Posts

Want Not, Waste Not? Fossil Fuel Extraction’s Waste Disposal Challenges

Pennsylvania’s fracking industry is producing record amounts of toxic waste — where does it all go?

Drilling for methane and other fossil fuels is an energy-intensive process with many associated environmental costs. In addition to the gas that is produced through high volume hydraulic fracturing (“unconventional drilling,” or “fracking”), the process generates a great deal of waste at the drill site. These waste products may include several dozen tons of drill cutting at every well that is directionally drilled, in addition to liner materials, contaminated soil, fracking fluid, and other substances that must be removed from the site.

In 2018, Pennsylvania’s oil and gas industry (including both unconventional and conventional wells) produced over 2.9 billion gallons (nearly 69 million barrels) of liquid waste, and 1,442,465 tons of solid waste. In this article, we take a look at where this waste (and its toxic components) end up and how waste values have changed in recent years. We also explore how New York State, despite its reputation for being anti-fracking, isn’t exempt from the toxic legacy of this industry.

Waste that comes back to haunt us

According to a study by Physicians, Scientists and Engineers, over 80% of all waste from oil and gas drilling stays within the state of Pennsylvania. But once drilling wastes are sent to landfills, is that the end of them? Absolutely not!

Drilling waste also gets into the environment through secondary means. According to a recent report by investigative journalists at Public Herald, on average, 800,000 tons of fracking waste from Pennsylvania is sent to Pennsylvania landfills. When this waste is sent to landfills, radioactivity and other chemicals can percolate through the landfill, and are collected as leachate, which is then shipped to treatment plants.

Public Herald documented how fourteen sewage treatment plants in Pennsylvania have been permitted by Pennsylvania’s Department of Environmental Protection (PA DEP) to process and discharge radioactive wastes into more than a dozen Pennsylvania waterways.

Public Herald’s article includes an in-depth analysis of the issue. Their work is supported by a map of the discharge sites, created by FracTracker.

Trends over time

Pennsylvania Department of Environmental Protection maintains a rich database of oil and gas waste and production records associated with their Oil and Gas Reporting Website. The changes in waste disposal from Pennsylvania’s unconventional drilling reveal a number of interesting stories.

Let’s look first at overall unconventional drilling waste.

According to data from the federal Energy Information Administration, gas production in Pennsylvania began a steep increase around 2010, with the implementation of high volume hydraulic fracturing in the Marcellus Shale (see Figure 1). The long lateral drilling techniques allowed industry to exploit exponentially more of the tight shale via single well than was ever before possible with conventional, vertical drilling.

Figure 1. Data summary from FracTracker.org, based on EIA data.

The more recently an individual well is drilled, the more robust the production. We see an overall increase in gas production over time in Pennsylvania over the past decade. Paradoxically, the actual number of new wells drilled each year in the past 4-5 years are less than half of the number drilled in 2011 (see Figure 2).

Figure 2: Data summary from FracTracker.org, based on PA DEP data

Why is this? The longer laterals —some approaching 3 miles or more—associated with new wells allow for more gas to be extracted per site.

With this uptick in gas production values from the Marcellus and Utica Formations come more waste products, including copious amounts drilling waste, “produced water,” and other byproducts of intensive industrial operations across PA’s Northern Tier and southwestern counties.

Comparing apples and oranges?

When we look at the available gas production data compared with data on waste products from the extraction process, some trends emerge. First of all, it’s readily apparent that waste production does not track directly with gas production in a way one would expect.

Recall that dry gas production has increased annually since 2006 (see Figure 1). However, the reported waste quantities from industry have not followed that same trend.

In the following charts, we’ve split out waste from unconventional drilling by solid waste in tons (Figure 3) and liquid waste, in barrels (Figure 4).

Figure 3: Annual tonnage of solid waste from the unconventional oil and gas industry, organized by the state it is disposed in. Data source: PA DEP, processed by FracTracker Alliance

Figure 4: Annual volume of liquid waste from the unconventional oil and gas development, organized by state it is disposed in. One barrel is equivalent to 42 gallons. Data source: PA DEP, processed by FracTracker Alliance

Note the striking difference in disposal information for solid waste, compared with liquid waste, coming from Pennsylvania.

“Disposal Location Unknown”

Until just the last year, often more than 50% of the known liquid waste generated in PA was disposed of at unknown locations. The PA DEP waste report lists waste quantity and method for these unknown sites, depending on the year: “Reuse without processing at a permitted facility,” “Reuse for hydraulic fracturing,” “Reuse for diagnostic purposes,” “Reuse for drilling or recovery,” “Reuse for enhanced recovery,” and exclusively in more recent years (2014-2016), “Reuse other than road-spreading.”

In 2011, of the 20.5 million barrels of liquid waste generated from unconventional drilling, about 56% was allegedly reused on other drilling sites. However, over 9 million barrels—or 44% of all liquid waste—were not identified with a final destination or disposal method. Identified liquid waste disposal locations included “Centralized treatment plant for recycle,” which received about a third of the non-solid waste products.

In 2012, the quantity of the unaccounted-for fracking fluid waste dropped to about 40%. By 2013, the percentage of unaccounted waste coming from fracking fluid dropped to just over 21%, with nearly 75% coming from produced fluid, which is briny, but containing fewer “proprietary”—typically undisclosed—chemicals.

By 2017, accounting had tightened up further. PA DEP data show that 99% of all waste delivered to undisclosed locations was produced fluid shipped to locations outside of Pennsylvania. By 2018, all waste disposal was fully accounted for, according to DEP’s records.

In looking more closely at the data, we see that:

  1. Prior to 2018, well drillers did not consistently report the locations at which produced water was disposed of or reused. Between 2012 and 2016, a greater volume of unconventional liquid waste went unaccounted for than was listed for disposal in all other locations, combined.
  2. In Ohio, injection wells, where liquid waste is injected into underground porous rock formations, accounted for the majority of the increase in waste accepted there: 2.9 million barrels in 2017, and 5.7 million barrels in 2018 (a jump of 97%).
  3. West Virginia’s acceptance of liquid waste increased  significantly in 2018 over 2017 levels, a jump of over a million barrels, up from only 55,000. This was almost entirely due to unreported reuse at well pads.
  4. In 2018, reporting, in general, appears to be more thorough than it was in previous years. For example, in 2017, nearly 692,000 barrels of waste were reused at well pads outside PA, but those locations were not disclosed. Almost 7000 more barrels were also disposed of at unknown locations. In 2018, there were no such ambiguities.

A closer look at Pennsylvania’s fracking waste shipped to New York State

Despite a reputation for being resistant to the fracking industry, for most of this decade, the state of New York has been accepting considerable amounts of fracking waste from Pennsylvania. The greatest percentage shipped to New York State is in the form of drilling waste solids that go to a variety of landfills throughout Central and Western New York.

Looking closely at the bar charts above, it’s easy to notice that the biggest recipients of Pennsylvania’s unconventional liquid drilling waste are Pennsylvania itself, Ohio, as well as a significant quantity of unaccounted-for barrels between 2011 and 2016 (“Disposal location unknown”). The data for disposal of solid waste in New York tells a different story, however. In this case, Pennsylvania, Ohio, and New York State all play a role. We’ll take a look specifically at the story of New York, and illustrate the data in the interactive map that follows.

In this map, source locations in Pennsylvania are symbolized with the same color marker as the facility in New York that received the waste from the originating well pad. In the “Full Screen” view, use the “Layers” drop down menu to turn on and off data from separate years.

View map full screenHow FracTracker maps work

Solid waste transported to New York State

From the early days of unconventional drilling in Pennsylvania, New York State’s landfills provided convenient disposal sites due to their proximity to the unconventional drilling occurring in Pennsylvania’s Northern tier of counties. Pennsylvania and Ohio took the majority of solid wastes from unconventional drilling waste from Pennsylvania. New York State, particularly between 2011-2015, was impacted far more heavily than all other states, combined (Figure 5, below).

Figure 5: Known disposal locations (excluding PA and OH) of Pennsylvania’s solid waste. Data source: PA DEP, processed by FracTracker Alliance

Here’s the breakdown of locations in New York to where waste was sent. Solid waste disposal into New York’s landfills also dropped by half, following the state’s ban on unconventional drilling in 2014. Most of the waste after 2012 went to the Chemung County Landfill in Lowman, New York, 10 miles southeast of Elmira.

Figure 6: Solid waste from unconventional drilling, sent to facilities in NYS. Data source: PA DEP, processed by FracTracker Alliance

Is waste immobilized once it’s landfilled?

The fate of New York State’s landfill leachate that originates from unconventional drilling waste is a core concern, since landfill waste is not inert. If drilling waste contains radioactivity, fracking chemicals, and heavy metals that percolate through the landfill, and the resulting leachate is sent to municipal wastewater treatment plants, will traditional water treatment methods remove those wastes? If not, what will be the impact on public and environmental health in the water body that receives the “treated” wastewater? In Pennsylvania, for example, a case is currently under investigation relating to pollution discharges into the Monongahela River near Pittsburgh. “That water was contaminated with diesel fuels, it’s alleged, carcinogens and other pollutants,” said Rich Bower, Fayette County District Attorney.

Currently, a controversial expansion of the Hakes Landfill in Painted Post, New York is in the news. Sierra Club and others were concerned about oversight of radium and radon in the landfill’s leachate and air emissions, presumably stemming from years of receiving drill cuttings. The leachate from the landfill is sent to the Bath Wastewater Treatment plant, which is not equipped to remove radioactivity. “Treated” wastewater from the plant is then discharged into the Cohocton River, a tributary of the Chesapeake Bay. In April 2019, these environmental groups filed a law suit against Hakes C&D Landfill and the Town of Campbell, New York, in an effort to block the expansion.

Similar levels of radioactivity in leachate have also been noted in leachate produced at the Chemung County Landfill, according to Gary McCaslin, President of People for a Healthy Environment, Inc.

In recent years, much of the solid unconventional waste arriving in New York State has gone to the Chemung County Landfill (see Figure 6, above). Over the course of several years, this site requested permission to expand significantly from 180,000 tons per year to 417,000 tons per year. However, by 2016, the expansion was deemed unnecessary, and according, the plans were put on hold, in part “…because of a decline in the amount of waste being generated due to a slower economy and more recycling than when the expansion was first planned years ago.” The data in Figure 5 above also parallel this story, with unconventional drilling waste disposed in New York State dropping from over 200,000 tons in 2011 to just over 20,000 tons in 2018.

Liquid waste transported to New York State

The story about liquid unconventional drilling waste exported from Pennsylvania to states other than Ohio is not completely clear (see Figure 7, below). Note that the data indicate more than a 2000% increase in waste liquids going from Pennsylvania to West Virginia after 2017. While it has not been officially documented, FracTracker has been anecdotally informed that a great deal of waste was already going to West Virginia, but that the record-keeping prior to 2018 was simply not strongly enforced.

Figure 7: Known disposal locations (excluding Pennsylvania and Ohio) of Pennsylvania’s liquid waste. Data source: PA DEP, processed by FracTracker Alliance

Beginning in the very early years of the Pennsylvania unconventional fracking boom, a variety of landfills in New York State have also accepted liquid wastes originating in Pennsylvania, including produced water and flowback fluids (see Figure 8, below).

Figure 8: Liquid waste from unconventional drilling, sent to facilities in New York State. Data source: PA DEP, processed by FracTracker Alliance

In addition, while this information doesn’t even appear in the PA DEP records (which are publicly available back to 2010), numerous wastewater treatment plants did accept some quantity, despite being fully unequipped to process the highly saline waste before it was discharged back into the environment.

One such facility was the wastewater treatment plant in Cayuga Heights, Tompkins County, which accepted more than 3 million gallons in 2008. Another was the wastewater treatment plant in Auburn, Cayuga County, where the practice of accepting drilling wastewater was initially banned in July 2011, but the decision was reversed in March 2012 to accept vertical drilling waste, despite strong public dissent. Another wastewater treatment plant in Watertown, Jefferson County, accepted 35,000 gallons in 2009.

Fortunately, most New York State wastewater treatment plant operators were wise enough to not even consider adding a brew of unknown and/or proprietary chemicals to their wastewater treatment stream. Numerous municipalities and several counties banned fracking waste, and once the ban on fracking in New York State was instituted in 2014, nearly all importation of liquid unconventional drilling waste into the state ceased.

Nevertheless, conventional, or vertical well drilling also generates briny produced water, which the New York State Department of Environmental Conservation (DEC) permits communities in New York to accept for ice and dust control on largely rural roads. These so-called “beneficial use determinations” (BUDs) of liquid drilling waste have changed significantly over the past several years. During the height of the Marcellus drilling in around 2011, all sorts of liquid waste was permitted into New York State (see FracTracker’s map of affected areas) and was spread on roads. As a result, the chemicals—many of them proprietary, of unknown constituents, or radioactive—were indirectly discharged into surface waters via roadspreading.

Overall, in the years after the ban in 2014 on high volume hydraulic fracturing was implemented, restrictions on Marcellus waste coming into New York have strengthened. Very little liquid waste entered New York’s landfills after 2013, and what did come in was sent to a holding facility owned by Environmental Services of Vermont. This facility is located outside Syracuse, New York.

New York State says “no” to this toxic legacy

Fortunately, not long after these issues of fracking fluid disposal at wastewater treatment facilities in New York State came to light, the practice was terminated on a local level. The 2014 ban on fracking in New York State officially prevented the disposal of Marcellus fluids in municipal wastewater treatment facilities and required extra permits if it were to be road-spread.

In New York State, the State Senate—after 8 years of deadlock—in early May 2019, passed key legislation that would close a loophole that had previously allowed dangerous oil and gas waste to bypass hazardous waste regulation. Read the press release from Senator Rachel May’s office here. However, despite strong support from both the Senate, and the Assembly, as well as many key environmental groups, the Legislature adjourned for the 2019 session without bringing the law to a final vote. Said Elizabeth Moran, of the New York Public Interest Research Group (NYPIRG), “I want to believe it was primarily a question of timing… Sadly, a dangerous practice is now going to continue for at least another year.”

 

See Earthworks’ recent three part in-depth reporting on national, New York, and Pennsylvania oil and gas waste, with mapping support by FracTracker Alliance.

All part of the big picture

As long as hydrocarbon extraction continues, the issues of waste disposal—in addition to carbon increases in the atmosphere from combustion and leakage—will result in impacts on human and environmental health. Communities downstream and downwind will bear the brunt of landfill expansions, water contamination, and air pollution. Impacts of climate chaos will be felt globally, with the greatest impacts at low latitudes and in the Arctic.

Transitioning to net-zero carbon emissions cannot be a gradual endeavor. Science has shown that in order to stay under the 1.5 °C warming targets, it must happen now, and it requires the governmental buy-in to the Paris Climate Agreement by every economic power in the world.

No exceptions. Life on our planet requires it.

We have, at most, 12 years to make a difference for generations to come.

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

If this article was helpful to you, please contribute to FracTracker today. Any amount is greatly appreciated!
Want to stay up to date on FracTracker articles like this one? Sign up for our free monthly newsletter to stay in the know.

Getting Rid of All of that Waste – Increasing Use of Oil and Gas Injection Wells in Pennsylvania

Oil and gas development generates a lot of liquid waste.

Some of the waste comes that comes out of a well is from the geologic layer where the oil and gas resources are located. These extremely saline brines may be described as “natural,” but that does not make them safe, as they contain dangerous levels of radiation, heavy metals, and other contaminants.

Additionally, a portion of the industrial fluid that was injected into the well to stimulate production, known as hydraulic fracturing fluid, returns to the surface.  Some of these substances are known carcinogens, while others remain entirely secret, even to the personnel in the field who are employed to use the additives.

The industry likes to remind residents that they have used this technique for more than six decades, which is true. What separates “conventional” fracking from developing unconventional formations such as the Marcellus Shale is really a matter of scale.  Conventional formations are often stimulated with around 10,000 gallons of fluid, while unconventional wells now average more than 10 million gallons per well.

In 2017 alone, Pennsylvania oil and gas wells generated 57,653,023 barrels (2.42 billion gallons) of liquid waste.

Managing the waste stream

Liquid waste can be reused to stimulate other oil and gas wells, but reuse concentrates the contaminant load in the fluid. There is a limit to this concentration that operators can use, even for this industrial purpose.

Another strategy is to decrease the volume of the waste through evaporation and other treatment methods. This also increases the contaminant concentration. Pennsylvania used to permit “treatment” of wastewater at sewage treatment facilities, before being forced to concede that the process was completely ineffective, and resulted in contaminating streams and rivers throughout the Commonwealth.

In many states, much of this waste is disposed of in facilities known as salt water disposal (SWD) wells, a specific type of injection well. These waste facilities fall under the auspices of the US Environmental Protection Agency’s Underground Injection Control (UIC) program. Such wells are co-managed with states’ oil and gas regulatory agencies, although the specifics vary by state.

These photos show SWD wells in other states, but what about in Pennsylvania?

The oil and gas industry in Pennsylvania has not used SWD wells as a primary disposal method, as the state’s geology has been considered unsuitable for this process.  For example, on page 67 of this 2009 industry report, the authors saw treatment of flowback fluid at municipal facilities as a viable option (before the process was  banned in 2011), but underground injection as less likely (emphasis added):

The disposal of flowback and produced water is an evolving process in the Appalachians. The volumes of water that are being produced as flowback water are likely to require a number of options for disposal that may include municipal or industrial water treatment facilities (primarily in Pennsylvania), Class II injection wells [SWDs], and on-site recycling for use in subsequent fracturing jobs. In most shale gas plays, underground injection has historically been preferred. In the Marcellus play, this option is expected to be limited, as there are few areas where suitable injection zones are available.

The ban on surface “treatment” being discharged into Pennsylvania waters has increased the pressure for finding new solutions for brine disposal.  This is compounded by the fact that the per-well volume of fluid injected into shale gas wells in the region has nearly tripled in that time period. Much of what is injected comes back up to the surface and is added to the liquid waste stream.

Chemically-similar brine from conventional wells has been spread on roadways for dust suppression. This practice was originally considered a “beneficial use” of the waste product, but the Pennsylvania Department of Environmental Protection (DEP) halted that practice in May 2018.

None of these waste management decisions make the geology in Pennsylvania suddenly suitable for underground injection, however, they do increase the pressure on the state to find a disposal solution.

Concerns with SWD wells

There are numerous concerns with salt water disposal wells.  In October 2018, the DEP held a hearing in Plum Borough, on the eastern edge of Allegheny County, where there is a proposal to convert the Sedat 3A conventional well to an injection well. Some of the concerns raised by residents include:

  • Fluid and/or gas migration- There are numerous routes for fluids and gas to migrate from the injection formation to drinking water aquifers or even surface water.  Potential conduits include coal mines, abandoned gas wells, water wells, and naturally occurring fissures in crumbling sedimentary formations.
  • Induced seismicity- SWD wells have been linked to increased earthquake activity, either by lubricating or putting pressure on old faults that had been dormant. Earthquakes can occur miles away from the injection location, and in sedimentary formations, not just igneous basement rock.
  • Noise, diesel pollution, loss of privacy, and road degradation caused by a constant stream of industrial waste haulers to the well location.
  • Complicating existing issues-  Plum Borough and surrounding communities are heavily undermined, and in fact the well bore goes right through the Renton Coal Mine (another part of which has been on fire for decades).  Mine subsidence is already a widespread issue in the region, and many fear that even small seismic events could exacerbate this.
  • Possibility of surface spill-  Oil and gas is, sadly, a sloppy industry, with unconventional operations having accumulated more than 13,000 violations in Pennsylvania since 2008.  If a major spill were to happen at this location, there is the possibility of release into Pucketa Creek, which drains into the Allegheny River, the source of drinking water for multiple communities.
  • Radioactivity and other contaminants- Flowback fluids are often highly radioactive, contain heavy metals, and other contaminants that are challenging to effectively clean.  The migration of radon gas into homes above the injection formation is also a possibility.

The current state of SWDs in Pennsylvania

Pennsylvania has numerous data sources for oil and gas, but they are not always in agreement. To account for this, we have mapped SWDs (and a five mile buffer around them) from two different data sources in the map below. The first source is a subset of SWD wells from a larger dataset of oil and gas locations from the DEP’s mapping website. The second source is from a Waste Facility Report, represented in pink triangles that are offset at an angle to allow users to see both datasets simultaneously in instances where they overlap.

Map of existing, proposed, and plugged salt water disposal (SWD) injection wells in Pennsylvania.

 View map fullscreen How FracTracker maps work

According to the first data set of DEP’s oil and gas locations, Pennsylvania contains 13 SWDs with an active status, one SWD with a regulatory inactive status, and eight that are plugged. The Waste Facility Report shows 10 SWD wells total, including one well that was left out of the other data set in Annin Township, McKean County.

It is worth noting that Pennsylvania’s definition for an “active” well status is confusing, to put it charitably. It does not mean that a well is currently in operation, nor does it even mean that it is currently permitted for the activity, whether that is waste disposal or gas production, or some other function. An active status means that the well has been proposed for a given use, and the well hasn’t been plugged, or assigned some other status.

The Sedat 3A well in Plum, for example, has an active status, although the DEP has not yet granted it a permit to operate as a SWD well. Another  status type is “regulatory inactive,” which is given to a well that hasn’t been used for its stated purpose in 12 months, but may potentially have some future utility.

Karst, coal mines, and streams

While there are numerous factors worthy of consideration when siting SWD wells, this map focuses on three: the proximity of karst formations, coal mines and nearby streams that the state designates as either high quality or exceptional value.

Karst formations are unstable soluble rock formations like limestone deposits which are likely to contain numerous subsurface voids. These voids are concerning in this context. For one reason, there’s the possibility of contaminated fluids and gasses migrating into underground freshwater aquifers. Also, the voids are inherently structurally unstable, which could compound the impacts of artificially-induced seismic activity caused by fluid injections in the well.

Our analysis found over 78,000 acres (123 square miles) of karst geology within five miles of current, proposed, or plugged SWD wells in Pennsylvania.

Coal mines, while a very different sedimentary formation, have similar concerns because of subsurface voids. Mine subsidence is already a widespread problem in many of the communities surrounding SWD well sites.  Pennsylvania has several available data sets, including active underground mine permits and digitized mined areas, which are used in this map.  Active mine permits show current permitted operations, while digitized mine areas offer a highly detailed look at existing mines, including abandoned mines, although the layer is not complete for all regions of the state.

In Pennsylvania, there are 56,542 acres (88 square miles) of active mines within five miles of SWD wells. Our analysis found 97,902 acres (153 square miles) of digitized mined areas within five miles of SWD wells.  Combined, there are 139,840 acres (219 square miles) of existing and permitted mines within the 5 mile buffer zone around SWDs in Pennsylvania.

Streams with the designation “high quality” and “exceptional value” are the best streams Pennsylvania has to offer, in terms of recreation, fishing, and biological diversity. In this analysis, we have identified such streams within a five mile radius of SWD wells, irrespective of the given watershed of the well location.

While the rolling topography of Western Pennsylvania sheds rainwater in a complicated network of drainages, groundwater is not subject to that particular geography. Furthermore, groundwater regularly interacts with surface water through water wells, abandoned O&G wells, and natural seeps and springs. Therefore, it is possible for SWDs to contaminate these treasured streams, even if they are not located within the same watershed.

Altogether, there are 716 miles of high quality streams and 110 miles of exceptional value streams within 5 miles of the SWDs in this analysis.

Conclusion

For decades, geologists have concluded that the subsurface strata in Pennsylvania were not suitable for oil and gas liquid waste disposal in underground injection wells.  The fact that vast quantities of this waste are now being produced in Pennsylvania has not suddenly made it a suitable location for the practice.  If anything, additional shallow and deep wells have further fractured the sedimentary strata, thereby increasing the risk of contamination.

The only factor that has changed is the volume of waste being produced in the region. SWD wells in nearby Ohio and West Virginia have capacity issues from their own production wells, and it is not clear that the geologic formations across the border are that much better than in Pennsylvania. But as new wells are drilled and volumes of hydraulic fracturing fluid continue to spiral into the tens of millions of gallons per well, the pressure to open new SWD wells in the state will only increase.

Perhaps because of these pressures, DEP has become quite bullish on the technology:

Several successful disposal wells are operating in Pennsylvania and options for more sites are always being considered. The history of underground disposal shows that it is a practical, safe and effective method for disposing of fluids from oil and gas production.
Up against this attitude, residents are facing an uphill battle trying to prevent harm to their health and property from these industrial facilities in their communities.  Municipalities that have attempted to stand up for their residents have been sued by DEP to allow for these injection wells.  The Department’s actions, which put the interests of industry above the health of residents and the environment, is directly at odds with the agency’s mission statement:
The Department of Environmental Protection’s mission is to protect Pennsylvania’s air, land and water from pollution and to provide for the health and safety of its citizens through a cleaner environment. We will work as partners with individuals, organizations, governments and businesses to prevent pollution and restore our natural resources.
It’s time for DEP to live up to its promises.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Bird's eye view of an injection well (oil and gas waste disposal)

A Disturbing Tale of Diminishing Returns in Ohio

Utica oil and gas production, Class II injection well volumes, and lateral length trends from 2010-2018

The US Energy Information Administration (EIA) recently announced that Ohio’s recoverable shale gas reserves have magically increased by 11,076 billion cubic feet (BCF). This increase ranks the Buckeye State in the top 5 for changes in recoverable shale natural gas reserves between 2016 and 2017 (pages 31- 32 here). After reading the predictable and superficial media coverage, we thought it was time to revisit the data to ask a pertinent question: What is the fracking industry costing Ohio?

Recent Shale Gas Trends in Ohio

According to the EIA’s report, Ohio currently sits at #7 on their list of proven reserves. It is estimated there are 27,021 BCF of shale gas beneath the state (Figure 1).

Graph of natural gas reserves in different states 2016-2017

Figure 1. Proven and change in proven natural gas reserves from 2016 to 2017 for the top 11 states and the Gulf of Mexico (calculated from EIA’s “U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2017”).

There are a few variations in the way the oil and gas industry defines proven reserves:

…an estimated quantity of all hydrocarbons statistically defined as crude oil or natural gas, which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions. Reservoirs are considered proven if economic producibility is supported by either actual production or conclusive formation testing. – The Organization of Petroleum Exporting Countries

… the quantity of natural resources that a company reasonably expects to extract from a given formation… Proven reserves are classified as having a 90% or greater likelihood of being present and economically viable for extraction in current conditions… Proven reserves also take into account the current technology being used for extraction, regional regulations and market conditions as part of the estimation process. For this reason, proven reserves can seemingly take unexpected leaps and drops. Depending on the regional disclosure regulations, extraction companies might only disclose proven reserves even though they will have estimates for probable and possible reserves. – Investopedia

What’s missing from this picture?

Neither of the definitions above address the large volume of water or wastewater infrastructure required to tap into “proven reserves.” While compiling data for unconventional wells and injection wells, we noticed that the high-volume hydraulic fracturing (HVHF) industry is at a concerning crossroads. In terms of “energy return on energy invested,” HVHF is requiring more and more resources to stay afloat.

OH quarterly Utica oil & gas production along with quarterly Class II injection well volumes:

The map below shows oil and gas production from Utica wells (the primary form of shale gas drilling in Ohio). It also shows the volume of wastewater disposed in Class II salt water disposal injection wells.


 View map fullscreen | How FracTracker maps work

Publications like the aforementioned EIA article and language out of Columbus highlight the nominal increases in fracking productivity. They greatly diminish, or more often than not ignore, how resource demand and waste production are also increasing. The data speak to a story of diminishing returns – an industry requiring more resources to keep up gross production while simultaneously driving net production off a cliff (Figure 2).

Graph of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September, 2010 to December, 2018

Figure 2. Number of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September 2010 to December 2018

The Great Decoupling of New Year’s 2013

In the following analysis, we look at the declining efficiency of the HVHF industry throughout Ohio. The data spans the end of 2010 to middle of 2018. We worked with Columbus-area volunteer Gary Allison to conduct this analysis; without Gary’s help this work and resulting map, would not have been possible.

A little more than five years ago today, a significant shift took place in Ohio, as the number of producing gas wells increased while oil well numbers leveled off. The industry’s permitting high-water mark came in June of 2014 with 101 Utica permits that month (a level the industry hasn’t come close to since). The current six-month permitting average is 25 per month.

As the ball dropped in Times Square ringing in 2014, in Ohio, a decoupling between oil and gas wells was underway and continues to this day. The number of wells coming online annually increased by 229 oil wells and 414 gas wells.

Graph showing Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 3. Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Graph of Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 4. Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Permits

The ringing in of 2014 also saw an increase in the number of producing wells as a percentage of those permitted. In 2014, the general philosophy was that the HVHF industry needed to permit roughly 5.5 oil wells or 7 gas wells to generate one producing well. Since 2014, however, this ratio has dropped to 2.2 for oil and 1.4 for gas well permits.

Put another way, the industry’s ability to avoid dry wells has increased by 13% for oil and 18% for gas per year. As of Q2-2018, viable oil wells stood at 44% of permitted wells while viable gas wells amounted to 71% of the permitted inventory (Figure 4).

Production declines

from the top-left to the bottom-right

To understand how quickly production is declining in Ohio, we compiled annual (2011-2012) and quarterly (Q1-2013 to Q2-2018) production data from 2,064 unconventional laterals.

First, we present average data for the nine oldest wells with respect to oil and gas production on a per day basis (Note: Two of the nine wells we examined, the Geatches MAH 3H and Hosey POR 6H-X laterals, only produced in 2011-2012 when data was collected on an annual basis preventing their incorporation into Figures 6 and 7 belwo). From an oil perspective, these nine wells exhibited 44% declines from year 1 to years 2-3 and 91% declines by 2018 (Figure 5). With respect to natural gas, these nine wells exhibited 34% declines from year 1 to years 2-3 and 79% declines by 2018 (Figure 5).

Figure 5. Average daily oil and gas production decline curves for the above seven hydraulically fractured laterals in Ohio’s Utica Shale Basin, 2011 to Q2-2018

Four of the nine wells demonstrated 71% declines by the second and third years and nearly 98% declines by by Q2-2018 (Figure 6). These declines lend credence to recent headlines like Fracking’s Secret Problem—Oil Wells Aren’t Producing as Much as Forecast in the January 2nd issue of The Wall Street Journal. Four of the nine wells demonstrated 49% declines by the second and third years and nearly 81% declines by Q2-2018 (Figure 7).

Figure 6. Oil production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 7. Natural gas production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Fracking waste, lateral length, and water demand

from bottom-left to the top-right

An analysis of fracking’s environmental and economic impact is incomplete if it ignores waste production and disposal. In Ohio, there are 226 active Class II Salt Water Disposal (SWD) wells. Why so many?

  1. Ohio’s Class II well inventory serves as the primary receptacle for HVHF liquid waste for Pennsylvania, West Virginia, and Ohio.
  2. The Class II network is situated in a crescent shape around the state’s unconventional wells. This expands the geographic impact of HVHF to counties like Ashtabula, Trumbull, and Portage to the northeast and Washington, Athens, and Muskingum to the south (Figure 8).
Map of Ohio showing cumulative production of unconventional wells and waste disposal volume of injection wells

Figure 8. Ohio’s unconventional gas laterals and Class II salt water disposal injection wells. Weighted by cumulative production and waste disposal volumes to Q3-2018.

Disposal Rates

We graphed average per well (barrels) and cumulative (million barrels) disposal rates from Q3-2010 to Q3-2018 for these wells. The data shows an average increase of 24,822 barrels (+1.05 million gallons) per well, each year.

That’s a 51% per year increase (Figure 9).

A deeper dive into the data reveals that the top 20 most active Class II wells are accepting more waste than ever before: an astounding annual per well increase of 728,811 barrels (+30.61 million gallons) or a 230% per year increase (Figure 10). This divergence resulted in the top 20 wells disposing of 4.95 times the statewide average between Q3-2010 and Q2-2013. They disposed 13.82 times the statewide average as recently as Q3-2018 (Figure 11).

All of this means that we are putting an increasing amount of pressure on fewer and fewer wells. The trickle out, down, and up of this dynamic will foist a myriad of environmental and economic costs to areas surrounding wells. As an example, the images below are injection wells currently under construction in Brookfield, Ohio, outside Warren and minutes from the Pennsylvania border.

More concerning is the fact that areas of Ohio that are injection well hotspots, like Warren, are proposing new fracking-friendly legislation. These disturbing bills would lubricate the wheels for continued expansion of fracking waste disposal and permitting. House bills 578 and 393 and Senate Bill 165 monetize and/or commodify fracking waste by giving townships a share of the revenue. Such bills “…would only incentivize communities to encourage more waste to come into their existing inventory of Class II… wells, creating yet another race to the bottom.” Co-sponsors of the bills include Democratic Reps. Michael O’Brien, Glenn Holms, John Patterson, and Craig Riefel.

Lateral Lengths

The above trends reflect an equally disturbing trend in lateral length. Ohio’s unconventional laterals are growing at a rate of 9.1 to 15.6%, depending on whether you buy that this trend is linear or exponential (Figure 12). This author believes the trend is exponential for the foreseeable future. Furthermore, it’s likely that “super laterals” in excess of 3-3.5 miles will have a profound impact on the trend. (See The Freshwater and Liquid Waste Impact of Unconventional Oil and Gas in Ohio and West Virginia.)

This lateral length increase substantially increases water demand per lateral. It also impacts Class II well disposal rates. The increase accounts for 76% of the former and 88% of the latter when graphed against each other (Figure 13).

Figure 12. Ohio Utica unconventional lateral length from Q3-2010 to Q4-2018

Figure 13. Ohio Utica unconventional water demand and Class II SWD injection well disposal volumes vs lateral length from Q3-2010 to Q4-2018.

Conclusion

This relationship between production, resource demand, and waste disposal rates should disturb policymakers, citizens, and the industry. One way to this problem is to more holistically price resource utilization (or stop oil and gas development entirely).

Unfortunately, states like Ohio are practically giving water away to the industry.

Politicians are constructing legislation that would unleash injection well expansion. This would allow disposal to proceed at rates that don’t address supply-side concerns. It’s startling that an industry and political landscape that puts such a premium on “market forces” is unwilling to address these trends with market mechanisms.

We will continue to monitor these trends and hope to spread these insights to states like Oklahoma and Texas in the future.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance – with invaluable data compilation assistance from Gary Allison


Data Downloads

FracTracker is a proponent of data transparency, and so we often share the data we use to construct our maps analyses. Click on the links below to download the data associated with the present analysis:

  • OH Utica laterals

    Ohio’s Utica HVHF laterals as of December 2018 in length (feet) (zip file)
  • Wastewater disposal volumes

    Inventory of volumes disposed on a quarterly basis from 2010 to Q3-2018 for all 223 active Class II Salt Water Disposal (SWD) Injection wells in Ohio (zip file)
Photo by Pat Sullivan/AP https://www.houstonchronicle.com/news/houston-texas/houston/article/Fracking-research-hits-roadblock-with-Texas-law-6812820.php

California regulators need to protect groundwater from oil and gas waste this time around

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

California’s 2nd Largest Waste Stream

Every year the oil and gas industry in California generates billions of gallons of wastewater, also known as produced water. According to a study by the California Council on Science and Technology, in 2013, more than 3 billion barrels of produced water were extracted along with some 0.2 billion barrels of oil across the state. This wastewater is usually contaminated with a mixture of heavy metals, hydrocarbons, naturally occurring radioactive materials, and high levels of salts. Yet, contaminated wastewater from oil-field operations is exempt from the hazardous waste regulations enforced by the Resource Conservation and Recovery Act (RCRA).

Operators are, therefore, not required to measure or report the chemistry of this wastewater. Even with these unknowns, it is legally re-injected back into groundwater aquifers for disposal. Once an aquifer is contaminated it can be extremely difficult, if not impossible, to clean up again. Particularly in California, where water resources are already stretched thin, underground injection of oil and gas wastewater is a major environmental and economic concern.

Regulatory Deficiency

Under the Underground Injection Control program, wastewater is supposed to be injected only into geologic formations that don’t contain usable groundwater. However, a loophole in the Safe Drinking Water Act allows oil and gas companies to apply for what’s called an aquifer exemption, which allows them to inject wastewater into aquifers that potentially hold high-quality drinking water. To learn more about aquifer exemptions, see FracTracker’s summary, here.

The California department responsible for managing these aquifer exemption permits – the Division of Oil, Gas, and Geothermal Resources (DOGGR) – has for decades failed in its regulatory capacity. In 2015, for example, DOGGR admitted that at least 2,553 wells had been permitted to inject oil and gas waste into non-exempt aquifers – aquifers that could be used for drinking water. Independent audits of DOGGR showed decades of poor record-keeping, lax oversight, and in some cases, outright defiance of the law – showing the cozy relationship between regulators and the oil and gas industry. While 176 wells (those that were injecting into the cleanest drinking water) were initially shut down, most of the rest of the 2,377 permits were allowed to continue injecting into disputed wells through the following two years of the regulatory process.

The injection wells targeted by the Environmental Protection Agency (EPA), including those that were shut down, are shown in the map below (Figure 1).

Figure 1. Map of EPA-targeted Class II Injection Wells


View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

The timeline of all this is just as concerning. The State of California has known about these problems since 2011, when the EPA audited California’s underground injection program and identified substantial deficiencies in its program, including failure to protect some potential underground sources of drinking water, a one-size-fits-all geologic review, and inadequate and under-qualified staffing for carrying out inspections. In 2014, the Governor’s office requested that the California EPA perform an independent review of the program. EPA subsequently made a specific remediation plan and timeline for DOGGR, and in March of 2015 the State finalized a Corrective Action Plan, to be completed by February 2017.

Scientific Review of CA Oil and Gas Activities

Meanwhile, in 2013, the California Senate passed SB-4, which set a framework for regulating hydraulic fracturing in California. Part of the bill required an independent scientific study to be conducted on oil and gas well stimulation, including acid well stimulation and hydraulic fracturing. The California Council on Science and Technology organized and led the study, in collaboration with the Lawrence Berkeley National Laboratories, which combined original technical data analyses and a review of relevant literature, all of which was extensively peer-reviewed. The report argues that both direct and indirect impacts of fracking must be accounted for, and that major deficiencies and inconsistencies in data remained which made research difficult. They also recommended that DOGGR improve and modernize their record keeping to be more transparent.

Figure 2. Depths of groundwater total dissolved solids (a common measure of groundwater quality) in five oil fields in the Los Angeles Basin. Blue and aqua colors represent protected groundwater; the heavy black horizontal line indicates the shallowest hydraulically fractured well in each field. In three of the five wells (Inglewood, Whittier, and Wilmington), fracking and wastewater injection takes place directly adjacent to, or within, protected groundwater.

Figure 2*. Depths of groundwater total dissolved solids (a common measure of groundwater quality) in five oil fields in the Los Angeles Basin. Blue and aqua colors represent protected groundwater; the heavy black horizontal line indicates the shallowest hydraulically fractured well in each field. In three of the five wells (Inglewood, Whittier, and Wilmington), fracking and wastewater injection takes place directly adjacent to, or within, protected groundwater.

A major component of the SB-4 report covered California’s Class II injection program. Researchers analyzed the depths of groundwater aquifers protected by the Safe Drinking Water Act, and found that injection and hydraulic fracturing activity was occurring within the same or neighboring geological zones as protected drinking water (Figure 2*).

*Reproduced from California Council on Science and Technology: An Independent Scientific Assessment of Well Stimulation in California Vol. 3.

More Exemptions to be Granted

Now, EPA is re-granting exemptions again. Six aquifer exemptions have been granted, and more are on the docket to be considered. In this second time around, it is imperative that regulatory agencies be more diligent in their oversight of this permitting process to protect groundwater resources. At the same time, the 2015 California bill SB 83 mandates the appointment of an independent review panel to evaluate the Underground Injection Control Program and to make recommendations on how to improve the effectiveness of the program. This process is currently in the works and a panel has been assembled, and FracTracker Alliance will be working to provide data, maps and analyses for this panel.

Stay tuned for more to come on which aquifers are being exempted, why, and what steps are being taken to protect groundwater in California.


Feature image by Pat Sullivan/AP

A Hazy Future Report Cover

A Hazy Future: Pennsylvania’s Energy Landscape in 2045

Report Calculates Impacts from PA’s Planned Natural Gas Infrastructure

FracTracker Alliance released the report: A Hazy Future: Pennsylvania’s Energy Landscape in 2045 today, which details the potential future impacts of a massive buildout of Marcellus Shale wells and associated natural gas infrastructure.

Industry analysts forecast 47,600 new unconventional oil and gas wells may be drilled in Pennsylvania by 2045, fueling new natural gas power plants and petrochemical facilities in PA and beyond. Based on industry projections and current rates of consumption, FracTracker – a national data-driven non-profit – estimates the buildout would require 583 billion gallons of fresh water, 386 million tons of sand, 798,000 acres of land, 131 billion gallons of liquid waste, 45 million tons of solid waste, and more than 323 million truck trips to drilling sites.

A Hazy Future - Impact Summary

“Only 1,801 of the 10,851 unconventional wells already drilled count as a part of this projection, meaning we could see an additional 45,799 such wells in the coming decades,” commented Matt Kelso, Manager of Data and Technology for FracTracker and lead author on the report.

Why the push for so much more drilling? Out of state – and out of country – transport is the outlet for surplus production.

“The oil and gas industry overstates the need for more hydrocarbons,” asserted FracTracker Alliance’s Executive Director, Brook Lenker. “While other countries and states are focusing more on renewables, PA seems resolute to increase its fossil fuel portfolio.”

The report determined that the projected cleared land for well pads and pipelines into the year 2045 could support solar power generation for 285 million homes, more than double the number that exist in the U.S.

A Hazy Future shows that a fossil fuel-based future for Pennsylvania would come at the expense of its communities’ health, clean air, water and land. It makes clear that a dirty energy future is unnecessary,” said Earthworks’ Pennsylvania Field Advocate, Leann Leiter. Earthworks endorsed FracTracker’s report. She continued, “I hope Governor Wolf reads this and makes the right choices for all Pennsylvanians present and future.”

A Hazy Future reviews the current state of energy demand and use in Pennsylvania, calculates the footprint of industry projections of the proposed buildout, and assesses what that would look like for residents of the Commonwealth.

About FracTracker Alliance

Started in 2010 as a southwestern Pennsylvania area website, FracTracker Alliance is a national organization with regional offices across the United States in Pennsylvania, the District of Columbia, New York, Ohio, and California. The organization’s mission is to study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation. Its goal is to support advocacy groups at the local, regional, and national level, informing their actions to positively shape our nation’s energy future.

Questions? Email us: info@fractracker.org.

JOSHUA DOUBEK / WIKIMEDIA COMMONS

Groundwater risks in Colorado due to Safe Drinking Water Act exemptions

Oil and gas operators are polluting groundwater in Colorado, and the state and U.S. EPA are granting them permission with exemptions from the Safe Drinking Water Act.

FracTracker Alliance’s newest analysis attempts to identify groundwater risks in Colorado groundwater from the injection of oil and gas waste. Specifically, we look at groundwater monitoring data near Class II underground injection control (UIC) disposal wells and in areas that have been granted aquifer exemptions from the underground source of drinking water rules of the Safe Drinking Water Act (SDWA). Momentum to remove amend the SDWA and remove these exemption.

Learn more about Class II injection wells.

Aquifer exemptions are granted to allow corporations to inject hazardous wastewater into groundwater aquifers. The majority, two-thirds, of these injection wells are Class II, specifically for oil and gas wastes.

What exactly are aquifer exemptions?

The results of this assessment provide insight into high-risk issues with aquifer exemptions and Class II UIC well permitting standards in Colorado. We identify areas where aquifer exemptions have been granted in high quality groundwater formations, and where deep underground aquifers are at risk or have become contaminated from Class II disposal wells that may have failed.

Of note: On March 23, 2016, NRDC submitted a formal petition urging the EPA to repeal or amend the aquifer exemption rules to protect drinking water sources and uphold the Safe Drinking Water Act. Learn more

Research shows injection wells do fail

co_classiiwellexplosion

Class II injection well in Colorado explodes and catches fire. Photo by Kelsey Brunner for the Greeley Tribune.

Disposal of oil and gas wastewater by underground injection has not yet been specifically researched as a source of systemic groundwater contamination nationally or on a state level. Regardless, this issue is particularly pertinent to Colorado, since there are about 3,300 aquifer exemptions in the US (view map), and the majority of these are located in Montana, Wyoming, and Colorado. There is both a physical risk of danger as well as the risk of groundwater contamination. The picture to the right shows an explosion of a Class II injection well in Greeley, CO, for example.

Applicable and existing research on injection wells shows that a risk of groundwater contamination of – not wastewater – but migrated methane due to a leak from an injection well was estimated to be between 0.12 percent of all the water wells in the Colorado region, and was measured at 4.5 percent of the water wells that were tested in the study.

A recent article by ProPublica quoted Mario Salazar, an engineer who worked for 25 years as a technical expert with the EPA’s underground injection program in Washington:

In 10 to 100 years we are going to find out that most of our groundwater is polluted … A lot of people are going to get sick, and a lot of people may die.

Also in the ProPublic article was a study by Abrahm Lustgarten, wherein he reviewed well records and data from more than 220,000 oil and gas well inspections, and found:

  1. Structural failures inside injection wells are routine.
  2. Between 2007-2010, one in six injection wells received a well integrity violation.
  3. More than 7,000 production and injection wells showed signs of well casing failures and leakage.

This means disposal wells can and do fail regularly, putting groundwater at risk. According to Chester Rail, noted groundwater contamination textbook author:

…groundwater contamination problems related to the subsurface disposal of liquid wastes by deep-well injection have been reviewed in the literature since 1950 (Morganwalp, 1993) and groundwater contamination accordingly is a serious problem.

According to his textbook, a 1974 U.S. EPA report specifically warns of the risk of corrosion by oil and gas waste brines on handling equipment and within the wells. The potential effects of injection wells on groundwater can even be reviewed in the U.S. EPA publications (1976, 1996, 1997).

As early as 1969, researchers Evans and Bradford, who reported on the dangers that could occur from earthquakes on injection wells near Denver in 1966, had warned that deep well injection techniques offered temporary and not long-term safety from the permanent toxic wastes injected.

Will existing Class II wells fail?

For those that might consider data and literature on wells from the 1960’s as being unrepresentative of activities occurring today, of the 587 wells reported by the Colorado’s oil and gas regulatory body, COGCC, as “injecting,” 161 of those wells were drilled prior to 1980. And 104 were drilled prior to 1960!

Wells drilled prior to 1980 are most likely to use engineering standards that result in “single-point-of-failure” well casings. As outlined in the recent report from researchers at Harvard on underground natural gas storage wells, these single-point-of-failure wells are at a higher risk of leaking.

It is also important to note that the U.S. EPA reports only 569 injection wells for Colorado, 373 of which may be disposal wells. This is a discrepancy from the number of injection wells reported by the COGCC.

Aquifer Exemptions in Colorado

According to COGCC, prior to granting a permit for a Class II injection well, an aquifer exemption is required if the aquifer’s groundwater test shows total dissolved solids (TDS) is between 3,000 and 10,000 milligrams per liter (mg/l). For those aquifer exemptions that are simply deeper than the majority of current groundwater wells, the right conditions, such as drought, or the needs of the future may require drilling deeper or treating high TDS waters for drinking and irrigation. How the state of Colorado or the U.S. EPA accounts for economic viability is therefore ill-conceived.

Data Note: The data for the following analysis came by way of FOIA request by Clean Water Action focused on the aquifer exemption permitting process. The FOIA returned additional data not reported by the US EPA in the public dataset. That dataset contained target formation sampling data that included TDS values. The FOIA documents were attached to the EPA dataset using GIS techniques. These GIS files can be found for download in the link at the bottom of this page.

Map 1. Aquifer exemptions in Colorado


View map fullscreen | How FracTracker maps work

Map 1 above shows the locations of aquifer exemptions in Colorado, as well as the locations of Class II injection wells. These sites are overlaid on a spatial assessment of groundwater quality (a map of the groundwater’s quality), which was generated for the entire state. The changing colors on the map’s background show spatial trends of TDS values, a general indicator of overall groundwater quality.

In Map 1 above, we see that the majority of Class II injection wells and aquifer exemptions are located in regions with higher quality water. This is a common trend across the state, and needs to be addressed.

Our review of aquifer exemption data in Colorado shows that aquifer exemption applications were granted for areas reporting TDS values less than 3,000 mg/l, which contradicts the information reported by the COGCC as permitting guidelines. Additionally, of the 175 granted aquifer exemptions for which the FOIA returned data, 141 were formations with groundwater samples reported at less than 10,000 mg/l TDS. This is half of the total number (283) of aquifer exemptions in the state of Colorado.

When we mapped where class II injection wells are permitted, a total of 587 class II wells were identified in Colorado, outside of an aquifer exemption area. Of the UIC-approved injection wells identified specifically as disposal wells, at least 21 were permitted outside aquifer exemptions and were drilled into formations that were not hydrocarbon producing. Why these injection wells are allowed to operate outside of an aquifer exemption is unknown – a question for regulators.

You can see in the map that most of the aquifer exemptions and injection wells in Colorado are located in areas with lower TDS values. We then used GIS to conduct a spatial analysis that selected groundwater wells within five miles of the 21 that were permitted outside aquifer exemptions. Results show that groundwater wells near these sites had consistently low-TDS values, meaning good water quality. In Colorado, where groundwater is an important commodity for a booming agricultural industry and growing cities that need to prioritize municipal sources, permitting a Class II disposal well in areas with high quality groundwater is irresponsible.

Groundwater Monitoring Data Maps

Map 2. Water quality and depths of groundwater wells in Colorado
Groundwater risks in Colorado - Map 2
View live map | How FracTracker maps work

In Map 2, above, the locations of groundwater wells in Colorado are shown. The colors of the dots represent the concentration of TDS on the right and well depth on the left side of the screen. By sliding the bar on the map, users can visualize both. This feature allows people to explore where deep wells also are characterized by high levels of TDS. Users can also see that areas with high quality low TDS groundwater are the same areas that are the most developed with oil and gas production wells and Class II injection wells, shown in gradients of purple.

Statistical analysis of this spatial data gives a clearer picture of which regions are of particular concern; see below in Map 3.

Map 3. Spatial “hot-spot” analysis of groundwater quality and depth of groundwater wells in Colorado
Groundwater risks in Colorado - Map 3
View live map | How FracTracker maps work

In Map 3, above, the data visualized in Map 2 were input into a hot-spots analysis, highlighting where high and low values of TDS and depth differ significantly from the rest of the data. The region of the Front Range near Denver has significantly deeper wells, as a result of population density and the need to drill municipal groundwater wells.

The Front Range is, therefore, a high-risk region for the development of oil and gas, particularly from Class II injection wells that are necessary to support development.

Methods Notes: The COGCC publishes groundwater monitoring data for the state of Colorado, and groundwater data is also compiled nationally by the Advisory Committee on Water Information (ACWI). (Data from the National Groundwater Monitoring Network is sponsored by the ACWI Subcommittee on Ground Water.) These datasets were cleaned, combined, revised, and queried to develop FracTracker’s dataset of Colorado groundwater wells. We cleaned the data by removing sites without coordinates. Duplicates in the data set were removed by selecting for the deepest well sample. Our dataset of water wells consisted of 5,620 wells. Depth data was reported for 3,925 wells. We combined this dataset with groundwater data exported from ACWI. Final count for total wells with TDS data was 11,754 wells. Depth data was reported for 7,984 wells. The GIS files can be downloaded in the compressed folder at the bottom of this page.

Site Assessments – Exploring Specific Regions

Particular regions were further investigated for impacts to groundwater, and to identify areas that may be at a high risk of contamination. There are numerous ways that groundwater wells can be contaminated from other underground activity, such as hydrocarbon exploration and production or waste injection and disposal. Contamination could be from hydraulic fracturing fluids, methane, other hydrocarbons, or from formation brines.

From the literature, brines and methane are the most common contaminants. This analysis focuses on potential contamination events from brines, which can be detected by measuring TDS, a general measure for the mixture of minerals, salts, metals and other ions dissolved in waters. Brines from hydrocarbon-producing formations may include heavy metals, radionuclides, and small amounts of organic matter.

Wells with high or increasing levels of TDS are a red flag for potential contamination events.

Methods

Groundwater wells at deep depths with high TDS readings are, therefore, the focus of this assessment. Using GIS methods we screened our dataset of groundwater wells to only identify those located within a buffer zone of five miles from Class II injection wells. This distance was chosen based on a conservative model for groundwater contamination events, as well as the number of returned sample groundwater wells and the time and resources necessary for analysis. We then filtered the groundwater wells dataset for high TDS values and deep well depths to assess for potential impacts that already exist. We, of course, explored the data as we explored the spatial relationships. We prioritized areas that suggested trends in high TDS readings, and then identified individual wells in these areas. The data initially visualized were the most recent sampling events. For the wells prioritized, prior sampling events were pulled from the data. The results were graphed to see how the groundwater quality has changed over time.

Case of Increasing TDS Readings

If you zoom to the southwest section of Colorado in Map 2, you can see that groundwater wells located near the injection well 1 Fasset SWD (EPA) (05-067-08397) by Operator Elm Ridge Exploration Company LLC were disproportionately high (common). Groundwater wells located near this injection well were selected for, and longitudinal TDS readings were plotted to look for trends in time. (Figure 1.)

The graphs in Figure 1, below, show a consistent increase of TDS values in wells near the injection activity. While the trends are apparent, the data is limited by low numbers of repeated samples at each well, and the majority of these groundwater wells have not been sampled in the last 10 years. With the increased use of well stimulation and enhanced oil recovery techniques over the course of the last 10 years, the volumes of injected wastewater has also increased. The impacts may, therefore, be greater than documented here.

This area deserves additional sampling and monitoring to assess whether contamination has occurred.


Figures 1a and 1b. The graphs above show increasing TDS values in samples from groundwater wells in close proximity to the 1 Fassett SWD wellsite, between the years 2004-2015. Each well is labeled with a different color. The data for the USGS well in the graph on the right was not included with the other groundwater wells due to the difference in magnitude of TDS values (it would have been off the chart).

Groundwater Contamination Case in 2007

We also uncovered a situation where a disposal well caused groundwater contamination. Well records for Class II injection wells in the southeast corner of Colorado were reviewed in response to significantly high readings of TDS values in groundwater wells surrounding the Mckinley #1-20-WD disposal well.

When the disposal well was first permitted, farmers and ranchers neighboring the well site petitioned to block the permit. Language in the grant application is shown below in Figure 2. The petitioners identified the target formation as their source of water for drinking, watering livestock, and irrigation. Regardless of this petition, the injection well was approved. Figure 3 shows the language used by the operator Energy Alliance Company (EAC) for the permit approval, which directly contradicts the information provided by the community surrounding the wellsite. Nevertheless, the Class II disposal well was approved, and failed and leaked in 2007, leading to the high TDS readings in the groundwater in this region.

co_classiipetition

Figure 2. Petition by local landowners opposing the use of their drinking water source formation for the site of a Class II injection disposal well.

 

co_eac_uicpermit

Figure 3. The oil and gas operation EAC claims the Glorietta formation is not a viable fresh water source, directly contradicting the neighboring farmers and ranchers who rely on it.

co_fieldinspectionreport_leak

Figure 4. The COGCC well log report shows a casing failure, and as a result a leak that contaminated groundwater in the region.

Areas where lack of data restricted analyses

In other areas of Colorado, the lack of recent sampling data and longitudinal sampling schemes made it even more difficult to track potential contamination events. For these regions, FracTracker recommends more thorough sampling by the regulatory agencies COGCC and USGS. This includes much of the state, as described below.

Southeastern Colorado

Our review of the groundwater data in southeastern Colorado showed a risk of contamination considering the overlap of injection well depths with the depths of drinking water wells. Oil and gas extraction and Class II injections are permitted where the aquifers include the Raton formation, Vermejo Formation, Poison Canyon Formation and Trinidad Sandstone. Groundwater samples were taken at depths up to 2,200 ft with a TDS value of 385 mg/l. At shallower depths, TDS values in these formations reached as high as 6,000 mg/l, and 15 disposal wells are permitted in aquifer exemptions in this region. Injections in this area start at around 4,200 ft.

In Southwestern Colorado, groundwater wells in the San Jose Formation are drilled to documented depths of up to 6,000 feet with TDS values near 2,000 mg/l. Injection wells in this region begin at 565 feet, and those used specifically for disposal begin at below 5,000 feet in areas with aquifer exemptions. There are also four disposal wells outside of aquifer exemptions injecting at 5,844 feet, two of which are not injecting into active production zones at depths of 7,600 and 9,100 feet.

Western Colorado

In western Colorado well Number 1-32D VANETA (05-057-06467) by Operator Sandridge Exploration and Production LLC’s North Park Horizontal Niobara Field in the Dakota-Lokota Formation has an aquifer exemption. The sampling data from two groundwater wells to the southeast, near Coalmont, CO, were reviewed, but we can’t get a good picture due to the lack of repeat sampling.

Northwestern Colorado

http://digital.denverlibrary.org/cdm/ref/collection/p16079coll32/id/346073

A crew from Bonanza Creek repairs an existing well in the McCallum oil field. Photo by Ken Papaleo / Rocky Mountain News

In Northwestern Colorado near Walden, CO and the McCallum oil field, two groundwater wells with TDS above 10,000 ppm were selected for review. There are 21 injection wells in the McCallum field to the northwest. Beyond the McCallum field is the Battleship field with two wastewater disposal wells with an aquifer exemption. West of Grover, Colorado, there are several wells with high TDS values reported for shallow wells. Similar trends can be seen near Vernon. The data on these wells and wells from along the northern section of the Front Range, which includes the communities of Fort Collins, Greeley, and Longmont, suffered from the same issue. Lack of deep groundwater well data coupled with the lack of repeat samples, as well as recent sampling inhibited the ability to thoroughly investigate the threat of contamination.

Trends and Future Development

Current trends in exploration and development of unconventional resources show the industry branching southwest of Weld County towards Fort Collins, Longmont, Broomfield and Boulder, CO.

These regions are more densely populated than the Front Range county of Weld, and as can be seen in the maps, the drinking water wells that access groundwaters in these regions are some of the deepest in the state.

This analysis shows where Class II injection has already contaminated groundwater resources in Colorado. The region where the contamination has occurred is not unique; the drinking water wells are not particularly deep, and the density of Class II wells is far from the highest in the state.

Well casing failures and other injection issues are not exactly predictable due to the variety of conditions that can lead to a well casing failure or blow-out scenario, but they are systemic. The result is a hazardous scenario where it is currently difficult to mitigate risk after the injection wells are drilled.

Allowing Class II wells to expand into Front Range communities that rely on deep wells for municipal supplies is irresponsible and dangerous.

The encroachment of extraction into these regions, coupled with the support of Class II injection wells to handle the wastewater, would put these groundwater wells at particular risk of contamination. Based on this analysis, we recommend that regulators take extra care to avoid permitting Class II wells in these regions as the oil and gas industry expands into new areas of the Front Range, particularly in areas with dense populations.


Feature Image: Joshua Doubek / WIKIMEDIA COMMONS

Article by: Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

 

October 31, 2017 Edit: This post originally cited the Clean Water Act instead of the Safe Drinking Water Act as the source that EPA uses to grant aquifer exemptions.

Northeast Ohio Class II injection wells taken via FracTracker's mobile app, May 2015

What are aquifer exemptions? Permitted exemptions from the Safe Drinking Water Act

We’d like to give our readers a bit of background on aquifer exemptions, because we’re going to be covering this topic in a few upcoming blog posts. Stay tuned!

Liquid Waste Disposal

Drilling for oil and gas produces both liquid and solid waste that must be disposed of. The liquid waste from this industry is considered a “Class II waste” according to the US EPA. Aquifers are places underground capable of holding or transmitting groundwater. To dispose of Class II waste, operators are granted aquifer exemptions, by the EPA based on the state’s recommendations. The term “exemption,” specifically, refers to the Safe Drinking Water Act, which protects underground sources of drinking water (USDWs).

Therefore, these exemptions grant oil and gas operators the right to contaminate groundwaters, albeit many of the groundwater formations used for disposal in Class II wells are very deep.

Learn more about disposal well classes and aquifer exemptions on this story map by the US EPA

Aquifer Exemption Criteria

There are several qualifiers for a USDW to be granted exempt from the Safe Drinking Water Act. Aquifer exemptions are granted for underground formations that are not currently used as a source of drinking water and meet one of the following criteria:

  • The formation contains commercially producible minerals or hydrocarbons;
  • The formation is so deep that recovery of water for drinking water purposes is economically or technologically impractical; or,
  • The formation is so contaminated that it would be economically or technologically impractical to render the water fit for human consumption.
  • In some states, aquifer exemptions are not approved for formations with Total Dissolved Solids (TDS*) equal to or less than 3,000 mg/l TDS.

If an underground formation qualifies for an exemption, it does not mean that groundwater cannot be used for drinking water, just that it is not currently a source of drinking water. The most precarious criteria requirement, therefore, is the determination that a USDW is simply not “economically viable” or it is “technologically impractical,” meaning that the cost of drilling a groundwater well to the depth of the aquifer (under the condition of the current need for water) may make the investment impractical. In the near future, this water may be needed and highly valued, however.

TDS = Total dissolved solids are inorganic salts (e.g. calcium, magnesium, potassium, sodium, bicarbonates, chlorides, and sulfates), as well as some organic matter, dissolved in water.

The Lay of the Land

Below, we have put together a map of aquifer exemptions in the U.S. Click on the dots and shaded areas to learn more about a particular aquifer.

Map of all aquifer exemptions in the U.S.

View map fullscreen | How FracTracker maps work


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

SCOTT STOCKDILL/NORTH DAKOTA DEPARTMENT OF HEALTH VIA AP - for oil spills in North Dakota piece

Oil Spills in North Dakota: What does DAPL mean for North Dakota’s future?

By Kate van Munster, Data & GIS Intern, and
Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Pipelines are hailed as the “safest” way to transport crude oil and other refinery products, but federal and state data show that pipeline incidents are common and present major environmental and human health hazards. In light of current events that have green-lighted multiple new pipeline projects, including several that had been previously denied because of the environmental risk they pose, FracTracker Alliance is continuing to focus on pipeline issues.

In this article we look at the record of oil spills, particularly those resulting from pipeline incidents that have occurred in North Dakota, in order to determine the risk presented by the soon-to-be completed Dakota Access Pipeline.

Standing Rock & the DAPL Protest

To give readers a little history on this pipeline, demonstrators in North Dakota, as well as across the country, have been protesting a section of the Dakota Access Pipeline (DAPL) near the Standing Rock Sioux Tribe’s lands since April 2016. The tribe’s momentum has shifted the focus from protests at the build site to legal battles and a march on Washington DC. The pipeline section they are protesting has at this point been largely finished, and is slated to begin pumping oil by April 2017. This final section of pipe crosses under Lake Oahe, a large reservoir created on the Missouri River, just 1.5 miles north of the Standing Rock Sioux Tribal Lands. The tribe has condemned the pipeline because it cuts through sacred land and threatens their environmental and economic well-being by putting their only source for drinking water in jeopardy.

Pipelines

… supposedly safest form of transporting fossil fuels, but …

Pipeline proponents claim that pipelines are the safest method of transporting oil over long distances, whereas transporting oil with trucks has a higher accident and spill rate, and transporting with trains presents a major explosive hazards.

However, what makes one form of land transport safer than the others is dependent on which factor is being taken into account. When considering the costs of human death and property destruction, pipelines are indeed the safest form of land transportation. However, for the amount of oil spilled, pipelines are second-worst, beaten only by trucks. Now, when it comes to environmental impact, pipelines are the worst.

What is not debatable is the fact that pipelines are dangerous, regardless of factor. Between 2010 and October 2016 there was an average of 1.7 pipeline incidents per day across the U.S. according to data from the Pipeline and Hazardous Materials Safety Administration (PHMSA). These incidents have resulted in 100 reported fatalities, 470 injuries, and over $3.4 billion in property damage. More than half of these incidents were caused by equipment failure and corrosion (See Figures 1 and 2).

incidentcounts

Figure 1. Impacts of pipeline incidents in the US. Data collected from PHMSA on November 4th, 2016 (data through September 2016). Original Analysis

pipeline incidents causes

Figure 2. Cause of pipeline incidents for all reports received from January 1, 2010 through November 4, 2016. Original Analysis

Recent Spills in North Dakota

To dig into the risks posed in North Dakota more specifically, let’s take a look at some spill data in the state.

Map 1. Locations of Spills in North Dakota, with volume represented by size of markers


View map fullscreen | How FracTracker maps work

In North Dakota alone there have been 774 oil spill incidents between 2010 and September 2016, spilling an average of 5,131 gallons of oil per incident. The largest spill in North Dakota in recent history, and one of the largest onshore oil spills in the U.S., took place in September 2013. Over 865,000 gallons of crude oil spilled into a wheat field and contaminated about 13 acres. The spill was discovered several days later by the farmer who owns the field, and was not detected by remote monitors. The state claims that no water sources were contaminated and no wildlife were hurt. However, over three years of constant work later, only about one third of the spill has been recovered.

This spill in 2013 may never be fully cleaned up. Cleanup attempts have even included burning away the oil where the spill contaminated wetlands.

More recently, a pipeline spilled 176,000 gallons of crude oil into a North Dakota stream about 150 miles away from the DAPL protest camps. Electronic monitoring equipment, which is part of a pipeline’s safety precautions, did not detect the leak. Luckily, a landowner discovered the leak on December 5, 2016 before it got worse, and it was quickly contained. However, the spill migrated nearly 6 miles down the Ash Coulee Creek and fouled a number of private and U.S. Forest lands. It has also been difficult to clean up due to snow and sub-zero temperatures.

Even if a spill isn’t as large, it can still have a major effect. In July 2016, 66,000 gallons of heavy oil, mixed with some natural gas, spilled into the North Saskatchewan River in Canada. North Battleford and the city of Prince Albert had to shut off their drinking water intake from the river and were forced to get water from alternate sources. In September, 2 months later, the affected communities were finally able to draw water from the river again.

Toxicology of Oil

Hydrocarbons and other hazardous chemicals

Crude oil is a mixture of various hydrocarbons. Hydrocarbons are compounds that are made primarily of carbon and hydrogen. The most common forms of hydrocarbons in crude oil are paraffins. Crude oil also contains naphthenes and aromatics such as benzene, and many other less common molecules. Crude oil can also contain naturally occurring radioactive materials and trace metals. Many of these compounds are toxic and carcinogenic.

hydrocarbons

Figure 3. Four common hydrocarbon molecules containing hydrogen (H) and carbon (C). Image from Britannica

Crude oil spills can contaminate surface and groundwater, air, and soil. When a spill is fresh, volatile organic compounds (VOCs), such as benzene, quickly evaporate into the air. Other components of crude oil, such as polycyclic aromatic hydrocarbons (PAHs) can remain in the environment for years and leach into water.

Plants, animals, and people can sustain serious negative physical and biochemical effects when they come in contact with oil spills. People can be exposed to crude oil through skin contact, ingestion, or inhalation. Expsure can irritate the eyes, skin, and respiratory system, and could cause “dizziness, rapid heart rate, headaches, confusion, and anemia.” VOCs can be inhaled and are highly toxic and carcinogenic. PAHs can also be carcinogenic and have been shown to damage fish embryos. When animals are exposed to crude oil, it can damage their liver, blood, and other tissue cells. It can also cause infertility and cancer. Crops exposed to crude oil become less nutritious and are contaminated with carcinogens, radioactive materials, and trace metals. Physically, crude oil can completely cover plants and animals, smothering them and making it hard for animals to stay warm, swim, or fly.

An Analysis of Spills in ND

Below we have analyzed available spill data for North Dakota, including the location and quantity of such incidents.

North Dakota saw an average of 111 crude oil spills per year, or a total of 774 spills from 2010 to October 2016. The greatest number of spills occurred in 2014 with a total of 163. But 2013 had the largest spill with 865,200 gallons and also the highest total volume of oil spilled in one year of 1.3 million gallons. (Table 1)

Table 1. Data on all spills from 2010 through October 2016. Data taken from PHMSA and North Dakota.

  2010 2011 2012 2013 2014 2015 Jan-Oct 2016
Number of Spills 55 80 77 126 163 117 156
Total Volume (gallons) 332,443 467,544 424,168 1,316,910 642,521 615,695 171,888
Ave. Volume/Spill (gallons) 6,044 5,844 5,509 10,452 3,942 5,262 1,102
Largest Spill (gallons) 158,928 106,050 58,758 865,200 33,600 105,000 64,863

The total volume of oil spilled from 2010 to October 2016 was nearly 4 million gallons, about 2.4 million of which was not contained. Most spills took place at wellheads, but the largest spills occurred along pipelines. (Table 2)

Table 2. Spills by Source. Data taken from PHMSA and North Dakota.

  Wellhead Vehicle Accident Storage Pipeline Equipment Uncontained All Spills
Number of Spills 694 1 12 54 13 364 774
Total Volume (gallons) 2,603,652 84 17,010 1,281,798 68,623 2,394,591 3,971,169
Ave. Volume/Spill (gallons) 3,752 84 1,418 23,737 5,279 6,579 5,131
Largest Spill (gallons) 106,050 84 10,416 865,200 64,863 865,200 865,200

A. Sensitive Areas Impacted

Spills that were not contained could potentially affect sensitive lands and waterways in North Dakota. Sensitive areas include Native American Reservations, waterways, drinking water aquifers, parks and wildlife habitat, and cities. Uncontained spill areas overlapped, and potentially contaminated, 5,875 square miles of land and water, and 408 miles of streams.

Drinking Water Aquifers – 2,482.3 total square miles:

  • Non-Community Aquifer – 0.3 square miles
  • Community Aquifer – 36 square miles of hydrologically connected aquifer
  • Surficial Aquifer – 2,446 square miles of hydrologically connected aquifer

A large area of potential drinking water (surficial aquifers) are at risk of contamination. Of the aquifers that are in use, aquifers for community use have larger areas that are potentially contaminated than those for non-community use.

Native American Tribal Reservation

  • Fort Berthold, an area of 1,569 square miles

Cities – 67 total square miles

  • Berthold
  • Dickinson
  • Flaxton
  • Harwood
  • Minot
  • Petersburg
  • Spring Brook
  • Stanley
  • West Fargo

Map 2. Areas where Oil Spills Present Public Health Threats


View map fullscreen | How FracTracker maps work

B. Waterways Where Spills Have Occurred

  • Floodplains – 73 square miles of interconnected floodplains
  • Streams – 408 miles of interconnected streams
  • Of the 364 oil spills that have occurred since 2010, 229 (63%) were within 1/4 mile of a waterway
  • Of the 61 Uncontained Brine Spills that have occurred since 2001, 38 (63%) were within 1/4 mile of a waterway.

If a spill occurs in a floodplain during or before a flood and is uncontained, the flood waters could disperse the oil over a much larger area. Similarly, contaminated streams can carry oil into larger rivers and lakes. Explore Map 3 for more detail.

Map 3. Oil Spills in North Dakota Waterways


View map fullscreen | How FracTracker maps work

C. Parks & Wildlife Habitat Impacts

1,684 total square miles

Habitat affected

  • National Grasslands – on 1,010 square miles of interconnected areas
  • United States Wildlife Refuges – 84 square miles of interconnected areas
  • North Dakota Wildlife Management Areas – 24 square miles of interconnected areas
  • Critical Habitat for Endangered Species – 566 square miles of interconnected areas

The endangered species most affected by spills in North Dakota is the Piping Plover. Explore Map 4 for more detail.

Map 4. Wildlife Areas Impacted by Oil Spills


View map fullscreen | How FracTracker maps work

Methods

Using ArcGIS software, uncontained spill locations were overlaid on spatial datasets of floodplains, stream beds, groundwater regions, sensitive habitats, and other sensitive regions.

The average extent (distance) spilled oil traveled from uncontained spill sites was calculated to 400 meters. This distance was used as a buffer to approximate contact of waterways, floodplains, drinking water resources, habitat, etc. with uncontained oil spills.

Oil Spills in North Dakota Analysis References:


Cover Photo: The site of a December 2016 pipeline spill in North Dakota. Credit: Scott Stockdill/North Dakota Department of Health via AP

Radium Watersheds a Risk

By Greg Pace – Columbus Community Bill of Rights, and Julie Weatherington-Rice – Environmental Consultant

columbus_classiimap

Figure 1. Map of Columbus, OH Watersheds and Class II Injection Wells

Most Ohio residents are unaware of the frack fluid deep underground injection occurring north of Columbus, underneath the region’s source water protection watersheds (Figure 1).

Materials injected are liquids that have as much as ten times the salt concentration of sea-water. Mixed with this “brine” solution is a combination from hundreds of chemicals that are used in different stages of horizontal hydraulic fracturing, the process used to extract natural gas, petroleum, and hydrocarbon liquids used to make industrial materials such as plastics. BTEX compounds including benzene are always present in the wastewater, along with formaldehyde, bromides, ethylene glycol (antifreeze), and arsenic, with many other carcinogenic and otherwise highly-toxic substances.

Radioactivity of Shale Gas Wastewater

One of the biggest questions in this mix of toxic disposal is how much radioactive content exists. Radium-226 is most worrisome, as it has a very long half-life (1,600 years). It is water-soluble and, once it enters the human body, seeks to find a home in our bones where it will emit its cell-formation-destabilizing effects for the remainder of our lifetime. This radionuclide is known to cause leukemia, bone cancers, blood disorders, and other diseases.

The state of Ohio does not monitor the content of materials that are injected into our Class II injection wells deep in the ground. This oil and gas waste can come from anywhere, including Pennsylvania’s Marcellus shale, which is the most highly-radioactive geology of all the shale plays in the country. Radium-226 readings as high as 15,000 pico-curies per liter have been read in Marcellus shale brines. The EPA drinking water limit for radium-226 is 5 pico-curies per liter, which puts the Marcellus reading at 3,000 times higher than the drinking water limit.

Exposure through drinking water is a pathway to human disease from radium-226. Once oil and gas waste is disposed of underground in a sandstone or limestone layer, the fluids are subject to down-gradient movement, wicking through capillary action, and seepage over time. This means that the highly radioactive wastewater could eventually end up in our underground drinking water sources, creating radium watersheds. This practice is putting our watersheds at risk from radioactive contamination for hundreds of years, at least.

Can injected fluids migrate?

Depending on whether you confer with a geologist who works with the oil and gas industry, or from an independent geologist, you will get a different opinion on the likelihood of such a pollution event occurring. Industry geologists mostly claim that deep injection leaves very low risk of water contamination because it will not migrate from the planned area of injection. On the other hand, independent geologists will tell you that it is not a matter of if the liquids will migrate, but how and when. The ability to confirm the geology of the underground area layer of injection “storage” is not exact, therefore accuracy in determining the probability for migration over time is poor.

Figure 2. Ohio Utica Brine Production and Class II Injection Well Disposal


View Map Fullscreen | How FracTracker maps work

We do know, however, that all underground systems in Ohio leak – Research by The Ohio State University and the US Geological Survey show that the age of the water in brine formations is far younger than the age of the rock deposits they are found in. See where wastewater is being created and disposed of in Ohio using the dynamic map above (Figure 2).

Spill Risks to Columbus, OH Water

According to area geologist, Dr. Julie Weatherington-Rice, the source for Columbus’s water to the north is mostly from surface water. This water comes from the Delaware and Morrow county watersheds that feed into sources such as the Hoover and Alum Creek reservoirs. The major threat from injection wells to our watershed is from spills, either from trucks or from storage at the injection well sites themselves.

Dead fish floating in Vienna area pond contaminated by injection well system spill Source: MetropolitanEnegineering Consulting & Forensics-Expert Engineers

Figure 3. Dead fish floating in Vienna area pond contaminated by injection well system spill. Source: MetropolitanEnegineering Consulting & Forensics-Expert Engineers

In April 2015, as much as 8,000 gallons of liquid leaked from a malfunctioning pipe in the storage apparatus of an oil/gas waste storage and injection well site in Vienna, OH. This caused a wildlife kill in two ponds (Figure 3), and the spill was not contained until 2/3 mile downstream in a tributary. The firm who owned the facility was found negligent in that they did not install a required containment liner for spills. The incident was discovered by neighboring residents, but apparently employees knew of the leak weeks before. Of note in this incident was that Ohio Department of Natural Resources, the regulatory agency that oversees all oil/gas production activity in Ohio including injection, stated that there was “minimal impact to wildlife.”

Brine tanker rollover near Barnesville, OH spilled 5,000 gal. of produced brine. Source: Barnesville, OH Fire Department

Figure 4. Brine tanker rollover near Barnesville, OH spilled 5,000 gal. of produced brine. Source: Barnesville, OH Fire Department

In March, 2016, a tanker truck carrying produced waste from a hydraulically fractured well pad overturned outside of the Village of Barnesville, Ohio (Figure 4). The truck spilled 5,000 gallons of liquid waste into a field that led into a tributary, leading the fluids to enter one of the city’s three drinking water supply reservoirs. The water source was shut down for more than two months while regulators determined if water levels were safe for consumption. There was a noted spike in radium-226 levels during water testing immediately after the spill.

Of greatest concern is that, although many millions of gallons of frack waste have been injected into the wells north of Columbus over the past few years, we expect that this activity will increase. For the first time, the United States began exporting its own natural gas in 2016, to regions such as Europe and South America. As the industry consolidates from the depression of oil prices over the past two years and begins to ramp up again, we expect the extraction activity in the Marcellus and especially Utica to increase to levels beyond what we have seen since 2011. The levels of injection will inevitably follow, so that injection wells in Ohio will receive much more than in the past. The probability of spills, underground migration, and human-induced earthquakes may increase steeply, as well.

An Aging Disposal Infrastructure

On our Columbus Community Bill of Rights website, we show pictures of some of the Class II injection wells in Morrow County, most of them converted from legacy production wells. These old wells are located in played out oil/gas fields that may still be producing or have abandoned but not plugged (closed) wells, allowing other routes for injected liquids to migrate into shallow ground water and to the surface. The dilapidated condition of these converted Class II wells makes it hard to believe that they are used to inject millions of gallons of wastewater under high pressure. While many of the wells in the state are as deep as 9,000 feet, all of the injection wells we have seen in Morrow County are only 3,000-4,000 feet deep. This situation puts surface water at greater risk over time, as it is probable that, over the generations, some of the fluids will migrate and wick into the higher subterranean strata.

Figure 5. Ohio Class II Injection Wells by Type


View Map Fullscreen | How FracTracker maps work

One well (Power Fishburn unit, photo below) showed signs of poor spill control when we took our October 2015 injection well tour. While we were there, a brine tanker arrived and began pumping their load into the well. The driver took pictures of our license plates while we were there watching him. A year later, there is a whole new structure at the well, including a new storage tower, and an extensively beefed-up spill control berm. Maybe we need to visit all of the facilities when they come by to use them!

Another well (Mosher unit, photo below) which hadn’t been used since 2014 according to available records, showed signs of a spill around the well. The spill control berms look as if they probably had flooded at some point. This well sits on the edge of a large crop field.


Figures 6a and 6b. Photos of Class II injection wells. Click on the images to expand them.

North of Columbus, the city of Delaware’s underground source water is at risk of becoming contaminated from underground migration of disposed wastewater over time, through wicking and seepage effects (as explained earlier in this article). They are also vulnerable to their reservoir being contaminated from surface spill migration through their watershed.

Google maps rendition of Ohio Soil Recycling facility in south Columbus, Ohio, that accepts shale drill cuttings for remediation to cap the landfill. Source: Google Maps/author

Figure 7. Google maps rendition of Ohio Soil Recycling facility in south Columbus, Ohio, that accepts shale drill cuttings for remediation to cap the landfill. Source: Google Maps/author

South of Columbus is another threat – drill cuttings from the drilling process have been authorized for disposal at a “remediation” landfill adjacent to the Alum Creek (Figure 7). The bioremediation treatment used is not indicated to solve the problem of removing radionuclides from the materials. This landfill had been remediated under the Ohio EPA twice when it was a toxic drum dump, after toxins were found to have been leaching into the watershed creek. Columbus’s Alum Creek well, as well as Circleville, are at risk of contamination in their drinking water if radionuclides from the cuttings leach into Alum Creek. Again, this is a long-term legacy of risk to their water.

Radiation Regulatory and Monitoring Gaps

Since The Ohio legislature deemed the radioactive content of shale cuttings to be similar to background levels in the 2013 state budget bill, cuttings can be spread around to all licensed landfills in Ohio with absolutely no accountability for the radium and other heavy metal levels in them. Unfortunately, the measuring protocol used in the pilot study for the Columbus facility to demonstrate to Ohio EPA that radium-226 was below EPA drinking water limits has been shown in a University of Iowa study to be unreliable.  The inadequate protocol was shown to indicate as little as 1% of the radium levels in shale waste samples tested.

As such, there have been hundreds of incidents where truckloads of cuttings have been turned away at landfills with crude radiation monitors. In 2013 alone, 2 loads were turned away in Ohio landfills, and over 220 were turned away from Pennsylvania landfills.

Ohio has a long way to go before it can be considered a clean energy state. The coal industry polluted significant water sources in the past. The fracking industry seems to be following suit, where contaminations will surprise us long into the future and in broader areas.


Map Data for Download

AG Pruitt testifies before a congressional committee on issues surrounding energy and the environment

“Polluting Pruitt:” A Wolf to Guard the Hen House?

Guest article by Dakota Raynes, Co-Organizer of Stop Fracking Payne County (OK)

President Trump recently tapped Oklahoma Attorney General Scott Pruitt to head the Environmental Protection Agency (EPA), even though Pruitt is a self-proclaimed “leading advocate against the EPA’s activist agenda.” Pruitt is currently opposing investigation of Exxon Mobile’s handling of climate-change science based on the belief that climate change science is not yet settled and “debate should be encouraged in classrooms, public forums, and the halls of Congress.” Senate confirmation hearings regarding Pruitt’s nomination are currently ongoing – many questions have focused on Pruitt’s legacy as AG of OK and what that tells us about actions he might take as head of the EPA.

Pruitt’s Past as AG

Elected in 2010, Pruitt’s six-year tenure illuminates the full extent of the troubling stances he takes. For instance, he has fought against the overturn of DOMA, same-sex marriage rights, granting legal status to undocumented immigrants, the Affordable Care Act, access to safe and affordable birth control and abortions, and Dodd-Frank Wall Street reform. These actions demonstrate Pruitt’s inability to accept or implement procedures, policies, and programs supported by a majority of US residents, members of the nations’ highest courts, and even his own colleagues.

A Focus on Environmental Issues

More specifically related to environmental issues, he has openly criticized the EPA in congressional hearings and op-ed pieces. Due to his belief that the EPA frequently abuses its authority, Pruitt’s office has filed 14 antiregulatory lawsuits against the EPA. Investigative reporters uncovered that in 13 of these cases co-litigators included companies that had contributed significant amounts of money to Pruitt and/or Pruitt-affiliated political action committees (PACs). He also routinely joins lawsuits against other states. For example, Pruitt and five other Attorneys General challenged a California law banning the sale of eggs laid by hens living in cramped conditions, but a US District Judge ruled they lacked legal standing because they were representing the economic interests of a few industrial egg producers rather than the interests of their broader constituents.

Several such lawsuits are still pending, which legal experts and others claim presents a conflict of interest should Pruitt become the new Director of the EPA. When asked specifically about this issue during Senate confirmation hearings, Pruitt refused to recuse himself from the lawsuits, saying he would leave such a decision up to the EPA’s legal counsel team. Notably, across the course of his six-years as AG, Pruitt’s office has distributed more than 700 news releases announcing the office’s actions, his speeches and public appearances, and efforts to challenge federal regulations. More than 50 of these releases promoted the office’s efforts to sue the EPA, but not once has a release described actions the office has taken to enforce environmental laws or to hold violators accountable for their actions.

Potential Conflicts of Interest

In OK, Pruitt has made many choices, that when viewed together, strongly suggest that his loyalties reside with the industries that have donated hundreds of thousands of dollars to his election campaigns rather than with the people he is sworn to protect. Here is a short list of the most troubling examples:

  • Pruitt’s predecessor had filed suit against Tyson, Cargill, and a number of other poultry producers in OK due to inappropriate disposal of an estimated 300,000 tons of animal waste per year, which was causing toxic algae blooms along the Illinois River. But shortly after his election, Pruitt dropped the case, citing a need for more research. Some have questioned whether his decision was impacted by the fact that the poultry industry had donated at least $40,000 to his campaign that year.
  • He also quickly dismantled the Attorney General’s in-house environmental protection unit, a team of four attorneys and a criminal investigator, and replaced it with the state’s first “federalism unit,” which was created to litigate against overreach by the federal government, mostly the EPA. Pruitt has repeatedly made it clear that he believes states should handle environmental issues, regardless of the fact that environmental issues frequently cause problems that cross geopolitical boundaries such as state lines (OK’s induced seismicity issue1 is a key example, more information about induced seismicity can be found here).
  • In 2013, he created a coalition of 9 Attorneys General, major energy CEOs, and their lawyers and brought them all to OK for a strategizing session regarding how to stop government and citizen responses to the ills of the oil and gas industry; it was an all-expenses paid event funded by Mercatus, a right-wing think tank favored by the Koch brothers.
    1. Notably, the energy industry is Pruitt’s second largest campaign contributor. When he came up for re-election in 2013, he chose Harold Hamm (CEO of Continental Resources, one of the largest oil companies in OK) to co-chair his campaign. Shortly after winning reelection in 2014, Pruitt joined forces with key industry players including Oklahoma Gas and Electric and the Domestic Energy Producers Alliance (chaired by Hamm) to file several antiregulatory lawsuits, which include attempts to block the Clean Power Plan and Waters of the US rule.
    2. Pruitt has also served as leader of the Republican Association of Attorneys General, which has collected at least $4.2 million in donations from fossil-fuel related companies since 2013.
  • Recently, local investigative reporters discovered that Pruitt’s office failed to follow a state law requiring state agencies to disclose spending on outside attorneys. Their examination illuminated that Pruitt has spent more than $1 million on legal fees since FY2012 – a total that does not include costs directly related to lawsuits against the EPA or the Affordable Care Act.

Induced-Seismicity and Wastewater Disposal

OK Map of Recent Earthquakes for Pruitt article

Map of Oklahoma Class II Injection Wells and Volumes 2011 to 2015 (Barrels). Click image to explore a full screen, dynamic map.

Oklahoma recently became the earthquake capital of the world due to a phenomenon referred to as injection-induced seismicity. While OK has not historically been known as a seismically active area, thousands of tremors have shaken the state since the shale gas boom began.

Several researchers have used geospatial analysis to demonstrate how these quakes are caused by the high-pressure injection of oil and gas industry wastes such as the flowback and produced water created by the unconventional oil and gas production process known as hydraulic fracturing. The map above shows where injection wells (tan dots) are located and where earthquakes (green dots) occurred from 2011-2015.

Oklahomans have been harmed by the implicitly pro-fracking stance Pruitt has taken, as evidenced by his lack of action regarding induced seismicity – as well as air, water, and soil contamination due to oil and gas industry activities. Several people, including Johnson Bridgewater (Director of OK Chapter of the Sierra Club) have noted that:

There are various places where the attorney general’s office could have stepped in to fix this overall problem…Its job is to protect citizens. Other states were proactive and took these issues on…[yet] Pruitt has been completely silent in the face of a major environmental problem for the state and its taxpayers.

Specifically, the AG’s office could have responded to the legal question of whether the state could limit or ban transport of fracking-related wastewater, sent by other states for disposal in underground injection wells in OK.

He also did nothing to address the phenomenally low earthquake insurance claim approval rate; after the 5.8M quake shook Pawnee in September of 2016, 274 earthquake damage claims were filed but only 4 paid out. Estimates of statewide approval rates generally suggest that approximately 1% of claimants receive funds to aid repairs.

Lastly, there are a number of class action lawsuits against a variety of industry actors regarding earthquake damages, yet Pruitt’s office has not entered any of these as an intervenor even though AGs in other states have done so.

Pruitt not at fault?

Photo Credit: JIM BECKEL/The Oklahoman

Earthquake damage. Photo Credit: Jim Beckel/The Oklahoman

Pruitt was recently called out by investigative reporters who used open-records requests to reveal that letters, briefs, and lawsuits that he submitted were written in whole or in part by leading energy firms such as Devon (another of OK’s largest oil and gas companies). Pruitt’s response was that he had done nothing wrong, nothing even potentially problematic. Rather, he said, of course he was working closely with industry and isn’t that what he should be doing. Some would argue that as AG what he should be doing is working closely with the people of Oklahoma, especially those whose homes, lives, and livelihoods have crumbled under the weight of attempting to repair earthquake damage due to industry activities.

Historical AG Influence

It is important to remember, though, that what’s happening with Pruitt is not isolated. Rather, as several long-time reporters have noted, increased attention to developing beneficial relationships with AGs is a result of historical processes.

About 20 years ago more than 40 state AGs banded together to challenge the tobacco industry, which led to a historic $206 billion settlement decision. Later, Microsoft, the pharmaceutical industry, and the financial services industry each faced similar multistate challenges regarding the legality or illegality of particular business practices.

As some AGs began hiring outside law firms to investigate and sue corporations, industry leaders realized that AGs’ actions were far more powerful and immediate than those of legislative bodies. So, they began a heretofore unprecedented campaign to massively increase their influence at this level.

Several people have critiqued the ways in which such actions undermine democratic processes, prompt troubling questions about ethics, and negatively impact attorney generals’ abilities to fulfill their duties to the state and its residents.

A Mission at Risk

Those of us on the frontlines here in OK have seen just how powerful such coalitions can be, how much sway they can have on local and state officials, how they destabilize people’s faith and trust in the systems that are supposed to protect them, and how coalitions undercut people’s hope and desire to be civically engaged. The mission of the US Environmental Protection Agency is to protect human health and the environment. If confirmed to lead the EPA, it is very likely Pruitt will prioritize his relationships with industry over the health and welfare of the people and environment he’s directed to protect.

Footnotes

  1. To learn more about induced seismicity read an exclusive FracTracker two-part series from former VTSO researcher Ariel Conn: Part I and Part II. Additionally, the USGS has created an Induced Earthquakes landing page as part of their Earthquake Hazards Program.

Events

Nothing Found

Sorry, no posts matched your criteria