Posts

The BP Whiting, IN Oil Refinery

US Oil Refineries and Economic Justice

How annual incomes in the shadow of oil refineries compare to state and regional prosperity

North American Oil Refinery Capacity (Barrels Per Day (BPD))

Figure 1. North American Oil Refinery Capacity

Typically, we analyze the potential economic impacts of oil refineries by simply quantifying potential and/or actual capacity on an annual or daily basis. Using this method, we find that the 126 refineries operating in the U.S. produce an average of 100,000-133,645 barrels per day (BPD) of oil – or 258 billion gallons per year.

In all of North America, there are 158 refineries. When you include the 21 and 27 billion gallons per year produced by our neighbors to the south and north, respectively, North American refineries account for 23-24% of the global refining capacity. That is, of course, if you believe the $113 dollar International Energy Agency’s 2016 “Medium-Term Oil Market Report” 4.03 billion gallon annual estimates (Table 1 and Figure 1).

Table 1. Oil Refinery Capacity in the United States and Canada (Barrels Per Day (BPD))

United States Canada Mexico Total
Refinery Count 126 17 6 158
Average Capacity 133,645 BPD 104,471 BPD 228,417 BPD 139,619 BPD
Low Foreland & Silver Eagle Refining in NV & WY, 2-3K BPD Prince George & Moose Jaw Refining in BC and SK, 12-15K BPD Pemex’s Ciudad Madero Refinery, 152K BPD
High Exxon Mobil in TX & LA, 502-560K BPD Valero and Irving Oil Refining in QC & NS, 265-300K BPD Pemex’s Tula Refinery, 340K BPD
Median 100,000 BPD 85,000 BPD 226,500 109,000
Total Capacity 16.8 MBPD 1.8 MBPD 1.4 MBPD 22.1 MBPD

Census Tract Income Disparities

However, we would propose that an alternative measure of a given oil refinery’s impact would be neighborhood prosperity in the census tract(s) where the refinery is located. We believe this figure serves as a proxy for economic justice. As such, we recently used the above refinery location and capacity data in combination with US Census Bureau Cartographic Boundaries (i.e., Census Tracts) and the Census’ American FactFinder clearinghouse to estimate neighborhood prosperity near refineries.

Methods

Our analysis involved merging oil refineries to their respective census tracts in ArcMAP 10.2, along with all census tracts that touch the actual census tract where the refineries are located, and calling that collection the oil refinery’s sphere of influence, for lack of a better term. We then assigned Mean Income in the Past 12 Months (In 2014 Inflation-Adjusted Dollars) values for each census tract to the aforementioned refinery tracts – as well as surrounding regional, city, and state tracts – to allow for a comparison of income disparities. We chose to analyze mean income instead of other variables such as educational attainment, unemployment, or poverty percentages because it largely encapsulates these economic indicators.

As the authors of the UN’s International Forum of Social Development paper Social Justice in an Open World wrote:

In today’s world, the enormous gap in the distribution of wealth, income and public benefits is growing ever wider, reflecting a general trend that is morally unfair, politically unwise and economically unsound… excessive income inequality restricts social mobility and leads to social segmentation and eventually social breakdown…In the modern context, those concerned with social justice see the general  increase  in  income  inequality  as  unjust,  deplorable  and  alarming.  It is argued that poverty reduction and overall improvements in the standard of living are attainable goals that would bring the world closer to social justice.

Environmental regulatory agencies like to separate air pollution sources into point and non-point sources. Point sources are “single, identifiable” sources, whereas non-point are more ‘diffuse’ resulting in impacts spread out over a larger geographical area. We would equate oil refineries to point sources of socioeconomic and/or environmental injustice. The non-point analysis would be far more difficult to model given the difficulties associated with converting perceived quality of life disturbance(s) associated with infrastructure like compressor stations from the anecdotal to the empirical.

Results

Primarily, residents living in the shadow of 80% of our refineries earn nearly $16,000 less than those in the surrounding region – or, in the case of urban refineries, the surrounding Metropolitan Statistical Areas (MSAs). Only residents living in census tracts within the shadow of 25 of our 126 oil refineries earn around $10,000 more annually than those in the region.

On average, residents of census tracts that contain oil refineries earn 13-16% less than those in the greater region and/or MSAs (Figure 2). Similarly, in comparing oil refinery census tract incomes to state averages we see a slightly larger 17-21% disparity (Figure 3).

Digging Deeper

United States Oil Refinery Income Disparities (Note: Larger points indicate oil refinery census tracts that earn less than the surrounding region or city)

Figure 4. United States Oil Refinery Income Disparities (Note: Larger points indicate oil refinery census tracts that earn less than the surrounding region or city.)

Oil refinery income disparities seem to occur not just in one region, but across the U.S. (Figure 4).

The biggest regional/MSA disparities occur in northeastern Denver neighborhoods around the Suncor Refinery complex (103,000 BPD), where the refinery’s census tracts earn roughly $42,000 less than Greater Denver residents1. California, too, has some issues near its Los Angeles’ Valero and Tesoro Refineries and Chevron’s Bay Area Refinery, with a combined daily capacity of nearly 600 BPD. There, two California census associations in the shadow of those refineries earn roughly $38,000 less than Contra Costa and Los Angeles Counties, respectively. In the Lone Star state Marathon’s Texas City, Galveston County refinery resides among census tracts where annual incomes nearly $33,000 less than the Galveston-Houston metroplex. Linden, NJ and St. Paul, MN, residents near Conoco Phillips and Flint Hills Resources refineries aren’t fairing much better, with annual incomes that are roughly $35,000 and nearly $33,000 less than the surrounding regions, respectively.

Click on the images below to explore each of the top disparate areas near oil refineries in the U.S. in more detail. Lighter shades indicate census tracks with a lower mean annual income ($).

Conclusion

Clearly, certain communities throughout the United States have been essentially sacrificed in the name of Energy Independence and overly-course measures of economic productivity such as Gross Domestic Product (GDP). The presence and/or construction of mid- and downstream oil and gas infrastructure appears to accelerate an already insidious positive feedback loop in low-income neighborhoods throughout the United States. Only a few places like Southeast Chicago and Detroit, however, have even begun to discuss where these disadvantaged communities should live, let alone how to remediate the environmental costs.

Internally Displaced People

There exists a robust history of journalists and academics focusing on Internally Displaced People (IDP) throughout war-torn regions of Africa, the Middle East, and Southeast Asia – to name a few – and most of these 38 million people have “become displaced within their own country as a result of violence.” However, there is a growing body of literature and media coverage associated with current and potential IDP resulting from rising sea levels, drought, chronic wildfire, etc.

The issues associated with oil and gas infrastructure expansion and IDPs are only going to grow in the coming years as the Shale Revolution results in a greater need for pipelines, compressor stations, cracker facilities, etc. We would propose there is the potential for IDP resulting from the rapid, ubiquitous, and intense expansion of the Hydrocarbon Industrial Complex here in the United States.

N. American Hydrocarbon Industrial Complex Map


View map fullscreenHow FracTracker maps work | Download map data

Footnotes and Additional Reading

  1. The Suncor refinery was implicated in a significant leak of tar sands crude associated benzene into the South Platte River as recently as 2013. According to Suncor’s website this refinery “supplies about 35% of Colorado’s gasoline and diesel fuel demand and is a major supplier of jet fuel to the Denver International Airport. The refinery is also the largest supplier of paving-grade asphalt in Colorado.”
  2. New York Times story on the growing footprint of BP’s Whiting Refinery: Surrounded by Industry, a Historic Community Fights for Its Future

By Ted Auch, PhD – Great Lakes Program Coordinator, FracTracker Alliance

Drilling Bella Romero: Children at Risk in Greeley, Colorado

By
Kirk Jalbert, Manager of Community Based Research & Engagement
Kyle Ferrar, Western Program Coordinator

Weld County, Colorado, is one of the top producing shale oil and gas regions in the United States, boasting more than 12,000 active horizontal or directional wells, which account for 50% of all horizontal or directional wells in the state. To put this into perspective, the entire state of Pennsylvania has ten times the land area with “only” 9,663 horizontal or directional wells. At the center of Weld County is the city of Greeley, population 92,889. Greeley has experienced dramatic changes in the past decade as extraction companies compete to acquire oil and gas mineral rights. Extensive housing developments on the outskirts of the city are being built to accommodate future well pads on neighboring lots. Meanwhile, a number of massive well pads are proposed within or on the border of city limits.

FracTracker visited Colorado back in November 2015 and met with regional advocacy organizations including Coloradans Against Fracking, Protect our Loveland, Weld Air and Water, and Our Longmont to determine how we could assist with data analysis, mapping, and digital storytelling. FracTracker returned in June 2016 to explore conditions unique to Weld County’s oil and gas fields. During our visit we interviewed residents of Greeley and found that one of their greatest concerns was the dangers of siting oil and gas wells near schools. While there is much more we will be publishing in coming weeks about our visit, this article focuses on one troubling project that would bring gas drilling to within 1,300ft of a public school. The proposal goes before the Weld County Commissioners on Wednesday, June 29th for final approval. As such, we will be brief in pointing out what is at stake in siting industrial oil and gas facilities near schools in Colorado and why residents of Greeley have cause for concern.

Drilling Bella Romero

On June 7th, the Weld County Planning Commission unanimously approved a proposal from Denver-based Extraction Oil & Gas to develop “Vetting 15H”—a 24-head directional well pad in close proximity to Bella Romero Academy, a middle school just outside Greeley city limits. In addition to the 24-head well pad would be a battery of wastewater tanks, separators, and vapor recovery units on an adjacent lot. The permit submitted to the Colorado Oil & Gas Conservation Commission (COGCC) also states that six more wells may be drilled on the site in the future.

As was detailed in a recent FracTracker article, Colorado regulations require a minimum setback distance of 500ft from buildings and an additional 350ft from outdoor recreational areas. In more populated areas, or where a well pad would be within 1,000ft of high occupancy buildings, schools, and hospitals, drilling companies must apply for special variances to minimize community impacts. Setbacks are measured from the well head to the nearest wall of the building. For well pads with multiple heads, each well must comply with the respective setback requirements.

bella_romero_playground

Bella Romero’s playground with Vetting 15H’s proposed site just beyond the fence.

Vetting 15H would prove to be one of the larger well pads in the county. And while its well heads remain just beyond the 1,000ft setback requirement from Bella Romero buildings, a significant portion of the school’s ballfields are within 1,000ft of the proposed site. When setbacks for the well pad and the processing facility are taken together—something not explicitly demonstrated in the permit—almost the entirety of school grounds are within 1,000ft and the school itself lies only 1,300ft from the pad. The below figures show the images supplied by Extraction Oil & Gas in their permit as well as a more detailed graphic generated by FracTracker.

 

Youth: A High Risk Population

The difference between 1,000ft and 1,300ft may be negligible when considering the risks of locating industrial scale oil and gas facilities near populated areas. The COGCC has issued 1,262 regulatory violations to drilling companies since 2010 (Extraction Oil & Gas ranks 51st of 305 operators in the state for number of violations). Some of these violations are for minor infractions such as failing to file proper paperwork. Others are for major incidents; these issues most often occur during the construction phases of drilling, where a number have resulted in explosions and emergency evacuations. Toxic releases of air and water pollution are not uncommon at these sites. In fact, the permit shows drainage and potential spills from the site would flow directly towards Bella Romero school grounds as is shown in the figure below.

Vetting 15H post-development drainage map.

Vetting 15H post-development drainage map.

A host of recent research suggests that people in close proximity to oil and gas wells experience disproportionate health impacts. Emissions from diesel engine exhaust contribute to excessive levels of particular matter, and fumes from separators generate high levels of volatile organic compounds. These pollutants decrease lung capacity and increase the likelihood of asthma attacks, cardiovascular disease, and cancer (read more on that issue here). Exposure to oil and gas facilities is also linked to skin rashes and nose bleeds.

As we’ve mentioned in our analysis of oil and gas drilling near schools in California, children are more vulnerable to these pollutants. The same amount of contaminants entering a child’s body, as opposed to an adult body, can be far more toxic due to differences in body size and respiratory rates. A child’s developing endocrine system and neural pathways are also more susceptible to chemical interactions. These risks are increased by children’s lifestyles, as they tend to spend more hours playing outdoors than adults and, when at school, the rest of their day is spent at a central location.

At the June 7th public hearing Extraction Oil & Gas noted that they intend to use pipelines instead of trucks to transport water and gas to and from Vetting 15H to reduce possible exposures. But, as residents of Greeley noted of other projects where similar promises were made and later rescinded, this is dependent on additional approvals for pipelines. Extraction Oil & Gas also said they would use electric drilling techniques rather than diesel engines, but this would not eliminate the need for an estimated 22,000 trucking runs over 520 days of construction.

Below is a table from the Vetting 15H permit that shows daily anticipated truck traffic associated with each phase of drilling. The estimated duration and operational hours of each activity are based on only 12 wells since construction is planned in two phases of 12 wells at a time. These numbers do not account for the trucking of water for completions activities, however. The figures could be much higher if pipelines are not approved, as well as if long-term trucking activities needed to maintain the site are included in the estimates.

Vetting 15H daily vehicle estimates.

Vetting 15H daily vehicle estimates from permit

 

At the Top of the Most Vulnerable List

Bella Romero Academy has the unfortunate distinction of being one of the few schools in Colorado in close proximity to a horizontal or directional well amongst 1,750 public and 90 private schools in the state. Based on our analysis, there are six public schools within 1,000ft of a horizontal or directional well. At 2,500ft we found 39 public schools and five private schools. Bella Romero is presently at the top of the list of all schools when ranked by number of well heads located within a 1,000ft buffer. An 8-head well pad is only 800ft across the street from its front door. If the Vetting 15H 24-head well pad was to be constructed, Bella Romero would be far and above the most vulnerable school within 1,000ft of a well. It would also rank 3rd in the state for well heads located within 2,500ft of a school. The tables below summarize our findings of this proximity analysis.

Colorado public schools within 1,000ft of a horizontal or directional well

Colorado public schools within 1,000ft of a horizontal or directional well

Colorado public schools within 2,500ft of a horizontal or directional well with 5 or more well heads. There are 39 schools in total.

Colorado public schools within 2,500ft of a horizontal or directional well with 5 or more well heads. There are 39 schools in total

Colorado private schools within 2,500ft of a horizontal or directional well

Colorado private schools within 2,500ft of a horizontal or directional well

The following interactive map shows which schools in Colorado are within a range of 2,500ft from a directional and horizontal well. Additional buffer rings show 1,000ft and 500ft buffers for comparison. 1,000ft was selected as this is the minimum distance required by Colorado regulations from densely populated areas and schools without requiring special variances. Environmental advocacy groups are presently working to change this number to 2,500ft. The map is zoomed in to show the area around Bella Romero. Zoom out see additional schools and click on features to see more details. [NOTE: The Colorado school dataset lists Bella Romero Academy as an elementary/middle school. Bella Romero was recently split, with the elementary school moving a few blocks west.]

Map of schools and setbacks in Colorado

View map full screen | How FracTracker maps work

Environmental Injustice

Drilling near Bella Romero is also arguably an environmental justice issue, as its student population has some of the highest minority rates in the county and are amongst the poorest. According to coloradoschoolgrades.com, Bella Romero is 89% Hispanic or Latino and 3% African American whereas, according to the U.S. Census Bureau, Greeley as a whole is 59% White and 36% Hispanic or Latino. 92% of Bella Romero’s students are also from low income families. Furthermore, according to the EPA’s Environmental Justice Screening Tool, which is used by the agency to assess high risk populations and environments, the community surrounding Bella Romero is within the 90-95% percentile range nationally for linguistically isolated communities.

Many of Bella Romero's students come from low-income communities surrounding Greeley.

Many of Bella Romero’s students come from low-income communities surrounding Greeley.

 

Implications

These statistics are significant for a number of reasons. Firstly, oil and gas permitting in Colorado only requires operators to notify residents immediately surrounding proposed well pads. This rule does not include residents who may live further from the site but send their students to schools like Bella Romero. Parents who might comment on the project would need to hear about it from local papers or neighbors, but language barriers can prevent this from occurring. Another factor we witnessed in our June visit to Latino communities in Weld County is that many students have undocumented family members who are hesitant to speak out in public, leaving them with no voice to question risks to their children.

Residents of Greeley speak out at the June 7th Planning Commission meeting.

Residents of Greeley speak out at the June 7th Planning Commission meeting

Nevertheless, at the June 7th Planning Commission hearing, Weld County administrators insisted that their decisions would not take race and poverty into consideration, which is a blatant disregard for EPA guidelines in siting industrial development in poor minority communities. Weld County’s Planning Commission claimed that their ruling on the site would be the same regardless of the school’s demographics. By comparison, another proposed Extraction Oil & Gas site that would have brought a 22-head well pad to within 1,000ft of homes in a more well off part of town was denied on a 0-6 vote by the City of Greeley’s Planning Commission earlier this year after nearby residents voiced concerns about the potential impacts. Extraction Oil & Gas appealed the ruling and Greeley City Council passed the proposal in a 5-2 vote pending additional urban mitigation area permit approval. While the Greeley Planning Commission and the Weld County Planning Commission are distinct entities, the contrast of these two decisions should emphasize concerns about fair treatment.

Conclusion

There are very real health concerns associated with siting oil and gas wells near schools.  When evaluating this project, county administrators should assess not only the immediate impacts of constructing the well pad but also the long-term effects of allowing an industrial facility to operate so close to a sensitive youth population. There are obvious environmental justice issues at stake, as well. Public institutions have a responsibility to protect marginalized communities such as those who send their children to Bella Romero. Finally, approving the Vetting 15H project would place Bella Romero far at the top of the list for schools in Colorado within 1,000ft of oil and gas wells. School board administrators should be concerned about this activity, as it will undoubtedly put their students’ health and academic performance at risk. We hope that, when the County Commissions review the proposal, these concerns will be taken into account.

Colorado Setbacks, One Step Forward?

By Sierra Shamer, Visiting Scholar, FracTracker Alliance

longmont

OurLongmont.org sign supporting the city’s ban on fracking

In 2012, citizens of Longmont, Colorado voted to increase setback distances of oil and gas infrastructure from occupied buildings. As well pads and storage facilities crept closer to homes, schools, and playgrounds, concerns of air, water, and noise pollution steadily grew. These regulations to protect public health and safety in Longmont culminated in an outright ban of hydraulic fracturing / directional drilling within their boundary. This prompted the state regulatory agency, the Colorado Oil and Gas Conservation Commission (COGCC) to sue the town, arguing that only the state has the power to regulate energy development. While the suit was dropped, the ban was overruled in 2014 in the Boulder District Court, determining that the city did not have the authority to prohibit what is permitted throughout the state. The city motioned for a Stay Pending Appeal and it was granted by the court – the ban on fracking in Longmont will stay in effect until the case is settled.

In response to these local challenges of oil and gas expansion, the COGCC passed new setback rules. However, with loopholes, exceptions, and an increasing awareness of public health and safety threats, Coloradans have continued to demand increased and enforced setback distances. This article highlights the issue of setback regulations in Colorado, featuring a map of Weld County that exemplifies the statewide expansion of fracking wells into communities.

Colorado Setbacks Regulation

The COGCC passed new setback rules for oil and gas facilities in February of 2013 with a stated purpose of decreasing the “potential adverse health and safety risks to the public and the environment, including spills, odors, noise, dust, and lighting.” Prior rules permitted drilling within 150 feet of occupied buildings in a rural area and within 350 feet in an urban area. A COGCC report in October 2013 stated that 600 oil and gas locations were located within 500 feet of occupied buildings, 26% of the total. The new regulations increased the minimum setback distance to 500 feet, adding a 350-foot setback from outdoor recreational areas such as playgrounds or sports fields, and a 1,000-foot setback from high occupancy building such as schools or hospitals. It also included 1,000-foot buffer distances from these outdoor areas and buildings within which facilities are permitted but require increased on-site mitigation to prevent air, noise, and water pollution. These rules took effect on August 1, 2013.

Setback Success?

Colorado’s setback rules have been criticized by organizations, activists, landowners, and researchers who argue that the loopholes and exemptions allowed by the COGCC make the rules ineffective, and even if they were enforced, the modest increase in setback distance would not adequately protect citizens from negative impacts. Exceptions to the rules, shown in the table below, are included the regulations and are available for the majority of setback distances identified, allowing oil and gas facilities to continue development in close proximity to communities. The Western Resource Advocates, a conservation organization in Colorado, identifies two commonplace built-in exceptions to the 500-foot minimum setback rule: the “Beware Thy Neighbor” exception, allows surface landowners the ability to allow wells within setback distances, and the “Expansion Exception,” which allows active well pads the ability to expand even if they are within the new setback distances. If exceptions are granted, the facility must include additional mitigation measures to lessen air and noise pollution and safeguard against potential spills due to the proximity of communities.

Exceptions to Setback Rules CO

Source: COGCC

In 2015, the University of Denver and the Sierra Club conducted a review of compliance with these setback regulations, finding that 181 permits approved after the rules were enacted lacked legally required information. These permits will result in 951 wells, 1221 oil and condensate tanks, and 932 separators throughout the state, concentrated in counties like Garfield, La Plata, and Weld that have the most widespread oil and gas development. This review identified that in Weld County, permits for 798 wells, 1140 tanks, and 800 separators lacked critical information the COGCC required.

In February of this year, a study published in Environmental Health Perspectives evaluated the adequacy of setbacks in Pennsylvania, Texas, and Colorado. The researchers concluded that the current s setbacks are insufficient to protect public health and safety, leaving communities vulnerable. Further, they claim while that there is no defined setback that will ensure the safety of a population, all three states should adopt larger setbacks distances and increased mitigation measures.

Continued Demands

Armed with health and safety information, evidence of COGCC lack of enforcement, and the lived experiences of Coloradans, communities and groups are organizing around ballot initiatives. These initiatives would become part of the state constitution, and would to increase setback distances and secure the ability of local governments to determine where development occurs within their boundaries. Unlike the internal rules and regulations determined by the COGCC, these additions to the state constitution would offer no exceptions.

The Western Colorado Congress (WCC) a group that organizes communities around threats to environmental and public health, advocated in 2013 for 1,000-foot setbacks from homes and 1,500-foot setbacks from schools. They continue to push for increased distances and support ballot initiatives that allow local governmental control of oil and gas development. Current ballot initiatives, created by Coloradans Resisting Extreme Energy Development (CREED) demand local government control of oil and gas infrastructure and 2,500-foot setbacks from homes, schools, outdoor recreation areas, and sources of drinking water. This setback distance is based on a Colorado health study, concluding that people living with a half-mile of wells had an increased risk of illness than those further away.

Weld County: A Closer Look

Weld County has experienced dramatic oil and gas development, with increasing infrastructure permitted closer and closer to residents’ homes and communities. Currently, there are over 12,200 directional wells in Weld County and over 35,300 wells in total. The map below uses data accessed from the COGGC on April 7th, 2016 and address points data from Weld County. The address points are located within the center of homes, and while setbacks distances are measured from the center of the well pad to the nearest wall of the building, the address points still demonstrate the proximity and danger of encroaching infrastructure. The map identifies directional wells permitted within the designated setback of 500 feet and the buffer zone of 1,000 feet and pending directional wells within proposed 1,000 and 2,500-foot setbacks. Address points within these setbacks are identified, and if you select the Directional Lines layer, the underground directional well lines become visible.

Map of wells and setbacks in Weld County, CO

View map full screen | How FracTracker maps work

The state, the COGCC, and the industry oppose these initiatives, arguing that it will hinder the economic development of Colorado and threaten state control of regulation. Industry advocates have claimed that a 2,500-foot setback would eliminate 87% of new operations in Weld County. This strong opposition often results in such initiatives being dropped or voted out, a reality that occurred earlier this month when two of three initiatives relating to oil and gas were voted down the state house of representatives.

Currently, 48% of addresses (around 53,700) in Weld County are within 2,500 feet of at least one directional well, and 9% are within 1,000 feet. Since August 2013, 16 directional wells have been permitted within 500 feet of buildings, and 207 have been permitted within 1,000 feet. Regarding new operations in Weld County, of the 379 pending directional wells, 319 of them are within 2,500 feet of homes – around 84% – slightly less than the industry claimed, but close. However, is important to note that many pending wells are planned on existing well pads, constructed prior to the new rules, and can be given exceptions. Additionally, the technology of directional drilling allows greater flexibility. When viewing the directional lines on the map, it is clear that wells can be drilled in any direction from a well pad, suggesting that companies could place surface wells further away from homes and still access the underground resource.

Moving Forward With Setbacks

Demands for protection from oil and gas encroachment are steadily increasing. The group, Coloradans Against Fracking, a large coalition of organizations, has endorsed the 2016 ballot initiatives put forward by CREED. It is clear that the state can accept continuous challenges to oil and gas development, particularly if rules and regulations are neglected at the expense of public health and safety.

Feature image by Western Colorado Congress (WCC).

Flooded well and toppled oil storage tanks in Weld County, Colorado 2013. Rick Wilking/Reuters

Oil and Gas Flood Contamination Risk Incalculable on CO Front Range

By Sierra Shamer, Visiting Scholar, FracTracker Alliance

Historic 2013 flooding in the Colorado Front Range damaged homes, bridges, roads, and other infrastructure — including hundreds of oil and gas facilities. Companies shut down wells and scrambled to contain spills in their attempts to prevent extensive water contamination. Colorado has since adopted new regulations that require oil and gas companies to identify and secure all infrastructures located within floodplains. However, FEMA’s Flood Hazard maps, which the state uses to calculate flood risk, are largely incomplete, leaving only the industry accountable for reporting facilities that may be at risk in future flooding events. This article highlights the unknown flood contamination risk threatening the Front Range by oil and gas, and the featured map identifies known floodplain infrastructure.

Front Range Realities

CO Front Range counties re: flood contamination risk

Counties of the Colorado Front Range

The Colorado Front Range is the most populated region of the state, covering 17 counties and 7 cities including Boulder, Denver, and Colorado Springs. This region has experienced devastating flash flooding events throughout history, most notably the Big Thompson flood of 1976, which dumped 12-14 inches of rain along the Front Range in only 4-6 hours. The 2013 Colorado Front Range Flood brought almost 15 inches to the region, 9 of which falling within a period of 24 hours. A state of emergency was declared in the region and recovery projects continue to this day.

The Front Range region is not only one of the most populated in Colorado, it is also home to 40% of Colorado’s oil and gas wells. Oil and gas development occurs so rapidly that data reports on pending permits, active permits, and well locations are updated daily by the Colorado Oil and Gas Conservation Commission (COGCC). The damage to oil and gas facilities due to the 2013 floods prompted the COGCC to adopt Rule 603.h, requiring companies to identify proposed and current infrastructure within the floodplain and to create flood mitigation and response plans. On April 1st of this year, all companies with existing infrastructure must comply with Rule 603.h. With over 109,000 wells in the state, an incomplete FEMA database, and only 22 field inspectors, the COGCC has limited capacity to ensure these reports identify all infrastructure within the floodplain.

FEMA Floodplain Gaps

The Federal Emergency Management Agency (FEMA) maintains a national map of the 100-year floodplain for insurance determinations that are in the process of being digitized. These maps show the extent of flooding expected from rain events with a 1% chance of occurring in any given year. They are determined by a combination of topography, satellite imagery, and maps from local jurisdictions. However, in many portions of the western US, these mapped areas are incomplete, including large regions of Colorado. FEMA maps are also the primary floodplain data source used by industry and the by the COGCC. The map below shows the oil and gas infrastructure that is located within the known digital 100-year floodplain as of early February 2016. This map underrepresents the actual number of facilities within the floodplains due to incomplete FEMA data, but provides a clear visual of a widespread problem.

Known Floodplain Infrastructure Map

View full screen map | How to work with our maps | Download map data

Although FEMA is routinely working to update their dataset, large regions with widespread extraction remain digitally unmapped. While there is accessible floodplain info for the companies to use to determine their status and for the COGCC to verify what the industry reports, the incomplete digitized FEMA data means there is no accessible or efficient way for the COGCC to know if there is infrastructure within a floodplain that hasn’t been reported. This means that more is at risk here than we can calculate. Weld County, a Front Range county and recipient of severe flooding in 2013, starkly exemplifies this reality. In the aftermath of the 2013 flood, Weld County became a disaster zone when 1,900 oil and gas wells were shut down, submerged completely by the rushing water, as thousands of gallons of oil drained out. Until January 2016, Weld County lacked digitally mapped floodplains, and currently only 16% of the river and stream network is available.

The table below lists the percentages of oil and gas infrastructure that exist in Weld County alone that can be calculated using this limited dataset. As of February of this year, 3,475 wells of 35,009 are within the known floodplain in Weld County. Of greater concern, 74% of pending permits statewide are in Weld County – 5% of those in the known floodplain – indicating either an underestimation of flood risk, a blatant disregard of it, or both.

table_v2

Flooding in the Future

According to the CO Climate Change Vulnerability Study, the state expects a 2.5–5 degree Fahrenheit annual temperature increase by 2050. While this increase is likely to cause earlier spring runoff, more rain at lower elevations, and higher evaporation rates, it is unclear if annual precipitation will increase or decrease with rising temperatures. This uncertainty makes it difficult to know if increased flood risk is in the future. Current flood risk, however, is a known threat. The CO Department of Public Safety’s Flood Hazard Mitigation Plan calculates, based on historical events, that Colorado experiences a flood disaster once every five years. This means that each year, there is a 20% chance a major flood will occur. With incomplete data, limited oversight, and uncertain future trends, oil and gas flood contamination risk is incalculable – and on the Front Range, the majority of Colorado’s population, extractive industry, and environment are in danger.

Dealing with the Unknown

The unknown risks of climate change and known risks of historical flood trends emphasize that identifying oil and gas infrastructure in floodplains must be a high priority for the COGCC. These realities also put into question whether or not future infrastructures should be permitted within floodplains at all. In April, floodplain infrastructure will be identified by the industry and when these data are made available, a more accurate analysis of risk will me made.

Feature photo shows a flooded well and toppled oil storage tanks in Weld County, Colorado 2013 – by Rick Wilking/Reuters.

FracTracker map of the density of wells by U.S. state as of 2015

1.7 Million Wells in the U.S. – A 2015 Update


 

Updated National Well Data

By Matt Kelso, Manager of Data & Technology

In February 2014, the FracTracker Alliance produced our first version of a national well data file and map, showing over 1.1 million active oil and gas wells in the United States. We have now updated that data, with the total of wells up to 1,666,715 active wells accounted for.

Density by state of active oil and gas wells in the United States. Click here to access the legend, details, and full map controls. Zoom in to see summaries by county, and zoom in further to see individual well data. Texas contains state and county totals only, and North Carolina is not included in this map. 

While 1.7 million wells is a substantial increase over last year’s total of 1.1 million, it is mostly attributable to differences in how we counted wells this time around, and should not be interpreted as a huge increase in activity over the past 15 months or so. Last year, we attempted to capture those wells that seemed to be producing oil and gas, or about ready to produce. This year, we took a more inclusive definition. Primarily, the additional half-million wells can be accounted for by including wells listed as dry holes, and the inclusion of more types of injection wells. Basically anything with an API number that was not described as permanently plugged was included this time around.

Data for North Carolina are not included, because they did not respond to three email inquiries about their oil and gas data. However, in last year’s national map aggregation, we were told that there were only two active wells in the state. Similarly, we do not have individual well data for Texas, and we use a published list of well counts by county in its place. Last year, we assumed that because there was a charge for the dataset, we would be unable to republish well data. In discussions with the Railroad Commission, we have learned that the data can in fact be republished. However, technical difficulties with their datasets persist, and data that we have purchased lacked location values, despite metadata suggesting that it would be included. So in short, we still don’t have Texas well data, even though it is technically available.

Wells by Type and Status

Each state is responsible for what their oil and gas data looks like, so a simple analysis of something as ostensibly straightforward as what type of well has been drilled can be surprisingly complicated when looking across state lines. Additionally, some states combine the well type and well status into a single data field, making comparisons even more opaque.

Top 10 of 371 published well types for wells in the United States.

Top 10 of 371 published well types for wells in the United States.

Among all of the oil producing states, there are 371 different published well types. This data is “raw,” meaning that no effort has been made to combine similar entries, so “gas, oil” is counted separately from “GAS OIL,” and “Bad Data” has not been combined with “N/A,” either. Conforming data from different sources is an exercise that gets out of hand rather quickly, and utility over using the original published data is questionable, as well. We share this information, primarily to demonstrate the messy state of the data. Many states combine their well type and well status data into a single column, while others keep them separate. Unfortunately, the most frequent well type was blank, either because states did not publish well types, or they did not publish them for all of their wells.

There are no national standards for publishing oil and gas data – a serious barrier to data transparency and the most important takeaway from this exercise… 

Wells by Location

Active oil and gas wells in 2015 by state. Except for Texas, all data were aggregated published well coordinates.

Active oil and gas wells in 2015 by state. Except for Texas, all data were aggregated published well coordinates.

There are oil and gas wells in 35 of the 50 states (70%) in the United States, and 1,673 out of 3,144 (53%) of all county and county equivalent areas. The number of wells per state ranges from 57 in Maryland to 291,996 in Texas. There are 135 counties with a single well, while the highest count is in Kern County, California, host to 77,497 active wells.

With the exception of Texas, where the data are based on published lists of well county by county, the state and county well counts were determined by the location of the well coordinates. Because of this, any errors in the original well’s location data could lead to mistakes in the state and county summary files. Any wells that are offshore are not included, either. Altogether, there are about 6,000 wells (0.4%) are missing from the state and county files.

Wells by Operator

There are a staggering number of oil and gas operators in the United States. In a recent project with the National Resources Defense Council, we looked at violations across the few states that publish such data, and only for the 68 operators that were identified previously as having the largest lease acreage nationwide. Even for this task, we had to follow a spreadsheet of which companies were subsidiaries of others, and sometimes the inclusion of an entity like “Williams” on the list came down to a judgement call as to whether we had the correct company or not.

No such effort was undertaken for this analysis. So in Pennsylvania, wells drilled by the operator Exco Resources PA, Inc. are not included with those drilled by Exco Resources PA, Llc., even though they are presumably the same entity. It just isn’t feasible to systematically go through thousands of operators to determine which operators are owned by whom, so we left the data as is. Results, therefore, should be taken with a brine truck’s worth of salt.

Top 10 wells by operator in the US, excluding Texas. Unknown operators are highlighted in red.

Top 10 wells by operator in the US, excluding Texas. Unknown operators are highlighted in red.

Texas does publish wells by operator, but as with so much of their data, it’s just not worth the effort that it takes to process it. First, they process it into thirteen different files, then publish it in PDF format, requiring special software to convert the data to spreadsheet format. Suffice to say, there are thousands of operators of active oil and gas wells in the Lone Star State.

Not counting Texas, there are 39,693 different operators listed in the United States. However, many of those listed are some version of “we don’t know whose well this is.” Sorting the operators by the number of wells that they are listed as having, we see four of the top ten operators are in fact unknown, including the top three positions.

Summary

The state of oil and gas data in the United States is clearly in shambles. As long as there are no national standards for data transparency, we can expect this trend to continue. The data that we looked for in this file is what we consider to be bare bones: well name, well type, well status, slant (directional, vertical, or horizontal), operator, and location. In none of these categories can we say that we have a satisfactory sense of what is going on nationally.

Click on the above button to download the three sets of data we used to make the dynamic map (once you are zoomed in to a state level). The full dataset was broken into three parts due to the large file sizes.

Over 1.1 Million Active Oil and Gas Wells in the US

Many people ask us how many wells have been hydraulically fractured in the United States.  It is an excellent question, but not one that is easily answered; most states don’t release data on well stimulation activities.  Also, since the data are released by state regulatory agencies, it is necessary to obtain data from each state that has oil and gas data to even begin the conversation.  We’ve finally had a chance to complete that task, and have been able to aggregate the following totals:

Oil and gas summary data of drilled wells in the United States.

Oil and gas summary data of drilled wells in the United States.

 

While data on hydraulically fractured wells is rarely made available, the slant of the wells are often made accessible.  The well types are as follows:

  • Directional:  Directional wells are those where the top and the bottom of the holes do not line up vertically.  In some cases, the deviation is fairly slight.  These are also known as deviated or slant wells.
  • Horizontal:  Horizontal wells are directional wells, where the well bore makes something of an “L” shape.  States may have their own definition for horizontal wells.  In Alaska, these wells are defined as those deviating at least 80° from vertical.  Currently, operators are able to drill horizontally for several miles.
  • Directional or Horizontal:  These wells are known to be directional, but whether they are classified as horizontal or not could not be determined from the available data.  In many cases, the directionality was determined by the presence of directional sidetrack codes in the well’s API number.
  • Vertical:  Wells in which the top hole and bottom hole locations are in alignment.  States may have differing tolerances for what constitutes a vertical well, as opposed to directional.
  • Hydraulically Fractured:  As each state releases data differently, it wasn’t always possible to get consistent data.  These wells are known to be hydraulically fractured, but the slant of the well is unknown.
  • Not Fractured:  These wells have not been hydraulically fractured, and the slant of the well is unknown.
  • Unknown:  Nothing is known about the slant, stimulation, or target formation of the well in question.
  • Unknown (Shale Formation):  Nothing is known about the slant or stimulation of the wells in question; however, it is known that the target formation is a major shale play.  Therefore, it is probable that the well has been hydraulically fractured, with a strong possibility of being drilled horizontally.

Wells that have been hydraulically fractured might appear in any of the eight categories, with the obvious exception of “Not Fractured.”  Categories that are very likely to be fractured include, “Horizontal”, “Hydraulically Fractured”, and “Unknown (Shale Formation),” the total of which is about 32,000 wells.  However, that number doesn’t include any wells from Texas or Colorado, where we know thousands wells have been drilled into major shale formations, but the data had to be placed into categories that were more vague.

Oil and gas wells in the United States, as of February 2014. Location data were not available for Maryland (n=104), North Carolina (n=2), and Texas (n=303,909).  To access the legend and other map tools, click the expanding arrows icon in the top-right corner.

The standard that we attempted to reach for all of the well totals was for wells that have been drilled but have not yet been plugged, which is a broad spectrum of the well’s life-cycle.  In some cases, decisions had to be made in terms of which wells to include, due to imperfect metadata.

No location data were available for Maryland, North Carolina, or Texas.  The first two have very few wells, and officials in Maryland said that they expect to have the data available within about a month.  Texas location data is available for purchase, however such data cannot be redistributed, so it was not included on the map.

It should not be assumed that all of the wells that are shown in  the map above the shale plays and shale basin layers are actually drilled into shale.  In many cases, however, shale is considered a source rock, where hydrocarbons are developed, before the oil and gas products migrate upward into shallower, more conventional formations.

The raw data oil and gas data is available for download on our site in shapefile format.

 

USGS Stream Gages Helpful in Monitoring Risks in Shale-gas Extraction Regions

Weld County, CO - 9-14-13: A floating tank leaks an unknown fluid on flooded farm. (Photo By Andy Cross/The Denver Post)

Weld County, CO – 9-14-13: A floating tank leaks an unknown fluid on flooded farm (Photo By Andy Cross/The Denver Post)

By Karen Edelstein, NY Program Coordinator, FracTracker Alliance

We’re now in the aftermath of September’s catastrophic floods in Colorado that hit Boulder and Weld counties notably hard, damaging or destroying 18,000 homes and killing at least 10 people. The gas industry has asserted that relatively little damage occurred; only 37,000 gallons of fluid escaped into the rural landscape, including over 5,200 gallons of crude oil that seeped directly into the South Platte River. According to Conoly Schuller, president of the Colorado Oil and Gas Association, “In the context of hundreds of billions of gallons of rain, and millions of gallons of raw sewage, 37,000 gallons is pretty small.”

Environmentalists, however, say that the long-term impacts of the flooding cannot yet be determined. They also point out how the dangers of placing oil and gas rigs in flood-plain areas are a recipe for disaster. Amy Mall, policy analyst for the Natural Resources Defense Council, noted the sheer luck that most of the flooding occurred in areas where active fracking operations were not actually happening; most of these wells were already in production. About 1,900 wells were “shut in” in preparation for the predicted flooding, but storage tanks and other production-related equipment experienced the impacts of the flood waters.

FracTracker Alliance created the following map of United States Geological Survey (USGS) streamflow gage stations across the Lower 48, in areas of mapped shale plays. Each of the USGS points is interactive. Pop-up bubbles allow the user to link directly to the USGS websites for that particular stream gage. Note that not all of the stream gages are currently active; some show only historic USGS data. Many sites, however, show a wealth of real-time information on stream discharge and allow the user to customize time parameters. USGS also includes stream gage height and contributing drainage area. Zooming into an area, users will also see wetlands delineated as part of the National Wetlands Inventory. These wetlands may also be endangered by floods that pick up waste material from oil and gas extraction sites.

Click here to view the full-screen version of this map.

To view gas wells in a particular state, visit FracTracker’s state-by-state map gallery.

Links to more on the Colorado floods of September 2013:

 

 

Pages

Nothing Found

Sorry, no posts matched your criteria