FracTracker in the news and press releases

Local Actions and Local Regulations in California

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

The potential for large scale oil development in the Monterey and other shale basins has raised concern in California communities over the use of hydraulic fracturing and other unconventional well stimulation techniques, such as acidizing.  The fact that DOGGR was not tracking the use of these techniques, much less regulating them, has led to a variety of actions being taken by local governments.  Several groups including county directors, city councils, and neighborhood and community councils have passed resolutions supporting state-wide bans on hydraulic fracturing and other controversial stimulation techniques.  As can be seen in the following map, several of them are located within the greater LA metropolitan area, which is currently considering a local moratorium.

This map shows the local civic groups in the LA metropolitan area that have passed resolutions supporting statewide bans/moratoriums on hydraulic fracturing and other controversial stimulation activities.

This map shows the local civic groups [green check marks] in the LA metropolitan area that have passed resolutions supporting statewide bans/moratoriums on hydraulic fracturing and other controversial stimulation activities. Click on the map to view larger image.

Two local jurisdictions, the South Coast Air Quality Management District and the County of Santa Barbara, have enacted their own measures to regulate oil and gas development.  Both require notification of drilling techniques, and Santa Barbara County requires operators to file for a unique permit when using hydraulic fracturing. Data from the county of Santa Barbara’s permitting program was not readily accessible – although it may well be that they have not issued any permits.  The South Coast Air Quality Management District is charged with managing the air quality for Orange County, the city of Los Angeles and the surrounding urban centers of Riverside and San Bernardino.  In the spring of 2013, the SCAQMD passed Southern California rule 1148.2.  The rule requires oil operators to submit specific reports of well activity documenting drilling, chemical use and the well stimulation techniques employed, directly to the SCAQMD.  Reportable methods include acidification, gravel packing, and hydraulic fracturing.  The rule was implemented June 2, 2013. The database of well-site data is readily accessible via the web.  Web users can obtain individual well summaries of drilling activity and chemical-use reports, or download the full data sets.  The site is user-friendly and the data is easily accessible. Unfortunately, the currently available data set is missing some of the most important information, specifically well API numbers – the unique identifier for all wells drilled in the United States.  This data gap makes it impossible to compare or cross-reference this data set with others.

AQMD Wellsites

FracTracker has mapped the well-sites reported on the SCAQMD in the new map on the California page titled California Local Actions, Monitoring and Regulations.  This map outlines the boundaries of SCAQMD and other sub-state regulatory agencies that have elected to manage the drilling activity.  Details on the programs are provided in the map layers.  The data published by the SCAQMD has been included in the map.  In the map above, if you compare the SCAQMD data layer to the Hydraulically Fractured dataset derived by combining DOGGR and FracFocus data, you can see that the two data sets do not look to include the same well sites.  Unfortunately, it cannot be known whether this is merely an issue of slightly dissimilar coordinates or legitimate data gaps; the SCAQMD data set lacks the API identifier for the majority of well sites reported.  Because the regulatory landscape tends to follow the political leadership that reflects the interests of the constituency, legislative districts have also been included as a viewable map layer.   Be active in your democracy.

North Dakota Bakken Gas Flares

Gas Flaring and Venting: Data Availability and New Methods for Oversight

By Samir Lakhani, GIS Intern, FracTracker Alliance

In the hazy world of gas flaring and venting, finding worthwhile data often leads one to a dead end. Although the Energy Information Administration (EIA) holds the authority to require active oil/gas companies to disclose this data, they choose not to. EIA will not proceed with such actions because, “…assessing the volume of natural gas vented and flared would add significant reporting burdens to natural gas producers causing them substantial investments.” Additionally, the EIA is not confident that oil/gas producing companies have the capability to accurately estimate their own emissions from venting or flaring activities.

Piece-Meal

Some states do voluntarily submit their estimates, but only 8 of the nation’s 32 oil and gas producing states submit their data. This makes attempts for national estimates incomplete and inaccurate. State officials have repeatedly complained that the EIA has provided them with insufficient guidelines as to how the data should be submitted, and in what format. It appears the only way that concerned parties are able to monitor this practice is with satellite imagery from the sky, to literally watch flaring as it occurs.

Bird’s Eye View

The Bakken Shale Formation has received a considerable amount of attention. We’ve all seen the nighttime satellite images of North Dakota, where a normally quiet portion of the state light up like a bustling city. It is to be understood that not all the lights in this region are gas flares. Much of it is emergency lighting and temporary housing associated with drilling companies.

There are a few obvious issues with satellite surveillance. Firstly, it is difficult to monitor venting emissions from a bird’s eye perspective. Venting is the process by which unsought gas is purposely wafted from drill sites into the atmosphere. Venting is a much more environmentally costly decision compared to the ignited alternative, as pure natural gas is twenty times more potent than CO2 as a greenhouse gas. To monitor venting behavior, from up high, Infrared sensors must be used. Unfortunately, these emissions do not transmit well through the atmosphere. Proper detection must be made much closer to earth’s surface, perhaps from an airplane or on the ground. Secondly, flaring is almost impossible to detect during the day using satellites. One could equate it to attempting to see a flashlight’s beam when the sun is out. Lastly, when the time comes to churn out an estimate on how much gas is really being wasted—the statistics vary wildly.

Using SkyTruth’s satellite image, and GIS data retrieved from North Dakota’s Department of Mineral Resources, it is now possible to pinpoint North Dakota’s most active gas flaring sites. Using this, more accurate estimates are now within reach. North Dakota gas drillers may flare their “associated” gas for up to one year. However, Officials at Mineral Management Service claim that it is not difficult to get an extension, due to economic hardship. There are always instances of gas/oil operators flaring or venting without authorization. In 2003, Shell paid a 49 million dollar settlement over an unnoticed gas flaring and venting operation that lasted several years. The beauty of satellite imagery and GIS detail is the observer’s ability to pinpoint flaring operations and by referencing the leases, evaluate whether or not such practices were authorized.

This map shows flaring activity in the Bakken Formation from January 1 through June 30, 2013. Please click the “Fullscreen” icon in the upper right hand corner to access the full set of map controls.

Regulation and Control

If flaring and venting are costly to the environment and result in a loss of company product (methane), you may ask why these practices are still conducted. Flaring and venting practices are cheaper than building the infrastructure necessary to harness this energy, unfortunately. To effectively collect this resource, a serious piping network is needed. It is as if a solar farm has been built in the desert, but there is no grid to take this power to homes. To lay down piping is an expensive endeavor, and it requires continuous repairs and on-site monitors. Even when North Dakota burns over 30% of their usable product, there is little initiative to invest in long term savings. A second method, called “green completions”, is becoming a more popular choice for oil and gas companies. A green completion is a portable refinery and condensate tank aimed to recover more than half of excess methane produced from drilling. Green completions are the best management practice of today, and the EPA wishes to implement green completion technology nationwide by 2015.

The best way to estimate gas flare and venting emissions is through submissions from gas/oil companies and to analyze the data using GIS applications. Concerned organizations and citizens should not have to rely on satellite services to watch over the towering infernos. There is new research coming out each day on adverse health effects from living in close proximity to a gas flare and vent. It releases a corrosive mixture of chemicals, and returns to the earth as acid rain. Please refer to this publication for a thorough assessment of possible health effects.

This issue is not limited to US borders only; flaring has wreaked havoc in South America, Russia, Africa, and the Middle-East. During the extraction of oil, gas may return to the surface. In many of these areas where oil drilling is prevalent, there are no well-developed gas markets and pipeline infrastructure, which makes venting and flaring a more attractive way to dispose of an unintentionally extracted resource. If the US were to make substantial changes to the way we monitor, regulate, and reduce gas flaring/venting, and accessibility to data, we would set the standard on an international level. Such policy changes include: carbon taxation, streamlining the leasing process (Many oil/gas officials despise the leasing applications for pipelines), installing flaring/venting meters and controls, and tax incentives (to flare and green complete, rather than vent).

All of these changes would tremendously reduce and regulate gas flaring in the US, but without accurate and comprehensive data these proposed policies are meaningless. Data is, and forever will be, the diving board on which policy and change is founded.


Special thanks to Paul Woods and Yolandita Franklin of Skytruth, for using VIIRS and IR technologies to compile the data for the above map.

Florida Gas Drilling Developments and Legislation

By Samir Lakhani, GIS Intern, FracTracker Alliance

Florida Aquifers - Source data and map based off of Alan Baker at Florida Department of Environmental Protection.  Acquired Data from: USGS, USDA, FDEP   Source Link: http://www.dep.state.fl.us/geology/programs/hydrogeology/geographic_info_sys.htm

The Floridian Aquifer: Connectivity, Permeability, and Vulnerability

There have been a significant number of enquiries regarding the status of hydraulic fracturing activity in Florida, enough of which garner a FracTracker post. The short answer is that there is minimal drilling activity occurring in Florida—but not for long. It was only a matter of time until gas companies set their gaze on Florida, and her abundance of energy resources. Preparations to drill are already underway. Permits have been filed, equipment is being shipped, and exploratory drilling will begin any minute now. What makes Florida drilling ominous is the real risk for chemical leakage and groundwater contamination.

Imagine this:

It is just another sunny day in sunny Florida, but on this quiet day, two men ring your doorbell. You answer, of course, and find out that these men are from Total Safety, Inc., a company contracted by the independent oil company Dan A. Hughes Company, from Beeville, Texas. They ask you to provide your contact information and any other emergency contact info, just in case disaster strikes at the drill site operating barely 1000 feet from your house. For most of the citizens of Naples, Florida, this is the first they have ever heard of drilling, in their neighborhood. The citizens of Naples, Florida received quite a scare that day. The outrage in the community was so abundant and uniform that these families decided to act out against this development to preserve their piece of paradise. Read More

What makes drilling in Florida so precarious is that porous limestone shelves make up the majority of rock underlying permitted well sites. If any accident were to happen, the leakage of waste and chemicals would be virtually impossible to contain. It then would seep directly into the Florida aquifer which lies beneath the entirety of the state and large sections of Alabama, Georgia, and South Carolina. Maintaining water quality for the Floridan Aquifer is non-negotiable, since it is the primary water source for Savannah, Jacksonville, Tallahassee, Orlando, Gainesville, Tampa, and others. An attempt to clean the aquifer thoroughly would be impossible, and not to mention, prohibitively expensive. Another troubling thought is possible contamination and degradation of the beloved Florida Everglades.

Florida is an interesting case right now; the gas game is still very young. Florida lawmakers have an opportunity to draft real preventative measures, rather than legislation after the fact. Hydraulic fracturing is no new phenomenon, and Florida politicians have the prospect of learning from other states, incorporating relevant ideas and taking their own stance on this issue. Currently, a couple of bills are slowly trudging through the state legislature. The idea is to require a list of chemical disclosures from all active gas drilling companies. Environmentalists claim this bill is a sham, for the companies need to list the chemicals used in drilling, but not the quantities of each. It may be just another half-hearted attempt to show real political action, while retaining a good business relationship with drilling companies. It is unlikely more stringent policies will be successful, however, given that some powers currently in office believe climate change to be a fairy tale.

Logbook FracTracker Postcard Front

Winter Summary of the Trail Logbook Project

As the forests beckon us to return to their paths now that winter has subsided (hopefully), let’s take a look at the reports we received over the winter for our Trail Logbook Project.

Impacts Summary

Reports came from several counties, but the majority of complaints focused on the impacts of drilling in Loyalsock State Forest.

Counties:

  • Clinton
  • Centre
  • Lycoming
  • Warren
  • Sullivan

Suspected Causes:

  • Existing gas line
  • Shallow gas wells
  • Truck traffic
  • Pipeline construction
  • Drilling/hydraulic fracturing
  • Impoundment
  • Seismic Testing

Main Trails Affected:

  • Loyalsock State Forest trails
  • Eddy Lick Trail Loop
  • Minister Creek Trail

Impacts Reported (in descending order according to frequency):

  • Unpleasant odors
  • Confrontation with gas company employees, contractors, security personnel
  • Noise impacts
  • Potential degradation/contamination of a stream, spring, lake, or pond, brine in the water at ANF pump
  • Visual impacts (degradation of scenery)

Logbook Quotes

Drilling has largely overtaken this tract of Loyalsock State Forest. I would say that drilling has completely eclipsed the recreational aspect of the tract. Indeed, the tract seems to have been transformed into an industrial forest. I came here for hiking and nature photography, but I felt as though I were a guest on Seneca-owned land, not a visitor to public land paid for by the citizens of Pennsylvania. I noticed no other visitors in the tract, too; everyone I saw was a Seneca employee.   The scenic vista on Bodine Mountain Road (noted on the Loyalsock State Forest map) was less than scenic when I visited; many drilling pads (some near, some far) were seen. The noise from trucks and compressors also diminished the recreational aspect. I won’t return here until most of the drilling ends.

This stream, Minister Creek, is a “Safe” zone for Brook Trout. It now has areas of bubbles and a thin oil sheen on its surface in addition to the Brine taste at the pump.

While setting up campsite just off the Loyalsock Trail at the old CCC Camp on Sandstone Lane, I heard an approaching Crew Truck with a loudspeaker blasting radio conversation with supervisors.  As the Lane had been damaged in recent storms, they tried to drive thru a meadow and right thru my Campsite.  There was no opening in the trees wide enough to pass and I told them so.  They went back to the lane and bored thru the rutted, flood-gouged lane past my camp…

Recommendations from Citizen Reports

Where roads are narrow, especially in forested areas, there are often checkpoints set up by the operators in order to control two-way traffic. Often signs are not sufficiently visible/present/clear, so motorists may not realize the new rules. In Loyalsock State Forest, this has been an issue. As such, below are recreationalists’ recommendations regarding ways to reduce or avoid the issues currently arising from gas operations in this and other public areas:

  • Seneca Resources Corp. and the DCNR should work together to better educate visitors on the need to stop at every checkpoint in this tract of Loyalsock State Forest (or in any forested area that is frequented by recreationalists).
  • At each of the two entrances (Hagerman Run Road and Grays Run Road) to the tract from Pennsylvania Route 14, post a large, prominent sign about the need to stop at every checkpoint for two-way traffic control;
  • Post clearly visible signs at every checkpoint; and
  • On the DCNR Web site in the Advisories section of the Loyalsock State Forest page, post information about roads affected by two-way traffic control and the need to stop at checkpoints. (Currently, information about such roads is posted on the Road Advisories page on the DCNR Web site, but accessing this page from the home page is challenging. Also, the Road Advisories page doesn’t mention that motorists need to stop at checkpoints.)

More Information

Visit the Trail Logbook Project landing page for more information about this initiative, our partners, and to submit your own report.

US Map of Suspected Well Water Impacts

Launch of National Mapping Project Designed to Show Possible Impacts of Oil and Gas Drilling on Well Water

FOR IMMEDIATE RELEASE
US Map of Suspected Well Water Impacts
Contacts: Brook Lenker, Executive Director, FracTracker Alliance, (717) 303-0403; and
Samantha Malone, Manager of Science and Communications, FracTracker Alliance, (412) 802-0273

May 1, 2013 – The US Map of Suspected Well Water Impacts is a project that will attempt to piece together recent complaints of well water quality impacts that people believe are attributed to unconventional gas and oil operations. Research has demonstrated potential risks to ground and drinking water posed by faulty well casings, surface spills, and hydraulic fracturing. From across the country, in areas where gas and oil development is occurring, accounts of possible well water contamination have been reported but not been collected all in one place – yet. The FracTracker Alliance and cooperating organizations are providing that opportunity.

Inspired by other “crowd-sourced” data and mapping projects, this project aims to collect ongoing stories, narratives, and data from individual homeowners living on well water near drilling operations and map the general location of these reports online.  The first version of the dynamic map (shown below) is available at www.fractracker.org/usmap.

US Map of Suspected Well Water Impacts - V1

US Map of Suspected Well Water Impacts
Read more about Version 1 of the map

Once received, submissions will be reviewed to the extent possible by cooperating researchers and organizations. Not all reported cases of water contamination, however, have been or will be able to be substantiated. According to Brook Lenker, Executive Director of FracTracker Alliance:

The reports we are collecting are not necessarily indisputable evidence that drilling has contaminated drinking water sources. Some accounts are irrefutable. Others remain unsubstantiated, but that doesn’t mean the well owner isn’t experiencing serious problems. Even where proof may be elusive, perception of risk can tell us much about an issue and the level of concern by the community.  This information will likely help to identify pre-existing problems or conditions that were not previously well known.  Such outreach is needed to permit citizens, local agencies, and others to work together to address pre-existing concerns, improve local regulations or standards, conduct proper baseline testing and monitoring, and make informed decisions.

As unconventional natural gas and oil extraction expands internationally, an Internet-based project like the US Map of Suspected Well Water Impacts can help to share on a global scale how people in the U.S. view – and may be impacted by – unconventional drilling. If everyone contributed their stories, the public’s understanding of gas and oil extraction’s impacts on well water could expand dramatically.

Anyone wishing to submit their story should visit www.fractracker.org/usmap or call (202) 639-6426. A complete list of current project partners is available on the website.

# # #

Downloadable Press Release (PDF)
Read more about Version 1 of the map

Negative Health Impacts & Stressors Perceived to Result from Marcellus Shale Activity

Identified by Researchers at the University of Pittsburgh Graduate School of Public Health

By Kyle Ferrar, MPH – DrPH Candidate, Environmental and Occupational Health Department, Graduate School of Public Health, University of Pittsburgh

The potential for negative health impacts to result from unconventional natural gas development activities, such as hydraulic fracturing (deemed “frac’ing”) occurring in the Marcellus Shale basin, is a highly debated and contentious issue.  To resolve this issue public health and medical professionals will need to conduct a large-scale epidemiological study – one that monitors the lives and health of a large sample of people for an extended period of time.  Such a study should test to see if proximity, or closeness to unconventional natural gas development, such as frac’ing, causes negative health impacts.  Such a study has not yet been officially proposed in Pennsylvania, much less funded, but researchers at the University of Pittsburgh’s Center for Healthy Environments and Communities (CHEC) believe such a study will be conducted in the future.

New peer-reviewed research released by the CHEC provides background data for that kind of study.  The research documented 59 unique health impacts, or “symptoms,” and 13 “stressors” perceived to result from Marcellus Shale development.  Over time, symptoms and perceived health impacts increased for the sample population (p<0.05), while stressors resulting from Marcellus Shale activity remained consistent (p=0.60).  The study group was a biased sample population, meaning the participants were not randomly selected.  Rather, the participants were already concerned by or interested in issues associated with this industrial activity.

Using community based participatory research methods, researchers from CHEC, along with researchers from FracTracker while it was still a project at CHEC, engaged community members with in-depth interviews.  Mail surveys have been conducted by other researchers in Colorado and Wyoming, but this is the first research to use an ethnographical, in-person approach.  Furthermore, this is the first peer-reviewed and published research that describes symptoms in those who believe their health has been affected.  The six most reported symptoms are reported in Table 1, with stress being the most commonly reported health effect.

The article contributes several new findings to this field of research, including evidence about what people report as stressors.  Contributions of stress to negative health effects are well documented in the literature, known as allostatic loads.  The six most commonly reported “stressors,” or sources of stress, are reported in Table 2.  Particularly notable is the very high percentage of the group that report issues such as being lied to that presumably would be corrected if the industry became more transparent and responsive.  The article also reports on the longitudinal nature of the perceived health impacts and stressors. Longitudinal refers to the fact that the data were collected over time, not just once. Follow-up interviews conducted 19-22 months after the initial interviews showed that the number of perceived health impacts reported by participants actually increased over time, while the number of stressors reported remained consistent.  This contradicts industry’s argument that the problems are mainly caused by seeing and hearing drilling activity, and that as the intensity of activity diminishes over time so will the symptoms and stressors. While this research does not answer the larger question of whether negative health effects are associated with Marcellus Shale development, it demonstrates a need for future studies to be conducted within these particular communities and supports the more difficult task of embarking on a broader epidemiological study.

Table 1. Most reported symptoms with the percentage of participants reporting said symptom.

Symptoms Session 1 (n=33)
Stress 76%
Rashes 27%
Loss of sleep 27%
General illness 24%
Headaches 24%
Diarrhea 24%
Shortness of breath 21%
Line Table 2. Most reported “stressors” participants associated with Marcellus Shale development, with the percentage of participants reporting said stressor.

Stressor Session 1 (n=33)
Denied or provided false information 79%
Corruption 61%
Concerns/complaints ignored 58%
Being taken advantage of 52%
Financial damages 45%
Noise pollution 45%

 

About the Journal Article

Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region <-- Note: This link is presently not connecting to the article on IngentaConnect.com. We will update the link once the article becomes available again on their site. Authors: Kyle J. Ferrar; Jill Kriesky; Charles L. Christen; Lynne P. Marshall; Samantha L. Malone; Ravi K. Sharma; Drew R. Michanowicz; Bernard D. Goldstein Source: International Journal of Occupational and Environmental Health

Unconventional Shale Drilling: What we know, What we don’t know, What we need to know to move forward

Archived

This post has been archived.

By Ted Auch, PhD – Ohio Outreach Coordinator, FracTracker Alliance

A Conference Retrospective

Communities, NGOs large and small, local governments, and even next door neighbors and/or families are dealing with long-term potential and realized environmental, economic, health*, and social equity damage from the activities of the gas industry in Ohio and beyond. These impacts were vetted at a conference (PDF) recently convened in Warren, OH by FreshWater Accountability Project Ohio, The FracTracker Alliance, and the Buckeye Forest Council. The title of the conference was “Unconventional Shale Drilling: What we know, What we don’t know, What we need to know to move forward.” The premise was to bring together a forum of diverse subject matter experts from academia, industry, government and private organizations to discuss and prioritize – using a knowledge-based approach – the various major issues relating to energy extraction that are facing local, state and national agencies and private citizens.

Conference attendees heard from a variety of researchers and community activist about their successes and failures, data needs, and expectations for how to leverage the conference gathering into a relatively cohesive and largely ego free movement. One highlight was a presentation and informal discussion with Deborah Rogers, former Merrill Lynch and Smith Barney investment banker, Dallas Federal Reserve Advisory Council member, current U.S. Extractive Industries Transparency Initiative (USEITI) advisory committee member, and the woman behind the Energy Policy Forum. Ms. Rogers’ keynote presentation “Shale and Wall Street: Was the Decline in Natural Gas Prices Orchestrated?” focused on the regulatory and high finance parallels between the early aughts real-estate bubble and the current US shale bubble’s red queen predicament (what’s this?) forcing industry to acquire shale assets and repurchase shares in an illusory attempt to inflate their balance sheets and placate Wall Street expectations (while simultaneously overestimating reserves by 400-500% and experiencing 6.5% recovery efficiencies). Ms. Rogers pointed to the fact that the US is home to 181,000 oil and gas jobs Vs. 183,200 renewable energy jobs, however, they account for 45% and 15% of total energy generation capacity, respectively, with the latter “providing significantly more jobs per kilowatt capacity than oil and gas.”

Ms. Rogers was followed by University of Pittsburgh professor Dr. Bernard Goldstein, Biological Mimetics, Inc. President and CEO, Peter Nara, with public health and environmental concerns presentations, respectively. Julie Weatherington-Rice, an OSU adjunct faculty geologist, delivered an Ohio- focused talk on the legal and public policy implications of drilling in public water well fields. Dr. Weatherington-Rice gave an encore performance the following day focusing on shale gas waste, public water supplies, Ohio EPA’s September 2012 advisory regarding disposal of fracking waste in the Great Lake’s waste landfill facilities, and the dangers associated with technologically enhanced radioactive material (TENORM). Dr. Rice was followed by presentations on sustainable communities via “Local Self-Government and the Rights of Nature” by Tish O’Dell of the Community Environmental Legal Defense Fund (CELDF) and Matt Nisenoff exploring the non-binary nature of Ohio advocacy. Mr. Nisenoff addressed the need for persistent organizing and “entering the political ring as candidates rather than voters.”

One of the most novel components of the conference was the presentation by Rumi Shammin, an environmental studies professor at Oberlin College who brought to the floor the concepts of ecosystem services and ecological economics or the monetization of ecological pattern and process [1]. These two lines of research are new to the hydraulic fracturing conversation and potentially integral to policy formulation, community outreach and academic-citizen scientist collaboration in Ohio.

Bowling Green State University professor Andrew Kear offered the final presentation titled “Unconventional Politics of Unconventional Gas: Environmental Reframing and Policy Change.” The presentation highlighted his PhD dissertation work focusing on unlikely bedfellows in the mountain west shale plays and the types of lessons he thought applied to Ohio’s shale fracturing discussion.

The conference closed with attendees coming together to identify the explicit knowns, known unknowns, and unknown unknowns in Ohio relative to economic, environmental, social integrity, and health issues. The results of these break-out groups and discussion will be made available to the public in the next two weeks.

Next steps include crafting two to three white papers, writing a peer review publication, implementing effective collaboration strategies, planning future conferences, and developing policy recommendations. The ultimate goals are to promote fact-based transparency, best in class technologies, and create healthy and sustainable energy resources.

In the face of industry and regulatory inertia that continues to push back against transparency and local control, the conference underscored the need for more education, data, and far more research – all issues of special interest to the FracTracker Alliance – while bridging rifts and fortifying existing bonds.

Contact Information

For more information and notices as to resulting products, please contact:

  1. Leatra Harper, FreshWater Accountability Project Ohio,
  2. Ted Auch, PhD, The FracTracker Alliance, Ohio Program Coordinator
  3. Peter Nara, PhD, Biological Mimetics, Inc.
  4. Julie Weatherington-Rice, PhD, Adjunct Faculty The Ohio State University and Bennett & Williams
  5. Nathan Johnson, Buckeye Forest Council

* Keynote speaker Deborah Rogers cited health impact costs in the Barnett, Fayetteville, and Marcellus Shale of $73, 33.5, and 32 million per annum.


[1] Arrow et al., 1995; Costanza et al., 1997; Costanza et al., 2000; Costanza, Wainger, Folke, & Mäler, 1993; Daily et al., 1997; Krantzberg & Boer, 2006; Ruhl, 2006

Unconventional oil and gas wells in the Chesapeake Basin

A Fresh Opportunity in the FRESHER Act

By Tanya Dierolf, Choose Clean Water Coalition

Love him or hate him, there’s no arguing that Stephen Colbert can grab a headline. Recently he’s had a lot to say about environmental protection, energy and water. Last week he reported on the Pegasus Pipeline Spill in Arkansas and reminded us that what’s “out of sight” and “out of mind” might still be in our drinking water. Those of us in Pennsylvania familiar with Talisman Terry have yet to forget his exposé on the children’s coloring book that attempts to teach kids about hydraulic fracturing through the expertise of a friendly Frackasaurus. This leaves me wondering if Colbert might ask Congressman Matt Cartwright about his legislative attempts to apply stricter federal protections to oil and gas development when the Pennsylvania Congressman appears on Stephen’s “Better Know a District” segment in early May.

In March 2013, Congressman Cartwright (PA-17) introduced the “Focused Reduction of Effluence and Stormwater runoff through Hydrofracking Environmental Regulation Act” or FRESHER act. Because of expanding development of oil and gas wells in Pennsylvania and exploration, construction, and operations in almost 30 other states, Mr. Cartwright introduced legislation aimed at fixing a federal Clean Water Act loophole to control stormwater runoff from for oil and gas operations. Under the Clean Water Act, industrial facilities are required to obtain a permit to discharge stormwater from their sites and develop “Stormwater Pollution Prevention Plans” if disturbing more than one acre of land. However, Congress exempted oil and gas operations from both of these requirements. By closing the loophole, the FRESHER Act would provide for stronger oversight as both regulators and the public would be aware of industry plans to control pollution. The bill would also require a federal study of stormwater impacts in areas that might be contaminated by stormwater runoff pollution from oil and gas operations.

Chesapeake Bay Watershed

Many of us working in the Chesapeake Bay watershed are often asked about the impacts that increasing natural gas activity may have on our local waters and the larger Chesapeake Bay cleanup. Considering the ongoing challenges we have with sediment impacts to our local waterways in Pennsylvania and West Virginia and the pollution limits we now have in place to bring the Bay back to health, many are asking how we quantify these impacts. In addition to increased sediment pollution largely carried by stormwater runoff, others are also asking what impact a change in our land use might have as we convert farm fields and forests to well pads. Furthermore, many are asking about roads and pipelines and cumulative impacts. All good questions – and these are just related to natural gas development and its relationship to existing pollution limits and cleanup plans. There are a host of additional questions being asked about drinking water, emissions, groundwater contamination, methane migration, and health and safety.

Mapping a Better Picture

Unconventional oil and gas wells in the Chesapeake Basin

Unconventional Oil and Gas Wells in PA’s portion of the Chesapeake Bay Watershed
Click here to view dynamic, PA map of unconventional wells

To get an idea of the impacts of the oil and gas industry in the Chesapeake Bay watershed, we turned to our colleagues at the FracTracker Alliance. FracTracker is committed to working with partners – citizens, organizations, and institutions – in a quest for objective, helpful information to perpetuate awareness and support actions that protect public health, the environment, and socioeconomic well-being. FracTracker collects, interprets and shares data through a website and mapping tool. When it came time to understand impacts, we asked for and received some numbers.

In the portion of Pennsylvania that has waterways draining to the Chesapeake Bay, there have been 5,137 oil and gas wells drilled since 2005*. This number includes both conventional and unconventional wells and vertical and horizontal wells (see map on right). Pennsylvania defines an “unconventional well” as one that is drilled into an unconventional formation, which is defined as a geologic shale formation between the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing. In short, the definition does include wells drilled within the Marcellus Shale formation. We are continuing to work with FracTracker to obtain similar information on West Virginia.

In Practice

I don’t want to leave the impression that oil and gas development, specifically gas development because of hydraulic fracturing, is an unregulated industry. For example, Pennsylvania already requires erosion & sediment permits for activities involving earth disturbance activities over five acres. I’m also not attempting to get into the patchwork of state-by-state regulations of the oil and gas industry, but Congressman Cartwright’s legislation would ensure that oil and gas companies have stormwater-related permits and pollution prevention plans in place prior to well pad development. The lack of oversight and permitting represents a significant threat to our waterways in places without adequate accountability mechanisms. It’s a fresh opportunity to address an ongoing challenge. We hope Mr. Colbert might just ask Mr. Cartwright about his efforts as we get to know PA’s 17th district. We think he might just say the FRESHER Act is good for his Congressional district and the region.

Written by Tanya Dierolf, Choose Clean Water Coalition


*For those who prefer to read statistics in a table format, see below:

Number of PA Drilled Wells in Chesapeake Basin 1/1/05 – 3/20/13

Well Type Conventional Unconventional Total
Vertical 1197 461 1658
Horizontal 5 3474 3479

Total 1202 3935 5137

A Rare Resource in WV Host Farms

Fire on McDowell B well site near Wetzel County, WV. Burned for 9 days. (Sept. 2010) Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Fire on McDowell B well site near Wetzel County, WV. Burned for 9 days. (Sept. 2010) Wetzel County Action Group photo, copyright of Ed Wade, Jr.

By Samantha Malone, MPH, CPH – Manager of Science and Communications

While I am a full-time staff member of FracTracker Alliance, like many other people I wear several hats. One of these is as an academic researcher and doctorate student in environmental health at Pitt. My academic research focuses on unconventional natural gas extraction and its potential impacts on health. However, trying to conduct research in such a controversial arena can be frustrating – at best. Access to well pads, pipelines, or other industrial areas is limited for a variety of reasons in Pennsylvania. The opportunity to discuss concerns with workers and residents is stifled by fear, red tape, and/or the desire to protect precious assets. I don’t blame people for being cautious about with whom they speak, but I truly wish it were easier to get close to drilling activity in person, without putting anyone’s lives or jobs in danger. My lamenting on that very subject one day resulted in a colleague telling me about The West Virginia Host Farms Program, a grassroots project launched by volunteer home owners residing near drilling activity.

The purpose of the program is to provide environmental researchers and the media with the chance to conduct research or simply to photograph a well pad in person from the safety of an adjacent host farm. In short, the network of volunteers help to develop research partnerships to better understand the impacts of drilling. Diane Pitcock, the program’s administrator, recognized the need for this initiative a few years ago as a surface rights owner. In WV many people are in “split-estate” situations, meaning that most surface owners do not own the mineral rights beneath their land. This issue is compounded by the fact that most of the minerals in WV are owned by people that do not even live in state. As such, the people who own the surface rights feel that their homes and livelihoods in some cases are at risk – without the potential for financial reimbursement from the sale of the mineral rights below their land. The program aims to show people that unconventional drilling using hydraulic fracturing is not our grandfather’s gas extraction process, and it can’t be treated as such.

The project operates out of 14 West Virginia counties where drilling is most active. The network of volunteers has aided in academic research based out of several universities including Yale and Duke. The project has also hosted out of state reporters and even international photojournalists, people who possess platforms to advance the outreach and public education effort surrounding unconventional drilling. For example, Jolynn Minaar, who produced the documentary,  Un*earthed, visited from South Africa in 2012 as part of her field work. Journalists from alternet.org  and polidoc.com have been among the area’s many inquirers, as well.  Even if you don’t plan on taking a tour of WV drilling sites, you can still benefit from the project’s extensive, online photo gallery (see image above).

Despite the controversial nature of shale gas drilling, the growing utilization of the program is surely a success story. Based on the WV Host Farms model, additional host farm networks are being coordinated in PA and OH as we speak. Engaging people who can volunteer 30-40 hours per week is no easy task, however. As more federal research like the US EPA’s hydraulic fracturing study begins to get off of the ground and into the well, perhaps even more people will support and recognize the value of such an integral, on-the-ground resource in the WV Host Farms Program. I know this researcher does!

For more information:

Diane L. Pitcock, Program Administrator
The WV Host Farms Program
P.O. Box 214, West Union, WV, 26456
304-873-3764
(e) wvhostfarms@yahoo.com
(w) www.wvhostfarms.org

Ohio’s Waste Not, Want Not!

By Ted Auch, PhD – Ohio Program Coordinator, FracTracker Alliance

The Akron Beacon Journal’s Bob Downing has just published an investigative report looking at the recent advisory put forth by the Ohio Environmental Protection Agency’s (OEPA) Division of Materials and Waste Management – along with the Ohio Department of Natural Resources (ODNR) Division of Oil and Gas Resources Management and the Ohio Department of Health (OHD) [1] Bureau of Radiation Protection – to all of Ohio’s municipal solid waste landfills. The advisory suggests that the landfills statewide – including 17 industrial residual waste, 40 municipal solid waste, 36 orphaned landfill facilities along with 64 transfer stations – should prepare to start receiving solid Utica and Marcellus shale drilling waste, “including drill cuttings, drilling muds, and frac sands,” (especially since Pennsylvania seems to be cracking down on some of its traditional drilling waste disposal practices). This new waste stream is in addition to the millions of barrels of potentially radioactive liquid waste already being trucked in from PA and WV [2] for deep well injection – and potentially shipped into Washington County, OH along the Ohio River [3]. This advisory is concerning because the same regulatory bodies have been conveying to other media outlets (e.g. The Columbus Dispatch) that such activities are strictly prohibited and that injection of Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) is “almost the perfect solution” compared to to landfill disposal.

If the advisory is correct, however, there are complications associated with using this disposal method relative to the waste’s viscosity, elevated levels of Total Dissolved Solids (TDSs), and/or concentrations of TENORM. Materials deemed suitable for municipal landfills must not exceed five picocuries per gram radium above background levels; however, early returns speak to the potential for shale wastewater to be:

… 3,609 times more radioactive than a federal safety limit for drinking water…[or] 300 times higher than a Nuclear Regulatory commission limit for industrial discharges to water. Learn more

Additionally, Marcellus brine may have salinity and radium levels three times that of traditional sandstone/limestone oil and gas wells of the Cambrian-Mississippian age. To put this Marcellus data in perspective, the range was 0-18 picocuries per gram with a median value of 2.46 picocuries per gram. Issues associated with brine disposal, however, are not new here in Ohio where researchers like The Ohio State University’s Wayne Pettyjohn reported excessive levels of freshwater chloride (35-320,000 mg/l) pollution in Morrow, Delaware, and Medina counties. These results prompted Pettyjohn to write “ground-water resources may be seriously and perhaps irreparably contaminated long before landowners are even aware that a problem exists” (Pettyjohn, 1971).

The solution proposed by the authors of this advisory is to use the US EPA’s “paint-filter test” bringing materials into compliance with Code of Federal Regulation (CFR) 264.313 and 265.313, which basically ended the practice of disposing of “liquid waste or waste containing free liquids” in 1985. The EPA’s Paint Filter Liquids Test (Method 9095B) is summarized as follows:

Material is placed in a paint filter [Mesh number 60 +/- 5% (fine meshed size)] [4]. If any portion of the material passes through and drops from the filter … the material is deemed to contain free liquids.

Figure 1. Ohio’s Registered Non-Hazardous & Hazardous Waste Landfills

Figure 1. Ohio’s Registered Non-Hazardous & Hazardous Waste Landfills

This advisory is likely due to the backlash associated with injection well incidents, including the Youngstown earthquakes attributed by some scientists to the lubrication effect that injected materials have on geologic faults. Additionally, rural communities – and researchers – in Ohio’s Utica Shale basin are beginning to raise questions around the practice of spreading shale gas brine on roads as a substitute for salt in the winter and approved disposal method during the summer. Concerns revolve around elevated levels of chlorides in excess of 2-5 times EPA public drinking-water standards (Bair and Digel, 1990). Unfortunately, the OEPA advisory is ambiguous about post-disposal monitoring, suggesting only that:

… the landfill may need to perform monitoring of landfill systems, such as those related to leachate collection, to determine potential impacts to human health or the environment associated with these [TENORM] waste streams.

This inclusion of the word may rather than must further alienates communities already skeptical about the ability or will of ODNR – and now OEPA and ODH – to regulate and/or ensure adequate monitoring of unconventional natural gas drilling activities. If this advisory is any indication related activities will be spreading beyond the Utica Basin to the state’s 21 hazardous and 121 non-hazardous waste facilities (Figure 1), with specific focus on the 57 industrial residual and municipal solid waste facilities throughout the state (Figure 2 below). Such a regulatory development has serious ramifications for PA’s 40+ municipal waste landfills, 5 construction/demolition waste landfills, 3 residual waste landfills, and 6 resource recover/waste to energy facilities (see full PA stats) and the nation’s 1,908 Municipal Solid Waste (MSW) landfills as reported in BioCycle (2010).

As drilling intensifies in the Utica Shale, nearby states may be further burdened by the mounting waste stream. Communities once thought to be disconnected from hydraulic fracturing will be forced to debate the merits of allowing such waste in their communities, similar to the situation facing non-Utica Shale cities in Ohio. Such a discussion will be unavoidable given that 84% of the state’s waste treatment facilities are located outside what could liberally be referred to as the Ohio Shale play (Figure 2 Inset).

Figure 2. Ohio’s Registered Non-Hazardous Waste Facilities by Type (% of the state’s 121 facilities)

Figure 2. Ohio’s Registered Non-Hazardous Waste Facilities by Type (% of the state’s 121 facilities)


[1] The ODH co-signed the OEPA advisory even though its own radiation-protection chief Michael Snee told The Columbus Dispatch that “wastes trucked to landfills pose a bigger threat to groundwater” relative to injection wells only days prior to the OEPA advisories release last September.
[2] 53% of the 12.2 million barrels of brine injected into Ohio’s 160 injection wells came from these neighboring states (PA and WV).
[3] The company proposing the Washington County landfill in New Matamoras is confident that the shipping of shale gas drilling waste is safe because “barges ship hydrochloric acid,” as their VP of Appalachian business development told The Columbus Dispatch.
[4] Mesh number 60 is in the lower third of the US Sieve size distribution with an opening of 0.250 mm or 0.0098 in, with the smallest sieve size being No. 400 at 0.037 mm. or 0.0015 in. Learn more>