The majority of FracTracker’s posts are generally considered articles. These may include analysis around data, embedded maps, summaries of partner collaborations, highlights of a publication or project, guest posts, etc.

Pennsylvania’s Waste Disposal Wells – A Tale of Two Datasets

 

VIEW MAP & DATA

Overview

Access to reliable data is crucial to our understanding of risky fracking waste disposal, and in turn, our ability to protect public health. But when it comes to oil and gas liquid waste disposal wells in Pennsylvania, despite monitoring by two separate agencies, we are left with an incomplete and inaccurate account.

If we were to emulate the Charles Dickens classic, this article might begin, “It was the best of datasets, it was the worst of datasets.” Unfortunately, even that would be too generous when it comes to describing available data around oil and gas liquid waste disposal wells in Pennsylvania. To fully understand the legacy and current state of these wells, it is necessary to query the two agencies that have a role in overseeing them, the United States Environmental Protection Agency (EPA) and the Pennsylvania Department of Environmental Protection (DEP).

Given the relatively small inventory of these wells compared to other oil and gas producing states, the problems with the two datasets are enormous. Before jumping into these issues, however, it would be useful to review the nature of these wells, why there are two regulatory agencies involved, and why there are so few of them in Pennsylvania in the first place, relatively speaking.

Disposal Wells Categories

To further our industrial exploits of the planet, humans have found it useful to inject all kinds of things into the earth. In the United States, this ultimately falls under the jurisdiction of EPA’s Underground Injection Control (UIC) program, and the point of injection is known as an injection well. Altogether, there are six classes of injection wells, with those related to oil and gas operations falling into Class II.

There are three categories of Class II injection wells, including waste disposal, enhanced recovery, and hydrocarbon storage. There is also an infamous exemption known as the “Haliburton Loophole,” which has allowed oil and gas companies to inject millions of gallons of hydraulic fracturing fluid into oil and gas wells in order to stimulate production without any federal oversight at all.

When most people speak of “injection wells” in an oil and gas context, they are usually referring to waste disposal wells, and this is our focus here. This well type is also referred to as Class II-D (disposal) and salt water disposal wells (SWD). This latter term is used by a majority of state regulators, so we will use that abbreviation here, even though considering this type of toxic and radioactive fluid “salt water” is surely one of the industry’s most egregious euphemisms.

Dealing with Dangerous Fluids

There are two main types of liquid waste that are disposed of at SWD injection wells. As always, these waste types have a number of different names to keep everyone on their toes but for the sake of simplicity will call them “flowback” and “brine,” and both are problematic materials to handle. Additionally, the very act of industrial-scale fluid injection presents problems in its own right.

As mentioned above, when operators pump a toxic stew of water, sand, and chemicals into a well to stimulate oil and gas production, that mixture is known as hydraulic fracturing fluid, or fracking fluid. Some of these chemicals are so secretive that even the operators of the well don’t know what is included in the mix, let alone nearby residents or first responders in the event of an incident.

Between 10% and 100% of this fluid will return to the surface, and is then known as flowback fluid, becoming a waste stream. In Pennsylvania, the average amount of fracking fluid injected into production wells exceeds 10 million gallons in recent years according to data from the industry’s self-reporting registry known as FracFocus. With more than 12,000 of these wells drilled statewide, disposing of this waste stream becomes an enormous concern.

In addition to flowback fluid, there are pockets of ancient fluids encountered by the drilling and fracking processes that return to surface as well. These solutions are commonly referred to as brine due to their extremely high salt content, although this is not the type of fluid that you’d want to baste a Thanksgiving turkey with. Total salt concentrations can reach up to 343 grams per liter, roughly ten times the salt concentration of sea water. These brines include but are not limited to the familiar sodium chloride that we use to season our food, but include other components as well, including significant bromide and radium concentrations.

When Pennsylvania experimented with our public health by authorizing disposal of these fracking brines in municipal plants designed to treat sewer sludge, the bromides in that drilling waste stream became problematic as they interacted with disinfectants to cause a cancerous class of chemicals known as trihalomethanes. This ended the practice of surface “treatment” from these sites into streams in 2011, and along the way caused many water authorities to switch from chlorine to chloramine disinfectant processes. This, in turn, may have exacerbated lead exposure issues in the region, as the water disinfected with chloramine often eats away at the calcium scale deposits covering lead pipes and solder in the region’s older homes.

 

Radium-226 Decay Chain. Source: National Institute of Standards and Technology

Figure 1. Radium-226 Decay Chain. Source: National Institute of Standards and Technology

 

Marcellus and Utica wastewater are also very high in a radioactive isotope of radium known as Ra-226, which has a half-life of 1600 years. After that amount of time, half of the present radium will have emitted an alpha particle, which can cause mutations in strands of DNA when introduced inside the body, through contaminated drinking water, for example. After the hazardous expulsion of the alpha particle, the result become radon gas, which is estimated to cause 20,000 lung cancer deaths per year in the United States. Further down the decay chain is Polonium 210, which was infamously used in the assassination of Russian spy Alexander Litvinenko in London in 2006.

None of this should be injected into formations beneath people’s homes, near drinking water supplies, streams, or really anywhere that we aren’t comfortable sacrificing for the next few thousand years.

 

Earthquakes in California and Oklahoma by year

Figure 2. Earthquakes in California and Oklahoma by year. Source: United States Geological Survey

 

On top of all the problems with the water chemistry of both produced water and brine, the very act of injecting these fluids into the ground has triggered a large number of earthquakes in areas with frequent or large volumes of waste injection. This human-caused phenomenon is known as induced seismicity. The most well-known example of this is the previously stable state of Oklahoma which surged to have more magnitude 3.0+ earthquakes than California for a number of years during a drilling boom in that region. The largest of these was the magnitude 5.8 Pawnee earthquake in 2016.

 

Figure 3. PA Earthquakes and Potential Causes: 1/2000 – 2/2021, Magnitude 2.0 or Greater. Most earthquakes in the eastern portion of the state are associated with Quaternary faults. In the western portion, the causes are less straightforward, and include zipper fracking, mine blasting or collapse, and faults that are more ancient and deeper than the Quaternary faults, many of which remain unmapped. As the use of SWD wells increases, seismic activity may increase as well.

 

Manmade earthquakes are not limited to Oklahoma. For example, there were approximately 130 seismic events in one year period in the Youngstown, Ohio area due to SWD activity, including one measuring 4.0 on the last day of 2011. Over the years, the regulatory reaction to induced earthquakes seems to walking along the slippery slope from “that can’t happen” to “that can’t happen here” to “they’re all small earthquakes” to “we can mitigate the impact,” despite all evidence to the contrary.

Two Regulators

So who gets to be in charge of this dumpster fire? As mentioned above, this is ultimately under the umbrella of EPA’s Underground Injection Control program. However, they have a complicated arrangement with the various states defining who has primary enforcement authority for this type of well.

In Pennsylvania, such wells must obtain a permit from EPA before obtaining a second permit from DEP. In a 2017 hearing in Plum Borough, Allegheny County, furious residents concerned with a variety of issues with a proposed SWD well were told that in Pennsylvania, EPA could only consider whether or not the well would violate the 1972 Clean Water Act when considering the permit, and that the correct audience for everything else would be DEP. Both permits for this well that is near and undear to me were ultimately issued, and operations are expected to begin in the next month if Governor Wolf does not instruct the DEP to reconsider their permit.

There is some precedent for overturning such a permit. In March of 2020, DEP yanked a permit for a SWD well in Grant Township, Indiana County, suddenly respecting a home-rule charter law that the agency had previously sued the Township over.

Without the prospect of royalties or impact fees, no community wants these wells and regulators know that they are nothing but problems. However, the reality is that the regulators oversee an industry that produces a tsunami of this toxic waste – more than 61.8 million barrels of it from unconventional wells in Pennsylvania in 2020 according to self-reported data, which is almost 2.6 billion gallons of the stuff, or slightly more than the capacity of Beaverdam Run Reservoir in Cambria County, a 382 acre lake with an average depth of 20 feet.

Unsuitable Geography

Nationally, injection wells are quite common, with over 740,000 such wells in the EPA inventory for 2018 and Class II (O&G) wells represent about a quarter of this figure. Of these Class II injection wells, roughly 20% are for fluid disposal, giving us an estimated 37,000 SWD wells nationwide. This number is expected to go up, as more than three-quarters of the 8,600 permits issued in 2018 were for oil and gas purposes.

However, in Pennsylvania, there have been quite few of these, compared to other states. The primary reason for this is its geology, which has largely been considered unsuitable for this type of activity. For example, a 2009 industry analysis states:

The disposal of flowback and produced water is an evolving process in the Appalachians. The volumes of water that are being produced as flowback water are likely to require a number of options for disposal that may include municipal or industrial water treatment facilities (primarily in Pennsylvania), Class II injection wells [SWDs], and on-site recycling for use in subsequent fracturing jobs. In most shale gas plays, underground injection has historically been preferred. In the Marcellus play, this option is expected to be limited, as there are few areas where suitable injection zones are available.

I discussed this topic in a phone call with an official from EPA, who largely confirmed this point of view, but preferred the phrase, “the geology is complicated” instead of the word “unsuitable.” When the UIC program was established from the 1974 Safe Drinking Water Act, there were only seven such wells in operation, and according to EPA’s data, there were still just 11 active SWD wells in the Commonwealth but with more on the way. I was cautioned that the geology wasn’t the only reason, however. Neighboring Ohio had hundreds of these wells, many of which are clustered close to the border with Pennsylvania. The two states have different primacy and permitting arrangements, which is a factor as well.

I have not come across sources mentioning why Pennsylvania’s geology was so unsuitable – or complicated, if we are being generous. However, there are numerous widespread issues that could be a factor, including voids created by karst and legacy coal mines, and formations that might have otherwise trapped gasses and fluids being punctured with up to 760,000 mostly unplugged oil and gas wells and more than one million drinking water wells.

Even when these fluids have been pumped deep underground, they are not necessarily out of sight and out of mind. For example, an abandoned well in Noble County Ohio suddenly began spewing gas field brine just a few weeks ago, resulting in a fish kill in a nearby stream. The incident is believed to be related to SWD wells in the general vicinity even though the closest of these is miles away from the toxic geyser. The waste fluids injected beneath the surface will exploit any pathway available through crumbling or porous rocks to alleviate the pressure built up from the injection process. These fluids don’t care whether the target is an old gas well, mine void, or drinking water aquifer.

Of course, we could ask the question in reverse, and ask what makes the injection of oil and gas fluids suitable in other locations, and the aggregated evidence would lead us to “nothing” as our answer. Nothing, other than the fact that drilling and fracking produces billions of gallons of liquid waste, and that it has to go somewhere.

 

See FracTracker’s map showing the proximity of karst formations, coal mines and nearby streams that the state designates as either high quality or exceptional value.

 

Although EPA play a major role in permitting and regulating SWD wells in Pennsylvania, they do not publish data related to these wells on their website. FracTracker started hearing rumors about a spate of new SWD permits all over the state that were not accounted for in DEP data. As it turns out, many of these turned out to be other oil and gas wastewater processing facilities, and the public’s confusion about these is completely understandable because these facilities lacked the proper public notice process. These facilities are concerning in their own right – and residents of Pennsylvania should look here to see if one of these 49 facilities are in their neighborhoods – but these are not disposal wells.

To clear up the confusion, I submitted a Freedom of Information Act request to EPA for a spreadsheet of their Class II injection wells in Pennsylvania. This was apparently an onerous task that would require more than ten hours of labor on their behalf. When I mentioned that I was mostly interested in disposal wells, that sped the process up considerably.

Ultimately, I received a portion of the data fields that I had asked for.

Asked For Received
Well Name Yes
Well API Number Yes
Class II Category (disposal, recovery, storage) No
Date application received No
Application status (e.g., pending, complete) Yes
Application result (e.g., approved, rejected) No
Application result date (date of EPA’s decision) No
Well status (e.g., active, plugged) Yes
Well county name Yes
Well municipality name No
Well latitude Yes
Well longitude Yes

Table 1 – Summary of fields requested and received in FracTracker’s FOIA submission with EPA.

 

I started to compare the EPA dataset to DEP’s SWD well dataset, which is a part of its conventional well inventory. Each source had 23 records. We were off to a good start, but this data victory turned out to be limited in scope as the discrepancies between the two datasets continued to grow. Inconsistencies between the two datasets are as follows:

County DEP API DEP Well Name EPA API Match EPA Name Match Notes
Allegheny 003-21223 SEDAT 3A Y Y
Armstrong 005-21675 HARRY L DANDO 1 Y Y
Beaver 007-20027 COLUMBIA GAS OF PENNA INC CGPA5 Y Y
Bedford 009-20039 KENNETH A DIEHL D1 N N Not on EPA List
Cambria 021-20018 THE PEOPLES NATURAL GAS CO 4627X N N Not on EPA list
Clearfield 033-27255 FRANK & SUSAN ZELMAN 1 N Y DEP / EPA API Number mismatch
033-27257 POVLIK 1 N Y No EPA API No.
033-00053 IRVIN A-19 FMLY FEE A 19 Y Y
033-22059 SPENCER LAND CO 2 Y Y
Elk 047-23835 FEE SENECA RESOURCES WARRANT 3771 38268 Y Y
047-23885 FEE SENECA RESOURCES WARRANT 3771 38282 N Y DEP / EPA API Number mismatch
Erie 049-24388 NORBERT CROSS 2 Y Y
049-20109 HAMMERMILL PLT 1 N N Not on EPA List
049-00013 HAMMERMILL 3 N N Not on EPA List
049-00012 HAMMERMILL 1 N N Not on EPA List
Greene N N Not on DEP list. EPA Permit PAS2D210BGRE – no API to match
Indiana 063-31807 MARJORIE C YANITY 1025 Y Y
063-20246 T H YUCKENBERG 1 Y Y
Somerset 111-20059 W SHANKSVILLE SALT WATER DISP 1 Y N
111-20006 MORRIS H CRITCHFIELD 1 Y N
Potter 105-20473 H A HEINRICK RW-55 CA Y Category Anomaly – Not on DEP SWD list – does appear as Plugged OG Well (consistent w/ EPA status notes)
Venango 121-44484 LATSHAW 9 Y Y
Warren 123-39874 BITTINGER 4 N Y API Mismatch (But does match Bittinger #1) Lat/Long match site name
123-33914 JOSEPH BITTINGER 1 N Y API Mismatch (But does match Bittinger #4) Lat matches site name, Long slightly off
123-33944 JOSEPH BITTINGER 2 Y Y
123-33945 JOSEPH BITTINGER 3 CA Y Category Anomaly – Not on DEP SWD list – does appear as “Injection”
123-34843 SMITH/RAS UNIT 1 CA Y Category Anomaly – Not on DEP SWD list – does appear as “Observation”
123-22665 LEROY STODDARD & FRANK COFFA 1 WELL N N Not on DEP list of all wells.  Does appear on eFACTS. No location data

Table 2 – Discrepancies between EPA and DEP data for SWD wells in PA.

 

Altogether, there was at least one data discrepancy on 17 out of 28 wells (61%) on the combined inventories, and this is allowing for significantly different formatting of the well’s name. The DEP list contained five records that were not on the EPA dataset at all, four records where the well’s API number did not match, three instances where the DEP well type was different from EPA’s listing, two wells with matching API numbers but different well names, two wells that were missing the API number on the EPA list, and one well that was on the EPA list that I have not been able to find in any of DEP’s inventories.  These last two wells could not be mapped due to the lack of location data.

It isn’t always possible to know which dataset is erroneous, but the EPA list has several obvious omissions and one instance where the API number and well name are in the wrong columns. The quality of DEP data has improved over the years and appear to have some data controls in place to avoid some of these basic errors. For that reason, I suspect that most of the problems stem from the EPA dataset, and I have used DEP coordinates to map these wells.

Waste Disposal Wells in Pennsylvania

View Full Sized Map | Updated 2/21 | Click “Details” in map for more information

 

The Take Away

In the early 1970s, it was recognized that industrial injection of oil and gas waste underground could lead to risks to human health and the environment, so several major protective laws were put in place, including the Clean Water Act of 1972, the Safe Drinking Water Act of 1974, and the Pennsylvania’s 1971 Environmental Rights Amendment. Decades later, it feels like the Pennsylvania Department of Environmental Protection and the United States Environmental Protection Agency don’t take their regulatory responsibilities very seriously when it comes to oil and gas liquid waste disposal wells. While the state does have fewer of this type of well than other states, there are five that are currently under construction, according to the EPA dataset. Many of these, like the Sedat 3A well in Allegheny County, have come after significant community opposition, and many of the residents’ concerns have not been addressed by either agency.

There will undoubtedly be more of these disposal wells proposed in the near future. Residents would do well to hassle their municipalities to update their ordinances for this type of well if they happen to live in a place where such ordinances are possible. Solicitors should be instructed to regularly scour the Pennsylvania Bulletin and be in contact with EPA for the earliest possible notification of a proposed site, so that there is time to respond within the comment periods.

Additionally, the sloppiness of the datasets calls all sorts of questions into play regarding the co-regulation of these wells. In the case of an incident, it’s not even clear that both agencies have the information on hand to even locate the site in the field. Meanwhile, a 61% error rate between the sites name, API number, and status does not inspire confidence that agencies are keeping a close eye on these facilities, to say the least.

Above all, we must all realize that it isn’t safe to assume that someone will let us know when these types of facilities are proposed. Regulators have shown us through their actions that they are thinking far more about the billions of gallons of waste that needs to be disposed of than of the well-being of dozens or even hundreds of neighbors near each toxic dump site.

References & Where to Learn More

Data supporting this article, as well as the static map in Figure 3, can be found here.

 

Topics in this Article

Infrastructure | Waste

Support this work

Stay in the know

 

Los Angeles, California skyline

California Oil & Gas Setbacks Recommendations Memo

 

Kyle Ferrar, Western Program Coordinator for FracTracker Alliance, contributed to the December 2020 memo, “Recommendations to CalGEM for Assessing the Economic Value of Social Benefits from a 2,500’ Buffer Zone Between Oil & Gas Extraction Activities and Nearby Communities.”

 

Below is the introduction, and you can find the full memo here.

Introduction

The purpose of this memo is to recommend guidelines to CalGEM for evaluating the economic value of the social benefits and costs to people and the environment in requiring a 2,500 foot setback for oil and gas drilling (OGD) activities. The 2,500’ setback distance should be considered a minimum required setback. The extensive technical literature, which we reference below, analyzes health benefits to populations when they live much farther away than 2,500’, such as 1km to 5km, but 2,500’ is a minimal setback in much of the literature. Economic analyses of the benefits and costs of setbacks should follow the technical literature and consider setbacks beyond 2,500’ also.

The social benefits and costs derive primarily from reducing the negative impacts of OGD pollution of soil, water, and air on the well-being of nearby communities. The impacts include a long list of health conditions that are known to result from hazardous exposures in the vulnerable populations living nearby. The benefits and costs to the OGD industry of implementing a setback are more limited under the assumption that the proposed setback will not impact total production of oil and gas.

The comment letter submitted by Voices in Solidarity against Oil in Neighborhoods (VISIÓN) on November 30, 2020 lays out an inclusive approach to assessing the health and safety consequences to the communities living near oil and gas extraction activities. This memo addresses how CalGEM might analyze the economic value of the net social benefits from reducing the pollution suffered by nearby communities. In doing so, this memo provides detailed recommendations on one part of the broader holistic evaluation that CalGEM must use in deciding the setback rule.

This memo consists of two parts. The first part documents factors that CalGEM should take into account when evaluating the economic benefits and costs of the forthcoming proposed rule. These include factors like the adverse health impacts of pollution from OGD, the hazards causing them and their sources, and the way they manifest into social and economic costs. It also describes populations that are particularly vulnerable to pollution and its effects as well as geographic factors that impact outcomes.

The second part of this memo documents the direct and indirect economic benefits of the proposed rule. Here, the memo discusses the methods and data that should be leveraged to analyze economic benefits of reducing exposure to OGD pollution through setbacks. This includes the health benefits, impacts on worker productivity, opportunity costs of OGD activity within the proposed setback, and the fact that impacted communities are paying the external costs of OGD.

 

 

Please find the full memo here.

 

 

 

Support this work

Stay in the know

 

Electric Vehicles: Better Wheels

The wheel may have been influenced by nature, but today, the inverse is true. The anthropogenic automobile stimulates climate change and the environmental ravages correlated with a heating planet. Twenty-eight percent of all greenhouse gas emissions in the US come from transportation – more than any other economic sector. As the climate crisis spirals out of control, the most sustainable modes of moving around require our attention, and our investment. In part, we need better ‘wheels.’

Electric cars, or EVs, while not the all-out cure for atmospheric ills, are a preferred substitute to autos powered by internal combustion. Quiet and clean, they lack tailpipes and tailpipe pollutants, but have abundant pep. Think instant acceleration. And EVs put the ‘E’ in efficiency. For example, the 2020 Kia e-Niro is EPA-rated at 112 miles per gallon equivalent or MPGe; the Chevy Bolt, 119. Other models are likewise impressive.

Misperceptions remain. So-called “range anxiety” is worrying about being unable to get to a destination or return home — that batteries will be depleted and leave the driver stranded. With an expanding nationwide charging network, such stress is unfounded. Companies like EVgo and ChargePoint offer apps that point to charging stations at convenience stores and retailers near and far. Tesla maintains their own extensive system of chargers. It won’t be long until electrons are as accessible as gasoline.

“Filling” an EV is quick and easy. Rapid charging devices can restore up to 80% of vehicle range in 20 to 60 minutes, depending on the make and model of the car. By the time one grabs a meal or coffee, the vehicle is ready to roll. Prefer to charge at home, in between trips? Residential chargers can do the job in roughly nine hours, with installation of a 220-volt AC household unit.

Meanwhile, battery range grows. The Hyundai Kona travels 258 miles between plug-ins; a Tesla Model 3 (long-range version), 322 miles. Almost any destination is possible.

 

 

 

 

By almost every environmental measure, electric vehicles surpass their fossil-fueled cousins, but the need for lithium – a primary ingredient in EV batteries – brings a variety of challenges.

Bloomberg reports that approximately 27 million passenger electric vehicles were in use globally in 2019. By 2040, the number could leap to 500 million. Is there enough lithium to support such growth?

Projections from S&P Global suggest the worldwide supply of lithium could triple by 2025, with new mines, brine extraction, and anticipated output from “existing projects.” Australia is the world’s largest producer of lithium, but as new sources have been identified, the country now ranks fifth  in known reserves, behind Bolivia, Argentina, Chile, and the US, respectively. China rounds out the list of the top six suppliers.

Innovation, efficiency, and new finds may extend the era of lithium-powered EVs, but fears of someday reaching “Peak Lithium” isn’t far-fetched, although lessons from the prediction of “Peak Oil” impart caution to forecasting.

And it’s not only a question of whether it can be obtained technologically, but can it be done sustainably and equitably? Mining today requires a commitment to environmental justice. Much of the known lithium deposits are in low and middle-income countries, which, for centuries, have been treated as sacrifice zones for the material desires of highly industrialized nations. Research commissioned by Earthworks points to EV batteries as the most significant driver of accelerated minerals demand, but notes that recycled sources can significantly reduce demand. Not all demand will likely be fulfilled through recycling, so responsible sourcing is critical.

Addressing the profound human and environmental dimensions of mineral demand – for batteries and other aspects of the renewable energy transition – the Initiative for Responsible Mining Assurance (IRMA) was established in 2006 and aspires to “certify social and environmental performance at mine sites globally using an internationally recognized standard . . . developed in consultation with a wide range of stakeholders.”

Such programs provide transparency and accountability, but non-governmental organizations, governments, manufacturers, and product customers using these materials must remain vigilant, informed, and outspoken. Society collectively must assure that exploitation is relegated to history. Communities in the fairway of mining must be vested partners; benefactors, not victims.

But accessing minerals, no matter how well-intentioned, is a messy enterprise. The lithium conundrum underscores the need to look beyond the convenience of automobiles, to a future oriented around energy efficiency, mass transit, and welcoming places that thrive at a human – and a more humane – scale, where walking and biking is the norm. Examples abound, but in the United States, in particular, neighborhood reinvestment infused with inclusive and creative ideas may propel us to greener days. Even better, it might instigate a new and profound harmony amongst people, and the generous nature that surrounds them.

EVs are a bridge to span decades, not the trail to tomorrow. But the bridge has to be reachable. A federal tax credit of up to $7500 may be available, depending on how many units of that model have sold. Some states also offer rebate and credit incentives as EVs become more common, they will likely become more affordable, at least rivaling gasoline and diesel counterparts.

The wave is coming. In January, General Motors announced its vision “. . . of an all-electric future . . . offering zero-emissions vehicles across a range of price points.” The company’s plan also focuses on charging infrastructure, consumer acceptance, and an emphasis on high-quality jobs. The Biden Administration is also championing EVs, promising 500,000 charging stations across America and electrification of the entire federal vehicle fleet.

If climate change is deflating – if not roughening – our human journeys, electric vehicles can serve as the temporary spare to get us where we need to be. The ride will be better, not perfect. . . a helpful cog in climate healing.

By Brook Lenker, Executive Director, FracTracker Alliance

Support this work

Stay in the know

Oil and Gas Wells on California State Lands

The fossil fuel industry has historically taken advantage of the nation’s mineral estate for private profit, while outsourcing the public health debts of degraded environmental quality to Frontline Communities. While President Biden has recently ordered the Department of Interior to put a 60-day halt on permitting new oil and gas drilling permits on federal lands, no such policy exists for state lands in California. Governor Newsom’s administration has allowed the California Geological Energy Management Division to issue rework and new drilling permits on California state lands, bringing the total number of operational oil and gas wells on state lands up to a total of 178, almost half of which are “idle.” This number pales in comparison to the number of California oil and gas wells on federal lands; a total of 6,997 operational wells.

FracTracker Alliance has mapped out the operational oil and gas wells located on state lands in California, using the California Protected Areas Database. The areas containing the highest concentrations of oil and gas wells on state lands include two sensitive ecosystem environments. Figure 1 shows the 102 operational oil and gas wells located in Southern California’s Bolsa Chica Ecological Preserve. The wells are part of the Huntington Beach oil field. The preserve shares marine habitat with a marine protected area (MPA) and is habitat for numerous rare and several endangered species. More sensitive habitat also threatened by oil and gas extraction; Figure 2 shows the oil and gas production wells on the Sacramento River Delta, just upriver of the Bay Area. It is habitat for several threatened and endangered species such as the Delta Smelt and Giant Garter Snake.

California needs Governor Newsom to take a stand against the further exploitation of California’s public lands. A ban on permitting new wells on state land and a commitment to plug existing wells would set an example for Biden’s administration to make the current 60-day freeze a permanent policy.

Figure 1. The Bolsa Chica Ecological Preserve hosts over 100 operational oil and gas wells that put the preserve’s ecological habitat at risk.

 

Figure 2. There are 50 operational oil and gas wells permitted on California state lands in the Sacramento River Delta.

 

See more California maps and articles here.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Support this work

Stay in the know

Industrial Impacts in Michigan: A Photo Essay & Story Map

Southwest Detroit and neighboring South Rockwood in Monroe County could not be more different demographically, but one thing they have in common is a consistent battle with the extractives industry.

With environmental advocates Theresa Landrum and Doug Wood, FracTracker created a Story Map to document what this infrastructural buildout in Southeastern Michigan looks like from the air, how it has displaced entire neighborhoods, and how it has forever changed their quality of life, in the name of short-term profiteering.

 

 “Marathon is a prime example of corporate polluters continuing
to choose profit over safeguards for our public health.”
– Congresswoman Rashida Tlaib

 

Each year, FracTracker Alliance gives out its Community Sentinel Award for Environmental Stewardship. We had an amazing group of candidates this year, and the four winners are extremely brave, persistent, insightful, and collaborative activists representing diverse communities all over the country.

I have had the good fortune to interact with two of the winners – Theresa Landrum and Brenda Jo McManama – quite frequently over my time at FracTracker. This year’s Sentinel Award winners and all its previous recipients are passionate and persistent fighters for environmental justice in their own backyards and around the United States.

It is around this time of year that all the negativity involved in the fight against fossil fuel industries dissolves away for me as I find myself inspired and humbled by the Sentinel winners. Theresa and Brenda Jo constantly inspire me and FracTracker to strive to do more, do better, and remain cleareyed as to whom we serve. All the Community Sentinel nominees are exemplars of what it is to walk authentically and humbly through life.

However, I am going to spend the next couple paragraphs speaking specifically about Ms. Landrum, because it is she that I have come to know and work quite well with since COVID-19 was something we thought would be gone by June.

I had heard so many amazing things about Ms. Landrum from a common comrade, Mr. Doug Wood, whom FracTracker has written about  with respect to the silica sand mining he is fighting and dubious pro-mining legislation being pushed in Michigan’s Statehouse, but I had never met her in person. That changed on a scorching hot day this past June, when Doug, Theresa, and I met (socially distanced) in the shadow of Marathon Petroleum’s refinery at Detroit’s Kemeny Recreation Center, just a couple stones throws across I-75 (see images below).

Incidentally, this is the same refinery that Congresswoman Rashida Tlaib (D, MI-13) has been railing against for years, including in a statement she issued on yet another incident at
the refinery
:

“Marathon is a prime example of corporate polluters continuing to choose profit over safeguards for our public health. It is time to say enough is enough of Marathon’s constant disregard of the health and safety of residents who live, work, and visit the surrounding communities. Marathon has perpetrated numerous incidents detrimental to our communities and must be held accountable – they clearly cannot be trusted to protect our health. I look forward to discussing the need to hold Marathon and other entities who poison our community accountable and solutions to make our communities breathe and live free at the upcoming congressional field hearing I am hosting with other members of Congress, experts, and grassroots activists here in Detroit.”

 

Scroll horizontally to see additional images: 

  1. Southeastern Michigan Environmental Activists Doug Wood and Theresa Landrum at Detroit’s 48217 Kimeny Park with Marathon’s Refinery in the Background, June, 2020
  2. Anti-Frac Sand mine signage created by Monroe County, Michigan activist Doug Wood, June, 2020
  3. No Dumping signage erected by Marathon Oil in Detroit’s Oakwood Neighborhood adjacent to the company’s oil refinery
  4. Concerned Citizen and Sylvania Minerals mine neighbor Doug Wood

 

It did not take more than 30 seconds for me to realize that Theresa was an authentic and persistent fighter for her community, and that she belongs on the Mt. Rushmore of EJ advocates – as does Doug Wood and all of the Community Sentinel nominees past, present, and future.

After meeting at the recreation center, I followed Theresa around with my drone, capturing footage and images of the worst actors in the 48217 zip code of Southwest Detroit, as well as of River Rouge and Ecorse. This turned out to be the first of three trips to meet with Theresa throughout the summer and fall of 2020.

During each trip and across dozens of phone conversations, Theresa explained to me what industry has done to Southwest Detroit, how she has gone about combatting it, and the way that Lansing treats Wayne County.

It struck me that much of her experience overlaps with the stories I have heard in disparate demographics, from soybean farmers in LaSalle County, Illinois, to dairy farmers in Western Wisconsin, all the way to coalminers in Central Appalachia.

Their stories illustrate the near universal tale of how industry needs and welfare demands take precedence over the rights of citizens. It is the story of globalization, shareholder returns, and political/economic elites ignoring, mocking, or being deaf and blind to the needs of their constituents and the crimes being committed in the name of progress and Gross Domestic Product (GDP).

One thing Theresa and I have spent quite a bit of time discussing is the overlap in environmental justice across demographics, and how superficial differences have been weaponized to divide us, leaving only corporations and their political handmaids to benefit. Industry beneficiaries and politicians have colluded to declare in the words of Thomas Frank’s latest book “The People, No!” Yet, it is people like Theresa, Doug, Brenda Jo, and all the other environmental activists we celebrate who are and will be instrumental in bridging those divides, and guiding the citizenry to pivot, to identify and defeat the real Leviathan – the Hydrocarbon Industrial Complex in all its manifestations and with all its tentacles spread out across this country.

The best way I know how to return the favor to folks like Theresa is to continue to do what FracTracker does best, and what I hope I am doing well, which is documenting the infrastructure and landscapes that are or have been in the crosshairs of industry, whether it be steel, coal, oil, or in the case of our name – fracked natural gas.

I have been working with Theresa and Doug on a Story Map that illustrates the scale and scope of industrial impacts in southeastern Michigan, from US Steel’s Zug Island to Sylvanian Mineral’s frac sand mine in South Rockwood. As I mentioned above, we have outlined the plight of Doug and Dawn Wood in their fight against their neighbor Sylvanian Minerals. However, with respect to Southwest Detroit, it is critical that we give a bit of background to the region’s cultural significance. For that, I am going to refer to Ms. Landrum’s own words, shared below:

A Historical Perspective of Wayne County Michigan’s Tri-Cities Region

By Theresa Landrum

During the first and second waves of the early 20th Century Great Migration, African Americans came from the South to Michigan’s communities of Ecorse (48229), River Rouge (48218), and Southwest Detroit (48217), AKA the “Triple Cities,” seeking factory jobs in the surrounding industries; U.S. Steel (formerly Great Lakes Steel), Ford Motor Company, Zug Island, Dana Corporation, and BASF Chemicals. During this time, many white men enlisted in the armed forces, and employers needed workers – so companies recruited southern African Americans to fill the jobs.

This region is one of the first African American settlements in Michigan after World War II, where Black people could actually buy homes, which helped establish metro Detroit’s Black middle class.

By the 1930s and 40s it was a self-sustaining area rich with opportunities, a mecca for Black-owned businesses, like gas stations, stores, jazz clubs, restaurants, hotels, laundromats, dry cleaners, and much more. It was also the home of Black professionals: doctors, pharmacists, policemen, florists, bakers, dentists, teachers, lawyers, and realtors thrived here, and was the site of one of Michigan’s first Black hospitals, Sidney A. Sumby Memorial Hospital, built by Black doctors.

The thread that ties these three communities/zip codes together is their formation of (what was then) Ecorse Township. Their division came after the City of Detroit expressed interest in annexing the River Rouge area. River Rouge incorporated into a village to ward this off, but Detroit was able to annex the Southwest 48217 area in 1922, thus segmenting Ecorse Township into three parts.

Fast forward to the 1950s, when Detroit’s landscape changed forever with the government’s declaration of “Eminent Domain” that claimed many African American homes for construction of the I-75 Expressway, which runs right through the center of Southwest Detroit’s (SWD) 48217 community. As I-75 was constructed, Ohio Oil (which officially became Marathon Oil in 1962) also increased its footprint in the area by acquiring nearly 100 acres and destroying a wetland habitat to expand its storage tank farm, which to date has over 100 storage tanks.

Marathon expanded again in 2007 with the announcement of the $2.2 billion Detroit Heavy Upgrade Project (DHOUP), where they would transition to refining dirty tar-sands from Alberta, Canada. This increased production to 120,000 barrels of crude per day, and thus increased the expulsion of harmful, pollutive emissions into the nearby neighborhoods. The project was completed in 2012, which also resulted in Marathon buying over 400 homes in the SWD 48217 (Oakwood Heights) area, further encroaching into residential communities.

 

Theresa was a recipient of the 2020 Community Sentinel Award for Environmental Stewardship, presented by FracTracker Alliance and Halt the Harm Network. Read more about her story here.

The Thoughts of Dawn & Doug Wood About Living Next to a Frac Sand Mine

I asked Dawn and Doug Wood to send me their thoughts on what it is like living next to Sylvanian Minerals and US Silica’s frac sand mine in South Rockwood, Michigan. I extracted (and clarified where necessary) the excerpts below that clearly illustrate their frustrations with their community, local, and federally elected officials, as well as the mine operators:

 

“[The] list of insurmountable mini-nightmares of living next to a frac sand mine [is endless at this point]. [Ten] years ago, they wanted to annex this quarry. [Our] village government has exercised no control over this corporation. [T]he village and the quarry refuse to do any air monitoring, [and] the residents who voted [in favor of] this quarry continue to be silent against any controls over this quarry. Residents seem to fear retaliation if they speak out against [the] village/quarry, [and to this day we] can’t quite explain the community’s lack of outrage … [We] have been shaking our head for years about this … It’s like the pandemic, it is invisible, yet it is killing people … [and] we are living in a polluted community, so our lungs are already taxed [which amplified the impacts of COVID]. [We] have been petitioning for air monitors and dust controls for four years, [and to add insult to injury] after ten years of this bull- – – -, the industry proposes Senate Bill 431 to totally strip communities of their controls, allowing mines to expand whenever they want, and new quarries to just be approved wherever they want [which has prompted the industry to correctly assume] they are entitled.  PURE MICHIGAN is the state slogan. We think that’s PURE BULL- – – -!!”

A Southwestern Detroit and Neighboring Monroe County Industrial Impacts Story Map

Southwest Detroit and neighboring South Rockwood in Monroe County could not be more different demographically, but one thing they have in common is a consistent battle with the extractives industry.

We built this Story Map to identify the industrial bad actors and census-level indicators such as mean annual income, and most importantly, to present a growing library of georeferenced drone footage and imagery we have collected over the years.

There have been dozens of other industrial projects foisted on the Triple Cities area of Detroit during this period and to the present day. The goal of this Story Map was to document with drone photography what this infrastructural buildout looks like from the air, how it has displaced and been incorporated directly into neighborhoods – and in the case of Sylvanian Mineral’s South Rockwood facility operating adjacent to good people like the Woods – how it has forever changed their quality of life, in the name of short-term profiteering.

We will continue to “infill” and expand this Story Map in the coming months and years, especially throughout greater Wayne County and the surrounding counties, as southeastern Michigan continues to act as a chokepoint for all manner of industrial and fossil fuel operators and activities. Furthermore, this collaborative effort with Ms. Landrum demands her community’s involvement and acceptance. We also strive to make this project a valuable resource for Michigan-based environmental NGOs and the state’s excellent journalists, like Steve Neavling at Detroit MetroTimes, and Evan Kutz at Great Lakes Beacon.

We plan to update this Map with more culturally significant imagery from the Detroit Public Library and The Wayne State Walter Reuther Library to include media focusing on labor strife, police violence, and the rich tradition and history of the region’s artistic heritage. Additionally, we will expand the depth and breadth of our drone imagery library, as well as continue our nascent effort to collect the stories of regional elders who speak to Southwest Detroit as one of the fulcrums of African American culture, and who explore how industrial colonialism has decimated much the area’s sense of place and community pride.

However, I am confident and hopeful that with progressive voices like Congresswoman Tlaib, committed journalists like those previously mentioned, and activists like Ms. Landrum passing the torch to a younger generation of activists, Southwest Detroit’s condition will take a turn for the better.

Footnote on Michigan’s Senate Bill 431

We wrote about the impacts that SB 431 would have on Michigan’s community and ecosystems last summer, when we were outlining some of the industry’s efforts in Statehouses across the country to weaken environmental regulations – and in some cases, the democratic process itself.  SB 431, in particular, would have made the process of operating a sand and gravel mine in Michigan much easier, by way of removing local participation. As the Metamora Land Preservation Alliance (MLPA) wrote in opposition to the bill, this legislation would have allowed for “uncontrolled gravel mining” throughout the state. However, in a bit of good news, a large coalition of Michigan environmental organizations was able to defeat this bill with the MLPA, writing the following on its Facebook page:

“KILLER GRAVEL BILLS DEFEATED!!! 

SENATE BILLS 431/849 DEFEATED! 

NO SENATE VOTE THIS YEAR – BILLS ARE DEAD!

After almost 18 months of battling in Lansing – Senate Bills 431 & 849 (sponsored by Senator Hollier (D) Detroit) – have been defeated. They will not be coming up for a vote this calendar year, and by Senate rules they will therefore expire. Thus ending, for this year, the dire threat of uncontrolled gravel mining, endangerment of our groundwater, and loss of control of how our communities grow and develop. Make no mistake – this was a serious threat to Michigan’s citizens and communities – and it was a no-holds-barred fight in Lansing.”

Wins for communities over corporations like this are rare, indeed, and should be celebrated.  Congratulations to the Woods, MLPA, and all the Michigan communities and organizations that pushed back against this bill. You are true Community Sentinels!

Industrial Impacts in Michigan:

A Photo Essay & Story Map

View map fullscreen

 

By Ted Auch, PhD, Great Lakes Program Coordinator

and

Theresa Landrum, of Detroit, Michigan, 48217. The Original United Citizens of Southwest Detroit; 48217 Community and Environmental Health Organization; Michigan Advisory Council on Environmental Justice; Sierra Club Detroit Chapter, MEJC Clean Air Council; Michigan PFAS action response team

Support this work

Stay in the know

 

Environmental Justice February Film Series

Watch and discuss

three Environmental Justice films

presented by FracTracker Alliance

Three soul-stirring films.

Dozens of communities separated by space, but connected in their struggles, from the hollers of West Virginia, to the industrial sacrifice zones of Philadelphia, to the Canadian plains, to the heart of the Amazonian jungle.

Immerse yourself in tales of resistance, resilience, and unity, as powerful characters fight for their right to thrive.

Then, digest the epic stories, discuss with other viewers, and connect with the inspiring individuals you’ve seen on screen directly in live Q&A sessions. 

We’ll provide discussion prompts and additional resources that you can use to type your thoughts in the discussion group,* or use with your friends and family Or, sit back and relax as you follow what others have to say.

Registration is offered on a sliding scale – meaning you pay what you want. You can even select the free option if you’d like.

*group details will be sent to you after registration



Browse the Films

On the Fenceline: A Fight for Clean Air

Watch the film on your own time, then attend the Live Q&A
Thursday, February 25th, 7pm




On the Fenceline: A Fight for Clean Air is a portrait of a resilient community and an urgent call for justice. After living on the fenceline of the east coast’s largest oil refinery and suffering from cancer, asthma, and COPD, residents have come together to fight for their right to breathe.

We follow Carol White and Sonya Sanders as they introduce us to the health problems created by the 150-year-old oil refinery in South Philadelphia. They are a part of an organization called Philly Thrive that is fighting to expose the health issues plaguing the community due to years of toxic air pollution. An explosion in June of 2019 caused the refinery to file for bankruptcy. With the refinery shut down, Philly Thrive rallies together to protest against the reopening of the site as an oil refinery.

Your optional donations will benefit FracTracker Alliance, On the Fenceline, and Philly Thrive in their efforts to promote environmental justice in fenceline and frontline communities, and protect their right to breathe.

Watch the film on your own time, then attend the Live Q&A

Thursday, February 25th, 7pm ET

After reserving your ticket, you will receive a link to watch the film any time between February 15th – February 27th. You will also receive an invitation to the live Q&A session on February 25th at 7pm ET, featuring:

Rodney Ray – film protagonist; Philly Thrive activist. Rodney is a community leader and a life-long resident of Grays Ferry, Philadelphia. He was formerly employed as a foreman at the Philadelphia Energy Solutions gasoline refinery.

Kristen Harrison, Cinematographer / Editor. Kristen can be found with a camera in her hand at most hours of the day. She is the former photo editor with The Ithacan and former photo intern at The Morning Call. Previous film works include “At the Table,” a short documentary on the life of Father Divine and the work of the International Peace Mission Movement.

Alisha Tamarchenko, Cinematographer / Editor. Through her work, Alisha explores the dynamics of change through stories of people confronting and shifting unsustainable ways of living. She has produced and directed three other short documentaries. “Bruce & Daryl” follows the relationship of an older gay couple as they navigate aging and loss. “Beyond the Waiting Room” tackles the mental health challenges of the veterinary profession. “eCoexist” documents the work of a sustainability organization in Pune, India. Her work has screened in Ithaca, Dallas, Alaska and the UK.

HARD ROAD OF HOPE

We’re extending the availability of Hard Road of Hope to the end of February!

Donate to access the film and the Live Q&A that took place on Thursday, February 11th, 7pm

All proceeds go to Environmental Justice initiatives led by the filmmakers and FracTracker.




This documentary from Act Out’s Eleanor Goldfield takes you into the often forgotten hills and hollers of West Virginia, where a radical past inspires a resilient present and builds towards a better future. More than a microcosm of capitalist oppression and corruption, West Virginia stands as an example of radical resolve – in the face of dying King Coal and rising King Fracking.

“Hard Road of Hope” amplifies the voices of these forgotten and proud rednecks – the ones carrying the torch from the first rednecks who tied on red bandanas and marched for their basic human rights. It seeks to hold a mirror up to all sacrifice zones, to the isolated folks in pain across the nation. This is an American story, an American history – and for the future of all the people who call this place home, this is the path we must all walk if we want to thrive, and indeed, survive.

It’s a Hard Road of Hope, a pot-holed, precarious and puddled path past the Kings of coal and gas, but they keep walking. We would do well to walk with them for a while – and listen.

Your optional donations will benefit FracTracker Alliance, Hard Road of Hope, and Keeper of the Mountains, an organization that educates and inspires people to work for healthier, more sustainable communities and an end to dependency on fossil fuels, mountaintop removal, and other forms of extraction.

We’re extending the availability of Hard Road of Hope until the end of February! Donate to access the film any time and the recorded the Q&A discussion.

The discussion took place on February 11th, moderated by Ted Auch, Great Lakes Coordinator, FracTracker Alliance, with panelists:


Eleanor Goldfield is a creative creative radical, journalist and filmmaker.

Her work focuses on radical and censored issues via photo, video and written journalism, as well as artistic mediums including music, poetry and visual art. She is the host of the podcast, Act Out, co-host of the podcast Common Censored along with Lee Camp, and co-host of the podcast Silver Threads along with carla bergman. 

Her award-winning documentary film, “Hard Road Of Hope” is about West Virginia as both resource colony and radical inspiration.

She also assists in frontline action organizing and trainings.

 


Paul Corbit Brown, president of Keepers of the Mountain​. Paul has dedicated most of his life to environmental and human rights photography. To date, Paul gives Kayford Tours, travels to educate others about the adverse effects of Mountain Top Removal, and speaks internationally at shareholders meetings on the importance of divestment.

Four Indigenous leaders embark on an extraordinary trans-continental adventure from the Canadian Boreal forests to deep into the heart of the Amazonian jungle to unite the peoples of North and South America and deepen the meaning of “Climate Justice.” 

The Condor & The Eagle documentary offers a glimpse into a developing spiritual renaissance as the film four protagonists learn from each other’s long legacy of resistance to colonialism and its extractive economy. Their path through the jungle takes them on an unexpectedly challenging and liberating journey, which will forever change their attachment to the Earth and one another.

The donations collected will support FracTracker Alliance and the film impact campaign “No More Sacrificed Communities” and be used to keep supporting the incredibly important work of our film protagonists. Please give generously according to your financial situation.

Screening and Discussion

Thursday, February 18th, 7pm

Come together virtually to watch the award-winning documentary, “The Condor & The Eagle” and follow-up discussion featuring protagonists from the film:

Patricia Gualinga. Patricia has played an important role in the fight for indigenous rights. Gualinga is a spokeswoman for many environmental projects. Gualinga works to protect the Kichwa People of Sarayaku community from human rights violations resulting from oil extraction projects by Chinese companies on their land. She is a spokesperson for the indigenous-led proposal ‘Kawsak Sacha’, or ‘Living Forest’, that calls for legal protection of the Ecuadorian Amazon.

Casey Camp-Horinek. Because of Casey’s work the Ponca Nation is the first Tribe in the State of Oklahoma to adopt the Rights of Nature Statute, and to pass a moratorium on Fracking on Tribal Lands. Casey was also instrumental in the drafting, and adoption of the first ever International Indigenous Women’s Treaty protecting the Rights of Nature.
Melina Laboucan-Massimo. Cree from Northern Alberta, Co-Founder of Indigenous Climate Action where she is the Program Director, and Founder of Sacred Earth Solar. She is the host of TV series Power to the People. Facing firsthand impacts of the Alberta tar sands in her traditional territory, Melina has been a vocal advocate for Indigenous rights. For over a decade, Melina worked as a Climate and Energy Campaigner with Greenpeace Canada and the Indigenous Environmental Network internationally.

Yudith Azareth Nieto, Film Protagonist – Yudith is a queer Mexican-American artist, interpreter, and organizer, enjoying spending time in the bayous of Louisiana working on projects like CRY YOU ONE, Amor y Solidaridad, a solidarity house in support of undocumented Transwomen, and recently BanchaLenguas, a Language Justice interpreters collective. Currently, she is part of the core leadership circle for Another Gulf Is Possible and a youth organizer with Los Jardines Institute. For over five years, Yudith has been fighting for the rights of her fenceline community in Manchester, Houston in collaboration with T.E.J.A.S and was named one of Grist.org 50 Fixers of 2018.

Bryan Parras. Film Protagonist – Xicano Houston, TX – Healthy Communities Organizer with Sierra Club and Co-Founder of t.e.j.a.s. He is a longtime environmental justice advocate based in Houston, TX. He co-founded the Librotraficante movement, serves as an Advisor to the Gulf Coast Fund, and sits on the board of the Environmental Support Center. Bryan was recently awarded a Gulf Coast Fellowship and has been working to help organizations use media for education, organizing, and advocacy.

Here’s how to get the most out of the FracTracker EJ February film series:

  • Browse the films being offered and choose your own adventure.
  • Secure your tickets to one, two, or all three of the films by following the links under each film. You must secure the tickets for each film separately because they are hosted on different platforms.
  • Tickets are offered at a sliding scale – meaning you pay what you want. You can even select the free option if you’d like.
  • We’ll email you with the link to watch the film. Two of the films are available for you to watch on your own time before the live Q&A sessions. One of the films is a live screening followed by a panel featuring the film’s protagonists.
  • Join the discussion group to interact with other viewers. We’ll provide discussion prompts and additional resources to inspire and motivate you to make the most of what you’ve just experienced through the films. Group details will be sent out to you upon registration.
  • Attend the Q&A sessions and dialogue directly with the filmmakers and film protagonists. They’re eager to connect with you! Or feel free to just sit back and relax as you watch the live events.
Utica and Marcellus shale plays in the Appalachian Basin map

Fracking Waste in the Appalachian Basin – A Story Map

 

The production of fracking waste in the Appalachian Basin puts public health and safety at risk.

 

Fracking produces more than just oil and gas — billions of gallons of highly toxic waste are also created in the process. Regulatory loopholes have led to limited oversight into how this waste is tracked and treated, putting public health and safety at risk.

The maps below explore issues related to fracking waste from the Marcellus and Utica Shale regions of Pennsylvania, Ohio, New York, and West Virginia.

We suggest viewing this map fullscreen (click the link to do so)

View the map fullscreen

 

This mapping platform is an evolving tool based on available data — yet the opaqueness of the fracking industry limits our ability to map and analyze the full scope of the problem of fracking waste in the Appalachian Basin.

Unfortunately, even after sifting through thousands of data points, we’re left with many outstanding questions — what are the chemical components of the waste created? Where is it all sent? Where are its byproducts sent? What facilities are being planned and proposed? How much illegal dumping occurs?

The production of fracking waste in the Appalachian Basin will continue to create environmental and public health threats for decades after the industry leaves the region. Wells can continue to generate wastewater for years and contaminated equipment sent to landfills will leach toxins into the environment. Furthermore, with the industry’s history of failing to restore land after it has been used for oil and gas operations, we can expect abandoned fracking sites to become an increasing source of pollution in the Appalachian Basin in the coming decades. It’s imperative that the public have access to accurate and detailed data on fracking waste to protect the health of workers and residents.

By Erica Jackson, Community Outreach & Communications Specialist, FracTracker Alliance

Support this work

Stay in the know

 

Channels of Life: The Gulf Coast Buildout in Texas

It’s been a little over a year since I visited the Texas Gulf Coast to document the oil, gas, and petrochemical landscape with our partners at LightHawk and Scott Humphries, an amazing pilot and Houston native.

Much has happened since then – in regard to and because of – the Gulf Coast’s petrochemical industry.

The fossil fuel landscape along the Gulf Coast is broad, and its impact is heavy.

The area has seen a massive build out over the last five years. New plastics and steel manufacturing facilities and pipelines from the Permian Basin that transport crude to ever-expanding tank farms and marine terminals – all with the blessings of local economic development groups and local government, despite known present and potential hazards.

As these developments continue, communities and workers pay the price. An incident in early December, 2020 left workers injured after a condensate fire at a Citgo tank farm in Corpus Christi. Before that, a pipeline explosion on August 20th in the Corpus Christi Ship Channel resulted in four deaths, with only two of those bodies recovered.

Channels of Life, below, is a short video looking at what is already on the ground, and what is on the horizon. Whether you are pleasure-boating in the channels or driving down the highway, you only see the edge of industrial sprawl that already exists. The depth of the incursion is not visible from the ground. Further down in an interactive Story Map, we give you a rare look from above, while pinpointing various incidents and facilities of concern. Partnering with LightHawk, we flew from Port Aransas, up the La Quinta Channel to the Nueces Delta, and ending at Refinery Row, giving you a bird’s-eye view of the sprawling fossil fuel landscape.

How much more industrial saturation can the Coastal Bend’s public health and ecosystem withstand before it is all sacrificed?

Is it destined to become a sacrifice zone for increasing corporate wealth and prestige?

 

 

Channels of Life

In many parts of Texas – as well as in Louisiana and New Mexico – oil, gas, and petrochemical facilities abut schools, backyards, and playgrounds. The Gulf Coast contains 95% of the country’s ethylene capacity and roughly half of the country’s petroleum refining and natural gas processing capacity. This development has propelled a new wave of petroleum and petrochemical infrastructure in recent years. There are 129 planned or recently completed petrochemical facilities in TX and LA alone.

This buildout has enormous consequences for the country’s greenhouse gas emissions, including intensifying climate change; increasing production of (often radioactive) waste and the need for its disposal; and discharging dangerous pollution into frontline communities where health has already been compromised by industry activities.

As the sacrifice builds and the losses mount, economic development corporations advertise the area as prime real estate for more facilities and infrastructure – even as markets steadily move away from fossil fuels. Exports are a tenuous lifeline for an industry drowning in an oversupply of oil and gas, but advocates like the Port of Corpus Christi Authority insist on proposing, financing, and constructing new crude oil and liquefied natural gas (LNG) export terminals along the Gulf Coast, including the BlueWater and GulfLink terminals.

Even with access to global markets, the outlook for this Gulf Coast petrochemical expansion doesn’t look great. Countries that planned to import the US’ fossil fuels are withdrawing interest, citing climate concerns. Major projects are being abandoned, like the petrochemical facility Project Falcon that SABIC had planned to build near Aransas Pass. Frontline communities that have suffered devastating health impacts from the industry for too long are calling out environmental racism and causing major delays for new facilities.

These Texan sites are further captured in the Story Map below, as are the footprints of countless other existing and proposed petrochemical infrastructure sites, from the frac sand mines south of San Antonio down into Corpus Christi Bay, the mushrooming industry along the La Quinta Channel, up the Gulf Coast to Freeport, and finally along the always hectic Houston Ship Channel that empties out into Galveston Bay.

Group shot in front of airplane

Left to Right: Corpus Christi native and Coastal Alliance to Protect Our Environment (CAPE) member Dewey Magee, FracTracker Alliance’s Ted Auch, and LightHawk pilot Scott Humphries stand outside Scott’s Beechcraft Bonanza A-36 at McCampbell-Porter Airport in Aransas Pass, TX, November 11th, 2019. Photo by Errol Summerlin

 

Skyline landscape shot of Corpus Christi, TX

The View of Corpus Christi’s Petrochemical Corridor along La Quinta Channel and Tule Lake Shipping Channel from 200’ above McCampbell-Porter Airport in Aransas Pass, TX, November 11th, 2019. Photo by Ted Auch, FracTracker Alliance

 

I reached out to pilot and native Houstonian Scott Humphries for his thoughts on what he expected and what he gleaned from our flight. He wrote the following:

Question #1: What about our proposed flight interested you as a Texan and/or Houstonian – or just more generally – what interested you about this mission?

I’ve always tried to be environmentally conscious, and always try to have, “think globally, act locally” rummaging around in my head, but this mission (and affiliating with LightHawk generally) presented an opportunity for me to try to (hopefully) have a little more impact than just personally recycling, outlawing Styrofoam cups at our office, etc. Separately, as a longtime Houstonian, I’ve always been proud to live and work in what many refer to as the “Energy Capital of the World.” This mission seemed a useful way to do some small part to help make sure that title continues to be held responsibly.

Question #2: After conducting the flights, or as they were happening, did you learn anything, or have any thoughts that surprised you or realizations about anything particular?

I have flown along the Gulf Coast (including to/from Houston/Corpus Christi) many, many times, and if you’d asked me before this mission, I would have said, ‘Sure, there’s a decent amount of industry along that part of the coast.’ What surprised me while we were flying was two things: (1) there’s not just a decent amount of industry along that part of the coast; rather, along that route, even flying low, you’re rarely – if ever – out of sight of a significant facility of some kind, and (2) the size of the facilities – in other circumstances I’d have been flying much higher and wouldn’t get a good sense of the size of the pads.  Flying as we were at just over 1000′, it was striking how massive the various plants were, both in Corpus Christi Bay and along the coast.

Another perspective on this flight and the area we flew over comes from Kevin Sims, Aransas Bay Birding Charters Operator whose Whooping Crane and Pink Spoonbill photos we feature in the story map below. Kevin has been plying the waters in and around Aransas Wildlife Refuge since 1972, and when I contacted him about using some of his photos, he told me the following:

“We need the desalination plants, but the planned discharge points are going to cripple our ecology and the business that rely on it for tourism. They could’ve discharged offshore, but instead they are discharging into the bay, and if it gets too salty the crab populations will plummet, and everything around here depends on crabs and shrimp. If we have a constant influx of brine it could really cripple us. I went to a fantastic meeting from Texas A&M, and their science told them that if red fish larvae migrated into the [Aransas Pass] shipping channel and hit a wall of salty water, they wouldn’t go further, and their population would crash. But despite these facts, they’ve chosen to discharge into the La Quinta Channel, and that is bad news! They were having fairly regular meetings on all of these proposals prior to COVID, but once COVID hit, they went all remote, and less people knew when the meetings were, and the meeting details weren’t widely disseminated … So, the next thing we knew, everything was passed, and they’re gonna [sic] go ahead and do [all of] it. 

My perspective comes from a lifetime of fishing and observing the Whooping Crane, and watching them progress from 157 eighteen years ago, to 507 at the present time. Well, I feel this will threaten an endangered species that they’ve been trying to bring back from the brink of extinction since the 1940s. I can remember my dad showing me the cranes in the mid-70s, and there were only 52-55. All of the projects you are mapping have the potential to decimate all the progress made, not to mention money spent on Whooping Crane recovery. From my perspective, it’s a catch-22, ‘cause [sic] the big cities take the water out of the river, and they don’t have the inflows into the bays that they did in the past. We also don’t have the rains that we used to have. The desalination plants would relieve some of that pressure if they would just put that brine offshore. The other species of concern to my industry is the Pink Spoonbills, but the Whooping Crane is the main draw.”

Channels of Life: The Gulf Coast Buildout in TX

A Story Map

This Story Map illustrates the impacts of oil and gas infrastructure from San Antonio down to Corpus Christi, and then up the Gulf Coast to Houston.

The map displays aerial photographs of infrastructure, from frac sand mines and refineries, to chemical plants and offshore drill rig construction sites. This map includes CO2 emissions from oil and gas infrastructure from 2010 – 2018 (weighted by total CO2 during this period in orange), and/or oil refineries and their myriad products (weighted by capacity in black [barrels/day oil equivalents]).

The Story Map also presents detailed information and locations for proposed petrochemical infrastructure in the Corpus Christi Bay region, courtesy of Errol Summerlin and our partners at Coastal Alliance to Protect Our Environment (CAPE). These proposals include dredging projects needed to accommodate more traffic from larger tanker ships, as well as desalination facilities that would collectively intake 758 million gallons of Corpus Christi Bay water each day, and discharge 507 million gallons of brine per day, with an average of 95 and 64 million gallons of desalinated water produced daily, respectively.

The perforated yellow line is the flight path we took with our LightHawk partners. When the viewer scrolls into any given region, they will see SkyTruth incident alerts within five miles of our flight path. The two examples cited at the beginning of this article are just a couple of the nearly 760 such incidents in just the Corpus Christi Shipping Channel since 2011, according to data provided by SkyTruth.

The most recent data in this map is Whooping Crane locations and number counts in TX as of November 2020, courtesy of The Cornell Lab of Ornithology’s eBird data portal. This data speaks to the concerns of Mr. Sims and many of his colleagues who rely on the Whooping Crane’s attraction to birders internationally, and it also highlights that the projects photographed and in the works across Corpus Christi Bay will not just negatively affect the human communities, but will have far reaching impacts on the ecosystems of the western Gulf, and the industries that have relied on these ecosystems for all manner of ecosystems services.

We recommend viewing this map in full screen

 

Looking forward

Decades of oil and gas development have created a dependency on extractive industries, which has in turn hindered community health and stability.

The Port of Corpus Christi’s controversial dock expansion and Harbor Bridge replacement project at the southern end of Refinery Row has taken over community land and eclipsed their fight to protect their neighborhoods and their public health. Even after an environmental review, the preferred route cuts through these neighborhoods that are surrounded by industry, interstates, and waste treatment facilities – isolated from other residences, and subjected to heavy pollution, noise, and constant hazard.

But with interest and investments declining in the fossil fuel industry and overproduction keeping prices low, the future of the Gulf Coast, its people, environment, and industrial landscape is uncertain – but resistance to extractive industry is strong.

Several activists and environmental coalitions are fighting this project and the industrial onslaught for the health of their communities. For more information on how to support their vision, visit our friends at Coastal Alliance to Protect our Environment (CAPE) and Texas Environmental Justice Advocacy Services (TEJAS).

 

Thank You

This video, Story Map and article were produced with much gratitude and appreciation for our partners at LightHawk, as well as the support and resources of Scott Humphries, Kevin Sims, and Errol Summerlin.


Support this work

Stay in the know

CA Setbacks Map

People and Production: Reducing Risk in California Extraction

Executive Summary

New research shows that low-income communities and communities of color that are most impacted by oil and gas extraction (Frontline Communities) in California are at an elevated risk for preterm birth, low birth weight, and other negative birth outcomes. This is in addition to the elevated risks of cancer; risks for respiratory, cardiovascular, and pulmonary disorders; and risks for eyes, ears, nose, throat, and skin irritation that Frontline Communities face, among others. Public health interventions including setback requirements for oil and gas drilling are necessary to address the environmental health endemics documented in Frontline Communities. 

This report focuses on the two immediate stakeholders impacted by oil and gas well drilling setbacks: Frontline Communities and oil and gas operators. First, using U.S. Census data this report helps to define the Frontline Communities most impacted by oil and gas extraction. Then, using GIS techniques and California state data, this report estimates the potential impact of a setback on California’s oil production. Results and conclusions of these analyses are outlined below.

  • Previous statewide and regional analyses on proximity of oil and gas extraction to various demographics, including analyses included in Kern County’s 2020 draft EIR, have inadequately investigated disparate impacts, and have published erroneous results.
  • This analysis shows that approximately 2.17 million Californians live within 2,500’ of an operational oil and gas well, and about 7.37 million Californians live within 1 mile. 
  • California’s Frontline Communities living closest to oil and gas extraction sites with high densities of wells are predominantly low income households with non-white and Latinx demographics.
  • The majority of oil and gas wells are located in environmental justice communities most impacted by contaminated groundwater and air quality degradation resulting from oil and gas extraction, with high risks of low-birth weight pregnancy outcomes.
  • Adequate Setbacks for permitting new oil and gas wells will reduce health risks for Frontline Communities.
  • Setbacks for permitting new oil and gas wells will not decrease existing California oil and gas production.
  • Phasing out wells within setback distances will further decrease health risks for Frontline Communities.
  • Phasing out wells by disallowing rework permits within a 2,500’ setback distance will have a minimal impact on overall statewide oil production, estimated at an annual maximum loss of 1% by volume.
  • Setbacks greater than 2,500’ in combination with other public health interventions are necessary to reduce risk for Frontline Communities.
  • Based on the peer reviewed literature, a setback of at least one mile is recommended.

 

Introduction

The energy focused on instituting policies to protect the health of Frontline Communities in California from the negative impacts of oil and gas extraction is at an all-time high. In August 2020, Assembly Bill 345 was heard in the State Senate’s Natural Resources Committee, but was blocked from reaching the Senate floor for a vote. The bill would have required the Geologic Energy Management Division in the Department of Conservation (CalGEM) to establish a minimum setback distance between oil and gas production and related activities and sensitive receptors like homes, schools, and hospitals. While this strong effort to establish health and safety setbacks through the state legislature may have failed, the movement has paved the way for local actions. Additionally, California is in the midst of a statewide public health rule-making process to address the health impacts of oil and gas extraction currently experienced by Frontline Communities. 

In related advocacy, Frontline Community groups in California recommended a minimum 2500’ setback based on scientific studies, including a 2015 report by the California Council on Science and Technology which identified “significant” health risks at a distance of one-half mile from drill sites. A recent grand jury report from Pennsylvania recommended 5,000’ setbacks, with 2,500’ as a minimum requirement to address the most impacted communities. Additionally, the state of Colorado has recently adopted 2,000’ setbacks for homes and schools, while the existing 2,000’ setback has had minimal impacts on oil and gas production. 

In September 2020, Governor Newsom declared the deadline for the first draft of the pre-regulatory rule-making report will be the first of January 2021. FracTracker Alliance has therefore completed an updated assessment of  the Frontline Communities most impacted by oil and has projected the potential impact on oil and gas extraction operations. An interactive map of oil and gas activity and Frontline Communities is shown below in Figure 1. The map identifies the operational (active, idle, and new) oil and gas wells located within 2,500’ and 1 mile buffer zones from sensitive receptors, defined as homes, schools, licensed daycares and healthcare facilities.

The impacts of oil and gas drilling do not stop at 2,500’, as regional groundwater contamination and air quality degradation of ozone creation and PM2.5 concentrations are widespread hazards of oil and gas extraction. Phasing out wells within 2,500’ of homes will reduce the negative health effects for the Frontline Communities bearing the brunt of the risks associated with living near oil and gas wells, as well as reduce regional environmental hazards. These risks include over 24 categories of health impacts and symptoms associated with 14 bodily systems, including eyes, ears, nose, and throat; mental health; reproduction and pregnancy; endocrine; respiratory; cardiovascular and pulmonary; blood and immune system; kidneys and urinary system; general health; sexual health; and physical health among others. The most regularly documented health outcomes include mortality, asthma and respiratory outcomes, cancer risk including hematological (blood) cancer, preterm birth, low birth weight and other negative birth outcomes.

The interactive map below in Figure 1 shows the operational oil and gas wells located within 2,500’ of sensitive receptors, including homes, schools, healthcare facilities, prisons, and permitted daycares. Overall in the state of California, 16,724 operational (8,618 active, 7,786 idle, and 320 new) wells are located within the 2,500’ setback. Of the total ~105,000 operational (62,000 active, 37,400 idle, and 6,000 new), about 16% are within the setback. These wells accounted for 12.8% of the total oil/condensate produced in California in 2019. Table 1 below shows the counties where these wells are located, by well permit status. It bears noting that these figures on well location and production represent only a snapshot of current industry activity. As discussed below, current setback proposals would provide a phase out period for existing wells that would greatly reduce any immediate impact on production. Further, directional and even horizontal drilling is common in California, meaning operators can relocate their surface drilling equipment to safer distances and still access oil and gas reserves to maintain production.   

 

Table 1. Status of wells within the 2,500’ setback zone, by county. The table shows the counts of wells located within the 2,500’ setback from homes and other sensitive receptors, broken out by the status of the wells.

  Well Count by Status
County Active New Idle
Kern 3,501 234 2,171
Los Angeles 2,580 29 3,006
Orange 914 13 816
Ventura 534 7 600
Santa Barbara 198 17 241
Los Angeles Offshore 168 2 51
Glenn 133   76
San Joaquin 97   71
Monterey 88 9 95
Fresno 86 6 137
Sutter 73   71
Tulare 65 1 30
Colusa 47   80
Tehama 38   34
Solano 30 0 65
Sacramento 22 1 38
San Bernardino 14   29
Humboldt 12   11
Alameda 7   3
Contra Costa 5 1 16
San Benito 3   4
San Luis Obispo 2   14
Yolo 1   13
Grand Total 8,618 320 7,786

 

View map fullscreen

Figure 1. Map of California operational oil and gas wells with 2,500’ and one mile setback distances. One mile setbacks are included as a minimum recommendation of this report based on peer reviewed literature. This report recommends the state of California consider one mile as a minimum setback distance to protect Frontline Communities. As you zoom into the map additional, more detailed layers will appear.

Methods (Quick Overview)

In this article we conducted spatial analyses using both the demographics of Frontline Communities and the amount of oil produced from wells near Frontline Communities. This assessment used CalGEM data (updated 10/1/20) to map the locations of operational oil and gas wells and permits, as shown above in Figure 1. The analyses of oil production data utilized CalGEM’s annual production data reporting barrels of oil/condensate. GIS analyses were completed using ESRI ArcGIs Pro Ver. 2.6.1 with data projected in NAD83 California Teale Albers.

Wells within 2,500’ and 1 mile of sensitive receptors were determined using GIS techniques. This report defines sensitive receptors as residences, schools, licensed child daycare centers, healthcare facilities. Sensitive receptor datasets were downloaded from California Health and Human Services, and the California Department of Education

We used block group level “census designated areas” from American Community Survey (2013-2018) demographics to estimate counts of Californians living near oil and gas extraction activity. Census block groups were clipped using the buffered datasets of operational oil and gas wells. A uniform population distribution within the census blocks was assumed in order to determine the population counts of block groups within 2,500’ of an operational oil and gas well, 2,500’ to 1 mile from an operational well, and beyond 1 mile from an operational well. Census demographics and total population counts were scaled using the proportion of the clipped block groups within the setback area (Areal percentage = Area of block group within [2,500’; 2,500’-1 mile; Beyond 1 mile] of an operational well / Total area of block group). 

This conservative approach provided a general overview of the count and demographics of Californians living near extraction operations, but does little to shed light on most impacted Frontline Communities; specifically urban areas with dense populations near large oil fields. More granular analyses at the local level were necessary to address the spatial bias resulting from non-uniform census block group dimensions and population density distributions, as well as the distribution of operational oil and gas wells within the census block groups. Consequently, we conducted further analysis utilizing customized sample areas for each oil field, which were selected manually using remote sensing data. Full census blocks were used to summarize the actual areas and the urban populations constituting the majority of Frontline Communities. 

In the localized, static maps that follow, the census blocks included in the population summaries are shown in pink, while the surrounding census blocks are shown in blue. As seen in Table 2, census data for this initial environmental justice assessment was limited to “Race” (Census Table XO2), “Hispanic or Latino Origin” (Census Table XO3) and several other indicators including “Annual Median Income of Households” (Census Table X19) and “Poverty” (Census Table X17).

Results and Discussion

California Statewide Analysis

Demographics

As a baseline, it is important to provide statewide estimations to track the total number of Californians living near oil and gas extraction operations. This analysis showed that about 2.17 million Californians live within 2,500’ of an operational oil and gas well, and about 7.37 million Californians live within 1 mile. The demographics of these communities at and between these distances is shown below in Table 2, alongside demographic estimates of the California population living beyond 1 mile from an oil and gas well. Census block groups closer to oil and gas wells have higher proportions of Non-white (calculated by subtracting “White Only” from “Total Population”) and Latinx (“Hispanic or Latino Origin”) populations, as well as higher proportions of low-income households, based on both median annual income and poverty thresholds. The analysis show that communities living closer to oil and gas wells have higher percentages of non-white and Latinx populations when compared to the population living beyond 1 mile from an operational oil and gas wells. Communities closer to oil and gas wells are also more likely to be closer to the poverty threshold with lower median annual household incomes.

 

Table 2. The table shows statewide demographics at multiple distances from operational oil and gas wells. Included are estimates of the non-white and Latinx proportions of the populations within set distances from operational oil and gas wells. The percentage of populations within several poverty thresholds were also summarized, along with median annual household income and age.

  Distance from an operational oil and gas well
Indicators of Disparity Within 2,500′ 2,500′ – 1 Mile Beyond 1 Mile (Statewide)
Demographics:  Non-white 44.44% 43.56% 39.16%
Demographics:  Latinx 43.25% 44.97% 37.79%
Poverty:  Under Poverty Threshold 15.01% 14.97% 14.12%
Poverty:  Under 1.5X Poverty Threshold 24.31% 24.85% 23.25%
Poverty:  Under 2X Poverty Threshold 33.59% 34.25% 32.17%
Median Annual Household Income < $40k 30.09% 30.73% 28.72%
Median Annual Household Income <$75k 53.53% 54.36% 51.76%
Age:  0-5 years 6.08% 6.12% 6.37%
Age:  <18 years 21.54% 22.12% 23.39%
Age:   65+ 13.17% 13.11% 13.68%
Demographics: White only 55.56% 56.44% 60.84%

 

CalEnviroScreen

CalGEM operational wells data was also overlaid on CalEnviroScreen 3.0 (CES) indicators of environmental health. CES is provided by the Office of Environmental Health Hazard Assessment (OEHHA), on behalf of the California Environmental Protection Agency (CalEPA).

CalEnviroScreen data, like U.S. Census data, is also aggregated at the census block group level. While this data can also suffer from the same spatial bias as the statewide analysis above, CES is still very useful to visualize and map the regional pollution burden to assess disparate impacts. The results of the analysis are shown below in Table 3. Counts of operational oil and gas wells for ranges of CES percentile scores. Higher percentiles represent increased environmental degradation or negative health impacts as specified. Of note, the majority of operational oil and gas wells are located in census tracts with the worst scores for air quality degradation and high incidence of low birth weight.

The large number of wells located in the 60-80th percentile rather than the worst (80-100th percentile) is a result of spatial bias, and the many factors that are aggregated to generate the CES Total Scores. These factors include relative affluence and other indicators of socio-economic status. The majority of the worst (80th-100 percentile for Total CES Score) census block groups are located in low-income urban census block groups, many in Northern California cities that do not host urban drilling operations.

This spatial bias results from edge effects of census block groups, where communities living near oil and gas extraction operations may not live in the same census block groups as the oil and gas wells, and are therefore not counted. The authors would recommend future analyses be designed that use CES data to assess disparate impacts in the census block groups most impacted by oil and gas extraction. Neighboring census block groups that do not physically contain operational wells still suffer the consequences of proximity.

For the asthma rankings, the majority of wells are located in the best CES 3.0 percentile (0-20th percentile) for Asthma. While there is much urban drilling in Los Angeles, the spatial bias in this type of analysis gives more weight to the majority of oil and gas wells that are located in rural areas, which historically have much lower asthma rates. This is a result of the very high incidence of asthma in cities without urban drilling such as the Bay Area and Sacramento (80-100th percentile).

 

Table 3. Counts of operational oil and gas wells in select CalEnviroScreen 3.0 indicators census tracts.

  Operational Well Counts by CES3.0 Percentile
  0-20%ile 20-40%ile 40-60%ile 60-80%ile 80-100%ile
PM2.5 Air Quality Degradation 5,708 4,237 16,614 7,089 69,987
Ozone Air Quality Degradation 2,238 5,435 6,107 9,898 79,957
Contaminated Drinking Water 1,019 1,675 53,452 6,214 41,206
High Incidence of Low Birth Weight 10,186 13,368 14,995 3,236 58,036
High Incidence of Asthma 40,247 19,827 18,902 4,867 19,792
Total CES 3.0 1,583 5,756 15,671 65,356 12,985

 

Spatial Bias

Using census data to assess the demographics of those communities most affected by oil and gas drilling can produce misleading results both because of how census designated areas (census tracts and block groups) are designed and because of the uneven distribution of residents within tracts. For example, the majority of Californians who live closest to high concentrations of oil and gas extraction, such as the Kern River oil field, do so in residentially zoned cities and urban settings. In most Frontline Communities the urban census designated areas do not actually contain many wellsites. Instead urban census designated areas are located next to the “estate” and “industrial” (including petroleum extraction) zoned census designated areas that contain the well-sites. 

Estate and industrially zoned census designated areas contain the majority of well-sites in Kern County. They are much larger than residentially zoned areas with very low population densities and higher indicators of socioeconomic status. Population centers within the estate zoned areas are often located on the opposite end and farther from well sites than the lower income communities and communities of color living in the neighboring, residentially-zoned census designated areas (e.g., Lost Hills and Shafter). In these cases the statewide demographic summaries above misrepresent the Frontline Communities who are truly closest to extraction operations. Localized environmental justice demographics assessments can also be manipulated in this way.

For instance, The 2020 Kern County draft EIR (chapter 7 PDF pp. 1292-1305) used well counts aggregated by census tracts to conclude that wells in Kern County were not located in disparately impacted communities. Among other requirements for scientific integrity, the draft Kern EIR fails to take into account how the shape, size, and orientation of census designated areas affect the results of an environmental justice assessment. In addition, the EIR uses low-resolution data summarized at the census tract level. Census tracts are much too large to be used to investigate localized health impacts or disparities. Using these blatantly inadequate methods, the draft EIR even claimed Kern County’s oil and gas wells are predominantly located in higher income, white communities, which is outright wrong. For more specific criticisms of the Draft EIR read the FracTracker analysis of the 2020 Kern County EIR.

Results from these types of analyses can be very misleading. Using generalized methods of attributing wells to specific census designated areas does little to identify the communities most impacted by the localized environmental degradation resulting from oil and gas extraction operations, particularly when large census areas such as census tracts are used. 

This report therefore takes a different approach, focusing directly on California’s most heavily drilled communities. To understand who and which communities are most harmed by the large-scale industrial oil and gas extraction operations in California, spatial analyses must be refined to focus individually on the communities closest to the highest density extraction operations. For the analyses below, census block groups within 2,500’ of ten different Frontline Communities, all located near some of California’s largest oil and gas fields, were manually identified. The selected block groups’ major population centers were all located within the 2,500’ buffers. Unlike the statewide analysis above, the localized analyses below do not assume homogenous population distributions. Using these methods, FracTracker has identified and demographically described some of the most vulnerable California communities most at risk to the impacts of oil and gas extraction. In the maps below, the “case” census block groups used to generate descriptive demographic summaries of at risk communities bordering extraction operations are outlined in pink, while surrounding census block groups are outlined in light blue.

Well Density

The analyses above are important to understand some of the public health risks of living near oil and gas drilling in California. Yet the methods above used statewide aggregation of well counts and static buffers that do not not show the spectrum of risk resulting from well density. Numerous Frontline Communities in California are within 1 mile or even 2,500’ of literally thousands of oil and gas wells. Conversely, there are many census areas in California that have been included within the spatial analysis of the full state, as described above, located near a single low producing well. Therefore the above methods conservatively summarize demographics and dilute the signal of disparate impacts for low income communities of color. Those methods are not able to differentiate between such scenarios as living near one low-producing well in the Beverly Hills golf course versus living in the middle of the Wilmington Oil Field. 

As with any toxin, the dosage determines the intensity of the poison. In environmental sciences, increasing exposure to toxins by increasing the number of sources of a toxin can increase the dosage and therefore the severity of the health impact. The impact of well density has been documented in numerous epidemiological studies as a significant indicator of negative health outcomes, including recently published reports from Stanford University and The University of California – Berkeley linking adverse birth outcomes with living near oil and gas wells in California (Tran et. al 2020, Gonzalez et. al 2020). Therefore the rest of this report focuses on the Frontline Communities living near large oil extraction operations–i.e., oil fields with high densities of operational oil and gas wells. 

 

Kern County

Toggle between the sections below by clicking in the upper left corner of the title bar. 

The City of Shafter, California, is located near more than 100 operational wells in the North Shafter oil field, as shown below in the map in Figure 2. Technically, the wells are located within a donut-shaped census block group (outlined in blue) that surrounds the limits of the urban census block groups (outlined in pink). Shafter’s population of nearly 20,000 is over 86% Latinx, but the surrounding “donut” with just 2,000 people is about 70% Latinx, much wealthier, and with very low population density. The other neighboring rural census areas housing the rest of the Shafter oil field wells follow this same trend. 

An uninformed analysis, such as the Kern County EIR, would conclude that the 2,000 individuals who live within the blue “donut” are at the highest risk, because they share the same census designated area as the wells. Notably, the only population center of this census block group (or census tracts, which follow this same trend) is at the opposite end of the block group, farthest from the Shafter oil field. Instead, the most at-risk community is the urban community of Shafter with high population density; the census block groups within the pink hole of the donut contain the communities and homes nearest the North Shafter field.

Figure 2. The City of Shafter, California is located just to the south of the North Shafter oil field. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries. 

The cities of Lost Hills, Arvin, and Taft are all very similar to Shafter. The cities have densely populated urban centers located within or directly next to an oil field. In the maps below in Figures 3 readers can see the community of Lost Hills next to the Lost Hills oil field. Lost Hills, like the densely populated cities of Arvin and Taft, are located very close to large scale extraction operations. Census block groups that include the most impacted area of Lost Hills is outlined in pink, while surrounding low population density census block groups are shown in blue. The majority of the areas outlined in blue are zoned as “estate” and “agriculture” areas. The outlines of the city boundaries are also shown, along with 2,500’ and 1 mile setback distances from currently operational oil and gas wells.

Lost Hills is another situation where a donut-shaped census area distorts the results of low resolution demographics assessments, such as the one conducted by Kern County in their 2020 Draft EIR (PDF pp. 1292-1305). Almost all of the wells within the Lost Hills oil fields are just outside of a 2,500’ setback, but the incredibly high density of extraction operations results in the combined impact of the sum of these wells on degraded air quality. While stringent setback distances from oil and gas wells are a necessary component of environmental justice, a 2,500’ setback on its own is not enough to reduce exposures and risk for the Frontline Community of Lost Hills. For these Frontline Communities, a setback needs to be much larger to reduce exposures. In fact, limiting a public health intervention to a setback requirement alone is not sufficient to address the environmental health inequities in Lost Hills, Shafter, and other similar communities. 

Lost Hill’s nearly 2,000 residents are over 99% Latinx, and over 70% of the households make less than $40,000 in annual income (which is substantially less than the annual median income of Kern County households [at $52,479]). The map in Figure 3 shows that the Lost Hills public elementary school is located within 2,500’ of the Lost Hills oil field and within two miles of more than 2,600 operational wells, in addition to the 6,000 operational wells in the rest of the field. 

The City of Arvin has 8 operational oil and gas wells within the city limits, and another 71 operational wells within 2 miles. Arvin, with nearly 22,000 people, is over 90% Latinx, and over 60% of the households make less than $40,000 in annual income. 

Additionally the City of Taft, located directly between the Buena Vista and Midway Sunset Fields, has a demographic profile with a Latinx population at least 10% higher than the rest of southern Kern County. 

Lost Hills, Arvin, and Taft are among the most impacted densely populated  areas of Kern County and represent the most Kern citizens at risk of exposure to air quality degradation from oil and gas extraction.

In all of these cases, if only census tract well counts are considered, like in the 2020 Kern County draft EIR, these Frontline Communities will be completely disregarded. Census tracts are intentionally drawn to separate urban/residential areas from industrial/estate/agricultural areas. The census areas that contain the oil fields are very large and sparsely populated, while neighboring census areas with dense population centers, such as these small cities, are most impacted by the oil and gas fields.

Figure 3. The Unincorporated City of Lost Hills in Kern County, California is located within 2,500’ of the Lost Hills Oil Field. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries. 

The City of Bakersfield is a unique scenario. It is the largest city in Kern County and as a result suburban developments surround parts of the city. Urban flight has moved much of the wealth into these suburbs. The suburban sprawl has occurred in directions including North toward the Kern River oil field, predominantly on the field’s western flank in Oildale and Seguro. In the map below in Figure 4, these areas are located just to the north of the Kern River.

This is a poignant example of the development of cheap land for housing developments in an area where oil and gas operations already existed; an issue that needs to be considered in the development of setbacks and public health interventions and policies. This small population of predominantly white, middle class neighborhoods shares similar risks as the lower-income Communities of Color who account for the majority of Bakersfield’s urban center. Even though these suburban communities are less vulnerable to the oppressive forces of systemic racism, real estate markets will continue to prioritize cheap land for development, moving communities closer to extraction operations. 

Regardless of the implications of urban sprawl and suburban development, it is important to no disregard the risks to  the demographics of the at-risk areas of the city of Bakersfield are predominantly Non-white (31%) and Latinx (60%), particularly as compared to the city’s suburbs (15% Non-white and 26% Latinx). About 33,000 people live in the city’s northern suburbs, and another 470,000 live in Bakersfield’s urban city center just to the south of the 16,500 operational wells in the Kern River, Front, and Bluff oil fields. The urban population of Bakersfield is a large Frontline Community exposed to the local and regional negative air quality impacts of the Kern River and numerous other surrounding oil fields.

Figure 4. Map of the city of Bakersfield in Kern County, California located between several major oil fields including the Kern Front oil field. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.  

 

Southern California

The City of Ventura and the proximity of the Ventura oil field is a similar situation to cities in Kern. The urban center of Ventura is bisected by the Ventura oil field’s nearly 1,200 operational wells. While over 70% of the city’s population is Latinx, the very sparsely populated census areas also containing portions of the oil field are 34% Latinx. 

In the map below in Figure 5, take note of the population distribution within the portion of the city closest to the oil field versus the census areas to the east. While a statewide or less granular analysis would assume an evenly distributed population density, in this localized analysis, it is clear that the most vulnerable Frontline Communities are the urban centers closest to the oil fields. Even though the census blocks to the east contain oil and gas wells, the populations are less at risk because the population centers are located farther from the oil field.

Figure 5. Ventura Oil Field in Ventura, California census areas within the 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries. 

Los Angeles

In Los Angeles County, Inglewood, Wilmington, Long Beach, and Los Angeles City are some of the largest oil and gas fields. There are many areas in Los Angeles where a single low-producing well is located in an upper middle class suburb, on a golf course, or next to the Beverly Hills High School. 

While all well sites present sources of exposure to volatile organic compounds (VOCs) and other air toxics, these four oil fields have incredibly high densities of oil and gas wells in urban neighborhoods. The demographics of the Frontline Communities located within 2,500’ of these major fields are presented below in Table 4. These areas are additionally lower income communities; for example, over 50% of annual household incomes in the census areas surrounding the Los Angeles City oil field are below $40,000, while the Los Angeles County median annual income is over $62,000. 

Table 4. Demographics for Frontline Communities living within 2,500’ of Los Angeles’s major oil and gas fields along with counts of operational wells in the fields are shown in the table. The demographic “Latinx” is the count of “Hispanic or Latino Origin” population, and “non-white” was calculated by subtracting “white only” from “total population.”

 

Oil Field Well Count Non-white (%) Latinx (%)
Inglewood 914 62% 11%
Wilmington 2,995 56% 63%
Long Beach 687 50% 30%
Los Angeles City 872 69% 59%
Ventura 1,193 10% 72%

 

Toggle between the sections below by clicking in the upper left corner of the title bar. 

Figure 6. Inglewood Oil Field Frontline Community, Inglewood, California census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

Figure 7. Wilmington Oil Field Frontline Community, Wilmington, California census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

Figure 8. Long Beach Oil Field Frontline Community, Long Beach, California census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

Figure 9. Los Angeles City Oil Field Frontline Community census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

 

Production

The creation of public health policies such as 2,500’ setbacks to help protect Frontline Communities is controversial in California as many state legislators are still beholden to the oil and gas industry. The industry itself pushes back strongly against any proposal that could affect their bottom line, no matter how insignificant the financial impact may be. When AB345 was proposed, the industry’s lobbying organization Western States Petroleum Association claimed that institution of 2500’ setbacks would immediately shut down at least 30% of California’s total oil production. This number is an outright fabrication. 

As shown in Table 1 above, a 2,500’ setback would impact the less than 9,000 active and new wells; 42% in Kern County and 29% in Los Angeles County. Ventura and Orange Counties are a distant 3rd and 4th, respectively. These counts are further broken down by field in Table 5 below. Statewide these wells accounted for just 12.8% of California’s current oil production by volume (as reported in barrels of oil/condensate by CalGEM), which is much smaller than the wholly unsubstantiated 30% decline claimed by industry.

 

Table 5. Counts of wells by well status for operational (active, idle, and new) oil and gas wells located within a 2,500’ setback.  Fields include the count of wells within the 2,500’ setback and the amount of oil produced from those wells within the setback. The percentage of total oil from that field is also included.

 

Oil Field County Well Count Well Ct % of Total 2019 Oil Prod (BBLS) Oil Prod % of Total
Wilmington Los Angeles 2,514 83% 2,292,669 22%
Kern River Kern 1,338 9% 2,121,071 12%
Inglewood Los Angeles 891 97% 1,806,354 96%
Midway-Sunset Kern 1,892 10% 1,614,081 8%
Ventura Ventura 287 24% 1,202,764 31%
Long Beach Los Angeles 687 100% 1,036,506 100%
Brea-Olinda Los Angeles 695 97% 967,223 95%
Huntington Beach Orange 528 83% 753,494 42%
Placerita Los Angeles 448 100% 508,182 100%
Santa Fe Springs Los Angeles 304 99% 421,719 72%
Cat Canyon Santa Barbara 115 10% 418,697 36%
Beverly Hills Los Angeles 156 100% 351,877 100%
McKittrick Kern 334 18% 346,738 10%
Montebello Los Angeles 227 98% 318,657 97%
Fruitvale Kern 286 80% 316,184 75%
San Ardo Monterey 180 13% 313,339 4%
Torrance Los Angeles 219 100% 307,413 100%
Seal Beach Los Angeles 175 88% 282,790 74%
Shafter, North Kern 70 78% 267,256 66%
Edison Kern 520 41% 261,098 39%
Brentwood Contra Costa 4 100% 230,868 100%
Oxnard Ventura 124 82% 214,884 100%
Sansinena Los Angeles 162 100% 207,474 100%
Poso Creek Kern 320 16% 193,533 4%
Rosecrans Los Angeles 94 100% 174,720 100%
Rio Bravo Kern 80 74% 166,444 82%
Richfield Orange 231 100% 165,426 100%
Coyote, East Orange 81 100% 163,639 100%
San Vicente Los Angeles 48 100% 162,940 100%

 

In the case that setback regulations are crafted both to prohibit new drilling and to phase out existing operations within the setback distance, the industry would have the opportunity to respond with measures that preserve the majority of production volumes, particularly in the Central Valley. For example, in Kern County, the overwhelming majority of new wells drilled in 2020 are directional or horizontal; these drilling technologies would allow operators to access the same below ground resources from surface locations that are further away from and safer for communities. Further, for existing wells within the 2,500’ setback, current proposals would institute a phase out period. Existing wells could be allowed to continue to operate under the terms of their current permits but not allowed to expand or rework their operations to increase or extend production; alternatively (or in addition), well operators could continue for a prescribed timeframe formulated to allow them to recoup their investment (called “amortization”). 

Los Angeles

It is clear that the oil fields of Los Angeles would be the most impacted if setbacks phased out the wells responsible for the highest risk to Frontline Communities. The majority of Los Angeles’s urban oil fields are located entirely within 2,500’ of homes, schools, healthcare facilities and daycares. 

As shown above in Table 5, wells within the setback produce 96% of the oil in the Inglewood fields, 84% in the Long Beach field, and 100% of the oil in several other smaller fields. With the phase out of these wells, oil extraction would cease in these fields. Most of these fields produce very low volumes of oil and already have high counts of idle wells, 28% idle in Wilmington, 25% in Inglewood, and 56% in Long Beach for example. The sole outlier of this trend is the Wilmington field. The majority of production in the Wilmington field comes from wells located in the Long Beach harbor, enough of them located outside of the 2,500’ setback such that while 83% of the Wilmington field wells are within the 2,500’ setback, these wells account for only 22% of the field’s overall production. 

Kern County

The situation in Kern County is quite the opposite of Los Angeles, where the majority of operational wells are located within 2,500’ of homes, residences, and other sensitive receptors like healthcare facilities. In Kern, the overwhelming majority of wells are located beyond 2,500’ and even 1 mile from sensitive receptors. While the Midway-Sunset and Kern River fields have the most wells within the 2,500’ setback area, those wells make up a small percentage of the total operational wells in the fields. As can be seen in the map in Figure 1, wells within the 2,500’ setback zone in the large Kern oil fields are entirely located on the borders of the fields. Overall, a 2,500’ setback in Kern County would only affect 7.1% of active/new wells, accounting for 5.97% of the county’s production.  

The oil and gas industry and operators in states including Texas, Colorado, North Dakota, Pennsylvania, Ohio, West Virginia, New Mexico, and Oklahoma are very vocal of their ability to avoid surface disturbance and target oil and gas pools located under sensitive receptors (homes, schools, healthcare facilities, endangered species habitat etc.) using directional drilling. According to the industry, directional drilling has been used for nearly a century to extract resources from areas where surface disruption would impact sensitive communities and habitats. 

The same is true for California, especially in Kern County and especially recently. An October 2020 draft environmental impact report by the Kern County Planning and Natural Resource Department disclosed that in a dataset of 9,803 wells drilled from 2000 to 2020 by the California Resources Corporation, the majority of wells were drilled directionally (46%) or horizontally (10%), as opposed to vertically. More recent wells in the County have utilized directional and horizontal drilling even more heavily: a 2020 dataset of wells drilled county-wide indicates that 76% were drilled directionally and an additional 7% were drilled horizontally; only 17% were drilled vertically. These statistics indicate that, even if all wells neighboring Frontline Communities in Kern County were to be phased out (itself a small percentage of the total number of wells in the county), there would only be a small impact on Kern County oil production owing to the prevalence of non-vertical techniques that allow operators the flexibility to access reserves from different surface locations. As noted previously, if all oil production from within the 2,500’ setback zone were to be immediately eliminated statewide, it would mean a maximum decrease of just 12.8% of California’s current annual oil production. But the availability of directional and horizontal drilling in Kern County, where the lion’s share of all drilling statewide occurs, means it is more likely that the decrease in production will be significantly less than 12.8% and likely much less than 10%. 

Existing Well Phase Out

Any assertion that a 2,500’ setback would immediately affect oil production is baseless because current setback proposals would institute a phase out period for existing wells. For example, existing permitted wells could be allowed to continue to operate under the terms of their current permits but not allowed to expand or rework their operations to increase or extend production. Alternatively, under a policy approach known as amortization, well operators could continue for a prescribed timeframe formulated to allow them to recoup their investment.   

If wells within the setback distance are phased out pursuant to a “no rework” policy, operators would be afforded some time to maximize production in order to ensure that operators receive a sufficient return on their investment under the terms of their existing permits before they shut down. Under such an approach, older wells with increasing risks of fugitive emissions through leaks at the surface and well casing failures could be sequentially phased out by placing a ban on rework permits not required for maintenance or safety. CalGEM permitted well reworks, including sidetracks and deeper drills, increase production and the lifespan of wells. The catalog of rework permits can be found on the CalGEM website.

Based on CalGEM’s production data from 2018 and 2019, a phase out effectuated by disallowing well reworks would result in an annual reduction of less than 1% of total oil production. Of the 52,997 wells reporting  oil/condensate production volumes in 2018, 338 received a rework permit in the same year. In 2019, of the 48,860 wells reporting oil production volumes, 285 received rework permits. By volume, the wells that received rework permits accounted for 0.87% of oil production in 2018 and just 0.04% in 2019. 

Conclusion

The oil and gas industry in California has consistently pushed back against Frontline Communities who demand public health protections against emissions from oil and gas operations. This occurs even when there will be little to no impact reducing production. It is an industry policy to refuse any concessions and oppose all measures, even to protect public health, by leveraging the industry’s wealth at every level of the political hierarchy. 

Fatefully, 2020 has resulted in multiple wins for public health in California. While the failure of AB345 made it clear that the California state legislature is still beholden to the fossil fuel industry, the momentum has continued. Community grassroots groups in Ventura County successfully passed a 1,500’ setback ordinance for occupied dwellings and 2,500’ setbacks for sensitive receptor sites including healthcare facilities and schools. Just south of Ventura, the County of Los Angeles is also in the midst of a rule-making process that is considering multiple setbacks, including 1,000’ to 2,500’ distances. And a committee of the Los Angeles City Council just voted to develop a proposal that would phase out oil drilling across the city as a non-conforming use. 

While Ventura and Los Angeles are making progress, Kern County is creating a new process to streamline oil and gas well permitting and has even proposed to decrease the existing zone-specific 300’ setbacks from homes to 210’. 

Kern County Frontline Communities and the rest of California also deserve the same consideration as residents of Ventura and Los Angeles Counties. The research is clear that a setback of at least one mile in addition to more site specific public health interventions are necessary to reduce the negative health impacts resulting from these industrial operations within and neighboring Frontline Communities. 

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Support this work

Stay in the know

Energy Audio Stories

Audio Library

Audio Stories from People Living Near Oil & Gas Development


FracTracker Alliance doesn’t just collect and share traditional oil and gas data – drilling is personal to many people. To understand the perspective of those most impacted, we collect audio stories from people living near oil and gas infrastructure, such as pipelines. Below is an assortment of these stories organized by the oil and gas project of concern. If you would like to contribute your story to this library, please fill out the contact form at the bottom of this page.



Undermined

voices from the front lines of frac sand mining


FracTracker and Public Lab, with support from Save the Hills Alliance, produced “Undermined,” an audio story featuring interviews with three residents impacted by the Hi-Crush Mine in Augusta, Wisconsin. Christine Yellowthunder, Tom Pearson, and Terence O’Donahue give first hand accounts of their struggles for clean air and water, healthy farmland, and sustainable livelihoods amidst broken promises from frac sand companies.

Listen here:



Keep Learning!

Undermined: Voices from the Frontlines of Frac Sand Mining

An OpenHour conversation hosted by Public Lab with collaboration from FracTracker Alliance

The perils of fracking are well documented, but the impacts from mining frac sand are less widely known. In this OpenHour, we speak with the people fighting for clean air and water, fertile farmland, & sustainable livelihoods in fenceline communities from across the midwest.

Fracking is an extractive technology that has spread across massive landscapes and unzoned, small towns in the USA as industry has purchased up land rights to conduct operations. Mining for silica sand, use of chemicals, and local water all are pumped into the ground to release small pockets of oil & gas. We will hear directly from community members who have been bringing their communities together to unite in the struggles for healthy homes and justice amidst broken promises from frac sand companies.



About Frac Sand Mining

To learn more about frac sand mining, see FracTracker’s collection of aerial imagery, and explore our collection of articles and interactive maps, please visit our informational page below.



TAuch_FracSand-Mine-FairmountSantrol-Wedron_IL_June2016(2)



More Audio Stories



  • Well pad from the sky, Ohio

    A Hazy Future Report Cover
  • Site equipment, Pennsylvania state forest

    Drilling on PA state lands
  • Oil derrick, California

    2017 Community Sentinel Award Reception
  • Gas pipeline under construction, West Virginia

  • Well blowout, Eastern Ohio, 2018

    Waiting on Answers - XTO incident image two weeks later
  • Frac sand mining, Wisconsin

    Frac sand mining from the sky in Wisconsin
  • Class II disposal well, Ohio

    Class II disposal well
  • Flaring, North Dakota

    Photo by David Nix 2015
  • Oil refinery, Indiana

    The BP Whiting, IN Oil Refinery
  • Rig at night, Ohio

    For Persevere Post


Nexus Pipeline Interviews


About the Pipeline

According to Enbridge’s NEXUS Pipeline webpage:

Additional pipeline transportation infrastructure is needed in Ohio, Michigan and Ontario, Canada to support the growing demand for clean-burning natural gas and to offset the decline in traditional western Canadian supplies. To meet this need, Nexus Gas Transmission (NEXUS) proposes to construct an approximately 255-mile interstate natural gas transmission pipeline to deliver 1.5 billion cubic feet per day (Bcf/d) of clean-burning natural gas from receipt points in eastern Ohio to existing pipeline system interconnects in southeastern Michigan.The lead developers for NEXUS have secured significant market interest in new natural gas supplies in Ohio, Michigan and Ontario to provide increased energy diversity, security and reliability across these regions. Specifically, the project will transport emerging Appalachian shale gas supplies directly to consumers in northern Ohio; southeastern Michigan; and the Dawn Hub in Ontario, Canada.

In practice, the NEXUS pipeline has received significant resistance from activists that reject the need for such pipelines as well as those that simply don’t want pipelines across their property or in their neighborhood(s). NEXUS is one of nearly a dozen gas transmission pipelines proposed by the unconventional oil and gas industry in Ohio aimed at extracting and transporting natural gas from the Utica/Point Pleasant formations. Products will then be sent off to the global market, where profits are higher than if that gas were simply used within Ohio. The strategies and tactics used by Enbridge have significantly chafed Ohioans, however. The common theme of the interviews we’ve conducted, listed below, has been the slogan “No Imminent Domain for Private Gain”.

Community Interviews

Click on the names of the interviews below to hear community members’ experiences about living near oil and gas development.


We interviewed Green, Ohio resident and Nexus Pipeline Right-Of-Way neighbor Norm First on how Nexus interacted with the community and used law enforcement to enforce their private profit motives. Mr. First lives adjacent to Nexus ROW on Myers Road.

Part 1:

Part 2:

We interviewed Oberlin resident, small-business owner, and former Washington County, PA resident Ellen Mavrich regarding her thoughts on the Nexus Pipeline inevitably being constructed through Oberlin, Ohio. March 2018

Part 1:

Part 2:

Part 3:

We interviewed a recently transplanted Florida stay-at-home mother of two living next to the ETP Compressor under Construction in Seville, Ohio. This woman spoke about what she thought when she realized what was moving in next to her and her family, how concerned she is, the fact that the realtor and previous home owner never told them about the compressor, and the fact that they can’t get rid of their home at this point.


  • Robert and his donkey Jake

  • Robert’s family farm adjacent to the Nexus Pipeline

  • Nexus Pipeline staging area west of Huron River

  • Nexus Pipeline centerline stake on Robert’s property

  • Nexus Pipeline staging area west of Huron River

  • Robert Wheeler’s family farm adjacent to Nexus Pipeline


Robert Wheeler is a keyboardist for influential art punk band Pere Ubu by day, and by night and on the weekends is the steward of a family farm that was established in 1861 by Thomas Edison’s family. It is on the banks of the Huron River, and many of the practices Robert has implemented along the banks have been geared towards reducing erosion, increasing wildlife habitat, etc. Now – all those activities are at risk from the nearby Nexus Pipeline. Explore photos from his property and his interview, above.

Community Trust Discussions


In our travels across Appalachian uncoventional oil and gas country, some of the most productive conversation we’ve been privy to has been the frank banter that takes place at diners and coffee houses across the region. The growing lack of trust is not unique to the counties or companies mentioned in the below interview(s), with countless residents telling us about how they don’t buy much of what comes out of the mouths of pipeline right-of-way agents or the unconventional operators and their largely migrant labor force.

Community Interviews


This is a conversation between two unknown gentlemen at the Carroll County, Ohio Airport Restaurant discussing the lack of trust Carroll County residents have in Chesapeake Energy and associated pipeline construction firms like Blue Racer, 3/5/2018.

Class II Injection Wells (Disposal)


For the most part, the popular definition of “fracking”, hydraulic fracturing, or high volume hydraulic fracturing (HVHF) has been constrained to the 4-5 acre well pads dotting Appalachia, the Big Sky states, and The Rockies. However, it is important that people recognize the true scale and scope of the industry’s impact from a water, waste, and land-use perspective.

One of the major aspects of this industry that recieves relatively little coverage is the Class II Salt Water Disposal (SWD) component that disposes of the waste produced during the fracking and oil/gas extraction process. These injection wells have been linked to “induced seismicity,” frequent brine truck spills, human health impacts, and are blamed for much of the increase in truck traffic in and around the communities where these wells exist or are being proposed. We have been in touch with neighbors of existing and proposed Class II wells to gain insight into what it is like to live next to these sites and why activists are concerned about pending proposals from Ohio and Pennsylvania to Oklahoma and Kansas.

Community Interviews

Click on the names of the interviews below to hear community members’ experiences about living near oil and gas development.



  • Class II Injection Well proposal site layout plan

Submit Your Audio Stories

1 + 6 = ?