The majority of FracTracker’s posts are generally considered articles. These may include analysis around data, embedded maps, summaries of partner collaborations, highlights of a publication or project, guest posts, etc.

Mapping gathering lines in OH and WV feature

Mapping Gathering Lines in Ohio and West Virginia

As a spring 2020 intern with FracTracker, my work mostly involved mapping gathering lines in West Virginia and Ohio. Gathering lines are pipelines that transport oil and gas from the wellhead to either compressor stations or storage/processing facilities. The transmission pipelines (which are often larger in diameter than gathering lines) take the oil and gas from the processing facilities to other storage facilities/compressor stations, or to distribution pipelines which go to end users and consumers. As you can see from Figure 2 in the map of Doddridge County, WV, many gathering lines eventually converge at a compressor station. You can think of gathering lines like small brooks and streams that feed transmission pipelines. The transmission lines are the main arteries, like a river, moving larger quantities of gas and oil over longer distances.

PROJECT DESCRIPTION

The main project and goal of my internship was to record as many gathering pipelines as I could find in Ohio and West Virginia, since gathering lines are not generally mapped and therefore not easily available for the public to view. For example, the National Pipeline Mapping System’s public map viewer (created by the Department of Transportation Pipeline and Hazardous Materials Safety Administration) has a note stating, “It does not contain gas gathering or distribution pipelines.” Mapping gathering lines makes this data accessible to the public and will allow us to see the bigger picture when it comes to assessing the environmental impact of pipelines.

After collecting gathering line location data, I performed GIS analysis to determine the amount of acreage of land that has been clearcut due to gathering pipeline installations.

Another analysis we could perform using this data is to count the total number of waterways that the gathering lines cross/interact with and assess the quality of water and wildlife in areas with higher concentrations of gathering pipelines.

Oil and Gas Wells and Gathering Lines in OH and WV

Figure 1. This map shows an overview of gathering line pipelines in the Powhatan Point, Ohio and Moundsville, West Virginia of the Ohio River Valley.

 

PIPELINE GATHERING LINE MAPPING PROCESS

I worked with an aerial imagery BaseMap layer (a BaseMap is the bottommost layer when viewing a map), a county boundaries layer, production well location points, and compressor station location points. I then traced lines on the earth that appeared to be gathering lines by creating polygon shapefiles in the GIS application ArcMap.

My methodology and process of finding the actual routes of the gathering lines included examining locations at various map scale ranges to find emerging line patterns of barren land that connect different production well points on the map. I would either concentrate on looking for patterns along well pad location points and look for paths that may connect those points, or I would begin at the nearest gathering line I had recorded to try to find off-shoot paths off of those pipelines that may connect to a well pad, compressor station or previously recorded gathering line.

I did run into a few problems during my search for gathering lines. Sometimes, I would begin to trace a gathering line path, only to either loose the path entirely, or on further inspection, find that it was a power line path. Other times when using the aerial imagery basemap, the gathering line would flow into an aerial photo from a year prior to the pipeline installation and I would again lose the path. To work around these issues, I would first follow the gathering line trail to its end point before I started tracing the path. I would also view the path very closely in various scale ranges to ensure I wasn’t tracing a road, waterway, or powerline pathway.

ACREAGE ANALYSIS

In the three months that I was working on recording gathering pipeline paths in Ohio and West Virginia, I found approximately 29,103 acres (3,494 miles) of barren land clearcut by gathering pipelines. These total amounts are not exact since not all gathering lines can be confirmed. There are still more gathering lines to be recorded in both Ohio and West Virginia, but these figures give the reader an idea of the land disturbance caused by gathering lines, as shown in Figures 1 and 2.

In Ohio, I recorded approximately 10,083 acres (641 miles) with the average individual gathering pipeline taking up about 45 acres of land. With my gathering line data and data previously recorded by FracTracker, I found that there are 28,490 acres (1,690 miles) of land spanning 9 counties in southeastern Ohio that have been cleared and used by gathering lines.

For West Virginia, I was able to record approximately 19,020 acres (1,547 miles) of gathering lines, with the average gathering line taking up about 48 acres of space each. With previous data recorded in West Virginia by FracTracker, the total we have so far for the state is 22,897 acres (1,804 miles), although that is only accounting for the 9 counties in northern West Virginia that are recorded.

Wells and Gathering Lines in Doddridge County, WV

Figure 2. This aerial view map shows connecting gathering line pipelines that cover a small portion of Doddridge County, WV. 

 

CONCLUSION

I was shocked to see how many gathering lines there are in these rural areas. Not only are they very prevalent in these less populated communities, but it was surprising to see how concentrated and close together they tend to be. When most people think of pipelines, they think of the big transmission pipeline paths that cross multiple states and are unaware of how much land that the infrastructure of these gathering pipelines also take up.

It was also very eye-opening to find that there are at least 29,000 acres of land in Ohio and West Virginia that were clearcut for the installation of gathering lines. It is even more shocking that these gathering pipelines are not being recorded or mapped and that this data is not publicly available from the National Pipeline Mapping System. While driving through these areas you may only see one or two pipelines briefly from your car, but by viewing the land from a bird’s eye perspective, you get a sense of the scale of this massive network. While the transmission pipeline arteries tend to be bigger, the veins of gathering lines displace a large amount of land as well.

I was also surprised by the sheer number of gathering lines I found that crossed waterways, rivers, and streams. During this project, it wasn’t unusual at all to follow a gathering line path that would cross water multiple times. In the future, I would be interested to look at the number of times these gathering pipelines cross paths with a stream or river, and the impact that this has on water quality and surrounding environment. I hope to continue to record gathering lines in Ohio and West Virginia, as well as Pennsylvania, so that we may learn more about this infrastructure and the impact it may have on the environment.

About Me

I first heard of FracTracker three years ago when I was volunteering with an environmental group called Keep Wayne Wild in Ohio. Since learning about FracTracker, I have been impressed with their eye-opening projects and their ability to make the gas and oil industry more transparent. A few years after first hearing about FracTracker, and as my interest in the GIS field continued to grow, I began taking GIS classes and reached out to them for this internship opportunity.

By Trevor Oatts, FracTracker Spring 2020 Data & GIS Intern

Support this work

Stay in the know

Testimony to PA DEP on Control of Methane & VOC Emissions from Oil and Natural Gas Sources

This testimony was provided by Shannon Smith, FracTracker Manager of Communications & Development, at the July 23rd hearing on the control of methane & VOC emissions from oil and natural gas sources hosted by the Pennsylvania Department of Environmental Protection (DEP).

My name is Shannon Smith and I’m a resident of Wilkinsburg, Pennsylvania. I am the Manager of Communications and Development at the nonprofit organization FracTracker Alliance. FracTracker studies and maps issues related to unconventional oil and gas development, and we have been a top source of information on these topics since 2010. Last year alone, FracTracker’s website received over 260,000 users. FracTracker, the project, was originally developed to investigate health concerns and data gaps surrounding Western Pennsylvania fracking.

I would like to address the proposed rule to reduce emissions of methane and other harmful air pollution, such as smog-forming volatile organic compounds, which I will refer to as VOCs, from existing oil and gas operations. I thank the DEP for the opportunity to address this important issue.

The proposed rule will protect Pennsylvanians from methane and harmful VOCs from oil and gas sources, but to a limited extent. The proposed rule does not adequately protect our air, climate, nor public health, because it includes loopholes that would leave over half of all potential cuts to methane and VOC pollution from the industry unchecked.

Emissions of the potent greenhouse gas methane and VOC pollution harm communities by contributing to the climate crisis, endangering households and workers through explosions and fires, and causing serious health impairments. Poor air quality also contributes to the economic drain of Pennsylvania’s communities due to increased health care costs, lower property values, a declining tax base, and difficulty in attracting and retaining businesses.

Oil and gas related air pollution has known human health impacts including impairment of the nervous system, reproductive and developmental problems, cancer, leukemia, depression, and genetic impacts like low birth weight.

One indirect impact especially important during the COVID-19 pandemic in 2020, is the increased incidence and severity of respiratory viral infections in populations living in areas with poor air quality, as indicated by a number of studies.

Given the available data, FracTracker Alliance estimates that there are 106,224 oil and gas wells in Pennsylvania. Out of the 12,574 drilled unconventional wells, there have been 15,164 cited violations. Undoubtedly the number of violations would be higher with stricter monitoring.

There is a need for more stringent environmental regulations and enforcement, and efforts to do so should be applauded only if they adequately respond to the scientific evidence regarding risks to public health. These measures are only successful if there is long-term predictability that will ultimately drive investments in clean energy technologies. Emission rollbacks undermine decades of efforts to shift industries towards cleaner practices. So, I urge the DEP to close the loophole in the proposed rulemaking that exempts low-producing wells from the rule’s leak inspection requirements. Low-producing wells are responsible for more than half of the methane pollution from oil and gas sources in Pennsylvania, and all wells, regardless of production, require routine inspections.

I also ask that the Department eliminate the provision that allows operators to reduce the frequency of inspections based on the results of previous inspections. Research does not show that the quantity of leaking components from oil and gas sources indicates or predicts the frequency or quantity of future leaks.

In fact, large and uncontrolled leaks are random and can only be detected with frequent and regular inspections. Short-term peaks of air pollution due to oil and gas activities are common and can cause health impairments in a matter of minutes, especially in sensitive populations such as people with asthma, children, and the elderly. I urge the Department to close loopholes that would exempt certain wells from leak detection and repair requirements, and ensure that this proposal includes requirements for all emission sources covered in DEP’s already adopted standards for new oil and gas sources.

Furthermore, conventional operators should have to report their emissions, and the Department should require air monitoring technologies that have the capacity to detect peaks rather than simply averages. We need adequate data in order to properly enforce regulations and meet Pennsylvania’s climate goals of decreasing greenhouse gas emissions by 80% by 2050.

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

Support this work

Stay in the know

PA attorney general 43rd grand jury report on environmental crimes

PA Grand Jury on Environmental Crimes Reveals Regulatory Failures

For the past two years, a grand jury empaneled by Pennsylvania Attorney General Josh Shapiro has been investigating what they see as an oil and gas industry that has run amok. The Attorney General admonished the Pennsylvania Department of Environmental Protection (DEP) and to a lesser degree, the Department of Health (DOH), both of which they claim have conducted insufficient oversight of the industry, allowing serious problems to happen over and over again since the arrival of fracking in the Marcellus Shale sixteen years ago.

Mr. Shapiro claims that Pennsylvania should know better, as it is still dealing with the health and environmental impacts of mining and oil and gas operations that have been shuttered for decades. In fact, it was almost 50 years ago that the state Environmental Rights Amendment was adopted to the Pennsylvania constitution by a nearly 4 to 1 margin of Pennsylvania voters. It states:

Article I, Section 27: The people have a right to clean air, pure water, and to the preservation of the natural, scenic, historic and esthetic values of the environment. Pennsylvania’s public natural resources are the common property of all the people, including generations yet to come. As trustee of these resources, the Commonwealth shall conserve and maintain them for the benefit of all the people.

As a part of the state’s constitution, it is a fundamental part of the law of the land.

Criminal Charges

The Attorney General said that the grand jury heard hundreds of hours of expert testimony and impacted residents, and charges have already been issued against two companies – Range Resources and Cabot.

These moves are not without their critics, however. Range Resources pleaded no contest to charges of environmental crimes at several sites, which was compounded by a pattern of not informing local residents about the mishaps and potential impacts. In one of these cases, the grand jury found that the company became aware of a contamination event stemming from a shredded liner in a wastewater impoundment, for which they proceeded to do nothing about for three years, resulting in a contaminated aquifer. The company was further accused of falsifying laboratory data related to the case to affect the outcome of related civil suits.

For all of incidents reviewed, the company was slapped with a modest $50,000 fine, and agreed to a $100,000 contribution to a watershed group in the area. This can hardly be considered a deterrent; for a multi-billion dollar company in an industry where each well costs millions of dollars to drill, this amounts to nearly nothing beyond the routine cost of doing business.

Cabot’s charges stem from an infamous incident in 2008 in Dimock Township, Susquehanna County, that was highlighted in the movie GasLand. One of the wells exploded, and soon afterwards, neighbors began to notice contamination of their well water. Contaminants included methane, arsenic, barium, DEHP, glycol compounds, manganese, phenol, and sodium – a toxic cocktail consistent with hydraulic fracturing operations. As is common with many drilling contamination events, residents lost their water supplies and began to experience a series of health effects from the chemicals that they were exposed to. To this day, Cabot denies responsibility.

Obviously, it is difficult to put an entire corporation in jail, but some hold that employees who engaged in negligence or subterfuge certainly could be, or perhaps executives who oversaw or authorized such activities. Another possible outcome would include placing serious restrictions on the offending companies’ activities within the Commonwealth. As a means of comparison, please take a moment to browse through a list of operators that are banned from drilling activities in Texas. Honestly, this may take a few moments, because there are so many of them. One wonders what it would take ban a company from drilling in Pennsylvania.

But the focus of the Attorney General’s presentation was on the government’s shortcomings. Case after case of water contamination, gumming up expensive well pumps, and making water undrinkable. Many people had similar health complaints, including rashes, respiratory issues, nosebleeds, as well as pet and livestock health concerns and deaths. Mr. Shapiro’s question was clear: how were these problems were allowed to keep happening?

There is a 2020 grand jury seated as we speak, so this is certainly not the end of the story.

This map of 15,164 unconventional violations in Pennsylvania speaks to the issues presented in the report.

View map fullscreen

Moving Forward

The grand jury developed a list of suggestions to move forward. They include:

  • Enact a 2,500-foot setback from homes to well sites. This is a very large increase over the current 500-foot standard, which Mr. Shapiro says is clearly insufficient to protect Pennsylvanians, as is evidenced by 16 years of documented problems.
  • Disallow secret injections of chemicals in hydraulic fracturing fluids. As FracTracker learned in our project with Partnership for Policy Integrity, companies injected 13,632 secret chemicals into over 2,500 wells in Pennsylvania just five years.
  • Enact common-sense toxic waste transportation, so that first responders and the public at large can find out when oil and gas waste has been transported. We find it interesting that the Attorney General chose the words “toxic waste” rather than “residual waste,” which we consider to be a loophole term that was invented to sidestep more stringent regulations.
  • Gathering lines for fracking wells need to be regulated based on risk, not size.
  • Reporting for air pollution needs to be aggregated by site, rather than reporting dozens of emission sources separately. This will allow researchers to better understand the cumulative risk at such locations.
  • A comprehensive public health study of the effects of exposure to contaminated air and water from fracking operations must be conducted. The Attorney General notes that the Department of Health has agreed with this recommendation, and preparations to conduct this study are underway.
  • The revolving door between regulators and industry must be stopped. Mr. Shapiro notes that at the very least, this cozy relationship creates an appearance of impropriety, which in itself erodes the public trust. He then went on to mention an instance where an operator hired seven former DEP office employees all at once.
  • The Attorney General’s office does not have original jurisdiction on environmental crimes, and must wait for a referral from a district attorney or the DEP. The DEP has not been making such referrals, considering civil penalties and fines to be sufficient. The Attorney General disagrees, and wants to hear directly from the people of Pennsylvania. To that end, a hotline has been setup.

Mr. Shapiro then proceeded to take DEP to task for its response to the investigation itself. The Department refused to send top staff to testify, he said, fighting with the grand jury investigation every step of the way. They then attempted to mislead the public, saying that they had no opportunity for input. What’s more, the Attorney General said that they spewed industry talking points, claiming that hundreds of hours of testimony were based on hearsay, and that a variety of the serious health impacts experienced by Pennsylvanians were, “not significant.”

In contrast, the Department of Health sent Secretary Rachel Levine to participate in the proceedings, who saw this as an opportunity to uncover her department’s shortcomings with respect to fracking over the past 16 years, and to forge a path forward in which they could do a better job in upholding their obligations.

While Mr. Shapiro characterized the response from DOH as earnest, DEP received no such accolades. “The DEP – let me be clear,” he said, “they need to clean up their act.”

By Matt Kelso, Manager of Data & Technology, FracTracker Alliance

Support this work

Stay in the know

FracTracker Alliance team

For A New Decade

In the summer of 2019, FracTracker began work on a bold strategic plan. With the organization’s last formal plan dating to 2013, the effort was long overdue.

Consultations, stakeholder surveys, and scans of issues and trends fed a rigorous, facilitated retreat. More conversations followed, accompanying iterative drafting, until a comprehensive and detailed plan emerged.

Meanwhile the world didn’t stop and wait. A pandemic wreaked havoc. The fossil fuel industry reeled. Demands for equality and justice reigned. The planning proceeded, mindful of these realities.

The strategic plan explores programs and projects; technology; communications; fundraising; safety and wellness; training and capacity; diversity, equity, and inclusion; administration and human resources; and, of course, monitoring and evaluation.

 

We identify four key programmatic goals:

  • Stop fossil fuel activities and infrastructure, including related petrochemical development
  • Increase public understanding of the detriment that fossil fuels and plastics cause people and the environment
  • Protect communities and ecosystems maltreated by fossil fuel and petrochemical operations
  • Strengthen and build civic engagement and alliances working toward cleaner, safer energy solutions

 

These goals, and a thorough enumeration of objectives and tasks, are guided by ten principles:

  1. Respond to the needs of frontline communities
  2. Elevate environmental justice perspectives and human rights
  3. Reveal solutions and success stories
  4. Engage younger audiences in these critical matters
  5. Involve more nontraditional partners
  6. Emphasize ease of use and access to information on our online tools
  7. Aspire for substantive and lasting change
  8. Communicate and coordinate for effective collaboration
  9. Promote and advocate for data transparency
  10. Ground findings in data and scientific evidence

 

Together, they reinforce the aspirations of our new mission statement:

 

FracTracker Alliance maps, analyzes, and communicates the risks of oil, gas, and petrochemical development to advance just energy alternatives that protect public health, natural resources, and the climate.

 

The plan underscores our imperative to partner with groups that seek solutions through regulatory, legal, and legislative action and have our work contribute to the urgent collective effort to equitably decarbonize economies. It is a roadmap, providing focus, but flexibility to remain nimble and responsive to ever-changing threats. We look forward to advancing the activities contained herein, measuring our progress, and most importantly, using our tools to expeditiously create a healthy energy paradigm. Please join us on this journey, and consider helping FracTracker to advance our work through your financial support.

By Brook Lenker, Executive Director, FracTracker Alliance

Oil & Gas waste tank operated by SWEPI and Enervest at the Hayes pad, Otsego County, Michigan May 21st, 2016

The North Dakota Shale Viewer Reimagined: Mapping the Water and Waste Impact

We updated the FracTracker North Dakota Shale Viewer with current data and additional details on the astronomical levels of water used and waste produced throughout the process of fracking for oil and gas in North Dakota.

As folks who visit the FracTracker website may know, the fracking industry is predicated on cheap sources of water and waste disposal. The water they use to bust open shale seams becomes part of the waste stream that they refer to by the benign term “brine,” equating it to nothing more than the salt water we swim in when we hit the beaches.

Some oil and gas operators like SWEPI and Enervest in Michigan, however, have taken to calling their waste “SLOP” (Figure 1), which from my standpoint is actually refreshingly honest.

Fracking Energy Return on Investment 2012 – 2020

Since we created our North Dakota Shale Viewer on October 5th, 2012, much has changed across the fracking landscape, while other songs have remained the same. Both of these truths exist with respect to fracking’s impact on water and the industry’s inability to get its collective head around the billions of barrels of oftentimes radioactive waste it produces by its very nature. From the outset, fracking was on dubious footing when it came to the water and waste associated with its operations, and we have seen a nearly universal and exponential increase in water demand and waste production on a per well basis since fracking became the highly divisive topic it remains to this day.

Oil & Gas waste tank operated by SWEPI and Enervest at the Hayes pad, Otsego County, Michigan May 21st, 2016 (44.892933, -84.786530).

Figure 1. Oil & Gas waste tank operated by SWEPI and Enervest at the Hayes pad, Otsego County, Michigan May 21st, 2016 (44.892933, -84.786530). Photo by Ted Auch, FracTracker Alliance.

Environmental economists like to look at energy sources from a more holistic standpoint vis a vis engineers, traditional economists, and the divide-and-conquer rhetoric from Bismarck to the White House. They do this by placing all manner of energy sources along a spectrum of Energy Return On Energy Invested (EROEI).

Since the dawn of the fracking revolution, shale gas from horizontal wells has been near the bottom of the league tables with respect to EROEI which means it “…has decreased from more than 1000:1 in 1919 to 5:1 in the 2010s, and for production from about 25:1 in the 1970s to approximately 10:1 in 2007” for US oil and gas according to Hall et al. (2014). This is what John Erik Meyer has come the “EROI Mountain” whereby we’ve already “burned through the richest resources.”

It stands to reason that if natural gas from fracking were a real “bridge fuel” in the transition away from coal, it would at least approach or exceed the EROEI of the latter, but at 46:1 coal is still four times more efficient than natural gas. However, it must be said that coal’s days are numbered as well. Witness the recent bankruptcy of coal giant Murray Energy, and the only reason its EROEI has increased or remained steady is because the mining industry has transitioned to almost exclusively mountaintop removal and/or strip mining and the associated efficiencies resulting from mechanization/automation.

The North Dakota Shale Viewer

We enhanced our North Dakota Shale Viewer nearly eight years since it debuted. This exercise included the addition of several data layers that speak to the above issues and how they have changed since we first launched the North Dakota Shale Viewer.

View map fullscreen 

It is worth noting that oil production in total across North Dakota has not even doubled since 2012, and gas production has only managed to increase 3.5-fold. However, the numbers look even worse when you look at these totals on a per well basis, which as I have mentioned seems to me to be the only way reasonable people should be looking at production. Using this lens, we see that production of oil in North Dakota on a per well basis oil is 1% less than it was in 2012 and gas production has not even doubled per well. This is a stunning contrast to the upticks in water and waste we have documented and are now including in our North Dakota Shale Viewer.

Water Demand Rises for Fracking

We’ve incorporated individual horizontal well freshwater demand for nearly 12,000 wells up to and including Q1-2020. The numbers are jaw dropping when you consider that at the time we debuted this map North Dakota, unconventional wells were using roughly 2.1 million gallons per well compared to an average of 8.3 million gallons per well so far this year. This per well increase is something we have been documenting for years now in states like Pennsylvania, Ohio, and West Virginia.

This is concerning for multiple reasons, the first being that if fracking ever were to rebound to its halcyon days of the early teens, it would mean some of our country’s most prized and fragile watersheds would be pushed to an irreversible hydrological tipping point. Hoekstra et al. (2012) have come to call this the “blue water” precautionary principle whereby “depletion beyond 20% of a river’s natural flow increases risks to ecological health and ecosystem services.”

Another concern is that while permitting in North Dakota has slowed like it has nationwide, the aforementioned quarterly water usage totals per well are now 5.25 times what they were in October 2012 and the total water used by the industry in North Dakota now amounts to 60.43 billion gallons– that we know of —  which is nearly 50 times what the industry had used when we created our North Dakota Shale Viewer (Figure 2).[1]

With respect to the points made earlier about the value of EROEI, this increase in water demand has not been reflected in the productivity of North Dakota’s oil and gas wells, which means the EROEI continues to fall at rate that should make the industry blush.  Furthermore, this trend should prompt regulators and elected officials in Bismarck and elsewhere to begin to ask if the long-term and permanent environmental and/or hydrological risk is worth the short-term rewards vis à vis the “blue water” precautionary principle, in this case of the Missouri River, outlined by Hoekstra et al. (2012). It is my opinion that it most assuredly is not and never was worth the risk!

The most stunning aspect of the above divergence in production and water demand is that on a per well basis, water only costs the industry roughly 0.46-0.76% of total well pad costs. This narrow range is a function of the water pricing schemes shared with me by the North Dakota Western Area Water Supply Authority (WAWSA). This speaks to an average price of water between $3.68 and $4.07 per 1,000 gallons for “industrial” use (aka, fracking industry) by way of eight depots and “several hundred miles of transmission and distribution lines” spread across the state’s four northwest counties of Mountrail, Divide, Williams, and McKenzie.

 

Figure 2. Average Freshwater Demand Per Well and Cumulative Freshwater Demand by North Dakota fracking industry from 2011 to Q1-2020.

Average Freshwater Demand Per Well and Cumulative Freshwater Demand by North Dakota fracking industry from 2011 to Q1-2020

Increasing Fracking Waste Production

On the fracking waste front, the monthly trend is quite volatile relative to what we’ve documented in states like Oklahoma, Kansas, and Ohio. Nonetheless, the amount of waste produced is increasing per well and in total. How you quantify this increase is quite sensitive to the models you fit to the data. The exponential and polynomial (Plotted in Figure 3) fits yield 4.76 to 9.81 million barrel per month increases, while linear and power functions yield the opposite resulting in 1.82 to 10.91 million-barrel declines per month. If we assume the real answer is somewhere in between we see that fracking waste is increasingly slightly at a rate of 1.51% per year or 460,194 barrels per month.

 

Figure 3. Average Per Well and Monthly Total Fracking Waste Disposal across 675 North Dakota Class II Salt Water Disposal (SWD) wells from 2010 to Q1-2020.

Average Per Well and Monthly Total Fracking Waste Disposal across 675 North Dakota Class II Salt Water Disposal (SWD) wells from 2010 to Q1-2020.

 

North Dakota has concerning legislation related to oil and gas waste disposal. Senate Bill 2344 claims that landowners do not actually own the “subsurface pore space” beneath their property. The bill was passed into law by Legislature last Spring but there are numerous lawsuits working against it. We will have further analysis of this bill published on FracTracker.org soon.

 

Earthworks ND Frack Waste Report

FracTracker collaborated with Earthworks to create an interactive map that allows North Dakota residents to determine if oil and gas waste is disposed of or has spilled near them in addition to a list of recommendations for state and local policymakers, including the closing of the state’s harmful oil and gas hazardous waste loophole. Read the report for detailed information about oil and gas waste in North Dakota.

 

The Value of Our Water

This data is critical to understanding the environmental and/or hydrological impact(s) of fracking, whether it is Central Appalachia’s Ohio River Valley, or in this case North Dakota’s Missouri River Basin. We will continue to periodically update this data.

Without supply-side price signaling or adequate regulation, it appears that the industry is uninterested and insufficiently incentivized to develop efficiencies in water use. It is my opinion that the only way the industry will be incentivized to do so is if states put a more prohibitive and environmentally responsible price on water and waste. In the absence of outright bans on fracking, we must demand the industry is held accountable for pushing watersheds to the brink of their capacity, and in the process, compromising the water needs of so many communities, flora, and fauna.

Data Links

  1. Water Usage for nearly 12,000 fracked laterals in North Dakota up to and including April, 2020. We also include API number and operator in GIS, KML, and Spreadsheet formats. (https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/05/ND_FracFocus_April_2020_With_KML_Excel.zip)
  2. Monthly volumes (2010 to 2020) and demographics for surrounding area for the 675 Class II Salt Water Disposal (SWD) Fracking Waste Injection Wells in North Dakota. We also include API number and operator in GIS, KML, and Spreadsheet formats. (https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/05/ND_ClassII_Well_MonthlyWaste_2010_Q2_2020_Demographics_WithKML_Excel.zip)
  3. North Dakota Gas Plants (https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/06/GasPlants_WithExcel_KML.zip)

[1] Here in Ohio where I have been looking most closely at water supply and demand across the fracking landscape it is clear that we aren’t accounting for some 10-12% of water demand when we compare documented water withdrawals in the numerator with water usage in the denominator.

By Ted Auch, PhD, Great Lakes Program Coordinator

Support this work

Stay in the know

FracTracker Falcon Pipeline spills map

Falcon Pipeline Construction Releases over 250,000 Gallons of Drilling Fluid in Pennsylvania and Ohio

Part of the Falcon Public Environmental Impact Assessment – a FracTracker series on the impacts of Falcon Ethane Pipeline System

Challenges have plagued Shell’s construction of the Falcon Pipeline System through Pennsylvania, Ohio, and West Virginia, according to documents from the Pennsylvania Department of Environmental Protection (DEP) and the Ohio Environmental Protection Agency (EPA). 

Records show that at least 70 spills have occurred since construction began in early 2019, releasing over a quarter million gallons of drilling fluid. Yet the true number and volume of spills is uncertain due to inaccuracies in reporting by Shell and discrepancies in regulation by state agencies. 

Drilling Mud Spill

A drilling fluid spill from Falcon Pipeline construction near Moffett Mill Road in Beaver County, PA. Source: Pennsylvania DEP

Releases of drilling fluid during Falcon’s construction include inadvertent returns and losses of circulation – two technical words used to describe spills of drilling fluid that occur during pipeline construction.

Drilling fluid, which consists of water, bentonite clay, and chemical additives, is used when workers drill a borehole horizontally underground to pull a pipeline underneath a water body, road, or other sensitive location. This type of installation is called a HDD (horizontal directional drill), and is pictured in Figure 1.

HDD Pipeline Diagram

Figure 1. An HDD operation – Thousands of gallons of drilling fluid are used in this process, creating the potential for spills. Click to expand. Source: Enbridge Pipeline

 

Here’s a breakdown of what these types of spills are and how often they’ve occurred during Falcon pipeline construction, as of March, 2020:

  • Loss of circulation 
    • Definition: A loss of circulation occurs when there is a decrease in the volume of drilling fluid returning to the entry or exit point of a borehole. A loss can occur when drilling fluid is blocked and therefore prevented from leaving a borehole, or when fluid is lost underground.
    • Cause: Losses of circulation occur frequently during HDD construction and can be caused by misdirected drilling, underground voids, equipment blockages or failures, overburdened soils, and weathered bedrock.
    • Construction of the Falcon has caused at least 49 losses of circulation releasing at least 245,530 gallons of drilling fluid. Incidents include:
      • 15 losses in Ohio – totaling 73,414 gallons
      • 34 losses in Pennsylvania – totaling 172,116 gallons
  • Inadvertent return
    • Definition: An inadvertent return occurs when drilling fluid used in pipeline installation is accidentally released and migrates to Earth’s surface. Oftentimes, a loss of circulation becomes an inadvertent return when underground formations create pathways for fluid to surface. Additionally, Shell’s records indicate that if a loss of circulation is large enough, (releasing over 50% percent of drilling fluids over 24-hours, 25% of fluids over 48-hours, or a daily max not to exceed 50,000 gallons) it qualifies as an inadvertent return even if fluid doesn’t surface.
    • Cause: Inadvertent returns are also frequent during HDD construction and are caused by many of the same factors as losses of circulation. 
    • Construction of the Falcon has caused at least 20 inadvertent returns, releasing at least 5,581 gallons of drilling fluid. These incidents include:
      • 18 inadvertent returns in Pennsylvania – totaling 5,546 gallons 
        • 2,639 gallons into water resources (streams and wetlands)
      • 2 inadvertent returns Ohio – totaling 35 gallons 
        • 35 gallons into water resources (streams and wetlands)

However, according to the Ohio EPA, Shell is not required to submit reports for losses of circulation that are less than the definition of an inadvertent return, so many losses may not be captured in the list above. Additionally, documents reveal inconsistent volumes of drilling mud reported and discrepancies in the way releases are regulated by the Pennsylvania DEP and the Ohio EPA.

Very few of these incidents were published online for the public to see; FracTracker obtained information on them through a public records request. The map below shows the location of all known drilling fluid releases from that request, along with features relevant to the pipeline’s construction. Click here to view full screen, and add features to the map by checking the box next to them in the legend. For definitions and additional details, click on the information icon.

 

View map full screen 

Jefferson County, Ohio

Our investigation into these incidents began early this year when we received an anonymous tip about a release of drilling fluids in the range of millions of gallons at the SCIO-06 HDD over Wolf Run Road in Jefferson County, Ohio. The source stated that the release could be contaminating drinking water for residents and livestock.

Working with Clean Air Council, Fair Shake Environmental Legal Services, and DeSmog Blog, we quickly discovered that this spill was just the beginning of the Falcon’s construction issues.

Documents from the Ohio EPA confirm that there were at least eight losses of circulation at this location between August 2019 and January 2020, including losses of unknown volume. The SCIO-06 HDD location is of particular concern because it crosses beneath two streams (Wolf Run and a stream connected to Wolf Run) and a wetland, is near groundwater wells, and runs over an inactive coal mine (Figure 2).

Map of spills along pipeline

Figure 2. Losses of circulation that occurred at the SCIO-06 horizontal directional drill (HDD) site along the Falcon Pipeline in Jefferson County Ohio. Data Sources: OH EPA, AECOM

According to Shell’s survey, the coal mine (shown in Figure 2 in blue) is 290 feet below the HDD crossing. A hazardous scenario could arise if an HDD site interacts with mine voids, releasing drilling fluid into the void and creating a new mine void discharge. 

A similar situation occurred in 2018, when EQT Corp. was fined $294,000 after the pipeline it was installing under a road in Forward Township, Pennsylvania hit an old mine, releasing four million gallons of mine drainage into the Monongahela River. 

The Ohio EPA’s Division of Drinking and Ground Waters looked into the issues around this site and reported, “GIS analysis of the pipeline location in Jefferson Co. does not appear to risk any vulnerable ground water resources in the area, except local private water supply wells.  However, the incident location is above a known abandoned (pre-1977) coal mine complex, mapped by ODNR.”

If you believe your environment may be impacted by pipeline construction, you may contact Fair Shake Environmental Legal Services for assistance, and as always you can reach out to FracTracker Alliance with questions and concerns.

 

While we cannot confirm if there was a spill in the range of millions of gallons as the source claimed, the reported losses of circulation at the SCIO-06 site total over 60,000 gallons of drilling fluid. Additionally, on December 10th, 2019, the Ohio EPA asked AECOM (the engineering company contracted by Shell for this project) to estimate what the total fluid loss would be if workers were to continue drilling to complete the SCIO-06 crossing. AECOM reported that, in a “very conservative scenario based on the current level of fluid loss…Overall mud loss to the formation could exceed 3,000,000 gallons.” 

Despite this possibility of a 3 million+ gallon spill, Shell resumed construction in January, 2020. The company experienced another loss of circulation of 4,583 gallons, reportedly caused by a change in formation. However, in correspondence with a resident, Shell stated that the volume lost was 3,200 gallons. 

Whatever the amount, this January loss of circulation appears to have convinced Shell that an HDD crossing at this location was too difficult to complete, and in February 2020, Shell decided to change the type of crossing at the SCIO-06 site to a guided bore underneath Wolf Run Rd and open cut trench through the stream crossings (Figure 3).

Pipeline Map

Figure 3. The SCIO-06 HDD site, which may be changed from an HDD crossing to an open cut trench and conventional bore to cross Wolf Run Rd, Wolf Run stream (darker blue), an intermittent stream (light blue) and a wetland (teal). Click to expand.

An investigation by DeSmog Blog revealed that Shell applied for the route change under Nationwide Permit 12, a permit required for water crossings. While the Army Corps of Engineers authorized the route change on March 17th, one month later, a Montana federal court overseeing a case on the Keystone XL pipeline determined that the Nationwide Permit 12 did not meet standards set by federal environmental laws – a decision which may nullify the Falcon’s permit status. At this time, the ramifications of this decision on the Falcon remain unclear.

Inconsistencies in Reporting

In looking through Shell’s loss of circulation reports, we noted several discrepancies about the volume of drilling fluid released for different spills, including those that occurred at the SCIO-06 site. As one example, the Ohio EPA stated an email about the SCIO-06 HDD, “The reported loss of fluid from August 1, 2019 to August 14, 2019 in the memo does not appear to agree with the 21,950 gallons of fluid loss reported to me during my site visit on August 14, 2019 or the fluid loss reported in the conference call on August 13, 2019.” 

In addition to errors on Shell’s end, our review of documents revealed significant confusion around the regulation of drilling fluid spills. In an email from September 26, 2019, months after construction began, Shell raised the following questions with the Ohio EPA: 

  • when a loss of circulation becomes an inadvertent return – the Ohio EPA clarifies: “For purposes of HDD activities in Ohio, an inadvertent return is defined as the unintended return of any fluid to the surface, as well as losses of fluids to underground formations which exceed 50-percent over a 24-hour period and/or 25-percent loss of fluids or annular pressure sustained over a 48-hour period;”
  • when the clock starts for the aforementioned time periods – the Ohio EPA says the time starts when “the drill commences drilling;”
  • whether Shell needs to submit loss of circulation reports for losses that are less than the aforementioned definition of an inadvertent return – the Ohio EPA responds, “No. This is not required in the permit.”

How are these spills measured?

A possible explanation for why Shell reported inconsistent volumes of spills is because they were not using the proper technology to measure them.

Shell’s “Inadvertent Returns from HDD: Assessment, Preparedness, Prevention and Response Plan” states that drilling rigs must be equipped with “instruments which can measure and record in real time, the following information: borehole annular pressure during the pilot hole operation; drilling fluid discharge rate; the spatial position of the drilling bit or reamer bit; and the drill string axial and torsional loads.”

In other words, Shell should be using monitoring equipment to measure and report volumes of drilling fluid released.

Despite that requirement, Shell was initially monitoring releases manually by measuring the remaining fluid levels in tanks. After inspectors with the Pennsylvania DEP realized this in October, 2019, the Department issued a Notice of Violation to Shell, asking the company to immediately cease all Pennsylvania HDD operations and implement recording instruments. The violation also cited Shell for not filing weekly inadvertent return reports and not reporting where recovered drilling fluids were disposed. 

In Ohio, there is no record of a similar request from the Ohio EPA. The anonymous source that originally informed us of issues at the SCIO-6 HDD stated that local officials and regulatory agencies in Ohio were likely not informed of the full volumes of the industrial waste releases based on actual meter readings, but rather estimates that minimize the perceived impact. 

While we cannot confirm this claim, we know a few things for sure: 1) there are conflicting reports about the volume of drilling fluids spilled in Ohio, 2) according to Shell’s engineers, there is the potential for a 3 million+ gallon spill at the SCIO-06 site, and 3) there are instances of Shell not following its permits with regard to measuring and reporting fluid losses. 

The inconsistent ways that fluid losses (particularly those that occur underground) are defined, reported, and measured leave too many opportunities for Shell to impact sensitive ecosystems and drinking water sources without being held accountable.

What are the impacts of drilling fluid spills?

Drilling fluid is primarily composed of water and bentonite clay (sodium montmorillonite), which is nontoxic. If a fluid loss occurs, workers often use additives to try and create a seal to prevent drilling fluid from escaping into underground voids. According to Shell’s “Inadvertent Returns From HDD” plan, it only uses additives that meet food standards, are not petroleum based, and are consistent with materials used in drinking water operations.

However, large inadvertent returns into waterways cause heavy sedimentation and can have harmful effects on aquatic life. They can also ruin drinking water sources. Inadvertent returns caused by HDD construction along the Mariner East 2 pipeline have contaminated many water wells.

Losses of circulation can impact drinking water too. This past April in Texas, construction of the Permian Highway Pipeline caused a loss that left residents with muddy well water. A 3 million gallon loss of circulation along the Mariner East route led to 208,000 gallons of drilling mud entering a lake, and a $2 million fine for Sunoco, the pipeline’s operator.

Our Falcon Public EIA Project found 240 groundwater wells within 1/4 mile of the pipeline and 24 within 1,000 ft of an HDD site. The pipeline also crosses near surface water reservoirs. Drilling mud spills could put these drinking water sources at risk.

But when it comes to understanding the true impact of the more than 245,000+ gallons of drilling fluid lost beneath Pennsylvania and Ohio, there are a lot of remaining questions. The Falcon route crosses over roughly 20 miles of under-mined land (including 5.6 miles of active coal mines) and 25 miles of porous karst limestone formations (learn more about karst). Add in to the mix the thousands of abandoned, conventional, and fracked wells in the region – and you start to get a picture of how holey the land is. Where or how drilling fluid interacts with these voids underground is largely unknown.

Other Drilling Fluid Losses

In addition to the SCIO-04 HDD, there are other drilling fluid losses that occurred in sensitive locations.

In Robinson Township, Pennsylvania, over a dozen losses of circulation (many of which occurred over the span of several days) released a reported 90,067 gallons of drilling fluid into the ground at the HOU-04 HDD. This HDD is above inactive surface and underground mines.

The Falcon passes through and near surface drinking water sources. In Beaver County, Pennsylvania, the pipeline crosses the headwaters of the Ambridge Reservoir and the water line that carries out its water for residents in Beaver County townships (Ambridge, Baden, Economy, Harmony, and New Sewickley) and Allegheny County townships (Leet, Leetsdale, Bell Acres, and Edgeworth). The group Citizens to Protect the Ambridge Reservoir, which formed in 2012 to protect the reservoir from unconventional oil and gas infrastructure, led efforts to stop Falcon Construction, and the Ambridge Water Authority itself called the path of the pipeline “not acceptable.” In response to public pressure, Shell did agree to build a back up line to the West View Water Authority in case issues arose from the Falcon’s construction.

Unfortunately, a 50-gallon inadvertent return was reported at the HDD that crosses the waterline (Figure 4), and a 160 gallon inadvertent return occurred in Raccoon Municipal Park within the watershed and near its protected headwaters (Figure 5). Both of these releases are reported to have occurred within the pipeline’s construction area and not into waterways.

Spill from Falcon construction

Figure 4) HOU-10 HDD location on the Falcon Pipeline, where 50 gallons were released on the drill pad on 7/9/2019

Spill from pipeline construction

Figure 5) SCIO-05 HDD location on the Falcon Pipeline, where 160 gallons were released on 6/10/19, within the pipeline’s LOD (limit of disturbance)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Farther west, the pipeline crosses through the watershed of the Tappan Reservoir, which provides water for residents in Scio, Ohio and the Ohio River, which serves over 5 million people.

A 35- gallon inadvertent return occurred at a conventional bore within the Tappan Lake Protection Area, impacting a wetland and stream. We are not aware of any spills impacting the Ohio River.

Pipelines in a Pandemic

This investigation makes it clear that weak laws and enforcement around drilling fluid spills allows pipeline construction to harm sensitive ecosystems and put drinking water sources at risk. Furthermore, regulations don’t require state agencies or Shell to notify communities when many of these drilling mud spills occur.

Despite the issues Shell experienced during construction, work on the Falcon continued over the past months during state shelter-in-place orders, while many businesses were forced to close. 

The problem continues where the 97-mile pipeline ends – at the Shell ethane cracker. In March, workers raised concerns about the unsanitary conditions of the site, and stated that crowded workspaces made social distancing impossible. While Shell did halt construction temporarily, state officials gave the company the OK to continue work – even without the waiver many businesses had to obtain. 

The state’s decision was based on the fact it considered the ethane cracker to “support electrical power generation, transmission and distribution.” The ethane cracker – which is still months and likely years away from operation – does not currently produce electrical power and will only provide power generation to support plastic manufacturing.

This claim continues a long pattern of the industry attempting to trick the public into believing that we must continue expanding oil and gas operations to meet our country’s energy needs. In reality, Shell and other oil and gas companies are attempting to line their own pockets by turning the country’s massive oversupply of fracked gas into plastic. And just as Shell and state governments have put the health of residents and workers on the line by continuing construction during a global pandemic, they are sacrificing the health of communities on the frontlines of the plastic industry and climate change by pushing forward the build-out of the petrochemical industry during a global climate crisis.

This election year, while public officials are pushing forward major action to respond to the economic collapse, let’s push for policies and candidates that align with the people’s needs, not Big Oil’s.

By Erica Jackson, Community Outreach & Communications Specialist, FracTracker Alliance

Support this work

Stay in the know

Systematic Racism in Kern County Oil and Gas Permitting Ordinance

Kern County, California has approved at least 18,356 illegal permits to drill new and rework existing oil and gas wells since 2015 (data updated May 18, 2020). In a monumental decision in February of 2020, a California court ruled that a Kern County oil and gas ordinance paid for and drafted by the oil industry violated the state’s foundational environmental law. Kern County has failed to consider the environmental harms resulting from oil and gas drilling, such as water supply and air quality problems, farmland degradation, and increased noise, and communities have had enough.

Starting in 2015, Kern County used a local ordinance to fast-track the drilling of up to 72,000 new oil and gas wells over the next 25 years. The court’s recent decision allows the existing 18,356 permits to remain valid, but blocked the county from issuing any more permits after the end of April, 2020. This is an important victory for Kern County communities, but the existing permits present a public health threat that regulators have never adequately addressed.

To better understand the impacts of these illegal permits, and identify the communities most impacted, FracTracker Alliance has conducted an environmental justice spatial analysis based on the location of the permits. A map of the permits is found below in Figure 1. shows that there are 18,356 “Drilling” and “Rework” permits issued in Kern County since 2015, as well as the 1,304 permits located within 2,500’ of a sensitive receptor, including hospitals, schools, daycares, and homes.

 

Figure 1. Map of California Geologic Energy Management Division (CalGEM), formerly the California Division of Oil, Gas, and Geothermal Resources (DOGGR), approved drilling and rework permits, 2015-2019.

View map fullscreen | How FracTracker maps work

Ordinance

The ordinance, written by oil industry consultants, sidestepped state requirements for environmental reviews or public notices, as required by the California Environmental Quality Act (CEQA). It was used as a blanket environmental impact report (EIR), so that the threats of specific projects need not be considered.

To pass the ordinance, the county used a flawed study to hide the immense harm caused by oil and gas drilling and extraction. The appellate court that ruled against the ordinance stated it was passed “despite its significant, adverse environmental impacts.” As a result, the county allowed wells to be constructed next to people’s homes, schools, daycares, and healthcare facilities.

Permitting Summary

FracTracker aggregated, cleaned, and compiled California Geologic Energy Management Division’s (CalGEM) datasets of well permits. A breakdown of the statewide counts of permit types is shown below in Table 1. The table shows that in 2019, permits to drill new oil and gas wells made up about 34% of total permits. Over the course of the last five years, statewide permits have been distributed pretty equally between drilling wells, reworking wells to increase production (including re-drilling activities like deepening and sidetracking wells), and plugging and abandoning wells.

 

Breakdown of permit types issued by California Geologic Energy Management Division

Table 1. Breakdown of permit types issued by California Geologic Energy Management Division (CalGEM), formerly the California Division of Oil, Gas, and Geothermal Resources (DOGGR), 2015-2019.

 

The illegal Kern County ordinance took effect in 2015. Note the permit count increase from 2014 to 2015 in the graph in Figure 2 below. The data shows that Kern County permitting counts increased in 2015 with the passage of the illegal ordinance. In 2016, a new statewide rule (State Bill 4) took effect regulating hydraulic fracturing. Since most oil and gas drilling in California was using hydraulic fracturing, permit numbers statewide, including in Kern, fell drastically. Since 2016, permitting rates have been climbing back up to pre-2016 levels. As of May 18, 2020, Kern County has already approved 1,310 new drilling permits, putting Kern County on track to meet or exceed 2015 permit numbers.

 

Time Series of drilling permits issued by Kern County, California, 2014 to present

Figure 2. Time Series of drilling permits issued by Kern County, California, 2014 to present.

 

 

  • 2015

    New Kern ordinance to fast-track permits. Kern permits increase disproportionately.

  • 2016

    New SB4 statewide fracking permit requirements. Kern permits decrease as a result.

    2016

  • 2017 - 2020

    Proportion of Kern permits begin to increase once again

  • 2020

    California court ruled that a Kern County oil and gas ordinance paid for and drafted by the oil industry violated the state’s foundational environmental law. State permitting continues under CalGEM.

    2020

 

Kern County is the most heavily drilled county in the United States, and from 2015 to 2019 well permits were issued in Kern at elevated numbers as compared to the rest of the state. From the implementation of the ordinance (2014 to 2015), the proportion of drilling permits issued by Kern County increased from 82% to 94% of the state total. In Figure 3 below, the time series shows that Kern County makes up the majority of permits issued to drill new wells in California, and the proportion of wells drilled in Kern County has been higher from 2015 to 2019 than it had been prior. Not only did the ordinance allow permits to be drilled without any consideration for the community and public health impacts of Frontline Communities, but the actual numbers and proportions of wells drilled in Kern County increased as well. We have mapped these permits in Figure 3 below to show exactly where they are located.

 

Time series of permits issued to drill new wells in California from 1998 to 2019

Figure 3. Time series of permits issued to drill new wells in California from 1998 to 2019. The contribution of individual counties is shown with different colors, the area under the trend line representing the cumulative total.

 

Environmental Justice Mapping

The locations of well permits were mapped using GIS software and overlaid with indicators of social and environmental justice. The layers of Environmental Justice (EJ) mapping data were derived from CalEnviroScreen 3.0 census tract data, assigned to the block level, and 2015 American Community Survey demographical data, also summarized at the census block data.

Demographics

One of the major failings of the Kern County ordinance was the lack of risk communication with Frontline Communities. Not only were communities not informed of proposed drilling projects, all communications from Kern County and CalGem have been posted solely in English. Any attempts at communication of impacts and notices have excluded non-English speakers. Providing notices and information in non-English languages, at the very least in Spanish, needs to be a top priority for any regulatory body in California. The current permitting policy leverages systematic racism to preclude communities from participating in the decision-making processes that directly affect their families’ health.

As shown below in map in Figure 4, the majority of Kern County ranks high in “linguistic isolation” according to CalEnviroScreen 3.0. Our analysis shows that 11,244 permits were issued in block groups that CalEnviroscreen 3.0 has ranked in the top 60th percentile for linguistic isolation. A total 16,143 permits were issued in block groups that are 40% or more Hispanic, and that number increases to 18,000 (98.1%) permits if you include the permits issued in the Midway-Sunset Field, located on the border of one of Kern’s largest, and predominantly “Hispanic,” census block groups.

 

View map fullscreen | How FracTracker maps work

Figure 4. Map of Oil and Gas Permits with Kern County “Hispanic” Demographics and Language Disparities. The shades of yellow to red census blocks represent the 60th percentile and above linguistic isolation. Hatched census tracts are census blocks with demographical profiles over 40% Hispanic.

 

Within Kern County, these permits were approved mostly in low income areas, and areas with pre-existing environmental degradation. In the map in Figure 5, below, permit locations were overlaid with CalEnviroScreen 3.0 rankings for existing environmental degradation and median income data from the American Community Survey (2015) to visually show the disparity.

Our analysis shows that 17,978 0f the 18,356 total drilling and reworking permits were issued in census block groups where the median income was at least 20% lower than that of Kern County (Kern median income = $51,579). Additionally, these areas are more impacted by existing sources of pollution. In fact, 18,298 (99.7%) permits were issued in census blocks designated as the above the 60th percentile of those suffering from existing pollution burden by CalEnviroScreen 3.0.

 

View map fullscreen | How FracTracker maps work

Figure 5. Map of oil and gas permits with Kern County environmental justice areas. Shown in shades of blue are the block groups with median incomes less than 80% of that of the Kern County ($51,579). The hatched areas are above the 60th percentile for CalEnviroScreen pollution burden.

 

Conclusion

Our results find that from 2015-2019, very few well permits were issued in census blocks that are predominantly white, with median incomes above the median, and low rankings of linguistic isolation. The policies enacted by Kern County to fast track permits were instituted in predominantly poor, linguistically isolated, Hispanic communities already suffering from existing environmental degradation. Through systematic racism, these areas have become Kern County’s “sacrifice zones.” Moving forward, we are pressuring Kern County to adopt a permitting approach that considers the health of Frontline Communities.

Unfortunately, since the court’s decision, well permitting in Kern County has not only continued, but actually accelerated. While the appellate court ordered permitting to stop for one month, the gap was quickly filled. Between March 28 and May 18, 2020; CalGEM approved 733 permits to drill new wells and rework existing wells in Kern County. In addition, CalGEM approved 38 new fracking permits in 2020 since March 28th, all in Kern County (regulated separately under State Bill 4), increasing the environmental burden on Kern communities further. Like Kern County, CalGEM’s permitting process also deserves scrutiny, as state permitting requirements are lax.

These irresponsible policies have had a direct impact on the health of Central Valley communities. Environmental monitoring has shown time and again that emissions from oil and gas wells include a cocktail of air toxics and carcinogens, and that living near oil and gas activity has been shown to be associated with numerous health impacts such as low birth weight, cancer, skin problems, asthma, and depression, The exclusion of Spanish-speaking residents from notifications and information on decisions that affect their health is an even further condemnation of the systematic and outright racism of Kern County’s permitting approach.

There is more work to be done, but the elimination of Kern County’s fast-tracking ordinance is a major win for public health and democracy.

FracTracker Alliance would like to congratulate the organizations responsible for this legislative victory and thank them for all their hard work. They include Committee for a Better Arvin, Committee for a Better Shafter, and Greenfield Walking Group, represented by the Center on Race, Poverty & the Environment, together with the Center for Biological Diversity, and Sierra Club, who was represented by Earthjustice.

By Kyle Ferrar, MPH, Western Program Coordinator, FracTracker Alliance

Support this work

Stay in the know

 

Bushkill Falls PA

Fracking Water Use in Pennsylvania Increases Dramatically

Unconventional wells in Pennsylvania were always resource-intensive, but the maps below show how the amount of water used per well has grown significantly in recent years. In 2013, these wells used an average of 5.8 million gallons per well. By 2019, that figure had increased 145%, consuming more than 14.3 million gallons per well. This is a glimpse into the unsustainable resource demands of this industry and the decreasing energy returned on investment.

 

As fracking proponents will eagerly remind you, hydraulic fracturing was invented decades ago – back in 1947 – so the practice has been in use for quite a while. What really separates modern unconventional shale gas wells from the supposedly traditional, conventional wells is more a matter of scale than anything else. While conventional wells are typically fracked with tens of thousands of gallons of fluid, their unconventional counterparts are far thirstier, consuming millions of gallons per well.

And of course, more inputs translate into more outputs — not necessarily in the form of gas, but in the form of toxic, radioactive waste. This creates a slew of problems ranging from health impacts, to increased transportation, to disposal.

View map fullscreen | How FracTracker maps work

However, this increase in consumption has continued to grow on a per-well basis, so that wells drilled in recent years aren’t really in the same category as wells drilled a decade ago at the beginning of Pennsylvania’s unconventional boom.

In Pennsylvania, unconventional wells are primarily drilled into two deep shale layers, the Devonian-aged Marcellus Shale, which is about 390 million years old, and the Utica Shale from the Late Ordovician period, which was deposited about 60 million years before the Marcellus. These formations have been known about for decades, but did not yield enough gas justify the expense of drilling until the 21st century, when horizontal drilling allowed for a much greater surface area of exposure to the shale formations. However, stimulating this increased distance also requires significantly more fracking fluid – a mixture of water, sand, and chemicals – which increased the consumptive use of water by several orders of magnitude.  And in the end, all of this extra work that is required to extract the gas from the ground has made the industry unprofitable, as high production numbers have outpaced demand.

FracFocus Data

As residents in shale fields around the country started to see impacts to their drinking water, they began to demand to know more about what was injected into the ground around them. The industry’s response was FracFocus, a national registry to address the water component of this question, if not the issue of fracking chemicals. In the early days, visitors to the site could only access data one well at a time, so systematic analyses by third parties were precluded. Additionally, record keeping was sloppy, with widespread data entry issues, incorrect locations, duplicate entries, and so forth.

Many of these issues were addressed with the rollout of FracFocus 2.0 in May of 2013. This fixed many of the data entry issues, such as the six different spellings of “Susquehanna” that were used, and enabled downloads of the entire data set. For that reason, when we wanted to look at changes over time, our analysis started in 2013, where only minimal obvious corrections were required at the county level.

Average Water used per Well in PA

Unconventional wells in Pennsylvania were always resource-intensive, but this GIF shows that the amount of water used per well has grown significantly in recent years. In 2013, these wells used an average of 5.8 million gallons per well. By 2019, that figure had increased 145%, consuming more than 14.3 million gallons per well. This is a glimpse into the unsustainable resource demands of this industry and the decreasing energy returned on investment.

 

However, statewide data is available since 2008, and as long as we keep in mind the data quality issues from the earlier years, the results are even more stark.

Year FracFocus Reports Total Water (gal) Average Water per Well (gal) Maximum Water (gal)
2008 2 4,117,827 4,117,827 4,117,827
2009 19 37,415,216 4,157,246 6,176,104
2010 57 123,747,550 4,267,157 7,595,793
2011 1,174 786,513,944 4,345,381 12,146,478
2012 1,375 2,721,696,367 4,676,454 14,247,085
2013 1,272 7,431,752,338 5,842,573 19,422,270
2014 1,277 10,359,150,398 8,112,099 26,927,838
2015 904 8,216,787,382 9,089,367 32,049,750
2016 589 5,933,622,817 10,074,063 32,701,940
2017 710 8,547,034,675 12,038,077 38,681,496
2018 805 10,901,333,749 13,542,030 36,812,580
2019 686 9,811,475,207 14,302,442 39,329,556
2020 76 986,425,600 12,979,284 29,177,980
Grand Total 8,946 65,861,073,069 9,248,852 39,329,556

Figure 1: While the total number of frack jobs reported to FracFocus has declined over the years, the amount of water per well has increased substantially.

 

In terms of the total number of unconventional wells drilled, the boom years in Pennsylvania were around 2010 to 2014, with more than 1,000 wells drilled each of those years, a total that has not been achieved again since. It is important to note that in this FracFocus data, we are not counting the wells, per se, but the reported instances of well stimulation through hydraulic fracturing, commonly called frack jobs. In the earliest portion of the date range, submitting data to FracFocus was voluntary, and therefore the total activity from 2008 through 2010 is vastly undercounted, but we have included what data was available.

It should be noted that the average consumption for frack jobs started in 2020 are down from the 2019 totals, however, the sample size is considerably smaller. This smaller sample due, in part, to reduced drilling activity due to oversupply of gas in the Northeast, but also due to the fact that the year is still in progress. This analysis is based on data downloaded from FracFocus in April 2020.

Changes Over Time

As we examine changes in the average water consumption over time from Figure 1, we can see that operators in Pennsylvania averaged between 4-5 million gallons of water per well from 2008 to 2012. The numbers take off from there, tripling to more than 14 million gallons for 2019, the last full year available. At the same time, drilling operators began experimenting with truly monstrous quantities of water. In 2008, the only well with water data available used just over 4.1 million gallons. By 2019, there was a well that used 39.3 million gallons of water, almost a tenfold increase.

From late 2008 through early 2020, the industry recorded the use of 65.8 billion gallons of water in unconventional wells. Since we know that many wells during the early boom years did not report to FracFocus, the actual usage must be substantially higher. For the years with the most reliable and complete data – 2013 to 2019 – total water consumption ranged from 5.9 to 10.9 billion gallons per year. For context, the average Pennsylvanian uses about 100 gallons per day, or 36,500 gallons per year.

That means that the 10.9 billion gallons that were pumped into fracked wells in 2018 equals the total usage of 298,667 residents for an entire year. Alternatively, that water could have filled 16,517 Olympic-sized swimming pools. It is equivalent to 33,455 acre-feet, meaning it could fill an acre-sized column of water that stretches more than six miles high.

Surely, there must be a better way to make use of our precious resources than to turn millions upon millions of gallons of water into toxic waste.

By Matt Kelso, Manager of Data & Technology, FracTracker Alliance

Support this work

Stay in the know

North Brooklyn Pipeline demographics map

New Yorkers mount resistance against North Brooklyn Pipeline

By Kim Fraczek (Sane Energy Project), with input and mapping by Karen Edelstein (FracTracker Alliance)

Despite overwhelming concern about the impacts of fossil fuels on climate chaos, pipeline projects are springing up all over the country in an effort find markets for the surplus of fracked gas extracted from the Marcellus region in Pennsylvania. New Yorkers are directly impacted by these problematic supply chains. The energy company, National Grid, is proposing to raise New Yorkers’ monthly bills in order to complete a new, 30-inch high-pressure fracked gas transmission pipeline through Brooklyn, New York. National Grid euphemistically named the 350-psi pipeline the “The Metropolitan Reliability Pipeline Project.” Gas moving through this pipeline is destined for a National Grid Depot on Newtown Creek, which divides Brooklyn from the borough of Queens. National Grid plans to expand liquefied natural gas (LNG) storage and vaporizer operations at the Depot. The Depot expansion will also facilitate trucking transport of gas to and from North Brooklyn to destinations in Long Island and Massachusetts.

For an industry explanation on how vaporizers work, click here.

National Grid Depot in Brooklyn, NY

National Grid Depot is located on the western bank of Newtown Creek. Source: Google Maps

 

National Grid is asking the New York State Public Service Commission (PSC) to approve: 

  • A charge of $185 million to rate-payers in order to finish the current pipeline phase under construction in Bushwick. Pipeline construction would continue north into East Williamsburg and Greenpoint (other sections of Brooklyn)
  • $23 million to replace two old vaporizers at National Grid’s Greenpoint LNG facility
  • $54 million to add two new vaporizers to the Greenpoint LNG facility
  • $31.5 million over the next 4 years to add “portable LNG capabilities at the Greenpoint site that will allow LNG delivered via truck to on-system injection points.” National Grid is currently seeking a variance from New York City for permission to bring LNG trucks onto city property. Currently, this sort of activity is illegal due to high risk of fires and explosions.

Impacts on the community, resistance to the pipeline

Pipelines also present risks of catching fire and exploding. On average, a 350-psi gas pipeline has an evacuation radius of approximately 1275 feet. FracTracker Alliance created the interactive map, below, using 2010 census data to show population density in the neighborhoods within this blast zone. According to FracTracker, there were 614 reported pipeline incidents in the United States in 2019 alone, resulting in the death of 10 people, injuries to another 35, and about $259 million in damages.

View map fullscreen | How FracTracker maps work

 

There is widespread community opposition to this pipeline, LNG expansion, and trucking proposal because it will:

Opponents of this pipeline project also raise objections that the pipeline will:

  • Become a stranded asset leaving residents to foot the bill for the pipeline as city and state climate laws are implemented
  • Contribute carbon monoxide and methane to the atmosphere, thereby accelerating climate change and its impacts on coastal metropolises like New York City

Project Status

National Grid is currently constructing Phase 4 of the pipeline. However, public pressure and concern about COVID-19 safety measures forced them to stop construction on March 27, 2020. After Governor Cuomo issued an executive order to halt all non-essential work, neighbors reported the company was not mandating personal protective equipment (PPE) nor social distancing for its workers.

Additionally, funding to build north of Montrose Avenue in Bushwick through to Greenpoint—neighborhoods in northeastern Brooklyn on the border with Queens that make up the fifth phase of the pipeline construction—is pending a decision by the Public Service Commission. The approval of the fifth phase of the pipeline would allow it to reach the LNG facility at Greenpoint.

Generalized map of Brooklyn neighborhoods

Generalized map of Brooklyn neighborhoods. Source: Wikipedia.

The current National Grid rate case proceeding is in its last stage of  discovery, testimony, cross-examination, and final briefs from parties to the rate case. The Administrative Law Judges overseeing the proceeding will review all parties’ information, and make a recommendation to the Public Service Commission, a five-person panel appointed by New York State Governor Cuomo to regulate our utilities.  This decision will most likely happen at the monthly meeting on June 18, 2020, where they also may make a decision on National Grid’s Long Term Plan proceeding that could determine the future of LNG expansion in North Brooklyn.

What are the broader economic and political concerns for stopping this, and other new pipeline projects?

Sane Energy Project has laid out a clear and cogent set of arguments. These include:

  • This project is not about “modernizing” our system for heating and cooking. This is about an expansion to charge rate-payers an increase and to grow profits for National Grid’s shareholders.
  • This is a transmission pipeline, not a gas distribution line. It will not service the affected community where the already trafficked main thoroughfares and already stressed trucking routes for local businesses will be dug up.
  • Gas pipelines are not safe. According to the United States Pipeline and Hazardous Safety Materials Administration (PHMSA), between 2016 and 2018, an average of 638 pipeline incidents per year resulted in a total of 43 fatalities and 204 injuries . The cost to the public for these incidents over those three years was nearly $2.7 billion. [For more analysis on national pipeline incidents, see FracTracker’s February 2020 article.]
  • Fracking exacerbates climate change. Methane is a potent greenhouse gas. Over a 20 year period, it contributes 86 to 100 times more atmospheric warming than equivalent amounts of carbon dioxide. Climate change is destroying Earth’s ability to sustain life.
  • This project holds New York State back on our renewable energy goals. We should be mandating any gas pipelines should be replaced with geothermal energy, along with energy efficiency measures in our buildings.
  • The industry coined the term “natural” gas to create the sense that it is clean, but the extraction, transport and burning of this gas creates air pollution, disturbs ecosystems, contaminates drinking water sources, and disproportionately affects lower income communities and communities of color.
  • A report authored by Suzanne Mattei, former DEC Region 2 Chief, notes National Grid does not have gas supply constraints–the situation where consumer demand exceeds the supply. Mattei contends that this is a manufactured crisis to maintain business-as-usual, keep us hooked on fossil fuels, and charge rate-payers for construction well after the lifespan of this pipeline. This makes local constituents pay for the company’s stranded assets. National Grid themselves report that they are able to handle yearly peak demand through existing supplemental gas sources. What’s more, the EIA expects for natural gas demand to remain flat over the course of the next decade, refuting National Grid’s claim that their massive pipeline project is necessary to respond to the few hours of peak demand experienced each year.
  • This is actually a substantial project, which avoided more stringent permitting and discussion by breaking the work into five separate projections, a process known as “segmentation”. The North Brooklyn Pipeline project is disguised as a local upgrade by segmentation, while in reality, it is a much larger project leading to an LNG (Liquefied Natural Gas) depot, CNG (Compressed Natural Gas) and other fracking infrastructure facilities in Greenpoint.
  • National Grid is requesting almost 185 million ratepayer dollars over the next three years to complete the project.

What’s next?

As gas prices continue to drop and renewable energy technologies are more accessible and wide-spread, the whole equation that relies on a fossil fuel-based economy becomes more desperate and unsustainable. Many communities are also saying “no” to new pipelines in their communities, so industry is looking to ship fracked gas over land by truck. Another method for disposing of surplus gas is to compress it into LNG (liquefied natural gas) and ship it to international markets by boat.

For more updates on the North Brooklyn Pipeline, check Sane Energy Project’s website. If you live in the New York/Metropolitan area and want to get involved in this fight, there are numerous ways in which you can work with Sane Energy. Click here for details.

Map of New 2020 Fracking Permits in California

California, Back in Frack

California is once again a fracked state. The moratorium on well stimulations (hydraulic fracturing and acidizing) that lasted since June 26, 2019 has now come to an end. As of April 3rd, 2020, California’s oil and gas regulatory body, California Geological Energy Management Division (CalGEM), approved 24 new permits to frack new wells. The wells were permitted to the operator Aera Energy. Well types to be fracked include 22 oil and gas production wells and 2 water flood wells; 18 of which are in the South Belridge Field and 6 North Belridge Field. Locations of the wells are shown in the map in Figure 1, and are mapped with the rest of 2020’s approved well drilling and rework permits in Consumer Watchdog’s updated release on NewsomWellWatch.org. Please read our press release with Consumer Watchdog here!

Figure 1. Map of New Fracking Permits in California

View map fullscreen | How FracTracker maps work

 

Health Risks

Fortunately, these 24 approved well stimulation permits are not located in close proximity to communities that would be directly impacted by the negative contributions to air quality and potential groundwater quality degradation that result from drilling and stimulating oil and gas wells. Regardless of where oil and gas wells and stimulations are permitted in relation to Frontline Communities, these wells will still degrade the regional air quality of the San Joaquin Valley. The San Joaquin Valley has the worst air quality in the country. According to the U.S. EPA, oil and gas production is a main contributor of volatile organic compounds (VOC’s) and NOX in the Valley. In addition to VOC’s being carcinogens, these pollutants are precursors to the ozone and smog that cause health impacts such as asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and negative birth outcomes.

Geology and Spills

Additionally, the dolomite formations where these 24 stimulations were permitted have also experienced the same type of oil seeps and spills (known as surface expressions) as the Cymric Field just to the south. Readers may remember the operator Chevron spilling 1.3 million gallons of oil and wastewater in an uncontrollable seep resulting from high pressure injection wells.

Whereas Governor Newsom may have put a halt to unpermitted high-pressure injections, regulators have just approved permits for 24 new fracking operations, a.k.a well stimulations. The irony here is that risks inherent in the fracking process in California include the same risks associated with high pressure steam injection operations. Both techniques elevate the downhole pressure of a well to the point that the formation “source” rock is fractured. These techniques increase the likelihood of downhole communication with other surrounding wells, both active and plugged. Downhole communication events between wells, in this case known as “frack hits” are a major cause of well casing failures and blowouts, which in turn are the primary cause of surface expressions. Simply put, high pressure injections in over-developed oil fields result in spills, and in this case, these 24 permitted stimulations are within 1,500’ of over 7,000 existing wells, a distance specifically identified by CalGEM as a high-risk zone for downhole communication between wells.

Regulation

So how did these wells get approved? Here’s the story, as told by CalGEM:

​​​​In November, CalGEM requested a third-party scientific review of pending well stimulation permit applications to ensure the state’s technical standards for public health, safety and environmental protection are met prior to approval of each permit. To ensure the proposed permits comply with California law, including the state’s technical standards to protect public health, safety, and environmental protection, the Department of Conservation asked experts at the Lawrence Livermore National Laboratory (LLNL) to assess CalGEM’s permit review process. LLNL also evaluated the completeness of operators’ application materials and CalGEM’s engineering and geologic analyses.

The independent scientific review is one of Governor Newsom’s initiatives to ensure oil and gas regulations protect public health, safety, and environmental protection. This review, which assesses the completeness of each proposed hydraulic fracturing permit, is taking place as an interim measure while a broader audit is completed of CalGEM’s permitting process for well stimulation. That audit is being completed by the Department of Finance Office of Audits and Evaluation (OSAE) and will be completed and shared publicly later this year. LLNL experts are continuing evaluation on a permit-by-permit basis and conducting a rigorous technical review to verify geological claims made by well operators in the application process. Permit by permit review will continue until the Department of Finance Audit is complete later this year.

LLNL’s scientific review of the permit applications and process found that the permitting process met statutory and regulatory requirements. LLNL found, however, that CalGEM could improve its evaluation of the technical models used in the permit approval process. As a result, CalGEM now requires all operators to provide an Axial Dimensional Stimulation Area (ADSA) Narrative Report for each oilfield and fracture interval which must be validated by LLNL and conform to the new CalGEM permitting process. This will improve CalGEM’s ability to independently validate applicants’ fracture modeling.

While this sounds like a methodological approach to the permitting process, it is still flawed in several ways. First and foremost, there is still no process for community input, let alone community decision-making. Community stakeholders are not engaged at in point in this process. Furthermore the contribution of oil and gas extraction operations to the degradation of environmental quality is already well established. In the case of these 24 fracking permits, they will contribute to the further degradation of regional air quality and continue the legacy of groundwater contamination within the sacrifice zone surrounding the Belridge fields.

Fracking in the Age of Pandemics

While we are critical of Governor Newsom’s climate-changing oil extraction policies, FracTracker would like to recognize the leadership Governor Newsom has shown instituting responsible policies to keep Californians as safe as possible and protected from the threat of COVID-19. While there can still be more done to provide relief for the most financially vulnerable, such as instituting a rent moratorium for those that do not own their own homes, California leads as an example for the public health interventions that need to be instituted nation-wide. The Governors inclusion of undocumented citizens in the state’s economic stimulus program is a first step, and FracTracker Alliance fully supports increasing the amount to at least match the $1,200 provided to the rest of Californians.

Conclusion

Regardless, the threat of COVID-19 cannot be addressed in a vacuum. Threats of infection are magnified for Frontline Communities. Living near oil and gas operations exposes communities to a cocktail of volatile organic compounds that suppress the immune system, increasing the risk of contracting viral lung infections. Frontline Communities are therefore particularly vulnerable to the threat of COVID-19. California and Governor Newsom need to consider the public health implications of permitting new fracking and new oil and gas wells, particularly those permits within 2,500’ of hospitals, schools, and other sensitive sites, above all during an existing pandemic.

By Kyle Ferrar, MPH, Western Program Coordinator, FracTracker Alliance

Support this work

Stay in the know