Posts

Production and Location Trends in PA: A Moving Target

The FracTracker Alliance tends to look mostly at the impacts of drilling, from violations affecting surface and ground water to forest fragmentation to neighbors breathing diesel exhaust near disposal wells.  We also try to give residents tools to help predict where future activity will occur, but as this article details, such predictive tools can do little more than trail moving targets. To that end, we have taken a look into areas where gas production is high for unconventional wells in the state, which are likely sites of future development.

The Pennsylvania Department of Environmental Protection’s (DEP) Production Report is self-reported by the various operators active in the state. Unconventional wells generate a large quantity of natural gas, measured in thousands of cubic feet (Mcf), as well as limited amounts of oil and condensate, both of which are measured in 42 gallon barrels. In this analysis, we are only considering the gas production.


Click here for full screen map. 

In the map above, you can click on any well to learn more about the production values, along with a variety of other information including the well’s formation and age.  The age was calculated by counting days from the spud date to the end of the report cycle, March 31, 2019.

 

Top Average Gas Production by County – April 2018 to March 2019

CountyProducing Wells Avg. Production (Mcf) Production Rank Avg. Age of Producing WellsAge Rank
Wyoming 2511,269,15615 Yr / 10 Mo / 4 Days12
Sullivan1281,087,86825 Yr / 2 Mo/ 24 Days8
Allegheny1171,075,01834 yr/ 2 Mo / 7 Days2
Susquehanna1,4291,066,73445 Yr / 6 Mo / 22 Days10
Greene1,131796,75555 yr / 10 Mo / 28 Days13
Figure 1 – This table shows the top five counties in Pennsylvania for per-well unconventional gas production. The final column shows the county ranking for the average age of wells, from youngest to oldest

We can also see this data summarized by county, where average production and age values are available on a county by county basis (see Figure 1). Hydrocarbon wells are known to decrease production steeply over time, a phenomenon known as the decline curve, so it is not surprising to see a relatively young inventory of wells represented in the list of top five counties with per-well gas production. Age is not the only factor in production values, however, as certain geographies simply contain more accessible gas resources than others.

 

Figure 2 – 12 month gas production and age of well. Production is usually much higher during the earliest phases of the well’s production life.  This does not include wells that have been plugged or taken out of production.  Click on image for full-sized view.

In Figure 2, we look at the production of all unconventional wells in the state, expecting to see the highest production in younger wells. This mostly appears to be the case, but as mentioned above, there are also hot and cold spots with respect to production. A notable variable in this consideration is producing formation.

Since 93% (8,730 out of 9,404) of unconventional wells reporting gas production are in the Marcellus Shale Formation, the traditional hot spots in the northeastern and southwestern portions of the state heavily skew the overall totals in terms of both production and number of wells.  Other formations of note include the Onodaga Limestone (137 wells, 1.5% of total), Burket Member (117 wells, 1.2%), Genesee Formation (104 wells, 1.1%), and the Utica Shale (99 wells, 1.1%) (Figure 3).

Figure 3 – Unconventional gas production over 12 months, showing formation. Click on image for full-sized view.

Drillers have been exploring some of these formations for decades. In fact, the oldest producing well that is currently classified as unconventional was 13,435 days old as of March 31, which works out to 36 years, 9 months, and 12 days.

However, this is fairly rare – only 384 (4%) of the 9,404 producing wells were more than 10 years old. 5,981 wells (64%) are between 5 and 10 years old, with the remaining 3,039 wells (32%) younger than 5 years old.

This does not take into account wells of any age that have been plugged or otherwise taken out of production.

Age of Pennsylvania’s active wells

< 5 years old
5-10 years old
> 10 years old

 

Utica Shale

The Utica Shale is worth a special mention here for a couple of reasons.  First, we must acknowledge its prominence in neighboring Ohio, which has 2,160 permitted Utica wells to go with just 40 permitted Marcellus wells, the prevalence of the two plays seems to invert just as one passes over the state line. And yet, the most productive Utica wells are near the border with New York, not Ohio.

In fact, each of the top 11 producing Utica wells during the 12 month period were located in Tioga County.  It’s worth noting that these are all between one and two years old, which would have given the wells time to be drilled, fracked, and brought into production, while still being in the prime of their production life. Compared to the Marcellus, sample size quickly becomes an issue when analyzing the Utica in Pennsylvania (Figure 4).

Figure 4 – Producing Utica wells in Pennsylvania. Note that the cluster of heavily producing wells in Tioga and Potter Counties near the New York border are mostly young wells where higher production would be expected.  Click on image for full sized view.

Second, portions of the Utica are known for their wet gas content, meaning that the gas has significant quantities of natural gas liquids (NGLs) including ethane, propane, and butane, which are gaseous at ambient temperatures but typically condensed into liquid form by oil and gas companies.  These are used for specialized fuels and petrochemical feedstocks, and are therefore more valuable than the methane in natural gas.

The production report does not capture the amount of NGLs in the gas, but a map from the Energy Information Administration shows the entire play, noting that the composition is dryer on the eastern portions of the play. In fact, a wet gas composition along the Ohio border might help to explain continued interest in what are otherwise well below average gas production results for Pennsylvania.

A Moving Target

It is difficult to predict where the industry will focus its attention in the coming months and years, but taking a look at production and formation data can give us a few clues.  Obviously, operators who found a particularly productive pocket of hydrocarbons are likely to keep drilling more holes in the ground in those areas until production is no longer profitable. Therefore, impacts to water, air, and nearby residents can be expected to continue in heavily drilled areas largely because the production level makes it attractive for drillers.

On the other hand, we should not assume that areas that are currently not productive are off the table for future consideration, either. Different formations are productive in different geographies, so a sweet spot for the Marcellus might be a dud in the Utica, or vice versa.

Finally, when comparing production, we must always take the age of the well into consideration, as all oil and gas wells can be expected to start off with a short period of very high production, followed by years of ever-diminishing returns throughout the expected 10 to 11 year lifecycle of the well. Because of this, what seems like a hotspot now may look below average in a similar analysis in three to four years, particularly in formations with relatively light drilling activity. This means that the top list of production by well could change over time, so be sure to check back in with FracTracker to see how events unfold.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

 

Bird's eye view of an injection well (oil and gas waste disposal)

A Disturbing Tale of Diminishing Returns in Ohio

Utica oil and gas production, Class II injection well volumes, and lateral length trends from 2010-2018

The US Energy Information Administration (EIA) recently announced that Ohio’s recoverable shale gas reserves have magically increased by 11,076 billion cubic feet (BCF). This increase ranks the Buckeye State in the top 5 for changes in recoverable shale natural gas reserves between 2016 and 2017 (pages 31- 32 here). After reading the predictable and superficial media coverage, we thought it was time to revisit the data to ask a pertinent question: What is the fracking industry costing Ohio?

Recent Shale Gas Trends in Ohio

According to the EIA’s report, Ohio currently sits at #7 on their list of proven reserves. It is estimated there are 27,021 BCF of shale gas beneath the state (Figure 1).

Graph of natural gas reserves in different states 2016-2017

Figure 1. Proven and change in proven natural gas reserves from 2016 to 2017 for the top 11 states and the Gulf of Mexico (calculated from EIA’s “U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2017”).

There are a few variations in the way the oil and gas industry defines proven reserves:

…an estimated quantity of all hydrocarbons statistically defined as crude oil or natural gas, which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions. Reservoirs are considered proven if economic producibility is supported by either actual production or conclusive formation testing. – The Organization of Petroleum Exporting Countries

… the quantity of natural resources that a company reasonably expects to extract from a given formation… Proven reserves are classified as having a 90% or greater likelihood of being present and economically viable for extraction in current conditions… Proven reserves also take into account the current technology being used for extraction, regional regulations and market conditions as part of the estimation process. For this reason, proven reserves can seemingly take unexpected leaps and drops. Depending on the regional disclosure regulations, extraction companies might only disclose proven reserves even though they will have estimates for probable and possible reserves. – Investopedia

What’s missing from this picture?

Neither of the definitions above address the large volume of water or wastewater infrastructure required to tap into “proven reserves.” While compiling data for unconventional wells and injection wells, we noticed that the high-volume hydraulic fracturing (HVHF) industry is at a concerning crossroads. In terms of “energy return on energy invested,” HVHF is requiring more and more resources to stay afloat.

OH quarterly Utica oil & gas production along with quarterly Class II injection well volumes:

The map below shows oil and gas production from Utica wells (the primary form of shale gas drilling in Ohio). It also shows the volume of wastewater disposed in Class II salt water disposal injection wells.


 View map fullscreen | How FracTracker maps work

Publications like the aforementioned EIA article and language out of Columbus highlight the nominal increases in fracking productivity. They greatly diminish, or more often than not ignore, how resource demand and waste production are also increasing. The data speak to a story of diminishing returns – an industry requiring more resources to keep up gross production while simultaneously driving net production off a cliff (Figure 2).

Graph of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September, 2010 to December, 2018

Figure 2. Number of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September 2010 to December 2018

The Great Decoupling of New Year’s 2013

In the following analysis, we look at the declining efficiency of the HVHF industry throughout Ohio. The data spans the end of 2010 to middle of 2018. We worked with Columbus-area volunteer Gary Allison to conduct this analysis; without Gary’s help this work and resulting map, would not have been possible.

A little more than five years ago today, a significant shift took place in Ohio, as the number of producing gas wells increased while oil well numbers leveled off. The industry’s permitting high-water mark came in June of 2014 with 101 Utica permits that month (a level the industry hasn’t come close to since). The current six-month permitting average is 25 per month.

As the ball dropped in Times Square ringing in 2014, in Ohio, a decoupling between oil and gas wells was underway and continues to this day. The number of wells coming online annually increased by 229 oil wells and 414 gas wells.

Graph showing Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 3. Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Graph of Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 4. Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Permits

The ringing in of 2014 also saw an increase in the number of producing wells as a percentage of those permitted. In 2014, the general philosophy was that the HVHF industry needed to permit roughly 5.5 oil wells or 7 gas wells to generate one producing well. Since 2014, however, this ratio has dropped to 2.2 for oil and 1.4 for gas well permits.

Put another way, the industry’s ability to avoid dry wells has increased by 13% for oil and 18% for gas per year. As of Q2-2018, viable oil wells stood at 44% of permitted wells while viable gas wells amounted to 71% of the permitted inventory (Figure 4).

Production declines

from the top-left to the bottom-right

To understand how quickly production is declining in Ohio, we compiled annual (2011-2012) and quarterly (Q1-2013 to Q2-2018) production data from 2,064 unconventional laterals.

First, we present average data for the nine oldest wells with respect to oil and gas production on a per day basis (Note: Two of the nine wells we examined, the Geatches MAH 3H and Hosey POR 6H-X laterals, only produced in 2011-2012 when data was collected on an annual basis preventing their incorporation into Figures 6 and 7 belwo). From an oil perspective, these nine wells exhibited 44% declines from year 1 to years 2-3 and 91% declines by 2018 (Figure 5). With respect to natural gas, these nine wells exhibited 34% declines from year 1 to years 2-3 and 79% declines by 2018 (Figure 5).

Figure 5. Average daily oil and gas production decline curves for the above seven hydraulically fractured laterals in Ohio’s Utica Shale Basin, 2011 to Q2-2018

Four of the nine wells demonstrated 71% declines by the second and third years and nearly 98% declines by by Q2-2018 (Figure 6). These declines lend credence to recent headlines like Fracking’s Secret Problem—Oil Wells Aren’t Producing as Much as Forecast in the January 2nd issue of The Wall Street Journal. Four of the nine wells demonstrated 49% declines by the second and third years and nearly 81% declines by Q2-2018 (Figure 7).

Figure 6. Oil production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 7. Natural gas production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Fracking waste, lateral length, and water demand

from bottom-left to the top-right

An analysis of fracking’s environmental and economic impact is incomplete if it ignores waste production and disposal. In Ohio, there are 226 active Class II Salt Water Disposal (SWD) wells. Why so many?

  1. Ohio’s Class II well inventory serves as the primary receptacle for HVHF liquid waste for Pennsylvania, West Virginia, and Ohio.
  2. The Class II network is situated in a crescent shape around the state’s unconventional wells. This expands the geographic impact of HVHF to counties like Ashtabula, Trumbull, and Portage to the northeast and Washington, Athens, and Muskingum to the south (Figure 8).
Map of Ohio showing cumulative production of unconventional wells and waste disposal volume of injection wells

Figure 8. Ohio’s unconventional gas laterals and Class II salt water disposal injection wells. Weighted by cumulative production and waste disposal volumes to Q3-2018.

Disposal Rates

We graphed average per well (barrels) and cumulative (million barrels) disposal rates from Q3-2010 to Q3-2018 for these wells. The data shows an average increase of 24,822 barrels (+1.05 million gallons) per well, each year.

That’s a 51% per year increase (Figure 9).

A deeper dive into the data reveals that the top 20 most active Class II wells are accepting more waste than ever before: an astounding annual per well increase of 728,811 barrels (+30.61 million gallons) or a 230% per year increase (Figure 10). This divergence resulted in the top 20 wells disposing of 4.95 times the statewide average between Q3-2010 and Q2-2013. They disposed 13.82 times the statewide average as recently as Q3-2018 (Figure 11).

All of this means that we are putting an increasing amount of pressure on fewer and fewer wells. The trickle out, down, and up of this dynamic will foist a myriad of environmental and economic costs to areas surrounding wells. As an example, the images below are injection wells currently under construction in Brookfield, Ohio, outside Warren and minutes from the Pennsylvania border.

More concerning is the fact that areas of Ohio that are injection well hotspots, like Warren, are proposing new fracking-friendly legislation. These disturbing bills would lubricate the wheels for continued expansion of fracking waste disposal and permitting. House bills 578 and 393 and Senate Bill 165 monetize and/or commodify fracking waste by giving townships a share of the revenue. Such bills “…would only incentivize communities to encourage more waste to come into their existing inventory of Class II… wells, creating yet another race to the bottom.” Co-sponsors of the bills include Democratic Reps. Michael O’Brien, Glenn Holms, John Patterson, and Craig Riefel.

Lateral Lengths

The above trends reflect an equally disturbing trend in lateral length. Ohio’s unconventional laterals are growing at a rate of 9.1 to 15.6%, depending on whether you buy that this trend is linear or exponential (Figure 12). This author believes the trend is exponential for the foreseeable future. Furthermore, it’s likely that “super laterals” in excess of 3-3.5 miles will have a profound impact on the trend. (See The Freshwater and Liquid Waste Impact of Unconventional Oil and Gas in Ohio and West Virginia.)

This lateral length increase substantially increases water demand per lateral. It also impacts Class II well disposal rates. The increase accounts for 76% of the former and 88% of the latter when graphed against each other (Figure 13).

Figure 12. Ohio Utica unconventional lateral length from Q3-2010 to Q4-2018

Figure 13. Ohio Utica unconventional water demand and Class II SWD injection well disposal volumes vs lateral length from Q3-2010 to Q4-2018.

Conclusion

This relationship between production, resource demand, and waste disposal rates should disturb policymakers, citizens, and the industry. One way to this problem is to more holistically price resource utilization (or stop oil and gas development entirely).

Unfortunately, states like Ohio are practically giving water away to the industry.

Politicians are constructing legislation that would unleash injection well expansion. This would allow disposal to proceed at rates that don’t address supply-side concerns. It’s startling that an industry and political landscape that puts such a premium on “market forces” is unwilling to address these trends with market mechanisms.

We will continue to monitor these trends and hope to spread these insights to states like Oklahoma and Texas in the future.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance – with invaluable data compilation assistance from Gary Allison


Data Downloads

FracTracker is a proponent of data transparency, and so we often share the data we use to construct our maps analyses. Click on the links below to download the data associated with the present analysis:

  • OH Utica laterals

    Ohio’s Utica HVHF laterals as of December 2018 in length (feet) (zip file)
  • Wastewater disposal volumes

    Inventory of volumes disposed on a quarterly basis from 2010 to Q3-2018 for all 223 active Class II Salt Water Disposal (SWD) Injection wells in Ohio (zip file)