Photo by Pat Sullivan/AP https://www.houstonchronicle.com/news/houston-texas/houston/article/Fracking-research-hits-roadblock-with-Texas-law-6812820.php

California regulators need to protect groundwater from oil and gas waste this time around

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

California’s 2nd Largest Waste Stream

Every year the oil and gas industry in California generates billions of gallons of wastewater, also known as produced water. According to a study by the California Council on Science and Technology, in 2013, more than 3 billion barrels of produced water were extracted along with some 0.2 billion barrels of oil across the state. This wastewater is usually contaminated with a mixture of heavy metals, hydrocarbons, naturally occurring radioactive materials, and high levels of salts. Yet, contaminated wastewater from oil-field operations is exempt from the hazardous waste regulations enforced by the Resource Conservation and Recovery Act (RCRA).

Operators are, therefore, not required to measure or report the chemistry of this wastewater. Even with these unknowns, it is legally re-injected back into groundwater aquifers for disposal. Once an aquifer is contaminated it can be extremely difficult, if not impossible, to clean up again. Particularly in California, where water resources are already stretched thin, underground injection of oil and gas wastewater is a major environmental and economic concern.

Regulatory Deficiency

Under the Underground Injection Control program, wastewater is supposed to be injected only into geologic formations that don’t contain usable groundwater. However, a loophole in the Safe Drinking Water Act allows oil and gas companies to apply for what’s called an aquifer exemption, which allows them to inject wastewater into aquifers that potentially hold high-quality drinking water. To learn more about aquifer exemptions, see FracTracker’s summary, here.

The California department responsible for managing these aquifer exemption permits – the Division of Oil, Gas, and Geothermal Resources (DOGGR) – has for decades failed in its regulatory capacity. In 2015, for example, DOGGR admitted that at least 2,553 wells had been permitted to inject oil and gas waste into non-exempt aquifers – aquifers that could be used for drinking water. Independent audits of DOGGR showed decades of poor record-keeping, lax oversight, and in some cases, outright defiance of the law – showing the cozy relationship between regulators and the oil and gas industry. While 176 wells (those that were injecting into the cleanest drinking water) were initially shut down, most of the rest of the 2,377 permits were allowed to continue injecting into disputed wells through the following two years of the regulatory process.

The injection wells targeted by the Environmental Protection Agency (EPA), including those that were shut down, are shown in the map below (Figure 1).

Figure 1. Map of EPA-targeted Class II Injection Wells


View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

The timeline of all this is just as concerning. The State of California has known about these problems since 2011, when the EPA audited California’s underground injection program and identified substantial deficiencies in its program, including failure to protect some potential underground sources of drinking water, a one-size-fits-all geologic review, and inadequate and under-qualified staffing for carrying out inspections. In 2014, the Governor’s office requested that the California EPA perform an independent review of the program. EPA subsequently made a specific remediation plan and timeline for DOGGR, and in March of 2015 the State finalized a Corrective Action Plan, to be completed by February 2017.

Scientific Review of CA Oil and Gas Activities

Meanwhile, in 2013, the California Senate passed SB-4, which set a framework for regulating hydraulic fracturing in California. Part of the bill required an independent scientific study to be conducted on oil and gas well stimulation, including acid well stimulation and hydraulic fracturing. The California Council on Science and Technology organized and led the study, in collaboration with the Lawrence Berkeley National Laboratories, which combined original technical data analyses and a review of relevant literature, all of which was extensively peer-reviewed. The report argues that both direct and indirect impacts of fracking must be accounted for, and that major deficiencies and inconsistencies in data remained which made research difficult. They also recommended that DOGGR improve and modernize their record keeping to be more transparent.

Figure 2. Depths of groundwater total dissolved solids (a common measure of groundwater quality) in five oil fields in the Los Angeles Basin. Blue and aqua colors represent protected groundwater; the heavy black horizontal line indicates the shallowest hydraulically fractured well in each field. In three of the five wells (Inglewood, Whittier, and Wilmington), fracking and wastewater injection takes place directly adjacent to, or within, protected groundwater.

Figure 2*. Depths of groundwater total dissolved solids (a common measure of groundwater quality) in five oil fields in the Los Angeles Basin. Blue and aqua colors represent protected groundwater; the heavy black horizontal line indicates the shallowest hydraulically fractured well in each field. In three of the five wells (Inglewood, Whittier, and Wilmington), fracking and wastewater injection takes place directly adjacent to, or within, protected groundwater.

A major component of the SB-4 report covered California’s Class II injection program. Researchers analyzed the depths of groundwater aquifers protected by the Safe Drinking Water Act, and found that injection and hydraulic fracturing activity was occurring within the same or neighboring geological zones as protected drinking water (Figure 2*).

*Reproduced from California Council on Science and Technology: An Independent Scientific Assessment of Well Stimulation in California Vol. 3.

More Exemptions to be Granted

Now, EPA is re-granting exemptions again. Six aquifer exemptions have been granted, and more are on the docket to be considered. In this second time around, it is imperative that regulatory agencies be more diligent in their oversight of this permitting process to protect groundwater resources. At the same time, the 2015 California bill SB 83 mandates the appointment of an independent review panel to evaluate the Underground Injection Control Program and to make recommendations on how to improve the effectiveness of the program. This process is currently in the works and a panel has been assembled, and FracTracker Alliance will be working to provide data, maps and analyses for this panel.

Stay tuned for more to come on which aquifers are being exempted, why, and what steps are being taken to protect groundwater in California.


Feature image by Pat Sullivan/AP

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

White Paper (PDF)

Mariner East 2: More Spills & Sinkholes Too?

The Mariner East 2 (ME2) pipeline, currently being built by Sunoco Pipeline (Energy Transfer Partners), is a massive 350-mile long pipeline that, if completed, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.

ME2 has faced numerous challenges from concerned citizens since Sunoco first announced plans for the project in 2014. Fights over taking private property by eminent domain, eyebrow raising permit approvals with known technical deficiencies, as well as nearly a hundred drilling mud spills — inadvertent returns (IRs) — at horizontal directional drilling (HDD) sites have occurred since work began in 2017.

This article and the accompanying map brings us up-to-date on the number, location, and status of ME2’s HDD spills. We also summarize the growing list of violations and settlements related to these events. Finally, we highlight the most recent concerns related to ME2’s construction: sinkholes emerging along the pipeline’s path in karst geological formations.

Map of ME2 Updated HDDs, IRs & Karst

The map below shows an updated visual of ME2’s IRs, as of the DEP’s latest tally on March 1, 2018. Included on this map are HDDs where DEP ordered Sunoco reevaluate construction sites to prevent additional spills. Also identified on this map are locations where Sunoco was ordered to notify landowners in close proximity to certain HDDs prior to additional drilling. Finally, the below map illustrates how sinkholes are not a problem unique to one site of construction but are, in fact, common to many areas along ME2’s route. These topics are discussed in greater depth below.

Open the map full-screen to view additional layers not available in the embedded version below.

View Map Fullscreen | How FracTracker Maps Work

HDDs & Inadvertent Returns – Redux

In July 2017, the PA Environmental Hearing Board granted a two week halt to ME2’s HDD operations. The temporary injunction was in response to petitions from the Clean Air CouncilMountain Watershed Association, and the Delaware Riverkeeper Network following IRs­­ at more than 60 sites that contaminated dozens of private drinking water wells, as well as nearby streams and wetlands. FracTracker first wrote about these issues in this prior article.

HDD IR in Washington County
(image: Observer-Reporter)

Despite these issues, and despite Sunoco being cited for 33 violations, ME2 was allowed to proceed under an August 7th agreement that stated Sunoco must reevaluate their HDD plans to minimize additional spills. These studies were to include re-examining the site’s geology and conducting seismic surveys. Sites for reevaluation were selected based on factors such as proximity water supplies, nearby streams and wetlands, problematic geologic conditions, and if an IR had occurred at that site previously. Of ME2’s 230 HDDs, 64 were ordered for reevaluation — 22 of these were selected due to prior IRs occurring at the site.

The DEP mandated that Sunoco’s reevaluation studies be put out for public comment. A table of which HDD studies are currently out for comment can be found here. DEP’s settlement also required Sunoco to notify landowners in proximity to certain HDDs prior to commencing construction due to elevated risks. Of the 64 HDD sites under review, Sunoco must notify 17 residents within 450ft of an HDD site, and 22 residents within 150ft of other sites. The HDD reevaluation sites are shown on the FracTracker map above. Below is an illustration of one site where Sunoco is required to notify landowners within 450ft.

One issue residents have raised with these notifications is that Sunoco is allowed to offer landowners the option to connect their homes to a water buffalo during drilling as an alternative to using their groundwater well. The catch is that, if their well does become contaminated, they would also waive their right to have Sunoco drill them a new replacement well.

“Egregious Violations”

In January 2018, the DEP again suspended ME2’s construction, this time indefinitely revoking their permits, due to even more IRs. DEP also cited Sunoco for “egregious and willful” permit violations —mainly executing HDDs at sites where they had no permission to do so. The DEP noted of their decision that, “a permit suspension is one of the most significant penalties DEP can levy.”

Nevertheless, Sunoco was again allowed to resume construction on February 8, 2018, after paying a $12.6 million fine. The DEP press release accompanying the decision assured the public that, “Sunoco has demonstrated that it has taken steps to ensure the company will conduct the remaining pipeline construction activities in accordance with the law and permit conditions, and will be allowed to resume.”

A few weeks later, Sunoco ran a full-page advertisement in the Harrisburg Patriot-News, shown above, lauding their safety record. Among other notables, the piece boasts, “State and federal regulators spent more than 100 inspection days during 2017 on the Mariner East project, more inspection days than on any other pipeline in Pennsylvania.” Critics have noted that the inordinate number of inspections are due to the comedy of errors associated with ME2’s construction.

Karst Formations & Sinkholes

Which brings us to the current ME2 debacle. Last week, the PA Public Utility Commission (PUC) ordered a temporary shutdown of Mariner East 1 (ME1), another natural gas liquids pipeline owned by Sunoco/ETP. ME1 was built in the 1930s and its right-of-way is being used for most of ME2’s route across the state. This latest construction setback comes in the wake of numerous sinkholes that emerged beginning in December along Lisa Drive in West Whitehead Township, a suburb of Philadelphia in Chester County.

The most recent of these sinkholes grew into a 20ft-deep, 15ft-wide chasm that exposed portions of ME1 and came within 10ft of a house. It is worth noting that, until only a few days ago, ME1 was an operational 8in pipeline with a potential impact radius (aka “blast zone”) of some 500ft. The PUC ordered that Sunoco must now run a line inspection on ME1 for a mile upstream and a mile downstream from the sinkhole sites along Lisa Drive, seen in the image below. Note the proximity of these sinkholes to Amtrak’s Keystone rail lines (connecting Pittsburgh to Philadelphia), under which ME2 also runs. The Federal Railway Administration only recently learned of the sink holes from a nearby resident.

The Lisa Drive sinkholes are being credited to Sunoco executing an HDD in an area known to have karst geological formations. Sunoco has been ordered by the PUC to conduct more geophysical testing and seismic analyses of the area because of this. Karst is often called the “Swiss cheese” of geology — notorious for caves, sinkholes, and underground rivers. As these geological formations change shape, pipelines can bend and settle over time, ultimately leading to potentially dangerous gas leakages or explosions. For instance, the 2015 Atex-1 pipeline explosion in Follansbee, WV, was ultimately determined by the Pipeline and Hazardous Materials Safety Administration (PHSA) as having been caused by ground settling. That explosion released some 24,000 barrels of ethane, burning more than five acres of surrounding land.

The US Geological Survey (USGS) maintains fairly detailed maps of rock formations for most states, including formations known to have karst. In PA, there are a number of “carbonate” rock families known for karst features and settlement issues: limestone and dolostone, and, to a lesser extent, shale. Meanwhile, the PA Department of Conservation and Natural Resources (DCNR) has maintained a record of karst “features” — sinkholes and surface depressions — documented since 1985. A great explanation of the different types of karst features can be found here.

Underestimating the Risks

What is concerning about the Lisa Drive sinkholes is that Sunoco had supposedly already conducted additional karst geological reviews of the area as part of the August DEP settlement, subsequently ranking a nearby HDD (#PA-CH-0219) as “low risk” for running into karst issues—despite knowing the HDD runs through a karst formation with sinkholes and surface depressions in the area. For the HDD that runs the length of Lisa Drive (#PA-CH-0256), the study rated its risk as “very low.” These two HDDs are shown below, along with the area of ME1 now under structural review.

The likely result of these inaccurate assessments led to two IRs at Lisa Drive, one in October and another in November 0f 2017. DEP’s writeup of these events note that the total volume of drilling muds spilled remains unknown because Sunoco didn’t report the incident. Then, only a month later, sinkholes emerged in the same locations. An image of the November HDD IR is shown below.

It is important to note two additional things of Sunoco’s karst study, an except of which is seen in their map of the West Whiteland area below. First, Lisa Drive is just on the edge of a karst limestone formation. USGS data suggest the location is actually mica schist, but the USGS data is also only a rough estimate of different formations. This underscores why pipeline companies must be required to conduct detailed geotechnical analysis of all HDD sites at the onset of their projects.

The other notable aspect of Sunoco’s study is that it does not fully represent all rock formations known to have karst features. In Sunoco’s map, we see orange shading for limestone, but this does not include dolostone that underlies the many surface depressions and sinkholes surrounding West Whiteland. FracTracker’s map includes these formations for greater accuracy.

Takeaways

Interestingly, as Anya Litvak of the Pittsburgh Post-Gazette observed in her reporting on the Lisa Drive incident, Sunoco’s updated karst assessment ranked the entire route of the ME2 pipeline through the state as “low to very low” risk for potential issues. Furthermore, Sunoco has tried to downplay the Lisa Drive incident, stating that “all areas have been secured,” and that additional incidents are unlikely to occur.

But the overall relationship between Mariner East 2’s IRs, HDD sites, and known karst features tells a very different story than Sunoco’s about the potential risks of ME2. In addition to the concerns about new sinkholes near Lisa Drive, FracTracker found the following in our analysis:

  • 7 sinkholes and 386 surface depressions are within 1,500ft of a ME2 HDD site.
  • Of the 230 HDDs, 87 are located in carbonate rock areas (52 in limestone/dolostone, 35 in shale).
  • Of the 99 IRs, 39 have occurred in carbonate rock areas (23 in limestone/dolostone, 16 in shale).

In other words, nearly half of the IRs caused by ME2 HDDs were located in areas known to have karst formations. Worth noting is that an additional 15 occurred in sandstone formations, also known to cause settlement over time. The remaining IRs are split across nine other formation types.

Considering that the DEP’s current review of Sunoco’s ability to safely execute future HDDs are based on the same karst study that missed the Lisa Drive HDD and ranked nearby HDDs as a “low” risk, one can only assume that additional spills will occur. There are many more HDD sites yet to be drilled, and also not likely studied fully for potential karst risks. As illustrated by the continuing saga of spills, violations, and omissions, it is clear that Sunoco has not maintained a high standard of construction in building ME2 from the onset.

We thank Eric Friedman from the Middletown Coalition for Community Safety for supplying photos of the Lisa Drive site used in this article.

By Kirk Jalbert, FracTracker Alliance

Waiting on Answers - XTO incident image two weeks later

Waiting on Answers Weeks after a Well Explosion in Belmont County Ohio

Mar 7 Update: The well has finally been capped.

On February 15, 2018, officials evacuated residents after XTO Energy’s Schnegg gas well near Captina Creek exploded in the Powhatan Point area of Belmont County, Ohio. More than two weeks later, the well’s subsequent blowout has yet to be capped, and people want to know why. Here is what we know based on various reports, our Ohio oil and gas map, and our own fly-by on March 5th.

March 19th Update: This is footage of the Powhatan Point XTO Well Pad Explosion Footage from Ohio State Highway Patrol’s helicopter camera the day after the incident:


Powhatan Point XTO well pad explosion footage from Ohio State Highway Patrol

Cause of the Explosion

The well pad hosts three wells, one large Utica formation well, and two smaller ones. XTO’s representative stated that the large Utica well was being brought into production when the explosion occurred. The shut-off valves for the other two wells were immediately triggered, but the explosion caused a crane to fall on one of those wells. The representative claims that no gas escaped that well or the unaffected well.

Observers reported hearing a natural gas hiss and rumbling, as well as seeing smoke. The Powhatan Point Fire Chief reported that originally there was no fire, but that one later developed on the well pad. To make matters worse, reports later indicated that responders are/were dealing with emergency flooding on site, as well.

As of today, the Utica well that initially exploded is still releasing raw gas.

Site of the Feb 15th explosion on the XTO pad

Map of drilling operations in southeast Ohio, with the Feb 15, 2018 explosion on XTO Energy’s Schnegg gas well pad marked with a star. View dynamic map

Public Health and Safety

No injuries were reported after the incident. First responders from all over the country are said to have been called in, though the mitigation team is not allowed to work at night for safety reasons.

The evacuation zone is for any non-responders within a 1-mile radius of the site, which is located on Cat’s Run Road near State Route 148. Thirty (30) homes were originally evacuated within the 1-mile zone according to news reports, but recently residents within the outer half-mile of the zone were cleared to return – though some have elected to stay away until the issue is resolved completely. As of March 1, four homes within ½ mile of the well pad remain off limits.

The EPA conducted a number of site assessments right after the incident, including air and water monitoring. See here and here for their initial reports from February 17th and 20th, respectively. (Many thanks to the Ohio Environmental Council for sharing those documents.)

Much of the site’s damaged equipment has been removed. Access roads to the pad have been reinforced. A bridge was recently delivered to be installed over Cats Run Creek, so as to create an additional entrance and exit from the site, speaking to the challenges faced in drilling in rural areas. A portion of the crane that fell on the adjacent wellhead has been removed, and workers are continuing their efforts in removing the rest of the crane.


The above video by Earthworks is optical gas imaging that makes visible what is normally invisible pollution from XTO’s Powhatan Point well disaster. The video was taken on March 3, 2018, almost 3 weeks after the accident that started the uncontrolled release. Learn more about Earthworks’ video and what FLIR videos show.

An early estimate for the rate of raw gas being released from this well is 100 million cubic feet/day – more than the daily rate of the infamous Aliso Canyon natural gas leak in 2015/16. Unfortunately, little public information has been provided about why the well has yet to be capped or how much gas has been released to date.

Bird’s Eye View

On February 26, a two-mile Temporary Flight Restriction (TFR) was enacted around the incident’s location. The TFR was supposed to lapse during the afternoon of March 5, however, due to complications at the site the TFR was extended to the evening of March 8. On March 5, we did a flyover outside of the temporary flight restriction zone, where we managed to capture a photo of the ongoing release through a valley cut. Many thanks to LightHawk and pilot Dave Warner for the lift.

Photo of the XTO Energy well site and its current emissions after the explosion two weeks ago. Many are still waiting on answers as to why the well has yet to be capped.

XTO Energy well site and ongoing emissions after the explosion over two weeks ago. Many are still waiting on answers as to why the well has yet to be capped. Photo by Ted Auch, FracTracker Alliance, March 5, 2018. Aerial support provided by LightHawk

Additional resources

Per the Wheeling Intelligencer – Any local residents who may have been impacted by this incident are encouraged to call XTO’s claims phone number at 855-351-6573 or visit XTO’s community response command center at the Powhatan Point Volunteer Fire Department, located at 104 Mellott St. or call the fire department at 740-312-5058.

Sources: