival is called into question.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

More of the details about the Cayuga Power Plant will be explained in the upcoming weeks in a related guest blog by environmental activist and organizer, Irene Weiser, of Tompkins County, NY.

 

 

Pennsylvania Pipelines map by FracTracker Alliance

Pennsylvania Pipelines and Pollution Events

When people think about oil and gas extraction in Pennsylvania, they think about the tens of thousands of oil and gas wells in the state. It makes sense, because that’s where the process starts. However, while oil and other liquids can be shipped in tanker trucks, all of the producing gas wells in the state – whether they are small conventional wells or the giants of the Marcellus and Utica – must be connected by a network of pipelines.

Moving hydrocarbons from the well to processing facilities to power plants and residential customers all occurs within this giant midstream system, and the cumulative impact that pipelines have on the state is formidable. Let’s take a closer look at where the oil and gas pipelines are located in PA, their safety records, and major data gaps. Additionally, we’ve made available a detailed, interactive map of Pennsylvania pipelines and other important features such as water crossings.

Pipeline routes are everywhere in Pennsylvania

According to the Pipeline and Hazardous Materials Safety Administration (PHMSA), there were 92,407 miles of pipelines carrying natural gas and liquid petroleum products in Pennsylvania in 2017. That distance is equivalent to 151 round trips between Philadelphia and Pittsburgh on the Pennsylvania Turnpike, or more than three trips around the globe at the equator. This figure includes 78,022 miles of distribution lines (which takes gas from public utilities to consumers), 10,168 miles of transmission lines (which move gas between various processing facilities), 3,111 miles of petroleum liquid routes, and 1,105 miles of natural gas gathering lines (which take the gas from wells to midstream processing facilities).

Of note – The last category’s estimate is almost certainly a drastic underestimation. As of June 7th, there were 3,781 unconventional well pads in Pennsylvania, according the Pennsylvania Department of Environmental Protection (DEP), and all of the pads need to be connected to gathering lines. A 2014 report by the Nature Conservancy estimates that 19 acres of land are cleared for each well pad, which would work out to 3.1 miles of gathering lines for a typical 50-foot right-of-way. Multiplied out, 3,781 wells pads would require a total of 11,721 miles of gathering lines – well over PHMSA’s estimate of a 1,105 miles (See Table 1 for estimate comparisons).

Table 1. Varying estimates of gathering lines in Pennsylvania.*

Source

Unconventional Well Pads

Average Gathering Line Length (Miles) Statewide Total Estimated Miles
Nature Conservancy 3,781 3.1 11,721
Bradford County 3,781 3.5 13,234
PHMSA  3,781  0.3 1,105

*Estimates based on Nature Conservancy and Bradford County data are based on calculating the average length of segments, then multiplying by the number of well pads in the state to find the statewide total. The PHMSA estimate was calculated in reverse, by dividing the purported total of gathering lines by the number of well pads to find the average mileage.

Early map of gathering lines in Bradford County, PA by FracTracker (Pennsylvania Pipelines)

Figure 1: Location of gathering lines (2014) and oil and gas wells (2018) in Bradford County, Pennsylvania. Note the pockets of newer wells that are not connected to the older gathering line network.

In 2014, the FracTracker Alliance digitized a published map of gathering lines in Bradford County, allowing us to analyze the data spatially (Figure 2). These efforts yield similar results, with gathering lines averaging 3.5 miles in length. Not counting segments of transmission lines included in the data, such as Stagecoach, Sunoco, and Kinder Morgan’s Tennessee Gas Pipeline, there were 1,003 miles of gas gathering lines just in Bradford County in 2014.

Almost all of this data is based only on unconventional oil and gas activity, and therefore ignores the more than 96,000 conventional oil and gas (O&G) wells active in the state. We do not have a reasonable estimate on the average length of gathering line segments are for this network. It is reasonable to assume that they tend to be shorter, as conventional wells are often closer together than unconventional well pads, but they must still network across vast portions of the state.

Table 2. Estimated length of gathering lines for conventional wells in Pennsylvania by variable average lengths

Average Length (Miles) Conventional Wells Total Miles
0.5 96,143 48,072
1.0 96,143 96,143
1.5 96,143 144,215
2.0 96,143 192,286
2.5 96,143 240,358
3.0 96,143 288,429

If the average gathering line for conventional wells in Pennsylvania is at least 1 mile in length, then the total mileage of gathering lines would exceed all other types of gas and petroleum pipelines in the state. Conversely, for the PHMSA figure of 1,105 miles to be accurate, the average gathering line for all conventional wells and unconventional well pads in Pennsylvania would be 0.011 miles, or only about 58 feet long.

Pipelines are dangerous

As pipelines impact residents in many ways, there are numerous reason why communities should try to understand their impacts – including basic planning, property rights, sediment runoff into streams, to name a few. Perhaps the most significant reason, however, is the potential for harmful incidents to occur, which are more common than anyone would like to think (See Table 3). Some of these incidents are quite serious, too.

Table 3. Nationwide pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 909 92 432 220 16,949 $348,511,528
Gas Transmission / Gathering 1,031 23 94 49 8,557 $1,085,396,867
Hazardous Liquids 3,368 10 24 14 2,467 $2,531,839,207
Grand Total 5,308 125 550 283 27,973 $3,965,747,602

As of the July 13, 2018 download date, the PHMSA report covers 3,116 days.

Incidents Per Day

This means that nationally per day there are 1.7 pipeline incidents, almost 9 people evacuated, and $1,272,704 in damages, including the loss of released hydrocarbons.

On average, there is a fatality every 25 days, an injury every six days, and an explosion every 11 days. The location of those explosions obviously has a lot to do with the casualty count and aggregate property damage.

How do Pennsylvania pipelines hold up? As one might expect from a state with so many pipelines, Pennsylvania’s share of these incidents are significant (See Table 4).

Table 4. Pennsylvania pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 29 8 19 12 778 $6,769,061
Gas Transmission / Gathering 30 0 2 2 292 $51,048,027
Hazardous Liquids 49 0 0 1 48 $9,115,036
Grand Total 108 8 21 15 1,118 $66,932,124

Within Pennsylvania, an incident is reported to PHMSA every 29 days, an injury or fatality can be expected every 107 days, and the daily average of property damage is $21,480.

The issue with under-reported gathering lines notwithstanding, PHMSA lists Pennsylvania with 92,407 miles of combined gas and hazardous liquid pipelines, which is roughly 3.3% of the nationwide total, and there is no reason to believe that PHMSA’s issue with accounting for gathering lines is unique to the Keystone State.

Just 2% of the total number of incidents are in Pennsylvania. In terms of impacts, however, the state has seen more than its fair share – with 6.4% of fatalities, 3.8% of injuries, 5.3% of explosions, and 3.9% of evacuations. Property damage in Pennsylvania accounts for just 1.7% of the national total, making it the only category examined above for which its share of impacts is less than expected, based on total pipeline miles.

Pipeline location data not widely available

Pipeline data is published from a variety of public agencies, although almost none of it is really accessible or accurate.

For example the Department of Homeland Security (DHS) publishes a number of energy-related datasets. While they do not publish gas pipelines, they do have a 2012 dataset of natural gas liquid routes, which is a significant portion of the hazardous liquid inventory. From an analytical point of view, however, this dataset is essentially worthless. Many of these pipelines are so generalized that they don’t make a single bend for multiple counties, and the actual location of the routes can be miles from where the data are represented. Communities cannot use this as a tool to better understand how pipelines interact with places that are important to them, like schools, hospitals, and residential neighborhoods. The dataset is also incomplete – the original Mariner East natural gas pipeline, which has been around for decades, isn’t even included in the dataset.

Screenshot from PHMSA's public pipeline viewer

Figure 2: This text appears to viewers of PHMSA’s public pipeline viewer.

Another data source is PHMSA’s National Pipeline Mapping System Public Viewer. While this source is rich in content, it has several intentional limitations that thwart the ability of the public to accurately analyze the pipeline network and understand potential impacts:

  1. Data can only be accessed one county at a time, which is impractical for long interstate transmission routes,
  2. Data can not be be downloaded, and
  3. The on-screen representation of the routes disappears when users zoom in too far.

Within Pennsylvania, the Department of Environmental Protection (DEP) maintains the Pennsylvania Pipeline Portal, which contains a lot of information about various recent pipeline projects. However, with the sole exception of the Mariner East II project, the agency does not provide any geospatial data for the routes. The reason for this is explained on the Mariner East II page:

These shapefiles are the GIS data layers associated with the permits that have been submitted for the proposed pipeline project. These shapefiles are not required as part of a permit application and are not commonly submitted but were provided to the Department by Sunoco Pipeline, L.P.

The files were accepted by the Department to aid in the review of the application material given the large scale of the project. The shapefiles ease the review by displaying some information contained in the hardcopy of the plans and application in a different format.

The Department of Conservation and Natural Resources (DCNR) does make oil and gas infrastructure data available, including pipelines, where it occurs on state forest land.

Pennsylvania Pipelines Map

Considering the risks posed by pipelines, their proliferation in Pennsylvania, and this critical juncture in their development with an implicit opportunity to document impacts, FracTracker believes it is important now to develop an accurate interactive statewide map of these projects, fortify it with essential data layers, and facilitate citizen reporting of the problems that are occurring.

Other than the Mariner East II route and the state forest data available from DCNR, all of the pipeline routes on our Pennsylvania Pipeline Map, below, have been painstakingly digitized – either from paper maps, PDFs, or other digital media – to make geospatial data that can analyzed by interacting with other datasets. These layers are only as good as their sources, and may not be exact in some cases, but they are orders of magnitude better than data produced by public agencies such as DHS.

Figure 3: FracTracker’s Pennsylvania Pipeline Map. View fulll screen to explore map further, view water crossings, and other details not visible at the statewide map view.

Data Layers on Pennsylvania Pipelines Map

  • Incidents

    PHMSA incidents (7-13-2018). Pipeline incidents that were reported to the Pipeline and Hazardous Material Safety Administration. These reports contain significant information about the incidents, including location coordinates, and are shown on the map with white circles.

    Note that a few of the location coordinates appear to be erroneous, as two reports appear outside of the state boundary.

  • Spills

    Mariner East II – Inadvertent Returns (6-1-2018). This data layer shows inadvertent returns – or spills – related to the construction of the Mariner East II pipeline. This is a combination of two reports, including one where the spills that impacted waterways, and those categorized as upland spills. These are represented on the map by orange dots that vary in size depending on the amount of fluid that spilled. Some of the locations were provided as latitude / longitude coordinates, while others are estimates based on the description. In a few cases, the latitude value was adjusted to intersect the pipeline route. In each case, the adjusted location was in the correct county and municipality.

  • Water Crossings

    Known Stream & Wetland Crossings (2018). This shows the locations where the known pipeline routes intersect with streams and other wetlands on the National Wetland Inventory. These are organized by our four pipeline layers that follow, including FracTracker Vetted Pipelines (1,397 crossings), DCNR Pipelines (184 crossings), PHMSA Gas Pipelines (6,767 crossings), and Bradford County Gathering Lines (867 crossings). These crossings are shown as diamonds that match the colors of the four listed pipeline layers.

  • Vetted Pipelines

    FracTracker Vetted Pipelines (2018). This pipeline layer is an aggregation of pipeline routes that have been digitized in recent years. Much of this digitization was performed by the FracTracker Alliance, and it is an available layer on our mobile app. These are largely newer projects, and contain some routes, such as the Falcon Ethane Pipeline System, that have not been built yet. In some cases, multiple versions of the pipeline routes are printed, and we may not have the final version of the route in all circumstances. FracTracker Vetted Pipelines are represented with a red line.

  • DCNR Pipelines

    DCNR Pipelines (2018). This includes pipeline routes on state forest lands, and is shown as green lines on the map.

  • PHMSA Pipelines

    PHMSA Gas Pipelines (2018). This includes data digitized from the PHMSA Public Pipeline Viewer. This source contains gas and liquid pipelines, but only gas pipelines are included in this analysis. These routes are shown in a bright purplish pink color.

  • Bradford Lines

    Bradford County Gathering Lines (2014). This layer was digitized by the FracTracker Alliance after Bradford County published a printed map of gathering lines within the county in 2014. It is the only county in Pennsylvania that we have gathering line data for, and it is shown on the map as a yellow line.

  • Nearby Waterways

    Streams & Wetlands with 1/2 Mile of Pipelines (2018). This clipped layer of the National Wetlands Inventory is provided for visual reference of the wetlands near known pipeline routes. Due to the large amount of data, this layer is only visible when users zoom in to a scale of 1:500,000, or about the size of a large county.


By Matt Kelso, Manager of Data and Technology

This article is the first in a two-part series on Pennsylvania pipelines. Stay tuned!

Population density map of ME2 pipeline (aka Dragonpipe)

Population density maps: Lessons on where NOT to put a pipeline

By George Alexander, Guest Author

Census maps tell the story

FracTracker Alliance recently created a set of maps showing population variation along the route of the Mariner East 2 Pipeline, which I refer to as the “Dragonpipe.” FracTracker’s maps dramatically reveal a route that runs through many centers of dense population, and seems to avoid relatively nearby areas with far lower population density. The maps are based on US Census 2010 block-level data.

The take-away lesson from these maps is this: Sunoco has put the Dragonpipe in a very bad location.

As an example, here is a map of the pipeline route as it passes through Berks, Chester, and Delaware counties in Pennsylvania:

Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

The dark brown areas in the map above denote the most densely populated locations, displayed as the number of people per square mile. The lighter the color, the lower the population density. The black line is the pipeline route.

In the upper left-hand part of the map, note that the route passes through the suburbs of Reading, in Berks County. Further south in the same map, notice how it passes directly through population centers in Chester and Delaware counties.

Let’s examine this pattern more closely.

Why was this route chosen in the first place?

For Sunoco’s convenience

In many areas, from a standpoint of impacts on local communities, the pipeline route is actually the worst possible track that Sunoco could have chosen; it puts more people at risk than any other path, given the same starting- and endpoints. Why in the world did they choose this route?

The answer is this: for Sunoco’s corporate convenience. The Dragonpipe, for most of its length, runs side-by-side Mariner East 1 (ME1), an existing 80+ year-old pipeline designed to carry gasoline and heating oil to customers in the central and western parts of Pennsylvania. From this standpoint, the location of the old pipeline makes sense; it had to be sited near populated areas. That’s where the customers for gasoline and heating oil were located back in the 1930s.

However, the flip-side of Sunoco’s corporate convenience may also mean unnecessary risks to tens of thousands of Pennsylvania residents. 

The old pipeline connected the centers of population in the 1930s, areas that are now much more populous when they were nearly ninety years ago. In the southeastern part of Pennsylvania, the character of the area has also changed dramatically. When the original pipeline was built, the landscape along ME1’s route through Delaware and Chester counties was predominantly farmland. Today, that area has changed to densely-settled suburbs, with homes, schools, businesses, hospitals, and shopping centers directly adjacent to the pipeline’s right-of-way.

The Exton area provides a prime example of how this transition to suburbia has set the stage for potential disaster along the pipeline route. The following image shows a detailed view of the population density near Exton. As you can see, the pipeline route sticks to high-density areas (shown in dark brown) the entire way, even though lower-density options (shown in orange and yellow) exist nearby.

Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Sunoco — like any corporation — has a moral obligation to conduct its business in a safe manner. This includes choosing a safe route for a pipeline that has inherent dangers and risks. However, Sunoco apparently did not choose to do so. Moreover, by law, Sunoco has an obligation to make human safety paramount. In the settlement Sunoco reached last August with Clean Air Council, Delaware Riverkeeper Network, and Mountain Watershed Association, Sunoco agreed to consider alternative routing for the pipeline in this area. Then, despite their promises, Sunoco simply bypassed that part of the agreement. Rather than explore alternatives to the proposed route, Sunoco dismissed the alternatives as “not practicable” because they did not involve the right-of-way that was already in use for Mariner East 1.

Sunoco seemed to have made their sole priority in considering a pipeline route whether the company has an existing pipeline there already. A better route would reduce by hundreds the number of people who could be killed or injured if there were a leak and explosion.

Pipelines leak

Pipelines can and do leak. Mariner East 1, in its short career as a pipeline carrying NGLs, has already leaked several times. It is just good luck that the leaks were stopped before any product ignited. (See most recent report of ME1 and ME2 issues.) The Atex pipeline, a pipeline of similar size and content that runs down to the Gulf Coast, ruptured and exploded near Follansbee, WV, in just its second year of operation. And there’s no reason to believe such an incident would never happen with the Dragonpipe.

Sunoco has an obligation to do what it can to minimize the injuries, death, and destruction caused by an event like the Follansbee explosion. The Follansbee incident occurred in a forested area. The explosion destroyed several acres of trees, but no-one was killed. The result would have been far different if had the explosion been in a densely populated area.

Just as the maps above show how the Philadelphia suburbs and those of Reading are threatened, other FracTracker maps show the threats to suburbs of Pittsburgh and Harrisburg, below. Click to expand.

A call for change

Indeed, across the state, the Dragonpipe route gets dangerously and notably close to population centers. Such a path may be a convenient and financially beneficial option for Sunoco, but it is an unacceptable risk for Pennsylvania’s citizens to bear.


About the Author: George Alexander publishes the Dragonpipe Diary (www.dragonpipediary.com), covering all aspects the Mariner East pipeline project, including technology, risks, legal issues, economics, and the people and groups involved. He recently retired from a career in journalism and marketing.

An earlier version of this essay was published in Mr. Alexander’s blog, Dragonpipe Diary, on June 29, 2018.

 

The Falcon: Class Locations, Buildings & Recreational Areas

Part of the Falcon Public EIA Project

In this segment of the Falcon Public EIA Project we begin to explore the different ways that pipelines are assessed for potential risk to populated areas. We outline a methods dictated by the Pipeline and Hazardous Materials Safety Administration (PHMSA) called Class Locations. This methods identifies occupied structures in proximity to a pipeline.

Quick Falcon Facts

  • 67% of the Falcon route will qualify as Class 1, 27% as Class 2, and 3% as Class 3.
  • More than 557 single family residences and 20 businesses within 660ft of the pipeline.
  • Three recreational parks and a planned luxury housing development also at risk.

Map of Falcon Class Locations

The following map will serve as our guide in breaking down the Falcon’s Class Locations. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible as you zoom in. A number of additional layers are not shown by default, but can be turned on in the “layers” tab. Click the “details” tab in full-screen mode to read how the different layers were created.



View Map Fullscreen | How FracTracker Maps Work

Pipeline Class Locations

Pipeline “Class locations” determine certain aspects of how a pipeline is constructed. Essentially, a pipeline’s route is segmented into lengths that are each given different classifications as outlined in PHMSA guidelinesIn general terms, a segment’s Class is established by first calculating a buffer that extends 220 yards (660ft) on either side of the pipeline’s center in 1-mile continuous lengths. This buffer area is then analyzed for how many building structures are present. Classes are then assigned to each 1-mile segment using the follow criteria:

  • Class 1: a segment with 10 or fewer buildings intended for human occupancy
  • Class 2: a segment with more than 10, but less than 46 buildings intended for human occupancy
  • Class 3: a segment with 46 or more buildings intended for human occupancy, or where the pipeline lies within 100 yards of any building, or small well-defined outside area occupied by 20 or more people on at least 5 days a week for 10 weeks in any 12-month period (i.e. schools, businesses, recreation areas, churches)
  • Class 4: a segment where buildings with four or more stories aboveground are prevalent

The finer details of these calculations and their adjustments are complex, however. For instance, Class locations can be shortened to less than 1-mile lengths if building densities change dramatically in an certain area. The example image below shows one of the ways available to operators for doing this, called the “continuous sliding” method:

Calculating Class Locations
(source: PHMSA)

Class location designations may also be adjusted over time as densities change. For instance, if new homes were built in proximity to a previously constructed pipeline, the operator may be required to reduce their operating pressure, strengthen the pipeline, or conduct pressure tests to ensure the segment would technically meet the requirements of a higher Class. Alternatively, operators can apply for a special permit to avoid such changes.

What Class Locations Dictate

Pipeline segments with higher Classes must meet more rigorous safety standards, which are enforced either by PHMSA or by their state equivalent, such as the Pennsylvania Utility Commission. These include:

  • Soil depth: Class 1 locations must be installed with a minimum soil depth of 30 inches (18 inches in consolidated rock). Class 2, 3, and 4 locations require a minimum soil depth of 36 inches (24 inches in consolidated rock)
  • Shut-off valves: Class locations determine the maximum distance from shut-off valves to populated areas, as follows: Class 1 (10 miles), Class 2 (7.5 miles), Class 3 (4 miles), and Class 4 (2.5 miles).
  • Operating pressure: Classes also regulate the maximum allowable operating pressure (MAOP) of pipeline segments
  • Structural integrity: Classes determine where thicker walled materials must be used to withstand higher pressures, as well as different structural testing methods used in safety inspections

By replicating the 600 foot buffer from the Falcon’s centerline (used as the standard distance for determining Class Locations) we found that 67% of the Falcon route will qualify as Class 1, 27% as Class 2, and 3% as Class 3. These are represented on our interactive maps as green, yellow, and orange segments, respectively. An additional segment is marked as having an “unknown” Class on our maps (shaded in gray). This is the stretch crossing the Ohio River, where Shell’s Class location analysis has not been updated to reflect the route change that occurred in the summer of 2017.

Residential Structures

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

In total, there are 557 single family residences, 20 businesses, and a church within the 660ft buffer. Shell’s data also identify non-occupied structures along the route, such as sheds, garages, and other outbuildings. There are 535 such structures, but we did not have the time to replicate the locations of these sites. It is also important to note that the points on our interactive map represent only those identified by Shell, which we believe is an incomplete assessment of occupied structures based on our quick review of satellite maps.

Three residential structures lie directly within the 50-foot right-of-way. One of these homes, located in a Class 2 segment in Independence Township, is shown below. The Falcon will come as close as 20 feet to the edge of the structure and surround the home on three sides.

An occupied residence in the right-of-way

Neighborhoods in the following five communities account for the entirety of Falcon’s Class 3 locations. These would be considered the most “at risk” areas along the route in terms of proximity to the number of occupied structures. For instance, below is a satellite view of the Class 3 section of Raccoon Township.

  • Rumley Township, Harrison OH
  • Knox Township, Jefferson County OH
  • Raccoon Township, Beaver County PA
  • Independence Township, Beaver County PA
  • Mount Pleasant Township, Washington County PA

Raccoon Township residences & Municipal Park in a Class 3

Recreational Areas

In the above image we also see the location of Raccoon Township Municipal Park (in purple), home to a number of ballfields. Two similar recreation areas are located in the 660ft Class Location buffer: Mill Creek Ballpark, in Beaver County PA, and Clinton Community Park, in Allegheny County PA.

However, the Raccoon Township park is notable in that the Falcon cuts directly through its property boundary. Shell intends to bore under the park using HDD techniques, as stated in their permit applications, “to avoid disturbance to Beaver County baseball field/recreational park,” also stating that, “this HDD may be removed if the recreational group will allow laying the pipeline along the entrance roadway.”

New Housing Developments

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

One discovery worth attention is that the Falcon runs straight through an under-construction luxury housing development. Located in Allegheny County, PA, its developer, Maronda Homes, bills this growing community as having “picturesque landscapes, waterfront views and a peaceful collection of homes.” Shell mentions this development in their permit applications, stating:

Maronda Homes is in the planning and design stage of a very large housing development and SPLC [Shell Pipeline LC] worked closely with the developer and the Project was rerouted to avoid most of the housing sites.

It stands to reason that this neighborhood will eventually rank as one of the densest Class 3 areas along the Falcon route. Whether or not the pipeline is updated with higher safety standards as a result remains to be seen. The image below illustrates where the Falcon will go relative to lots marked for new homes. This property lots diagram was obtained from Shell’s GIS data layer and can be viewed on the FracTracker interactive map as well.

The Falcon intersects a luxury home development

[av_font_icon icon=’ue836′ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]1/31/18 Note: the Pittsburg Post-Gazette obtained newer lot line records for a portion of the Maronda Farms during their investigation into this story. These new records appear to have some alterations to the development, as seen below.

Maronda Farms, updated lot lines

Issues with Setbacks

There are no setback restrictions for building new homes in proximity to a pipeline. Parcels will eventually be sectioned off and sold to home buyers, begging the question of whether or not people in this community will realize a hazardous liquid pipeline runs past their driveways and backyards. This is a dilemma that residents in a similar development in Firestone, Colorado, are now grappling with following a recent pipeline explosion that killed two people, seen below, due to inadequate building setbacks.

A pipeline explodes in a Colorado home development
(source: InsideEnergy, CO)

Interestingly, we researched these same Maronda Farms parcels in FracTracker’s Allegheny County Lease Mapping Project only to discover that Maronda Homes also auctioned off their mineral rights for future oil and gas drilling. New homeowners would become victims of split-estate, where drilling companies can explore for oil and gas without having to seek permission from property owners, amplifying their level of risk.

* * *

Related Articles

The Falcon: High Consequence Areas & Potential Impact Zones

Part of the Falcon Public EIA Project

In this segment of the Falcon Public EIA Project we continue to explore the different ways that pipelines are assessed for potential risk – in this case, relative to population centers, drinking water systems, and sensitive habitats. We outline methods dictated by the Pipeline and Hazardous Materials Safety Administration (PHMSA) called “high consequence areas” (HCAs) and how they determine potential impact zones for highly volatile liquid (HVL) pipelines. These methods are then applied to the Falcon to understand its possible dangers.

Quick Falcon Facts

  • An estimated 940-foot potential impact radius (PIR)
  • 60 of 97 pipeline miles qualifying as High Consequence Areas (HCA)
  • More than 8,700 people living in the “vapor zone”
  • 5 schools, 6 daycare centers, and 16 emergency response centers in “vapor zone”
  • In proximity to 8 source-water (drinking water) protection areas
  • Affecting habitats populated by 11 endangered, protected, or threatened species

Map of Falcon High Consequence Areas

The following map will serve as our guide in breaking down the Falcon’s High Consequence Areas. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible as you zoom in. A number of additional layers are not shown by default, but can be turned on in the “layers” tab. Click the “details” tab in full-screen mode to read how the different layers were created.

View Map Fullscreen | How FracTracker Maps Work

High Consequence Areas

While Class Locations, discussed in a prior project article, dictate the construction and maintenance of a pipeline, high consequence areas (HCAs) designate when operators must implement integrity management programs (IMP) where pipeline failures could cause major impacts to populated areas, as well as drinking water systems and ecological resources — otherwise defined as unusually sensitive areas (USAs).

Populated Areas

Two considerations are used when determining pipeline proximity to population centers:

  1. High Population Areas – an urbanized area delineated by the Census Bureau as having 50,000 or more people and a population density of at least 1,000 people per square mile; and
  2. Other Populated Areas – a Census Bureau designated “place” that contains a concentrated population, such as an incorporated or unincorporated city, town, village, or other designated residential or commercial area – including work camps.

USAs: Drinking Water

PHMSA’s definition of drinking water sources include things such as:

  • Community Water Systems (CWS) – serving at least 15 service connections and at least 25 year-round residents
  • Non-transient Non-community Water Systems (NTNCWS) – schools, businesses, and hospitals with their own water supplies
  • Source Water Protection Areas (SWPA) for a CWS or a NTNCWS
  • Wellhead Protection Areas (WHPA)
  • Sole-source karst aquifer recharge areas

These locations are typically supplied by regulatory agencies in individual states.

With the exception of sole-source aquifers, drinking water sources are only considered if they lack an alternative water source. However, PHMSA is strict on what alternative source means, stating that they must be immediately usable, of minimal financial impact, with equal water quality, and capable of supporting communities for at least one month for a surface water sources of water and at least six months for a groundwater sources.

One very important note in all of these “drinking water” USA designations is that they do not include privately owned groundwater wells used by residences or businesses.

USAs: Ecological Resource

Ecological resource areas are established based on any number of qualities with different variations. In general terms, they contain imperiled, threatened, or endangered aquatic or terrestrial species; are known to have a concentration of migratory waterbirds; or are a “multi-species assemblage” area (where three or more of the above species can be found).

Calculating HCAs

Like Class locations, HCAs are calculated based on proximity. The first step in this process is to determine the pipeline’s Potential Impact Radius (PIR) — the distance beyond which a person standing outdoors in the vicinity of a pipeline rupture and fire would have a 99% chance of survival; or in which death, injury, or significant property damage could occur. PIR is calculated based on the pipeline’s maximum allowable operating pressure (MAOP), diameter, and the type of gas. An example of this calculation is demonstrated in FracTracker’s recent article on the Mariner East 2 pipeline’s PIR.

Once the PIR is known, operators then determine HCAs in one of two ways, illustrated in the image below:

  • Method 1: A Class 3 or Class 4 location, or a Class 1 or Class 2 location where “the potential impact radius is greater than 660 feet (200 meters), and the area within a potential impact circle contains 20 or more buildings intended for human occupancy”; or a Class 1 or Class 2 location where “the potential impact circle contains an “identified site.”
  • Method 2: An area within PIR containing an “identified site” or 20 or more buildings intended for human occupancy.

Calculating HCAs
(source: PHMSA)

In these definitions, “identified sites” include such things as playgrounds, recreational facilities, stadiums, churches, office buildings, community centers, hospitals, prisons, schools, and assisted-living facilities. However, there is a notable difference in how HCAs are calculated for natural gas pipelines vs. hazardous liquid pipelines.

Beyond just looking at what lies within the PIR, pipelines that contain gasses such as ethane potentially impact a much broader area as vapors flow over land or within a river, stream, lake, or other means. A truly accurate HCA analysis for an ethane pipeline leak requires extensive atmospheric modeling for likely vapor dispersions, such as seen in the example image below (part of a recent ESRI GIS conference presentation).

Vapor dispersion modelling
(source: TRC Solutions)

 

What HCAs Dictate

HCAs determine if a pipeline segment is included in an operator’s integrity management program (IMP) overseen by PHMSA or its state equivalent. IMPs must include risk assessments that identify the most likely impact scenarios in each HCA, enhanced management and repair schedules, as well as mitigation procedures in the event of an accident. Some IMPs also include the addition of automatic shut-off valves and leak detection systems, as well as coordination plans with local first responders.

The Falcon Risk Zones

Shell’s permit applications to the PA DEP state the pipeline:

…is not located in or within 100 feet of a national, state, or local park, forest, or recreation area. It is not located in or within 100 feet of a national natural landmark, national wildlife refuge, or federal, state, local or private wildlife or plant sanctuaries, state game lands. It is also not located in or within 100 feet of a national wild or scenic river, the Commonwealth’s Scenic Rivers System, or any areas designated as a Federal Wilderness Area. Additionally, there are no public water supplies located within the Project vicinity.

This is a partial truth, as “site” and “vicinity” are vague terms here. A number of these notable areas are within the PIR and HCA zones. Let’s take a closer look.

The PIR (or “Blast Zone”)

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Shell’s permit applications state a number of different pipeline dimensions will be used throughout the project. Most of the Falcon will be built with 12-inch steel pipe, with two exceptions: 1) The segment running from the Cadiz, OH, separator facility to its junction with line running from Scio, OH, will be a 10-inch diameter pipe; 2) 16-inch diameter pipe will be used from the junction of the Falcon’s two main legs located four miles south of Monaca, PA, to its end destination at the ethane cracker. We also know from comments made by Shell in public presentations that the Falcon’s maximum allowable operating pressure (MOAP) will be 1,440 psi. These numbers allow us to calculate the Falcon’s PIR which, for a 16″ ethane pipeline at 1,440psi, is about 940 feet. We’ve termed this the “blast zone” on our maps.

The HCA (or “Vapor Zone”)

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Shell’s analysis uses an HCA impact radius of 1.25 miles. This much larger buffer reflects the fact that vapors from hazardous liquid pipelines can travel unpredictably at high concentrations for long distances before ignition. This expanded buffer might be called the “vapor zone,” a term we used on our map. Within the HCA “vapor zone” we find that 60 of the Falcon’s 97 miles qualify as high consequence areas, with 35 miles triggered due to their proximity to drinking water sources, 25 miles trigger for proximity to populated areas, and 3 miles for proximity to ecological areas.

Populated Areas

Shell’s HCA buffer intersects 14 US Census-designated populated areas, shown in the table below. Falcon’s right-of-way directly intersects two of these areas: Cadiz Village in Harrison County, Ohio, and Southview CDP (Census Designated Place) in Washington County, PA. These areas are listed below. Additionally, we included on the FracTracker map the locations of public facilities that were found inside the HCA buffer. These include 5 public schools, 6 daycare centers, 10 fire stations, and 6 EMS stations.

Area Population State HCA
Pittsburgh Urbanized Area High PA Indirect
Weirton-Steubenville Urbanized Area High WV/OH/PA Indirect
Scio Village Other OH Indirect
Cadiz Village* Other OH Direct
Amsterdam Village Other OH Indirect
Shippingport Borough Other PA Indirect
Industry Borough Other PA Indirect
Hookstown Borough Other PA Indirect
Midway Borough Other PA Indirect
Clinton CDP Other PA Indirect
Imperial CDP Other PA Indirect
Southview CDP* Other PA Direct
Hickory CDP Other PA Indirect
Westland CDP Other PA Indirect
* Indicates an area the Falcon’s right-of-way will directly intersect

While it is difficult to determine the actual number of people living in the PIR and HCA vapor zone, there are ways one can estimate populations. In order to calculate the number of people who may live within the HCA and PIR zones, we first identified U.S. Census blocks that intersect each respective buffer. Second, we calculated the percentage of that census block’s area that lies within each buffer. Finally, we used the ratio of the two to determine the percentage of the block’s population that lies within the buffer.

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Based on 2010 Census data, we estimate that 2,499 people live within a reasonable projection of the Falcon’s PIR blast zone. When expanded to the HCA vapor zone, this total increases to 8,738 people. These numbers are relatively small compared to some pipelines due to the fact that a significant portion of the Falcon runs through fairly rural areas in most places.

PIR est. pop. HCA est. pop.
OHIO
Carroll County 11 47
Harrison County 274 915
Jefferson County 334 1,210
Total 619 2,172
WEST VIRGINIA
Hancock County 242 1,155
Total 242 1,155
PENNSYLVANIA
Allegheny County 186 969
Beaver County 990 3,023
Washington County 461 1,419
Total 1,637 5,410
Grand Total 2,499 8,738


Drinking Water Sources

Shell’s data identified a number of drinking water features considered in their HCA analysis. Metadata for this information show these sites were obtained from the Ohio Division of Drinking and Ground Waters, the West Virginia Source Water Assessment and Wellhead Protection Program, and the Pennsylvania DEP Wellhead Protection Program. The exact locations of public drinking water wells and intake points are generally protected by states for safety reasons. However, we duplicated the 5-mile buffer zones used on Shell’s map around these points, presumably denoting the boundaries of source water protection areas, wellhead protection areas, or intake points.

Drinking water buffers in Shell’s HCA analysis

As shown on FracTracker’s interactive map, five of these areas serve communities in the northern portions of Beaver County, shown in the image above, as well as the Cadiz and Weirton-Steubenville designated populated areas. Recall that HCA drinking water analysis only requires consideration of groundwater wells and not surface waters. This is an important distinction, as the Ambridge Reservoir is within the HCA zone but not part of Shell’s analysis — despite considerable risks outlined in our Falcon article on water body crossings.

Ecological Areas

Shell’s permits state that they consulted with the U.S. Fish and Wildlife Service (USFWS), Pennsylvania Game Commission (PGC), Pennsylvania Fish & Boat Commission (PFBC), and the Pennsylvania Department of Conservation and Natural Resources (DCNR) on their intended route in order to determine potential risks to protected species and ecologically sensitive areas.

DCNR responded that the pipeline had the potential to impact six sensitive plant species: Vase-vine Leather-Flower, Harbinger-of-spring, White Trout-Lily, Purple Rocket, Declined Trillium, and Snow Trillium. PFBC responded that the project may impact the Southern Redbelly Dace, a threatened temperate freshwater fish, within the Service Creek watershed. PGC responded that the pipeline had potential impact to habitats used by the Short-Eared Owl, Northern Harrier, and Silver-Haired Bat. Finally, the USFWS noted the presence of freshwater mussels in a number of water features crossed by the Falcon.

The presence of these species, as well as the proximity of protected lands illustrated on our map, factored into the Falcon’s HCA designations. A more detailed analysis of these issues is provided in the Falcon Public EIA Project article on Protected Habitats & Species of Concern.

* * *

Related Articles

By Kirk Jalbert, FracTracker Alliance

Heavy equipment moves debris from the site of a house explosion April 17 in Firestone, Colo., which killed two people. (David Kelly / For The Times)

Risks from Colorado’s Natural Gas Storage and Transmission Systems

Given recent concerns about underground natural gas storage wells (UGS), FracTracker mapped UGS wells and fields in Colorado, as well as midstream transmission pipelines of natural gas that transport the gas from well sites to facilities for processing. Results show that 6,673 Colorado residents in 2,607 households live within a 2.5 mile evacuation radius of a UGS well. Additionally, the UGS fields with the largest number of “single-point-of-failure” high-risk storage wells are also the two fields in Colorado nearest communities.

Worst Case Scenario

A house exploding from a natural gas leak sounds straight out of a 19th century period drama, but this tragedy just recently occurred in Firestone, Colorado. How could this happen in 2017? We have seen pictures and read reports of blowouts and explosions at well sites, and know of the fight against big oil and natural gas pipelines across the country. At the same time we take for granted the natural gas range that heats our food to feed our families. The risk of harm is seemingly far removed from our stove tops, although it may be much closer to home than we think – There are documented occupational hazards and compartmentalized risks in moving natural gas off site.

Natural gas is an explosive substance, yet the collection of the gas from well sites remains largely industry-regulated. Unfortunately, it has become clear that production states like Colorado are not able to provide oversight, much less know where small pipelines are even located. This is particularly dangerous, since the natural gas in its native state is ordorless, colorless, and tasteless. Flowing in the pipelines between well sites and processing stations, natural gas does not contain the mercaptan that gives commercial natural gas its tell-tale odor. In fact, much of the natural gas or “product” is merely lost to the atmosphere, or much worse, can collect in closed spaces and reach explosive levels. This means that high, potentially explosive levels of methane may go undetected until far too late.

Mapping Flow Lines

As a result of the house explosion in Firestone on April 17th CO regulators are now requiring oil and gas operators to report the location of their collection flow pipelines, as shown in Figure 1.

Figure 1. Map of Gathering Pipeline “Flowlines”


View map fullscreen

The locations of the collection of pipeline “flowlines”, like the uncapped pipeline that caused the house explosion in Firestone, have been mapped by FracTracker Alliance (above). The dataset is not complete, as not all operators complied with the reporting deadline set by the COGCC. For residents living in the midst of Colorado’s oil and gas production zones, addresses can be typed into the search bar in the upper left corner of the map. Users can see if their homes are located near or on top of these pipelines. The original mapping was done by Inside Energy’s Jordan Wirfs-Brock.

Underground Storage

When natural gas is mixed with mercaptan and ready for market, operators and utility companies store the product in UGS fields. (EDIT – Research shows that in most cases natural gas in UGS fields is not yet mixed with mercaptan. Therefore leaks may go undetected more easily. Aliso Canyon was a unique case where the gas was being stored AFTER being mixed with mercaptan. Odorization is not legally required until gas moves across state lines in an interstate pipeline or is piped into transmission lines for commercial distribution.) In August 2016, a natural gas storage well at the SoCal Gas Aliso Canyon natural gas storage field failed causing the largest methane leak in U.S. history. The Porter Ranch community experienced health impacts including nosebleeds, migraines, respiratory and other such symptoms. Thousands of residents were evacuated. While Aliso Canyon was the largest leak, it was by no means a unique case.

FracTracker has mapped the underground natural gas storage facilities in Colorado, and the wells that service the facilities. As can be seen below, there are 10 storage fields in Colorado, and an 11th one is planned. All the fields used for storage in Colorado are previously depleted oil and gas production fields. The majority of storage wells used to be production wells. All sites are shown in the map below (Figure 2).

Figure 2. Map of Natural Gas Underground Storage Facilities


View map fullscreen | How FracTracker maps work

Impacted Populations

Our analysis of Colorado natural gas storage facilities shows that 6,673 Colorado residents living in 2,607 households live within a 2.5 mile evacuation radius of a UGS well. The majority of those Coloradans (5,422) live in Morgan County, with 2,438 in or near the city of Fort Morgan. The city of Fort Morgan is surrounded by the Young Gas Storage Facility with a working capacity of 5,790,049 MCF and Colorado Interstate Gas Company with a working capacity of 8,496,000 MCF.

By comparison, the failure in Aliso Canyon leaked up to 5,659,000 MCF. A leak at either of these facilities could, therefore, result in a similar or larger release.

UGS Well Risk Assessment

A FracTracker co-founder and colleague at Harvard University recently completed a risk assessment of underground natural gas storage wells across the U.S. The analysis identified the storage wells shown in the map above (Figure 1) and defined a number of “design deficiencies” in wells, including “single-point-of-failure” designs that make the wells vulnerable to leaks and failures. Results showed that 2,715 of the total 14,138 active UGS wells across the country were constructed using similar techniques as the Aliso Canyon failed well.

Applying this assessment to the wells in Colorado, FracTracker finds the following:

  • There are a total of 357 UGS wells in Colorado.
  • 220 of which are currently active.
  • Of those 220 UGS wells, they were all drilled between 1949 and 1970.
  • 43 of the UGS wells are repurposed production wells.
  • 40 of those repurposed wells are the highest risk single barrier wells.

Specifically focusing on the UGS fields surrounding the city of Fort Morgan:

  • 21 single barrier wells are located in the Flank field 2.5 miles North of the city.
  • 13 single barrier wells are located in the Fort Morgan field 2.5 miles South of the city.

We originally asked how something as terrible as Firestone could have occurred. Collectively we all want to believe this was an isolated incident. Sadly, the data suggest the risk is higher than originally thought: The fields with the largest number of “single-point-of-failure” high-risk UGS wells are also the two fields in Colorado nearest communities. While the incident in Firestone is certainly heartbreaking, we hope regulators and operators can use the information in this analysis to avoid future catastrophes.


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Feature Image: Heavy equipment moves debris from the site of a house explosion April 17, 2017 in Firestone, Colorado, which killed two people. (David Kelly / For The Times)

Photo by Garth Lenz, iLCP - for Ethane Cracker article about risk and disclosure

Understanding in Order to Prepare: Ethane Cracker Risk and Disclosure

By Leann Leiter and Lisa Graves Marcucci
Maps and data analysis by Kirk Jalbert

Highly industrialized operations like petrochemical plants inherently carry risks, including the possibility of large-scale disasters. In an effort to prepare, it is incumbent upon all stakeholders to fully understand the risk potential. Yet, the planned Shell ethane cracker and additional petrochemical operations being proposed for Western Pennsylvania are the first of their kind in our region. This means that residents and elected officials are without a frame of reference as they consider approving these operations. Officials find themselves tasked with reviewing and approving highly complicated permit applications, and the public remains uncertain of what questions to ask and scenarios to consider. Often overlooked in the decision-making process is valuable expertise from local first responders like police, fire and emergency crew members, HAZMAT teams, and those who protect vulnerable populations, like emergency room personnel, nursing home staff, and school officials.

Steam cracker at BASF's Ludwigshafen site. Photo credit: BASF - for risk and disclosure article

Example of cracker producing ethylene, located at BASF’s Ludwigshafen site. Photo credit: BASF

In the first article in this series , we tried to identify the known hazards associated with ethane crackers. In this article, we look more closely at how that risk could play out in Beaver County, PA and strive to initiate an important dialogue that invites valuable, local expertise.

In keeping with the first article in this series, we use the terms vulnerability and capacity. Vulnerability refers to the conditions and factors that increase the disaster impact that a community might experience, and capacity consists of the strengths that mitigate those impacts. Importantly, vulnerability and capacity frequently intertwine and overlap. We might, for example, consider a fire station to be a site of “capacity,” but if it lies within an Emergency Planning Zone (discussed more below), an explosion at the plant could render it a vulnerability. Likewise, “vulnerable” populations such as the elderly may have special skills and local knowledge, making them a source of capacity.

Emergency Planning: Learning from Louisiana

FracTracker got in touch with the Emergency Operations Center (EOC) in St. Charles Parish, Louisiana, to learn how a community already living with Shell-owned and other petrochemical facilities manages risk and disclosure. The Emergency Manager we spoke with explained that they designate a two- and a five-mile area around each new facility in their jurisdiction, like ethane crackers, during their emergency planning process. They call these areas “ emergency planning zones ” or EPZs, and they maintain records of the vulnerabilities and sites of capacity within each zone. In case of a fire, explosion, or other unplanned event at any facility, having the EPZs designated in advance allows them to mobilize first responders, and notify and evacuate everyone living, working, and attending school within the zone. Whether they activate a two- or a five-mile EPZ depends on the type of incident, and factors like wind speed and direction.

Based on those procedures, the map below shows similar likely zones for the proposed plant in Beaver County, along with sites of vulnerability and capacity.

Ethane Cracker Hazard Map

View Map Fullscreen | How FracTracker Maps Work

The map helps us visualize the vulnerability and capacity of this area, relative to the proposed ethane cracker. It includes three main elements: the Shell site and parcels likely to be targeted for buildout of related facilities, two Emergency Planning Zones (EPZs) around the Shell facility, and infrastructure and facilities of the area that represent vulnerability and capacity.

vacant-parcels

Vacant parcels near the site

It is important to note that the proposed ethane cracker in Beaver County is merely the first of an influx of petrochemical spin-off facilities promised for the area, potentially occupying the various empty parcels indicated on the map above as “vacant properties” and presented in light gray in the screenshot left.

Each new facility would add its own risks and cumulative impacts to the equation. It would be impossible to project these additional risks without knowing what facilities will be built here, so in this article, we stick to what we do know – the risks already articulated by Shell, lessons learned from other communities hosting petrochemical industry in other parts of the country, and past disasters at similar facilities.

Vulnerability and Capacity in Beaver County

Red, blue, and green points on the map above and in the screenshot below stand in for hospitals like Heritage Valley Beaver; fire and emergency medical services like Vanport Volunteer Fire Company; police stations like the Beaver County Sheriff’s office; and daycares and schools like Center Grange Primary School.

Transportation routes, if impacted, could challenge evacuation. Potter Township Fire Chief Vicki Carlton pointed out that evacuations due to an event at this facility could also be complicated by the need to stay upwind, when evacuations would likely move in a downwind direction. This map lacks drinking water intakes and other essential features upon which lives depend, but which nonetheless also sit within this zone of vulnerability.

points-within-epzs

Points within EPZS

Vulnerability/capacity within 2-mile zone:

  • 1 hospital
  • 5 police stations
  • 10 fire/EMS stations
  • 23 schools/daycare facilities
  • 47,717 residents*

When expanded to 5-mile zone:

  • 2 hospitals
  • 9 police stations
  • 23 fire/EMS stations
  • 40 schools/daycare facilities
  • 120,849 residents*

*Note: For census tracts that are partly within a zone, a ratio is determined based on the percentage of land area in the tract within the zone. This ratio is then used to estimate the fraction of the population likely within the zone.

Stakeholders’ Right to Know

No person or community should be subjected to risk without the opportunity to be fully informed and to give meaningful input. Likewise, no group of people should have to bear a disproportionate share of environmental risks, particularly stakeholders who are already frequently disenfranchised in environmental decision-making. “Environmental justice” (EJ) refers to those simple principles, and DEP designates environmental justice areas based on communities of color and poverty indicators.

Presented as blue fields on the map and shown in the screenshot below, several state-designated EJ areas fall partially or entirely within the 2- and 5-mile EPZs (a portion of two EJ areas home to 2,851 people, and when expanded to five miles, two entire EJ areas and a portion of seven more, home to 18,679 people, respectively).

EJ Areas and Emergency Planning Zones around the Site

EJ Areas and Emergency Planning Zones around the Site

The basic ideas behind environmental justice have major bearing in emergency scenarios. For example, those living below the poverty line tend to have less access to information and news sources, meaning they might not learn of dangerous unexpected emissions plumes coming their way. They also may not have access to a personal vehicle, rendering them dependent upon a functioning public transportation system to evacuate in an emergency. Living below poverty level may also mean fewer resources at home for sheltering-in-place during a disaster, and having less financial resources, like personal savings, may lead to more difficult post-disaster recovery.

Local expertise

FracTracker recently consulted with the Emergency Management Director for Beaver County, Eric Brewer, and with Potter Township Fire Chief Vicki Carlton. Both indicated that their staff have already begun training exercises with Shell -including a live drill on site that simulated a fire in a work trailer. But when asked, neither reported that they had been consulted in the permit approval process. Neither had been informed of the chemicals to be held on site, and both referred to emergency planning considerations as something to come in the future, after the plant was built.

Unfortunately, the lack of input from public safety professionals during the permit approval stage isn’t unique to Beaver County. Our emergency management contact in Louisiana pointed to the same disturbing reality: Those who best understand the disaster implications of these dangerous developments and who would be mobilized to respond in the case of a disaster are not given a say in their approval or denial. This valuable local expertise – in Louisiana and in Beaver County – is being overlooked.

All Beaver County first responders who spoke with FracTracker clearly showed their willingness to perform their duties in any way that Shell’s new facility might demand, hopefulness about its safety, and a generally positive relationship with the company so far. Chief Carlton believes that the ethane cracker will be an improvement over the previous facility on the same site, the Horsehead zinc smelter, though a regional air pollution report characterizes this as a trade off of one type of dangerous pollution for another. Director Brewer pointed to the existing emergency plans for the county’s nuclear facility as giving Beaver County an important leg-up on preparedness.

But the conversations also raised concern about what the future relationship between the community and the industry will look like. Will funds be allocated to these first responders for the additional burdens brought on by new, unprecedented facilities, in what amount, and for how long into the future? Chief Carlton pointed out that until Shell’s on-site fire brigade is in place two or three years from now, her all-volunteer department would be the first line of defense in case of a fire or other incident. In the meantime, her fire company has ordered a much-needed equipment upgrade to replace a 30-year old, outdated tanker at a cost of $400,000. They are formally requesting all corporate businesses in the township, including Shell, to share the cost. Hopefully, the fire company will see this cost covered by their corporate neighbors who use their services. But further down the road? Once all is said and done, and Shell has what they need to operate unfettered, Chief Carlton wonders, “where do we stand with them?”

Waiting for disclosure of the risks

Emergency preparedness and planning should be a process characterized by transparency and inclusion of all stakeholders. However, when it comes to the Shell ethane cracker, those who will share a fence line with such operations have not yet been granted access to the full picture. Currently, the DEP allows industrial operations like the proposed ethane cracker to wait until immediately before operations begin to disclose emergency planning information, in the form of Preparedness, Prevention, and Contingency (PPC) plans. In other words, when permits are up for approval or denial prior to construction, permit applicants are not currently required to provide PPC plans, and the public and emergency managers cannot weigh the risks or provide crucial input.

Shell’s Acknowledged Risks
According to public information provided by Shell

Sampling of Shell’s Disastrous
Petrochemical Precedents

Fire and Explosions

Shell’s Deer Park, Texas, 1997:
Blast at chemical plant

Leaks

Shell’s Deer Park, Texas refinery and chemical plant, 2013:
Harmful air pollution and benzene leak

Equipment Failures

Shell’s Martinez Refinery in California, 2016:
Equipment failure event; Shell’s refusal to reveal gases emitted

According to Shell, possible risks of the proposed Beaver County petrochemical facility include fire, explosion, leaks, and equipment failures. More than mere potentialities, examples of each are already on the books. The above table presents a sampling. Shell also points out the increased risk of traffic accidents, not explored in this chart. It is worth noting, however, that the proposed facility, and likely spin-off facilities, would greatly increase vehicular and rail traffic.

The ethane cracker in Beaver County plant has not yet been constructed. However, Shell operates similar operations with documented risks and their own histories of emergency events. Going forward, the various governmental agencies tasked with reviewing permit applications should require industrial operations like Shell, to make this information public as part of the review and planning process. Currently they can relegate safety information to a few vague references and get a free pass to mark it as “confidential” in permit applications. Strengthening risk disclosure requirements would be a logical and basic step toward ensuring that all stakeholders – including those with special emergency planning expertise – can have input on whether those risks are acceptable before permits are approved and site prep begins.

Until regulations are tightened, we invite Shell to fulfill its own stated objective of being a “good neighbor” by being forthcoming about what risks will be moving in next door. Shell can and should take the initiative to share information about its existing facilities, as well as lessons learned from past emergencies at those sites. Instead of waiting for the post-construction, or the “implementation” stage, all stakeholders deserve disclosure of Shell’s plans to prevent and respond to emergencies now.

In our next article, we will explore the infrastructure for the proposed Shell facility, which spans multiple states, and sort out the piecemeal approval processes of building an ethane cracker in Pennsylvania.


Sincere Appreciation

Emergency Managers and First Responders in St. Charles Parish, Louisiana and Potter Township and Center Township, PA.

Lisa Hallowell, Senior Attorney at the Environmental Integrity Project, for her review of this article series and contributions to our understanding of relevant regulations.

Kirk Jalbert, in addition to maps and analysis, for contributing key points of consideration for and expertise on environmental justice.

The International League of Conservation Photographers for sharing the feature image used in this article.

The image used on our homepage of the steam cracker at BASF’s Ludwigshafen site was taken by BASF.


By Leann Leiter, Environmental Health Fellow for FracTracker Alliance and the Southwest PA Environmental Health Project and Lisa Graves Marcucci, PA Coordinator, Community Outreach of Environmental Integrity Project

With maps and analysis by Kirk Jalbert, Manager of Community-Based Research & Engagement, FracTracker Alliance