Posts

Richmond, CA crude by rail protest

CA Refineries: Sources of Oil and Crude-by-Rail Terminals

CA Crude by Rail, from the Bakken Shale and Canada’s Tar Sands to California Refineries
By
Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community Based Research & Engagement

Refineries in California plan to increase capacity and refine more Bakken Shale crude oil and Canadian tar sands bitumen. However, CA’s refinery communities that already bear a disparate amount of the burden (the refinery corridor along the north shore of the East Bay) will be more impacted than they were previously. New crude-by-rail terminals will put additional Californians at risk of accidents such as spills, derailments, and explosions. Additionally, air quality in refinery communities will be further degraded as refineries change to lower quality sources of crude oil. Below we discuss where the raw crude oil originates, why people are concerned about crude-by-rail projects, and what CA communities are doing to protect themselves. We also discuss our GIS analysis, showing the number of Californians living within the half-mile blast zones of the rail lines that currently are or will be supported by the new and existing crude by rail terminal projects.

Sources of Raw Crude Oil

Sources of Refinery HAPs

Figure 1. Sources of crude oil feedstock refined in California over time (CA Energy Commission, 2015)

California’s once plentiful oil reserves of locally extracted crude are dwindling and nearing depletion. Since 1985, crude extraction in CA has dropped by half. Production from Alaska has dropped even more, from 2 million B/D (barrels per day) to around 500,000 B/D. The 1.9 million B/D refining capacity in CA is looking for new sources of fuels. Refineries continue to supplement crude feedstock with oil from other sources, and the majority has been coming from overseas, specifically Iraq and Saudi Arabia. This trend is shown in figure 1.

Predictions project that sources of raw crude oil are shifting to the energy intensive Bakken formation and Canadian Tar Sands. The Borealis Centre estimates an 800% increase of tar sands oil in CA refineries over the next 25 years (NRDC, 2015). The increase in raw material from these isolated locations means new routes are necessary to transport the crude to refineries. New pipelines and crude-by-rail facilities would be necessary, specifically in locations where there are not marine terminals such as the Central Valley and Central Coast of CA. The cheapest way for operators in the Canadian Tar Sands and North Dakota’s Bakken Shale to get their raw crude to CA’s refinery markets is by railroad (30% less than shipping by marine routes from ports in Oregon and Washington), but this process also presents several issues.

CA Crude by Rail

More than 1 million children — 250,000 in the East Bay — attend school within one mile of a current or proposed oil train line (CBD, 2015). Using this “oil train blast zone” map developed by ForestEthics (now called Stand) you can explore the various areas at risk in the US if there was an oil train explosion along a rail line. Unfortunately, there are environmental injustices that exist for communities living along the rail lines that would be transporting the crude according to another ForestEthics report.

To better understand this issue, last year we published an analysis of rail lines known to be used for transporting crude along with the locations of oil train incidents and accidents in California. This year we have updated the rail lines in the map below to focus on the Burlington Northern Santa Fe (BNSF) and Union Pacific (UP) railroad lines, which will be the predominant lines used for crude-by-rail transport and are also the focus of the CA Emergency Management Agency’s Oil by Rail hazard map.

The specific focus of the map in Figure 2 is the five proposed and eight existing crude-by-rail terminals that allow oil rail cars to unload at the refineries. The eight existing rail terminals have a combined capacity of 496,000 barrels. Combined, the 15 terminals would increase CA’s crude imports to over 1 million B/D by rail. The currently active terminals are shown with red markers. Proposed terminals are shown with orange markers, and inactive terminals with yellow markers. Much of the data on terminals was taken from the Oil Change International Crude by Rail Map, which covers the entire U.S.

Figure 2. Map of CA Crude by Rail Terminals

View Map Fullscreen | How Our Maps Work | Download Rail Terminal Map Data

Additional Proposals

The same type of facility is currently operating in the East Bay’s refinery corridor in Richmond, CA. The Kinder Morgan Richmond terminal was repurposed from handling ethanol to crude oil, but with no public notice. The terminal began operating without conducting an Environmental Impact Report (EIR) or public review of the permit. Unfortunately, this anti-transparent process was similar to a tactic used by another facility in Kern County. The relatively new (November 2014) terminal in Taft, CA operated by Plains All American Pipeline LLC also did not conduct an EIR, and the permit is being challenged on the grounds of not following the CA Environmental Quality Act (CEQA).

EIRs are an important component of the permitting process for any hydrocarbon-related facility. In April 2015 in Pittsburg, for example, a proposed 50,000 B/D terminal at the WesPac Midstream LLC’s railyard was abandoned due to community resistance and criticism over the EIR from the State Attorney General, along with the larger proposal of a 192,000 B/D marine terminal.

Still, many other proposals are in the works for this region. Targa Resources, a midstream logistics company, has a proposed a 70,000 B/D facility in the Port of Stockton, CA. Alon USA has a permitted project for revitalizing an idle Bakersfield refinery because of poor economics and have a permit to construct a two-unit train/day (150,000 B/D) offloading facility on the refinery property. Valero dropped previous plans for a rail oil terminal at its Wilmington refinery in the Los Angeles/Long Beach port area, and Questar Pipeline has preliminary plans for a  rail oil terminal in the desert east of the Palm Springs area for a unit-train/day.

Air Quality Impacts of Refining Tar Sands Oil

Crude-by-rail terminals bring with them not only the threat of derailments and the risk of other such accidents, but the terminals are also a source of air emissions. Terminals – both rail and marine – are major sources of PAH’s (polycyclic aromatic hydrocarbons). The Sacramento Valley Railroad (SAV) Patriot rail oil terminal at a business park on the former McClellan Air Force Base property actually had its operating permit withdrawn by Sacramento air quality regulators due to this issue (read more). The terminal was unloading and reloading oil tanker cars.

FracTracker’s recent report, Emissions in the Refinery Corridor, shows that the refineries in this region are the major point source for emissions of both cancer and non-cancer risk drivers in the region. These air pollution sources get worse, however. According to the report by NRDC, changing the source of crude feedstock to increased amounts of Canadian Tar Sands oil and Bakken Shale oil would:

… increase the levels of highly toxic fugitive emissions; heavy emissions of particulate, metals, and benzene; result in a higher risk of refinery accidents; and the accumulation of petroleum coke* (a coal-like, dusty byproduct of heavy oil refining linked to severe respiratory impacts). This possibility would exacerbate the harmful health effects faced by the thousands of low-income families that currently live around the edges of California’s refineries. These effects are likely to include harmful impacts to eyes, skin, and the nervous and respiratory systems. Read NRDC Report

Petroleum coke (petcoke) is a waste product of refining tar sands bitumen (oil), and will burden the communities near the refineries that process tar sands oil. Petcoke has recently been identified as a major source of exposures to carcinogenic PAH’s in Alberta Canada (Zhang et al., 2016). For more information about the contributions of petcoke to poor air quality and climate change, read this report by Oil Change International.

The contribution to climate change from accessing the tar sands also needs to be considered. Extracting tar sands is estimated to release on average 17% average more green-house gas (GHG) emissions than conventional oil extraction operations in the U.S., according to the U.S. Department of State. (Greenhouse gases are gases that trap heat in the atmosphere, contributing to climate change on a global scale.) The refining process, too, has a larger environmental / public health footprint; refining the tar sands to produce gasoline or diesel generates an average of 81% more GHGs (U.S. Dept of State. Appendix W. 2015). In total this results in a much larger climate impact (NRDC, NextGen Climate, Forest Ethics. 2015).

Local Fights

People opposed to CA crude by rail have been fighting the railway terminal proposals on several fronts. In Benicia, Valero’s proposal for a rail terminal was denied by the city’s Planning Commission, and the project’s environmental impact report was denied, as well. The city of Benicia, however, hired lawyers to ensure that the railway projects are built. The legality of railway development is protected regardless of the impacts of what the rails may be used to ship. This legal principle is referred to as “preemption,” which means the federal permitting prevents state or local actions from trying to limit or block development. In this case, community and environmental advocacy groups such as Communities for a Better Environment, the Natural Resources Defense Council, and the Stanford-Mills Law Project all agree the “preemption” doctrine doesn’t apply here. They believe preemption does not disallow the city or other local governments from blocking land use permits for the refinery expansion and crude terminals that unload the train cars at the refinery.  The Planning Commission’s decision is being appealed by Valero, and another meeting is scheduled for September, 2016.

The fight for local communities along the rail-lines is more complicated when the refinery is far way, under the jurisdiction of other municipalities. Such is the case for the Phillips 66 Santa Maria Refinery, located on California State Highway 1 on the Nipomo Mesa. The Santa Maria refinery is requesting land use permits to extend track to the Union Pacific Railway that transits CA’s central coast. The extension is necessary to bring the rail cars to the proposed rail terminal. This project would not just increase traffic within San Luis Obispo, but for the entirety of the rail line, which passes directly through the East Bay. The project would mean an 80-car train carrying 2 million gallons of Bakken Crude would travel through the East Bay from Richmond through Berekely and Emeryville to Jack London Square and then south through Oakland and the South Bay.  This would occur 3 to 5 times per week. In San Luis Obispo county 88,377 people live within the half-mile blast zone of the railroad tracks.

In January, the San Luis Obispo County Planning Department proposed to deny Phillips 66 the permits necessary for the rail spur and terminals. This decision was not easy, as Phillips 66, a corporation ranked Number 7 on the Fortune 500 list, has fought the decision. The discussion remained open with many days of meetings, but the majority of the San Luis Obispo Planning Commission spoke in favor of the proposal at a meeting Monday, May 16. There is overwhelming opposition to the rail spur project coming from 250 miles away in Berkeley, CA. In 2014, the Berkeley and Richmond city councils voted to oppose all transport of crude oil through the East Bay. Without the rail spur approval, Phillips 66 declared the Santa Maria refinery would otherwise transport oil from Kern County via 100 trucks per day. Learn more about this project.

GIS Analysis

GIS techniques were used to estimate the number of Californians living in the half mile “at risk” blast zone in the communities hosting the crude-by-rail lines. First, we estimated the total population of Californians living a half mile from the BNSF and UP rail lines that could potentially transport crude trains. Next, we limited our study area to just the East Bay refinery corridor, which included Contra Costa and the city of Benicia in Solano County. Then, we estimated the number of Californians that would be living near rail lines if the Phillips 66 Santa Maria refinery crude by rail project is approved and becomes operational. The results are shown below:

  1. Population living within a half mile of rail lines throughout all of California: 6,900,000
  2. Population living within a half mile of rail lines in CA’s East Bay refinery communities: 198,000
  3. Population living within a half mile of rail lines along the UP lines connecting Richmond, CA to the Phillips 66 Santa Maria refinery: 930,000

CA Crude by Rail References

  1. NRDC. 2015. Next Frontier for Dangerous Tar Sands Cargo:California. Accessed 4/15/16.
  2. Oil Change International. 2015. Rail Map.
  3. Global Community Monitor. 2014. Community Protest Against Crude Oil by Rail Blocks Entrance to Kinder Morgan Rail Yard in Richmond
  4. CEC. 2015. Sources of Oil to California Refineries. California Energy Commission. Accessed 4/15/16.
  5. Zhang Y, Shotyk W, Zaccone C, Noernberg T, Pelletier R, Bicalho B, Froese DG, Davies L, and Martin JW. 2016. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. Environmental Science and Technology. 50 (4), pp 1711–1720.
  6. U.S. Dept of State. 2015. Final Supplemental Environmental Impact Statement for Keystone XL Pipeline. Accessed 5/15/16.
  7. U.S. Dept of State. 2015. Appendix W Environmental Impact Statement for Keystone XL Pipeline Appendix W. Accessed 5/15/16.
  8. NRDC, NextGen Climate, Forest Ethics. 2015. West Coast Tar Sands Invasion. NRDC 2015. Accessed 4/15/16.

** Feature image of the protest at the Richmond Chevron Refinery courtesy of Global Community Monitor.

Oil train decoupled, January 2016, Pittsburgh PA

Oil Train Decoupled in Pittsburgh, No Injuries

Dangerously Close Call

Today a train carrying oil products decoupled, or separated, in the City of Pittsburgh. Collaborators at CMU report that this morning an oil train decoupled along the tracks that run past the Bellefield boiler and under Forbes Avenue in Oakland, a very populated section of the city. While no spills, explosions, or injuries were reported, concerns remain.

This train was carrying a significant number of cars either marked with 1075 or 3295 hazard placards – flammable liquids and gases produced during oil and gas drilling. We’ve discussed the risks associated with oil trains on several occasions on FracTracker. We have not previously mentioned the 3295 hazmat placard, however, which is apparently used to identify condensate. More and more train cars hosting 3295 placards have been passing through Pittsburgh in recent months, observers report.

The cars on this train were likely full, based on the train’s direction (bound for refineries on the East Coast). While it is difficult to tell given available data, these kinds of trains generally originate from Western PA, Ohio, as well as the Bakken shale formation in North Dakota.

Fortunately, the coupling broke while the train was headed uphill. For residents living in Junction Hollow, the brakes on the disconnected part of the train worked properly. If the brakes had failed, this portion of the train could have rolled downhill and derailed at the first turn in the hollow. A similar situation – with much more disastrous results – occurred in 2013 in Lac-Mégantic, Quebec.

Train Incident Photos (Submitted by CMU)

This video taken of the train passing once it was reconnected with the engine shows the sheer quantity of hydrocarbons being hauled through the city. (Randy Sargent of CMU’s CREATE Lab, identifies each of the car’s hazard placards as the train passes his office).

Parked Oil Trains in Berks County, PA

By
Matt Kelso, Manager of Data & Technology
Kirk Jalbert, Manager of Community Based Research & Engagement

The Risks of Crude Oil Trains

As new oil fields boomed across North America in recent years, drillers looked for ways to get the product to refineries thousands of miles away. One solution was to use the nation’s rail infrastructure to ship hundreds of thousands of barrels of crude oil per day. The flow of oil was so great that thousands of additional tanker cars were ordered to get the oil to market. And yet, this solution of transporting crude by rail brought additional problems. Shipping large quantities of highly volatile and combustible crude oil on often antiquated rail lines has resulted in numerous accidents, at times spectacular in scale. In recent months, however, thousands of these oil tankers have been sitting idle on the tracks around the country, partially due to dropping oil prices, leading refineries to opt for cheaper imported oil and less expensive ways to get the domestic product to market such as through pipelines.

Communities Along the Tracks

The interactive story map below investigates a stretch of oil trains that have been parked for months in close proximity to homes, schools, and busy intersections in Berks County, Pennsylvania. Altogether, 30,494 people live in the seven communities through which the tracks in question pass. We began this project in response to concerns from residents who contacted FracTracker for assistance in understanding why these trains were located in their community, what hazards they might pose, and to help people bring this story to the public to foster meaningful discussions about the risks of parked oil trains.

Berks_staticmap


FracTracker has covered the risks of oil trains in a series of other articles. Click here to learn more.

Oil Train Response 2015

November 13-15, 2015

Wyndham Pittsburgh University Center, Pittsburgh, Pennsylvania
Coordinated by FracTracker Alliance and ForestEthics

Couldn’t make it?
Watch Friday’s Presentations
Or check out the conversation on Twitter: #oiltrain15

About the Event

Over the past few years, oil train traffic across the continent has increased rapidly with more than 500,000 rail cars moving oil in 2014 alone, according to the Association of American Railroads. The recent Lac-Mégantic, Quebec disaster and subsequent accidents illustrate the severity of this issue. There is a pressing need to determine true hazards facing our communities and to develop solutions to prevent further disasters. Across the United States and Canada, the issue of oil trains has quickly risen onto the agenda of community leaders, safety experts, researchers, and concerned citizens. There is much to discover and share about protecting people and vulnerable places from the various risks these trains pose. Oil Train Response 2015 provides two invaluable forums on this most pressing problem and provides information and insights for every audience.

November 13, 2015

Community Risks & Solutions Conference
Presented by The Heinz Endowments

November 14 & 15, 2015

Activist Training Weekend
Presented by ForestEthics

 

Conference – November 13th

Friday, Nov 13th: 7:30 AM – 5:00 PM. View Agenda

The one-day conference presented by The Heinz Endowments invites all interest groups to hear from experts about the scale and scope of this challenge, as well as updates on the current regulatory and legal frameworks; consider case studies about the actions/measures taken by various communities in response; and, participate in discussion sessions to explore solutions to better safeguard communities. Elected officials, regulators, and emergency response professionals from Pennsylvania and beyond are especially encouraged to attend to take advantage of this important learning and networking opportunity.

Training – November 14-15th

Saturday, Nov. 14th: Training 7:30 AM – 5:00 PM. Reception 6:00 – 8:00 PM
Sunday, Nov. 15th: Training 7:30 AM – 2:00 PM

A two-day training presented by ForestEthics will equip grassroots and NGO leaders from across the nation with better skills to take back to their communities, and provide critical opportunities for attendees to share winning strategies with each other. In the process of sharing, the conference will help to build both the oil train movement and support the broader environmental and social justice movements. Areas of strategic focus will include: organizing, communications, spokesperson training, data management for organizers, legal strategies, and crowd-sourced train tracking. It will also provide a structured forum for advocates fighting specific oil terminal proposals in places like Philadelphia, Baltimore, and Albany to develop shared strategies and tactics and provide all participants with the skills, knowledge and contacts they will need to carry on this work once they return home.

Oil trains are a major environmental justice issue. The conference and training will speak directly to environmental justice concerns and be inclusive of communities of color, economically disadvantaged urban and rural regions, and communities already experiencing environmental inequities. To this end, need-based travel scholarships will be provided. We are committed to developing the agenda in close consultation with our allies and attendees so that it meets their needs.

Please contact us with questions or requests: anne@forestethics.org.


Many thanks to Paul Heckbert & Randy Sargent of CMU for supplying the oil train photo (top).

Pipelines vs Oil Trains

By Juliana Henao, Communications Intern

Media outlets have been very focused recently on reporting oil train derailments and explosions. Additionally, the Keystone XL pipeline has hastened political debates and arguments for years by both political parties since its initial proposal in 2008 – and the May 19th pipeline oil spill in California isn’t helping matters. In the midst of all of this commotion, a million questions are being asked, yet no one can seem to reach a conclusion about what method of transporting oil is truly safest and economically feasible – or if we are just stuck between a rock and a hard place.

Some say the solution to this problem is transporting the volatile crude via pipelines, while others believe it is a matter of increasing regulations, standards, and compliance for transport by train. The answer is simply not simple.

In light of this, a few of the folks at FracTracker gathered some facts on pipelines vs oil trains to lay out this issue in a clearer fashion.

Let’s start with trains.

Benefits

Due to the increasing demand of crude oil supply, there has been increasing activity in the transportation of crude oil by rail, which provides flexibility and quick transportation throughout the U.S. and its 115 refineries. Railroads are also willing to offer shippers shorter contracts than pipelines and other transportation methods, making them a more favorable method of crude oil transportation.

In 2008, U.S. freight trains were delivering somewhere from 9-10,000 carloads of crude oil. In 2013, they delivered roughly 435,560 carloads of crude oil, showing a 20-fold increase in crude oil shipments.

Risks

Oil trains, as well as pipelines, can pose a detrimental risk to communities and public health in the case of an explosion and/or spill. Danger Around the Bend describes in detail the dangers of transporting Bakken Formation crude oil from North Dakota to parts all over the country.

Some of the risks of transporting volatile crude via train have been clearly depicted in the news with announcements of spills, derailments, and explosions in urban and suburban areas, putting many people in harm’s way. Despite the decrease in spills between 1996 and 2007, devastating train accidents like the one on July 6, 2013 have raised questions about the safety of transportation by train.

train_incidents_english

Learn more about this trend and the increasing risk of exploding oil trains in a post by Randy Sargent of CMU.

Trains and train tracks in general can be very dangerous, as demonstrated by the deadly Amtrak train derailment in Philadelphia this May. The total number of incidents in 2014, according to the Federal Railroad Administration, sum up to 11,793 – with 818 of those being fatal. These fatalities have been linked to a range of possible causes, but the numbers depict the gravity of safety issues within the railroad regulations.

Regulations

When it comes to train safety and regulations, the Federal Railroad Administration (FRA) is in charge. Some of the current efforts to increase the safety of oil trains include safer tank car design, adding breaking power, reducing the train speed limits through urban areas and increasing crew size. One of the most important improvements, however, includes an increase in oil spill response, which is managed through the National Oil and Hazardous Substance Contingency Plan.

Now, let’s talk pipelines.

As we all know, finishing the Keystone XL pipeline has stirred years of controversy, since this project was initially proposed back in 2008. On January 31, 2014, the U.S. Department of State released the Final Supplemental Environmental Impact Statement (SEIS) of the Keystone XL Pipeline, which would transport up to 830,000 barrels of tar sand oil per day through an 875-mile long pipeline running from Alberta, Canada, to the Gulf Coast area. Below we have mapped the current and proposed tracks of the Keystone, along with the numerous ports, refineries, and rail lines:


The Keystone XL, Alberta oil sands, North American oil refineries and associated ports. View fullscreen and click Details for the metadata behind this map.

The SEIS discussed the impacts that the proposed pipeline would have on the environment and public health based on research, modeling, and analysis. One of the many purposes of the SEIS is to focus on whether the proposed project serves the national interest by comparing the risks to the benefits – discussed in more detail below.

Risks

The current risks associated with pipelines are similar to the risks associated with other modes of transporting oil across the United States. Oil spills are among the highest risks, but with the XL pipeline, it’s a more profound risk due to the type of oil being carried: tar sand oil. Tar sand oil, also known as heavy oil, is known for its tedious processing and its many environmental implications. Burning one single barrel of oil produced from Canadian tar sands generally emits 170 pounds of greenhouse gases into the atmosphere. It also requires large amounts of energy and water, much of which cannot be recycled, to separate the oil from the tar sands and transform the oil into a form of petroleum that can be processed by refineries.

According to the final SEIS:

The proposed project would emit approximately 24 million metric tons of carbon dioxide per year during the construction period (up to three times as much than producing conventional crude), which would be directly emitted through fuel use in construction vehicles and equipment as well as land clearing activities including open burning, and indirectly from electricity usage.

Additional risks associated with the XL pipeline include potential groundwater contamination of major aquifers – particularly the Ogallala Aquifer – as well as deforestation, habitat destruction, and fragmentation.

In the event of an oil spill from the Keystone XL or other pipelines crossing the U.S., the responsibility for who cleans it up does not fall on TransCanada. According to a report from the Natural Resource Defense Council (NRDC), tar sand oils are exempt from paying into the Oil Spill Liability Trust Fund. Amendments that would require TransCanada to pay the 8-cent-per-barrel fee to the fund have not been passed.

Devastating oil spills such as the one in Santa Barbara in mid May reflect the impact it not only has on wildlife, but on the local culture, especially on those who depend on fisheries and whose lives revolves around surfing in the brisk waters of the Pacific Ocean. 21,000 gallons of crude oil covers roughly 4 miles of Santa Barbara’s coast now, extending about 50 yards into the water.

Benefits

Jobs, jobs, jobs. The economic stimulus is one purported advantage to the XL pipeline. During construction, proposed project spending would support approximately 42,100 jobs, directly and indirectly and around $2 billion in earnings throughout the US, according to the final SEIS. Despite different job creation estimates, any number will contribute significantly to the US gross domestic product, associating a huge economic growth with the construction of the proposed XL pipeline. (TransCanada estimates around 13,000 construction jobs and 7,000 manufacturing jobs, which is about 3 times higher than the State Department’s estimate.) In addition, the cost of paying for the Keystone XL project ($3.3 billion) would not be placed on the U.S. but on Keystone.

According to the Pipeline and Hazardous Materials Safety Administration (PHSMA), the industry and their operators have reduced the risk of hazardous materials transportation incidents with death or major injury by 4% every 3 years, and since 2002, they have reduced the risk of a pipeline spill with environmental consequences by an average of 5% per year.1

Still, there is more work to be done. Safety issues that the pipeline industry is aiming to fix include:

  • Infrastructure: Repair obsolete pipeline infrastructure through a pipeline integrity management program and investigate new technologies that can detect pipeline risks.
  • Improving human error and safety culture: Increase the focus on safety beyond compliance standards and evaluate the potential value of safety management systems.
  • Adding secondary containment: Limit the spread of HAZMAT in the event of a failure in the primary container, and improve leak detection.
  • Transparency: Increasing transparency for companies and their accountability

Check out the infographic below for a summary of all of these pros and cons:

Moving Forward

All methods of transporting oil present various risks and benefits based on the available data. Explaining both sides of this coin allows us to assess each method’s impacts on our economy, environment, and public health. Through these assessments, we can make more informed decisions on what truly serves the nation’s interests. Oil and gas transport is a dangerous business, but all transportation industries are improving their management programs and increasing their regulations to provide citizens peace of mind and the safety they deserve. In light of ongoing issues, however, some would ask if these risks are even necessary.

For example, the growth of safer energy resources such as solar energy would significantly cut down the risks mentioned above in addition to providing jobs and stimulating the overall economy. According to the Bureau of Labor Statistics and the Solar Foundation, the growth in direct industry jobs for solar has outweighed oil and gas for the past 3 years. In 2014, new jobs created for the solar industry were more than twice the jobs created for the oil and gas industry. Based on 2014’s economics, Kepler Cheuvreux stated that all renewables are already more competitive than oil priced at $100 per barrel — This is because renewables have a higher net energy return on capital invested (EROCI).

As a reader and a citizen, it is important to know the pros and cons of the current activities taking place in our country today. We must be aware of loopholes that may be putting our states, cities, or counties into harm’s way, as well as recognize alternative energy sources and regulatory oversight that lessen the threats that oil extraction and transport pose to our health and environment.

Footnote

1. These statistics are based from the Census Bureau analysis and Bureau of Transportation Statistics as of July 2012.

Oil train - Photo by Washinton House Democrats

Increasing Risk from Exploding Crude Trains

By Randy Sargent, Carnegie Mellon CREATE Lab and Samantha Malone, FracTracker Alliance

In the past two years, crude oil trains have exploded 10 times, killing 47 people.

LacMegantic

Lac-Mégantic, Quebec: 47 killed

NewBrunswick

Outside Plaster Rock, New Brunswick

Casselton

Outside Casselton, ND

Aliceville

Outside Aliceville, AL

Lynchburg

Outside Lynchburg, VA

WV

Outside Mt. Carbon, WV

Timmins

Outside Timmins, Ontario

Galena

Outside Galena, IL

 

 

Heimdal

Outside Heimdal, ND

Gogoma

Outside Gogama, Ontario

It could have been much worse. Eight of the ten trains exploded in rural areas. The train that flattened half the business district of the small town of Lac-Mégantic might have killed hundreds of people if it had exploded during business hours.[1] Residents in Philadelphia have dodged a bullet several times already; they’ve seen two oil train derailments there that fortunately did not explode. And last week’s Amtrak train derailment in Philadelphia that killed 8 people and injured more than 200 could have been much worse, had it impacted an oil train in that area.

Today we ship 17 times as much oil by rail as we did in 2010. This past year we shipped 14.5 billion gallons of oil — that’s 6,700 oil trains the size that destroyed Lac-Mégantic:

This chart above and the ones that follow are derived from the U.S. Energy Information Administration’s recently provided data tracking crude oil movements by rail.

Why do oil trains explode so easily?

Like a carbonated beverage with dissolved CO2, oil extracted from Bakken wells naturally has lighter hydrocarbons in it, such as methane, ethane, propane, and butane. Methane — natural gas — is the lightest of the gases and boils out quickly at surface pressure. But ethane, propane, and butanes, known as light ends or natural gas liquids in the oil industry, take time and/or heat to boil out.[2]

In the most prolific oilfield in the U.S. today, North Dakota’s Bakken formation, most of light ends are left in the oil before loading on the train, to maximize value of what is sent to the refinery. But much like a soda bottle, the pressure increases with temperature and motion, with pressurized ethane, propane, and butane at the top. With those highly volatile gases under pressure, all it takes to create an explosion is a leak and a spark, and both commonly happen in a derailment or collision.

All ten exploding crude trains carried oil from the Bakken.

In contrast, shale oilfields in Texas do stabilize crude by removing light ends prior to shipment by rail.

Where are the exploding Bakken oil trains going?

Bakken trains travel through much of the US and Canada, heading to refineries on the coasts. Increasingly, they are traveling to East coast refineries, which now handle over half of Bakken crude oil production.

Closer to home for the authors, Pittsburgh is a popular waypoint for Bakken oil trains. Known for its steel industry in the 20th century, Pittsburgh continues to sport a large rail infrastructure. Its rails go through very densely populated areas, a good thing when the rails carried ore and steel and coal for the mills. But it’s a disaster waiting to happen now that the rails are bringing explosive oil trains through the city.

CMU

Oil and compressed gasses transit Carnegie Mellon University multiple times daily, Pittsburgh, PA

Oil trains travel across Pittsburgh's North Shore and Downtown multiple times daily, as well

Oil trains travel across Pittsburgh’s North Shore and Downtown multiple times daily, as well

 

A significant and growing fraction of Bakken oil trains carrying 1 million gallons or more transit Pittsburgh, with ~30 a week based on Pennsylvania Emergency Management Agency data released for five days in October 2014. Prior to the disclosure, volunteers spent a day with us in 2014 recording traffic along one of several routes into the city to learn more about whether / how the trains might pose a risk to city residents and workers. Learn more about what we found here.

Why does this matter?

As crude-by-rail traffic continues to increase, it is only a matter of time before an oil train explodes in a populated area again. Imagine any of the 10 explosions so far taking place instead in downtown Philadelphia or Pittsburgh, or flattening a school in suburban Chicago, for example.

Map of Lac-Mégantic destruction from the Toronto Star’s article, “Where they died”

Map of Lac-Mégantic destruction from the Toronto Star’s article, Where they died. Click to explore the interactive map.

Learn more about the Lac-Megantic disaster through the eyes of those who lived through it.

What can be done

One attempt to make these trains safer, by requiring new tanker cars be built to a safer standard, does not appear to have helped; the most recent 5 exploding trains used the newest, “safer” tanker cars.

But there are effective measures that are in our power to take:


Photo and Video Credits

Endnotes

  1. The direction that the ignited oil flowed after the incident also played a significant role in the path of the damage and fatalities.
  2. Light Ends information
CA Crude Oil by Rail Shipments and Railway Accidents

CA Crude Oil by Rail Shipments and Railway Accidents

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Incidents in California involving oil-by-rail cars increased from 3 in 2011 to 25 in 2013. There were 24 incidents within the first 6 months of 2014, and oil spills from rail cars increased from 98 in 2010 to 182 in 2013.1 With such an increase in oil train incidents, we have to ask what the state is doing to protect public safety.

CA Crude Oil by Rail – The Status Quo

California is currently far behind states like New Hampshire and Minnesota that have taken more control over in-state hazards, and have passed laws aimed at forcing rail and pipeline companies to abide by more rigorous emergency response measures instead of relying on the federal government and undertaking state-level spill response plans. These state movements are in response to the existing federal oversight, which critics cite as inadequate.2

State environmental health officials have acknowledged the dangers of a derailment, but have downplayed the risk – comparing the hazard of an incident to be similar to ethanol or gasoline, based on volatility. They do not believe oil train derailments are as hazardous as other materials transported by rail such as chlorine or ammonia. The bigger concern, though, is the huge volume of Bakken crude oil that is being shipped by rail. A recent report by the State of California Interagency Rail Safety Working group acknowledged this and identified key vulnerabilities along CA rail lines; Destinations of the crude trains in CA are the Bay Area via the Feather River or Donner Pass, Bakersfield via the Tehachapi Pass, and Los Angeles via the same route. These routes pass through the state’s most densely populated areas, as well as through some of the state’s most sensitive ecological areas, and each route has at least one high hazard area for derailments. Other issues identified include the impact of earthquakes on trains and rail lines and a shortage of emergency response capacity.

At-Risk Populations

A recent report by the Natural Resources Defense Council used census data to identify at risk-populations for communities living near the rail lines that can be used for transporting shipments. The analysis identified a total of nearly four million people in the Bay Area and the Central Valley alone that live within 1 mile (the U.S. DOT isolation zone for a crude tanker fire) of a crude shipment rail line. The authors go on to provide the following recommendations to prevent crude oil train accidents:

  1. Remove Defective, Dangerous Tankers from Crude by Rail Service
  2. Impose Safer Speed Limits
  3. Reroute Around Sensitive Areas
  4. Provide Emergency Responder Resources
  5. Make Additional operational Safety and Oversight Improvements
  6. Exercise Local Government Powers4

Crude Oil Shipment Trends

Support of these recommendations is most important as more crude shipments in CA are on the horizon. A recent permit application by the Phillips 66 oil company included a proposal to use Amtrak passenger lines to transport Bakken crude through the San Francisco Bay Area. A review of the proposal by Hinman Consulting Engineers found that over the next 30 years, there is an approximate 28% risk of derailment in the heavily populated stretches of Berkeley, Emeryville, Oakland, Santa Clara, San Jose and others. This estimate is assuming there is no increase in shipping volumes. The damage of an accident was estimated by the researchers, and the analysis showed that approximately 47,000 households and $22 billion in improved property value lay within the projected blast zone, 1000 feet from the railway. A projection of the damage from a single accident estimated that an average of 117 households along with $244 million in property value could be destroyed. Hinman also stated that “this figure does not include loss of revenue, environmental cleanup costs, loss of human life, or other societal costs.”5 A proposal by Valero Refining Co. plans to ship 100 crude oil tank cars a day through downtown Sacramento and downtown Davis to Benicia.

Responses by CA Regulators and Railroads

To plan for this increase in rail traffic, Sacramento passed a shipping charge to prevent and manage spills that will result in $11 million in 2015. Another bill has been introduced to impose a second shipping fee on oil companies to train and equip first responders to deal with major spills and fires on railroad lines. An additional bill was also authored requiring rail carriers to communicate more closely with state emergency officials about crude oil rail movements.6

The map below shows where spills and train accidents have occurred in CA since 2011. When zoomed out the map shows areas with higher incidence rates of accidents, but when zoomed to a higher resolution the map differentiates the accidents by year.7

CA Crude Oil by Rail and Railroad Accidents

View Full Screen

In the map above, a hot spot analysis shows the frequency of railroad accidents, such as derailments. Areas with the highest incidence rates are shown in yellow. The actual locations and descriptions with dates of these accidents can be seen by zooming in using the plus (+) button in the top left corner of the map, and clicking on a diamond symbol. Shown in red and green are the BNSF and other railroad lines used for the transportation of crude by rail.

BNSF Route

Figure taken from BNSF’s U.S. DOT disclosure to the state of California for emergency preparedness.9

From what little data has been released, it is clear that BNSF railway intends to ship two Bakken crude trains per week carrying more than one million gallons of crude through the CA counties of Butte, Contra Costa, Lassen, Modoc, Placer, Plumas, Sacramento, San Joaquin, and Yuba.8 The same information from Union Pacific Railroad has not been made public by the state of CA. The route shown in the figure to the right has been mapped in the FracTracker Alliance’s California Crude Shipment Routes and Railroad Accidents map above. From the map, you can see that there have been numerous accidents already on this BNSF rail line, particularly near Stockton and in the heavily populated North Bay Area.

References

  1. California Office of Emergency Services. 5/6/14. Historical HazMat Spill Notifications. Accessed 3/8/15.
  2. Douglas E. 6/16/14. 2 States Beef Up Oil-by-Rail and Pipeline Safety After String of Accidents. Inside Climate News. Accessed 3/9/15.
  3. Interagency Rail Safety Working Group. 6/10/14. Oil by Rail Safety in California. California Office of Emergency Services.
  4. Bailey D. 6/2014. It Could Happen Here: The Exploding Threat of Crude by Rail in California. Natural Resources Defense Council. Accessed 3/10/15.
  5. Reis E & Coughlin A. 6/6/2014. New Proposed Oil Transportation Calls for Rational, Risk-Based Mitigation Approach. Hinman Consulting Engineers. Accessed 3/11/15
  6. Bizjak T. 6/16/14. California to impose fee on crude oil rail shipments; funds to be used for spill prevention, cleanup. The Sacramento Bee. Accessed 3/10/15.
  7. U.S. DOT. 5/7/2014. Emergency Order. Docket No. DOT-OST-2014-0067. Accessed 3/10/15.
  8. California Public Utilities Commission. 2015. Railroad Safety and Operations. Accessed 3/8/15.
  9. U.S. DOT. 9/30/14. Re: U.S. Department of Transportation Emergency Order Docket Number DOT-OST-2014-0067 (Issued May 7, 2014). Accessed 3/10/15.

Responses to the Rash of Oil Train Incidents

By Kyle Ferrar and Samantha Malone

Throughout the U.S. more crude was spilled from rail incidents in 2013 than the prior four decades combined. Recently, in a period of three weeks, there were four* derailments of crude oil trains carrying Bakken and other Canadian crudes resulting in fire and explosions, with multiple cars rupturing and set ablaze.1 One of the most recent incidents occurred on March 5th in Galena, Illinois, just north of Chicago (video below). The fires resulting from crude derailments blaze so hot that emergency responders and firefighters are not able to get close enough to extinguish them.  The only option is to let the fire burn out. This process can take days, during which local communities are subject to impaired air quality if not evacuated.2

*This number was revised 4/19/15.

Here we explore how regulators are responding to this public health risk and the new rules being put in place.

Oil Train Incidents Prior to August 2014


Derailments and accidents that occurred prior to August 1, 2014. Click here to view map fullscreen3

Regulatory Responses

Local Bakken Oil and Oil Train Resolutions

In response to these incidents and concerns, at least 50 cities and counties around the country have enacted or proposed resolutions regarding oil trains and Bakken oil. Some of these resolutions ask for direct action while others simply express concern publicly about the risks that the transportation of volatile crude oil by rail poses within their communities.

Resolutions Passed By Local Jurisdictions in California

While we have not collected all of these repossess, a good sample is shown below by state:

STATE TYPE
California
Berkeley, CA Resolution no. 66516
California State Senate Safety provisions in budget
Davis, CA Resolution
Martinez, CA Resolution No. 106-14
Moorpark, CA Letter
Oakland, CA Resolution no. 85054
Richmond, CA Resolution no. 26-14
Sacramento Area Council of Governments Letter
San Jose, CA Letter
San Luis Obispo, CA Letter
Santa Cruz County, CA Letter
Simi Valley, CA Letter
Illinois
Barrington/Chicago, IL Commission letter to President Obama
New York
Clinton County, NY Proposed taskforce
Hyde Park, NY Resolution no. 9:8 – 2 OF 2014
Newburg, NY Resolution no. 230-2014
New York State NY Governor letter to President Obama
Philipstown, NY Resolution
Rockland County, NY Meeting plus resolution
Oregon
Hood River, OR Resolution 2014-22
Columbia River Gorge Commission, OR/WA Resolution
Pennsylvania
Harrisburg, PA Proposed
Philadelphia, PA Resolution no. 150129-A01
Washington
Aberdeen, WA Resolution no. 2014
Anacortes, WA Resolution no. 1889
Auburn, WA Resolution no. 5050
Bainbridge Island, WA Resolution no. 2014 – 18
Bellingham, WA Resolution no. 2014-03
Chehalis, WA Resolution
Columbia River Gorge Commission, OR/WA Resolution
Edmonds, WA Resolutions no. 1317 & no. 1280
Elma, WA Resolution
Hoquiam, WA Resolution no. 2014-10
Kent, WA Proposed resolution
King County, WA Resolution 2014-0164
Montesano, WA Resolution
Mount Vernon, WA Resolution no. 879
Mukilteo, WA Resolution no. 2014-12
Ocean Shores, WA Resolution no. 727
Olympia, WA Resolution no. M-1812
Port of Olympia, WA Resolution no. 2014-07
Quinault Indian Nation Issued opinion
Seattle, WA Resolution no. 31504
Safe Energy Leadership Alliance SELA letter to DOT and WA Governor
Spokane, WA Resolution
Stevenson, WA Resolution no. 2014-279
Vancouver, WA Policy resolution 5b
Washington State Council of Firefighters Resolution no. 14-33
Washougal, WA Resolution no. 1048
Whatcom County, WA Resolution no. 2014-001

If any of the PDF’s linked to above do not load, refresh your browser.

Thank you to the many groups and individuals who have helped to compile this list above, such as Audubon Washington and Forest Ethics.

If you would like to recommend additions to this oil trains local actions list, please do so using the comment form at the bottom of this page.

Federal and National Responses

In an official request, the federal Department of Transportation ordered rail companies to provide the shipping details only to state emergency response officials. Due to the health and safety implications of crude by rail, groups like Earth Justice say the public has the right to know what is going through their backyards.4 The National Transportation Safety Board (NTSB) and a working group for the state of New York both found numerous deficiencies in the regulation of rail safety. The Working Group found that there are serious risks throughout the state from oil by rail in addition to significant gaps in local emergency response capabilities.5, 6

To reduce the actual intensity of these incidents, federal regulations establishing “vapor-pressure cap” rules go into effect this April. This specific regulation puts a limit on the amount of explosive gas allowed in the tanker cars. Crudes with greater amounts of short chain hydrocarbons are more volatile (lighter) and therefore more explosive. Bakken crude is considered “light” and “sweet” (more volatile short chain hydrocarbons) and therefore is more flammable/explosive than other crudes.7 Oil producers will have to measure the actual vapor pressure of the crude. The current practice is to calculate the vapor pressure using standards that are not specific enough for the lighter Bakken crude. Measuring the vapor pressure of each tank using an established protocol (i.e. regulatory standards) is therefore necessary to ensure an accurate knowledge of vapor pressure.8

The new standards for North Dakota crude will require operators to filter the crude in order to bring the vapor pressure down to 13.7 psi, a level comparable to the 13.5 psi standard for most automobile gasoline. The North Dakota Petroleum Council criticized the regulations, saying the explosive components of the Bakken crude are what give it such high value. NDPC also criticized the standards for temperature and pressure as being unnecessary.9 The recent West Virginia train that derailed and exploded would have violated this rule according to the testing conducted in North Dakota before departure. Crude involved in the Lac-Mégantic disaster was far below this standard, with an estimated vapor pressure of 9.3.10

Canadian Pacific Railway, the second largest rail company in Canada, wants the authority to refuse to haul crude oil and other hazardous materials due to liability concerns. This change would require an overhaul of the Canada Transportation Act that requires railways to haul any and all legal goods in rail cars that meet safety standards. The Board of Directors asked, “‘What kind of exposure do we have and what kind of exposure are we [exposing] the public to by hauling some of these commodities?” The U.S. railway BNSF, owned by Warren Buffet’s Berkshire Hathaway, has also protested against a similar U.S. federal regulation.11

Are the recent regulations enough?

The most destructive incident to-date was the Lac-Mégantic, Quebec derailment that killed 47 people on July 6, 2013. Following the Lac-Mégantic explosion, U.S. regulators issued an emergency directive that trains carrying hazardous materials could no longer be left unattended with the engines running unless they first received approval from the Federal Railroad Administration (FRA). The actual implementation of the rule only requires the railroad operators to prepare a plan for such activity and have it on file. There is no requirement for approval from the FRA.3

Other more substantive regulations are slowly coming into effect; for example, by 2017 the weaker DOT-111 oil tanker cars will be retired and all crude will be transported in safer Model CPC-1232 tank cars. Of note, however, is the fact that all five of these recent incidents have involved the safer, reinforced Model 1232 tank cars. A video of the recent derailment outside of Chicago can be seen below.


Galena, Illinois oil train derails with safer model CP-1232 tank cars that had been retrofitted with protective shields.

Data Transparency and Information

Not much detailed information is known publicly about the amount of crude being shipped by railway, the source of the crude, or which routes will be used, but research by the FracTracker Alliance has identified the expansion of crude shipments in communities throughout New York State. In the City of Buffalo, 33% of residents live within the ½ mile blast zone of a railway with crude oil tanker shipments, for example.12 Additional work by groups such as ours and Oil Change International has identified gaps in oversight that may not be possible for state or federal regulations to address. Because the nature of shipping by rail involves long distances and periods of time with infrequent cargo checks, any type of oil spill that goes immediately unnoticed may make it impossible to issue an effective response. Such is the case of a spill in Washington State, shown in the map below.12

In order to preserve the confidentiality of this information, the BNSF and other rail carriers have claimed trade secret exemptions to keep the information and data from being released to the public. The U.S. Department of Transportation has found the oil shipments by rail to “constitute an imminent hazard” and has required that carriers notify the State Emergency Response Commission (SERC) in each state that it operates trains transporting 1,000,000 gallons (23,809.5 barrels) or more of Bakken crude. This information has not been released to the public due to security concerns, however.13

References

  1. Wikipedia. List of Rail Accidents. (http://en.wikipedia.org/wiki/List_of_rail_accidents_%282010%E2%80%93present%29#2015). Accessed 4/19/15.
  2. Stern, Marcus; Jones, Sebastian. U.S. Crackdown on Oil Trains – Less Than Meets the Eye. 12/8/2014. Inside Climate News. Accessed 3/10/15.
  3. Kelso, Matt. 2014. North American Petroleum Transportation by Rail. FracTracker Alliance. Accessed 3/10/15.
  4. Bizjak, Tony. Tate, Curtis. 10/7/2014. Details about Crude Oil Rail Shipments Shrouded in secrecy. The Sacramento Bee. Accessed 3/10/15.
  5. 1/23/14. Safety Recommendation R-14-1. Accessed 3/5/15.
  6. State of New York. 4/30/14. Transporting Crude Oil in New York State: A Review of Incident Prevention and Response Capacity. Accessed 3/10/15.
  7. Pipeline and Hazardous Materials Safety Administration. 2014. Operation Safe Delivery Update. U.S. Department of Transportation. Accessed 3/12/15.
  8. Pichler, Hannes, and Josef Lutz. 2014. Why Crude Oil Vapor Pressure Should Be Tested Prior to Rail Transport. Advances in Petroleum Exploration and Development2.
  9. Scheyder, Ernest. 12/9/2014. North Dakota to require every barrel of crude oil be filtered. Reuters. Accessed 3/10/15.
  10. Gold, Russel. 3/2/15. Crude on Derailed Train Contained High Levels of Gas. Wall Street Journal. Accessed 3/10/15.
  11. Eric Atkins. 3/4/2015. Canadian Pacific wants to limit shipments of dangerous goods. The Globe and Mail. Accessed 3/12/15.
  12. Kelso, Matt. 1/29/15. Regulatory Gaps for Train Spills?. FracTracker Alliance. Accessed 3/14/15.
  13. S. DOT. 5/7/2014. Emergency Order. Docket No. DOT-OST-2014-0067. Accessed 3/10/15

Population Near Railroads in Allegheny County, PA

By Matt Kelso, Manager of Data and Technology

In a joint project with PennEnvironment earlier this month, we analyzed the number of people who live within a half-mile of active rail lines in Pennsylvania and are therefore potentially at risk of an oil train explosion similar to the recent ones in Lac-Mégantic, Quebec; Lynchburg, Virginia; and Mount Carbon, West Virginia. To take that project one step further, we have taken a closer look at the population near railroads in Allegheny County, the second most populous county in PA with over 1.2 million inhabitants. Of the various figures, we found that Pittsburgh has over 183,000 people that live with half-mile mile of an active rail line.

In Philadelphia, the city’s boundary takes up the entire county of the same name, but in Allegheny County, the municipal boundaries are considerably more fractured. In fact, Pittsburgh is just one of 130 municipalities in Allegheny County; its 305,704 inhabitants represent just 25% of the residents in the county, and 13% of the metropolitan area. For the sake of simplicity, residents from the various cities, boroughs, and townships in the county will often say they are from Pittsburgh when speaking with people from outside the region, although they might actually live in Blawnox, McKees Rocks, or Swissvale, for example.


Estimated population within a half-mile of active rail lines in Allegheny County, PA. Click here to access the legend and other map tools.

Here is a list of the top ten municipalities with the largest estimated population in the at-risk zone:

Municipalities in Allegheny County with the largest estimated population within a half-mile of railroads.

Municipalities in Allegheny County with the largest estimated population within a half-mile of railroads.

Not surprisingly, the most at-risk municipality in Allegheny County is Pittsburgh, with over 183,000 people living within a half-mile of an active rail line. During any given workday, when individuals flock into the city, even more individuals would theoretically be at risk of an oil train disaster. Following Pittsburgh, Baldwin, West Mifflin, and Shaler all share similar numbers at risk, with Baldwin seeing the greatest percentage of its population at risk of the three. While Castle Shannon and Carnegie have lower populations than the other municipalities, a significant proportion of their residents (93-95%) are near rail lines.

Danger Around the Bend

The Threat of Oil Trains in Pennsylvania

A PennEnvironment Report – Read Full Report (PDF)

On the heels of the West Virginia oil train explosion, this new study and interactive map show populations living in the evacuation zone of a potential oil train crash.

PA Oil Train Routes Map


This dynamic map shows the population estimates in Pennsylvania that are within a half-mile of train tracks – the recommended evacuation distance in the event of a crude oil rail car explosion. Zoom in for further detail or view fullscreen.

Danger Around the Bend Summary

The increasingly common practice of transporting Bakken Formation crude oil by rail from North Dakota to points across the nation—including Pennsylvania—poses a significant risk to the health, well-being, and safety of our communities.

This risk is due to a confluence of dangerous factors including, but not limited to:

  1. Bakken Formation crude oil is far more volatile and combustible than typical crude, making it an incredibly dangerous commodity to transport, especially over the nation’s antiquated rail lines.
  2. The routes for these trains often travel through highly populated cities, counties and neighborhoods — as well as near major drinking water sources.
  3. Bakken Formation crude is often shipped in massive amounts — often more than 100 cars, or over 3 million gallons per train.
  4. The nation’s existing laws to protect and inform the public, first responders, and decision makers are woefully inadequate to avert derailments and worst-case accidents from occurring.
Lac-Mégantic derailment. Source: http://en.wikipedia.org/wiki/Lac-M%C3%A9gantic_derailment

Lac-Mégantic derailment, July 2013. Source

In the past few years, production of Bakken crude oil has dramatically increased, resulting in greater quantities of this dangerous fuel being transported through our communities and across the nation every day. This increase has led to more derailments, accidents, and disasters involving oil trains and putting local com- munities at risk. In the past 2 years, there have been major disasters in Casselton, North Dakota; Lynchburg, Virginia; Pickens County, Alabama; and most recently, Mount Carbon, West Virginia. The worst of these was the town of Lac-Mégantic, in Canada’s Quebec Province. This catastrophic oil train accident took place on July 6, 2013, killing 47 people and leveling half the town.

Oil train accidents have not just taken place in other states, they have also happened closer to home. Pennsylvania has had three near misses in the last two years alone — one near Pittsburgh and two in Philadelphia. In all three cases, trains carrying this highly volatile Bakken crude derailed in densely populated areas, and in the derailment outside of Pittsburgh, 10,000 gallons of crude oil spilled. Fortunately these oil train accidents did not lead to explosions or fires.

All of these incidents point to one fact: that unless we take action to curb the growing threat of oil trains, the next time a derailment occurs an unsuspecting community may not be so lucky.

Bakken oil train routes often travel through high-density cities and neighborhoods, increasing the risk of a catastrophic accident for Pennsylvania’s residents. Reviewing GIS data and statewide rail routes from Oak Ridge National Laboratory, research by FracTracker and PennEnvironment show that millions of Pennsylvanians live within the potential evacuation zone (typically a half-mile radius around the train explosion ). Our findings include:

  • Over 3.9 million Pennsylvania residents live within a possible evacuation zone for an oil train accident.
  • These trains travel near homes, schools, and day cares, putting Pennsylvania’s youngest residents at risk. All told, more than 860,000 Pennsylvania children under the age of 18 live within the 1⁄2 mile potential evacuation zone for an oil train accident.
  • Philadelphia County has the highest at-risk population — Almost 710,000 people live within the half-mile evacuation zone. These areas include neighborhoods from the suburbs to Center City.
  • 16 of the 25 zip codes with the most people at risk — the top percentile in the state — are located in the city of Philadelphia.
  • The top five Pennsylvania cities with the most residents at risk are:
    • Philadelphia (709869, residents),
    • Pittsburgh (183,456 residents),
    • Reading (70,012 residents),
    • Scranton (61,004 residents), and
    • Erie (over 51,058 residents).

 

Bakken Crude Oil

How we get it and why we ship it

Bakken crude oil comes from drilling in the Bakken Formation, located in North Dakota. It contains deposits of both oil and natural gas, which can be accessed by hydraulic fracturing, or “fracking.” Until recent technological developments, the oil contained in the formation was too difficult to access to yield large production. But advances in this extraction technology since 2007 have transformed the area into a major oil producer — North Dakota now ranks second in the U.S. for oil production. The vast expansion of wells over the last 4 years (from 470 wells to over 3,300 today) means that there is more oil to transport to the market, both domestically and abroad. This increase is especially concerning considering that the U.S. Department of Transportation stated in early 2014 that Bakken crude oil may be more flammable than traditional crude, therefore making it more dangerous to transport by rail.

For More Information