The majority of FracTracker’s posts are generally considered articles. These may include analysis around data, embedded maps, summaries of partner collaborations, highlights of a publication or project, guest posts, etc.

In-depth Review of the Statoil Well Pad Fire

Commentary on Shale Gas Operations: First in a Series of Articles
By Bill Hughes, Community Liaison, FracTracker Alliance
Statoil Well Pad Fire: June 28-29, 2014

The early riser residents along Long Ridge Road in Monroe County are among the first in Ohio to see the sun coming up over the West Virginia hills.  It rose about 6:00 am on the morning of June 28th.  Everyone assumed that this would be a normal Saturday morning.  Well, at least as normal as it had been for the better part of two years since the site preparation and drilling started.

For those residents on Long Ridge who were not early risers, the blaring sirens, the smell of acrid smoke, and the presence of fire trucks and other emergency vehicles shortly after 9:00 am must surely have made them wonder if they were in the midst of a nightmare. A quick glance outside toward the Statoil Eisenbarth well pad and they would have seen this view:

Statoil 1

Figure 1. View from the southeast, as the fire spread on Sat. June 28th

The image in Fig. 1 would be enough to make most folks feel somewhat panicky and consider evacuating the neighborhood. That is exactly what soon happened – definitely not the start of a normal Saturday morning.

Adjusting to the New Normal

The traffic in the area had been a problem ever since site preparation started on the nearby well pad. The State expected the drillers to keep up the road. Crews also provided lead escort vehicles to help the many big trucks negotiate the narrow road way and to clear the residential traffic. Access to the well site required trucks to climb a two-mile hill up to the ridge top.

Statoil 2

Fig. 2. Neighbors’ views of the fire

Until June 28th, most folks had become accustomed to the extra noise, diesel fumes, and congestion and delays that always come with any shale gas well exploration and development in the Marcellus shale gas active area. Most of the neighbors had gotten used to the new normal and reluctantly tolerated it. Even that was about to change, dramatically.  As the sun got higher in the eastern sky over WV, around 9:00 AM, suddenly the sky started to turn dark. Very dark. Sirens wailed. Red trucks started a frenzied rush down Long Ridge from all directions. There was a fire on the well pad. Soon it became a very large, all consuming fire.  Smoke, fire, bitter fumes, and no one seemed to know yet exactly what had happened, and what was likely to happen soon.

This gas well location, called the Eisenbarth pad, recently changed operators. In January 2013, the well pad property and its existing well and equipment were bought out by Statoil, a company based in Norway.  Statoil had since drilled seven more wells, and even more were planned.  The original single well was in production.  Now in late spring and early summer of 2014 the new wells were to be “fracked.”  That means they were ready to be hydraulically fractured, a procedure that follows the completion of the drilling process.

Statoil hired as their fracturing sub-contractor Halliburton. All of the fracturing pump trucks, sand kings, Sand Castles, and control equipment were owned and operated by Halliburton.  The fracturing process had been ongoing for some weeks when the fire started. The eastern Ohio neighbors now watched ~$25 million worth of equipment go up in smoke and flames (Fig. 2). The billowing smoke was visible for over 10 miles.

Industrial accidents are not rare in the Ohio Valley

Many of the residents nearby had worked in the coal mining industry, aluminum plants, chemical plants, or the coal fired power plant that were up and down the Ohio River. Many had since retired and had their own industrial accident stories to tell. These were frequently private stories, however, which mostly just their co-workers knew about. In an industrial plant, the common four walls and a roof kept the dangerous processes confined and enabled a trained response to the accidents. The traditional, industrial workplace had well-proven, customized workplace safety standards.  Professional maintenance personnel were always nearby.  In stark contrast, unconventional gas well pads located in our rural communities are very different. They are put in our hayfields, near our homes, in our pastures and just down the road. You cannot hide a community accident like this.

Sept 2014 Update: Video of the fire, Copyright Ed Wade, Jr.

Print Media Coverage of the Fire

Within days, many newspapers were covering the well pad fire story. The two nearby weekly newspapers, one in Monroe County, Ohio and the other in Wetzel County, West Virginia both had detailed, long articles the following week.

Statoil 3

Fig. 3. View from the east as the fire started

The Monroe County Beacon on July 2, 2014 said that the fire spread quickly from the small original fire which was totally surrounded within the tangled complex of equipment and high pressure piping.  Early Saturday morning, the first responder would likely have seen a rather small somewhat localized fire as shown in Fig. 2. The photo to the right (Fig. 3) is the view from the east, where the access road is on Long Ridge road. This point is the only access into the Statoil well pad. The view below, showing some still intact tanker trucks in the foreground, is looking west toward the well location. Pay attention to the couple of trucks still visible.

The Monroe County emergency director said it was his understanding that the fire began with a ruptured hydraulic hose. The fluid then ignited on a hot surface. He said, “…by 9:10 AM the fire had spread to other pumps on the location and was spreading rapidly over the well pad.”   Emergency responders needed water now, lots of it. There is only one narrow public road to the site at the top of a very long, steep hill and only one narrow entrance to the densely congested equipment on the pad.  Many Volunteer Fire Departments from both Ohio and West Virginia responded.  A series of tanker trucks began to haul as much water to the site as possible.  The combined efforts of all the fire departments were at best able to control or contain but not extinguish the powerful, intensely hot and growing blaze.  The Volunteer firemen did all they could. The EMS director and Statoil were very grateful for the service of the Volunteer Fire Departments. There was a major loss of most equipment, but none of the 45-50 workers on site were injured.

Statoil 4

Fig. 4. Well pad entrance

The article from the Wetzel Chronicle also praised the coordinated effort of all the many fire departments. At first they attempted to fight the fire, and then prudently focused on just trying to limit the damage and hoping it did not spread to the well heads and off the well pad itself. The New Martinsville fire chief also said that,  “… the abundance of chemicals and explosives on the site, made attempts to halt the fire challenging, if not nearly impossible… Numerous plans to attack the fire were thwarted each time by the fires and numerous explosions…”  The intense heat ignited anything nearby that was at all combustible. There was not much choice but to let the fire burn out.

Eventually the view at the well pad entrance as seen from the east (Fig. 3) would soon look like the overhead view (Fig. 5). This aerial imagery shows what little remained after the fire was out – just some aluminum scrap melted into the decking is left of the original, white Hydrochloric Acid tanker truck. Everything near it is has almost vaporized.

Statoil 5

Figure 5. Post-fire equipment identification

Efforts to Limit the Fire

Statoil 6

Fig. 6. Protected white trailer

An excellent example of VFD’s successfully limiting the spread of the fire and controlling the extreme heat can be seen in the photo to the right (Fig. 6). This white storage trailer sure seems to be a most favored, protected, special and valuable container. It was.

It was filled with some particularly dangerous inventory. The first EPA report explains it thus:

A water curtain was maintained, using pump lines on site, to prevent the fire from spreading to a trailer containing 1,100 pounds of SP Breaker (an oxidizer), 200 pounds of soda ash and compressed gas cylinders of oxygen (3-2000 lb.), acetylene (2-2000 lb.), propane (6-20 lb.), among miscellaneous aerosol cans.

Statoil 7

Fig. 7. Post-fire pad layout

Yes, this trailer got special treatment, as it should. It contained some hazardous material.  It was also at the far southwest corner of the well pad with minimal combustibles near it.  That was also the closest corner to the nearby holding pond, which early on might have held fresh water. Now the holding pond is surely very contaminated from flowback and runoff.

The trailer location can be seen in the picture to the right in the red box (Fig. 7), which also shows the complete well pad and surrounding area. However, in comparison to the one white storage trailer, the remainder of the well pad did not fare so well. It was all toast, and very burned toast at that.

Columbus Dispatch and the Fish Kill

Besides the two local newspapers, and Wheeling Jesuit researchers, the Columbus Dispatch also covered the story and provided more details on the 3- to 5-mile long fish kill in the stream below the well pad. Additional facts were added by the two EPA reports:

Those reports list in some detail many of the chemicals, explosives, and radiological components on the well pad.  Reader note: Get out your chemical dictionary, or fire up your Google search. A few excerpts from the first EPA report are provided below.

…Materials present on the Pad included but was not limited to: diesel fuel, hydraulic oil, motor oil, hydrochloric acid, cesium-137 sources, hydrotreated light petroleum distillates, terpenes, terpenoids, isoproponal, ethylene glycol, paraffinic solvents, sodium persulfate, tributyl tetradecyl phosphonium chloride and proprietary components… The fire and explosion that occurred on the Eisenbarth Well Pad involved more than 25,000 gallons of various products that were staged and/or in use on the site… uncontained run-off was exiting the site and entering an unnamed tributary of Opossum Creek to the south and west and flowback water from the Eisenbarth Well #7 was spilling onto the well pad.

Reader Warning:  If you found the above list overly alarming, you might choose to skip the next equally disturbing list. Especially since you now know that this all eventually flowed into our Ohio River.

The EPA report continues with more specific chemical products involved in the fire:

Initial reports identified the following products were involved and lost in the fire: ~250 gallons of hydrochloric acid (28%), ~7,040 gallons of GasPerm 1000 (terpenes, terpenoids, isopropanol, citrus extract, proprietary components), ~330 gallons of LCA-1 (paraffinic solvents), ~ 1900 gallons of LGC-36 UC (hydrotreated light petroleum distillate, guar gum), ~1000 gallons of BC-140 (monoethanolamine borate, ethylene glycol), ~3300 gallons of BE-9 (tributyl tetradecyl phosphonium chloride), ~30,000 gallons of WG-36 (polysaccharide gel), ~1,000 gallons of FR-66 (hydrotreated light petroleum distillate), ~9000 gallons of diesel fuel, ~300 gallons of motor and hydraulic oil.

Even more details of the incident and the on-site chemicals are given in the required Statoil 30-day report (PDF).

The EPA reports detail the “sheet” flow of unrestricted contaminated liquids off of the well pad during and after the fire. They refer to the west and south sides. The below Google Earth-based map (Fig. 8) shows the approximate flow from the well pad. The two unnamed tributaries join to form Opossum Creek, which then flows into the Ohio River four miles away.

Statoil 8

Figure 8. Map showing path of unrestricted flow off of the Statoil well pad due to a lack of berm

After describing some of the known chemicals on the well pad, the EPA report discusses the construction of a new berm, and where the liquid components flowed. Below is a selection of many excerpts strung together, from many days, taken directly from the EPA reports:

…unknown quantities of products on the well pad left the Site and entered an unnamed tributary of Opossum Creek that ultimately discharges to the Ohio River. Runoff left the pad at various locations via sheet flow….Initial inspections in the early hours of June 29, 2014 of Opossum Creek approximately 3.5 miles downstream of the site identified dead fish in the creek…. Equipment was mobilized to begin constructing an earthen berm to contain runoff and to flood the pad to extinguish remaining fires…. Once fires were extinguished, construction of a berm near the pad was begun to contain spilled liquids and future runoff from the well pad… Statoil continued construction of the containment berm currently 80% complete. (6-30-14)… Assessment of chemicals remaining on the well pad was completed. The earthen berm around the pad was completed,  (7-2-14)… ODNR Division of Wildlife completed their in stream assessment of the fish kill and reported an estimated 70,000 dead fish from an approximately 5 mile stretch extending from the unnamed tributary just west of the Eisenbarth Well Pad to Opossum Creek just before its confluence with the Ohio River… Fish collection was completed. In total, 11,116 dead fish were collected (20 different species), 3,519 crustaceans, 7 frogs and 20 salamanders.

The overall conclusion is clear. Large quantities of various chemicals, mixed with very large amounts of already contaminated water, when flooding a well pad that had no berms around it, resulted in a significant fish kill over several miles. After the fire Statoil then constructed a berm around the well pad. If there had been a pre-existing berm – just 12 inches high and level – around the well pad, it could have held over 600,000 gallons of runoff. That amount is twice the estimated quantity of water used to fight the fire.  (Note: my old 35 HP farm tractor and a single bottom plow can provide a 12-inch high mound of dirt in one pass.)

The significance for safe, potable drinking water, is that all the chemicals and petroleum products on the well pad either burned and went up in a toxic plume of black smoke, or were released in liquid form down into the well pad or flowed off of it. Since the original liner on the well pad also completely burned and there was no overall berm on the well pad, there was nothing to restrict the flow of polluted liquid. Therefore, it all seeped into the ground and/or ran off of the pad with the 300,000 gallons of water that was estimated to have been sprayed onto the burning equipment fire.

Follow Up Questions

Since this fire happened over 6 weeks ago, there have been many opportunities for nearby citizens and neighbors to meet and discuss their many concerns.  Many of the question have revolved around the overall lack of information about the process of shale gas fracturing, the equipment used, and the degree of risk that it all may present to our communities. These communities include the nearby residents, the travelling public, and all of the first responders. Unless someone has a well pad on or near their property and they are able to actively follow the process, it is usually difficult to find out the details of a specific gas operation. (We have even known of operators that have told landowners to get off of their own property both during drilling and fracturing operations and afterwards.)

Questions that follow incidents like this one typically look like this:

  1. Why was there no perimeter berm?
  2. Why could the fire not be put out quickly and easily? What all was lost? What did this site look like in the beginning?
  3. Why was there so much equipment onsite? Is this typical? What is it all called and how is it used?

1. Lack of Berm

The first and somewhat unanswered question concerns the absence of a simple containment berm around the completed well pad. Statoil must not have thought one would be very helpful, and/or the State of Ohio must not require them.

However, I had raised concern over this very topic more than a year ago from WV. In response, I received a letter in September 2013 from Statoil North America to the WVDEP. It provides some insight into Statoil thinking. Based on my interpretation of that letter, the official position of Statoil last year was that berms around the well pad do not help and are not needed. Given the recent fire, perhaps that position has changed. All we know for sure now is that at least their Eisenbarth well pad now does have a complete perimeter berm. We now have empirical proof, if any was ever needed, that in the presence of spills the absence of berms makes for greater and more expensive downstream problems.

2. An Obstinate Fire

Setting aside the berm problem, I will attempt to address the next set of questions: Why could the fire not be put out quickly and easily? What all was lost ? What did this site look like in the beginning?

The simplest way to start on such questions is to look at other hydraulic fracturing sites to identify what is there and why, and then to compare those with the charred remains on the Statoil Eisenbarth well pad in Monroe County.  Since Statoil’s contractor was Halliburton, it would help to look at their equipment when in process elsewhere.  In Figure 9 below is a clean, bright red and grey Halliburton fracking fleet.

Statoil 9

Figure 9. Example of Halliburton fracking fleet

It needs to be stated up front that I consider Halliburton to be among one of the more reputable, experienced, and dependable fracturing companies. We have seen way worse here in Wetzel County over the past seven years. Halliburton has good equipment and well-trained, safety-conscious employees. It seems to be a well-run operation. If so, then how did this massive fire happen? It simply seems that it is the nature of the beast; there are many inherent dangers to such operations. Plus there is an enormous amount of equipment on site, close coupled and stuffed into a small amount of real estate. Not to mention, the whole setup is temporary – with a lot of fuel and ignition sources. Therefore, many of the available engineered-in safeguards that would normally be installed in an industrial, fixed, permanent location, just cannot be incorporated on my neighbor’s hay field, creek bottom, or farmland.

The whole process has many risks, and many of them cannot be eliminated, just minimized. I do not think that anyone could have predicted a weak hydraulic hose. Some accidents are just that — unpreventable accidents. This is why we need to be very careful with how close we allow these sites in residential areas.

3. Serious Equipment

In Figure 10 below is a wide-angle composite photo of a Halliburton fracturing project in process. Given the shallow angle viewpoint, not all equipment is visible or numbered. The photo is still very representative of frac sites in general and equivalent to what can be seen in the scorched remains on the Statoil Eisenbarth site. The major qualification on the fracturing pumps above and the ones below, is that they are a newer generation of Halliburton dual fuel pumps. They can run on natural gas.

Statoil 10

Figure 10. Halliburton fracturing project in process

Just about everything seen in the above bright red and grey hardware can be seen in Figure 11’s charred leftovers on the Statoil site from July 5, 2014 below (six days after the fire). It is also all Halliburton equipment. The quantities and arrangement are different, but the equipment and process are the same. The numbers on the provided legend or chart should help identify the specific pieces of equipment. The newly constructed containment berm is also clearly visible here.

Statoil 11

Figure 11. Statoil site post-fire equipment identification

The above or a similar photo has been seen by many neighbors both in OH and WV. Hardly anyone can recognize what they are looking at. Even those people who are somewhat familiar with general hydraulic fracturing operations are puzzled. Nothing is obvious when viewing charred remains of burned iron, steel, and melted aluminum. All tires (over 400 of them) have been burned off the rims. Every bit of rubber, foam, composites, plastics and fiberglass truck cabs has been consumed – which is what made the black plume of smoke potentially so dangerous.

Statoil 12

Fig. 12. 16 fracturing pumps

Statoil 13

Fig. 13. 18-wheeler

What might not be so obvious is why the fire could not be extinguished.

If we look at a close-up of a small section of the well pad (Fig. 12) it is easy to see how crowded the well pad is during fracturing. The 16 fracturing pumps are all the size of a full-length 18-wheel tractor trailer (Fig. 13). Note the three fuel tanks.

The fire began between the blender-mixer trucks and the 16 hydraulic fracturing pumps. The blenders were between the fracturing pumps and the sand kings. Halliburton always keeps fire extinguishers available at every truck. They are put on the ground in front of every pump truck. Everyone knows where to find them. However, on any fracking project that location is also the most congested area. The fracturing pumps are usually parked no more than two feet apart. It is just enough room for an operator or maintenance fellow to get between them. With high pressure fluid spraying and the fire already started and now spreading, there is precious little room to maneuver or to work. It is a plumbing nightmare with the dozens of high pressure pipes connecting all the pumps together and then to a manifold. In those conditions, in the face of multiple fuel sources, then the many small explosions, prudence and self-preservation dictates a swift retreat.

To their credit, Halliburton employees knew when to retreat. No one was injured. We just burned up some trucks (and killed some fish). All the employees and all the first responders were able to go home safely, uninjured, to their families and friends. They survived a very dangerous situation to come back again in the service of their employer or their community. We wish them well.

Some Observations and Conclusions

  1. The hydraulic fracturing process is dangerous, even when done properly.
  2. Environmental and employee safeguards must be in place because “accidents will happen.”
  3. Setbacks from personal farm and residential buildings must be great enough to protect all.
  4. Setbacks from streams and creeks and rivers must be taken very seriously, especially when private or municipal water supply systems are downstream.
  5. Our communities must know what all chemicals are being used so that correct lab protocols are established ahead of time to test for contamination.

This now ends this first article addressing the Statoil Fire, its burned fracturing equipment, and the resulting water contamination. Later, I will show many examples of the quantity of equipment used on fracturing sites and why it is there. You patient readers thought this would never end. You now know more about Statoil, well pad fires, and fracturing hardware than you ever wanted to know. We will soon address the more generic questions of fracturing equipment.

Statoil Eisenbarth Well Pad Fire – An Introduction

By Bill Hughes, Community Liaison, FracTracker Alliance

Monroe County on the eastern border of the State of Ohio and Wetzel County in West Virginia are very much neighbors. They literally share a very deep connection, at least geologically and physically, as they are separated by a very long, deep, 1000-foot wide valley, filled by the Ohio River. A bridge connects the surface land and its residents.

But if you literally dig a little deeper, actually a lot deeper (as in 7,000 feet down), we are seamlessly joined by the Marcellus shale layer. Below this layer, we are joined by other black shale formations where the natural gas and some of its unwelcome neighbors live.

I live in Wetzel County. From where I am sitting I am surrounded by multiple shale gas operations – and have been for over seven years. I have Chesapeake to the north; EQT to the southeast; Stone Energy to the west; Statoil to the east; and HG Energy to the south. They all are primarily extracting gas from the Marcellus formation, but just a few miles to the north of here is a Utica formation well pad (situated below the Marcellus Shale layer). It is being fracked as I write this article.

Externalizing Business Costs

Setting aside the different political and regulatory differences that might exist when comparing WV & OH, the terrain, topography, and cultural history are very similar. The impact of shale gas extraction in a rural community seems to be the same everywhere it is happening, as well. We have all had traffic congestion, road accidents, problems with air and water quality, and waste disposal challenges. All of the drilling companies use fresh water from the Ohio River or its tributaries. WV gas producers take much of their brine and flowback fluids to injections wells in OH for disposal. The grateful OH drillers truck their waste products to our landfills here in Wetzel County and the operators seem pleased with the arrangement. Externalizing costs to our communities seems to be an accepted and tolerated business model.

About Statoil

Statoil is a large natural gas producer from Norway. They have wells both here in Wetzel, WV and in Monroe County, OH. On June 28 and 29 of 2014, a massive fire burned out of control on a Statoil well pad called Eisenbarth in Monroe County (map below), during a routine hydraulic fracturing operation. The size, impact, and cause of the Statoil Eisenbarth fire deserve a lot of attention. Since I have Statoil well pads near me, I am somewhat concerned. Therefore, I will be writing about this specific fire and some of the implications for all of us.

A Series of Incident Articles

This photo essay will be presented in two sections. The first will describe the fire along with some of the details and published reports. The second part will use the photos and information to help us all better understand what is meant when we simply make comments on “fracking.” Additionally, I will show which components are commonly present during the hydraulic fracturing process. Explore the in-depth look at this incident.

Location of the Eisenbarth Pad where the June 2014 Statoil Fire occurred

Location of the Statoil Eisenbarth fire that occurred in June 2014. Click to explore our Ohio Shale Viewer.

Oil Transportation and Accidents by Rail

Lac-Mégantic train explosion on July 6, 2013.  Photo by TSB of Canada.

Lac-Mégantic train explosion on July 6, 2013. Photo by Transportation Safety Board of Canada.

On July 5, 2013, the lone engineer of a Montreal, Maine, and Atlantic (MMA) train arrived in Nantes, Quebec, set both the hand and air brakes, finished up his paperwork. He then left the train parked on the main line for the night, unattended atop a long grade. Five locomotives were pulling 72 tanker cars of oil, each containing 30,000 gallons of volatile crude from North Dakota’s Bakken Formation. During the night, the lead locomotive caught fire, so the emergency responders cut off the engine, as per protocol.  However, that action led to a loss of pressure of the air brakes.  The hand brakes (which were supposed to have been sufficient by themselves) failed, and the train began to run away. By the time it reached Lac-Mégantic early the next morning, the unattended cars were traveling 65 mph.  When the train reached the center of town, 63 tank cars derailed and many of those exploded, tragically killing 47 people in a blaze that took over two days to extinguish.

With that event came a heightened awareness of the risks of transporting volatile petroleum products by rail.  A derailment happened on a BNSF line near Casselton, North Dakota on December 30, 2013. This train was then struck by a train on an adjacent track, igniting another huge fireball, although this one was luckily just outside of town.  On April 30, 2014, a CSX train derailed in Lynchburg, Virginia, setting the James River on fire, narrowly avoiding the dense downtown area of the city of 75,000 people.


North American petroleum transportation by rail. Click on the expanding arrows icon in the top-right corner to access the full screen map with additional tools and description.

Regulators in the US and Canada are scrambling to keep up.  DOT-111 tank cars were involved in all of these incidents, and regulators seek to phase them out over the next two years. These cars account for 69% of the fleet of tank cars in the US, however, and up to 80% in Canada.  Replacing these cars will be a tough task in the midst of the oil booms in the Bakken and Eagle Ford plays, which have seen crude by rail shipments increase from less than 5,000 cars in 2006 to over 400,000 cars in 2013.

This article is the first of several reports by the FracTracker Alliance highlighting safety and environmental concerns about shipping petroleum and related products by rail. The impacts of the oil and gas extraction industry do not end at the wellhead, but are a part of a larger system of refineries, power plants, and terminals that span the continent.

Florida Citizens Seek Drilling Industry Transparency

By Maria Rose, Communications Intern, FracTracker Alliance

Pamela Duran waited impatiently in front of a Hampton Inn in Naples, Florida on Wednesday, June 25, 2014, with her husband Jaime, and several of their community members.  They had to wait several days for a press conference with the Florida Department of Environmental Protection (DEP) regarding natural gas drilling in their home town of Collier County.  The original meeting had been postponed and rescheduled from the day before.

Seeking Transparency

Pamela, Jaime, and community members intended to ask the DEP, headed by Secretary Herschel T. Vinyard, about future gas drilling plans in Collier County.  However, when the Durans and other community members asked to speak with the DEP at the Hampton Inn, they were asked to leave.  In an attempt to seek answers to their questions, they then invited the DEP to meet with them outside the Hampton Inn.  The DEP refused, and instead held a closed meeting 20 miles away in Rookery Bay.  Only a select few members of the press were allowed to attend, forcing the Durans and the rest of the concerned community members to return home without answers to any of their questions.  Jamie said:

We were told to move out to the curb—kind of literally being kicked to the curb—and weren’t able to meet with the DEP… There hasn’t been an exchange of ideas;  there’s no back and forth.  They only had a few people from the media which is not a press conference.  The DEP said they’re committed to transparency, but it seems more like they’re committed to invisibility. We get nothing but smoke and mirrors.

Adding Confusion to the Mix

Drilling in Florida. Photo: WeArePowerShift.org

The frustration over transparency and communication with the DEP and Collier County’s Board of Commissioners stemmed from the lack of information and confusion surrounding the recent surge of nearby drilling activity.  Natural gas drilling in Florida has occurred on and offshore since the 1940s, but concerns related to the more intense impacts of  unconventional oil and gas drilling and its associated activities  have only recently surfaced.  Currently, drilling issues are contained to southwest Florida, where seismic testing is being conducted around the Collier and Hendry counties, and outside of Naples.  These areas overlay the Sunniland basin. The fossil fuel rich layer of shale found here makes companies like Dan A. Hughes eager to invest in the area.

In April of 2013, the Durans received a letter from a company called Total Safety.  Total Safety was conducting a contingency plan for the drilling company, Dan A. Hughes.  The letter contained limited information.  The Durans were only told that they were in an evacuation zone and had to provide information to Total Safety for safety precautions.  According to Pamela notes, “We were one of the first homes to get a letter… They didn’t even tell us then, that Dan A. Hughes was a drilling company.  We didn’t know what kind of evacuation zone it even was. We thought it was hurricanes at first. The commissioners didn’t even know.”

Pamela was so surprised that she called the police, and discovered that they were unable to provide sufficient information. It wasn’t until speaking with Jennifer Jones, a representative from Total Safety, that she learned that her family and 45 others were within a one mile-radius evacuation zone around a planned well pad.  The risks of hydrogen sulfide leaks, fires, and explosions, among other things, made it necessary to have an evacuation plan for these families.  At this point, Dan A. Hughes had not yet applied for a drilling permit, but would most likely be drilling by October of 2013.  Pamela noted that,  “This was the first time we’d heard of any drilling. And I was totally overwhelmed by the problems we thought might occur.”   If approved, Dan A. Hughes would be drilling within 1,000 feet from the Durans’ home.

The Durans and several of the neighbors who received similar letters met with the Colliers in late May of 2013 . The Colliers were a family that owned the surrounding land for several generations, including the mineral rights.  The concerned residents expected to have an open dialogue and had two requests:

  1. They wanted the well to be moved so that none of the neighborhood residents would be in an evacuation zone, and
  2. They wanted the drilling company to use farm roads instead of the residential roads to avoid traffic and noise.

The Colliers denied their request, but attention had been brought to the issue, and citizens began to resist drilling in the area.  Pamela commented, “The disregard for human life out here is atrocious. This has become such a big issue because we the citizens decided we’re not just going to sit and take it.”

As the drilling became more and more prominent in the area, the Durans noticed a change in the atmosphere around the neighborhood. Pamela reports that some intimidating activities have occurred, such as workers in Dan A. Hughes’ trucks video-taping certain houses, or cars parked outside of houses for excessive amounts of time.  All of this behavior is new for the area.  Pamela asks, “There are people here in the neighborhood with cars parked in the front or side of their property, and after they call the police, they find out it’s a private investigator. Who hires private investigators?”

Cease and Desist?

The biggest issue arose at the end of 2013. On December 30, 2013, the Dan A. Hughes company began to use acid fracturing to stimulate the Collier Hogan well. In Florida, there is no special permission required to begin fracking.  However, the company had assured a very concerned public and the county commissioners that there would be no fracking.   As a result of this violation, the DEP issued a cease and desist order on January 1 of 2014.   Dan A. Hughes, however, continued to frack until the process was finished.  It wasn’t until April 8, 2014 that the DEP issued a consent order to Dan A. Hughes along with a fine of $25,000 for unauthorized fracking.  All of these details were not released to the public until the consent order was issued in April.  Dr. Karen Dwyer, a resident of Collier County, notes that there have been many opportunities since January to share such information; between January and April.  There was an EPA hearing, a Big Cypress Swamp Advisory Committee meeting, various Collier county commissioner meetings, and several Administrative Judge hearings where the information could have been released to the public.  According to Dr. Dwyer:

The DEP just sat on this information while everyone else was looking closely at other aspects of the Dan A. Hughes drilling.  We’ve had all these meetings looking at how reliable they are and what their training has been, but the DEP never said that Dan A. Hughes had been under this investigation.  That was wrong of the DEP.  Decisions were being made to allow [drilling] while this serious issue was going on, and we didn’t know.

Triggering Resistance

Since then, Collier County’s resistance to gas drilling has taken off.  On April 22nd, the county commissioners voted unanimously to challenge the DEP’s consent order for Dan A. Hughes to drill, which is the first challenge of gas drilling in the area.  Senator Bill Nelson called for a federal review of Dan A. Hughes on May 1st.  The next day, the state called for Dan A. Hughes to cease all of their new operations in Florida.  Two weeks later on May 13th, the county commissioners voted to challenge the Collier-Hogan well, targeting a much more specific project. The commissioners began the legal process of challenging Dan A. Hughes’ consent order on June 10th, insisting on public meetings.

Even though they have seen progress, citizens like Dwyer and the Durans do not feel that change is happening rapidly enough. For example, the state has ordered all of Dan A. Hughes’ new operations stopped, but there are still old wells that can keep producing since their inception occurred prior to this new order. Also, once the commissioners filed their challenge on Dan A. Hughes, they were unable to talk about it publicly. Because of this development, issues surrounding a lack of transparency and communication have resurfaced.

Environmental and Social Justice Concerns

At times, Pamela said she feels like the combination of the Collier County’s geography and demographics have made it an easy target for resource extraction companies.  She describes the area as a multicultural town with many immigrants—Jamaican, Mexican, Hatian, Peruvian, Columbian, and more—and a community comprised of older retirees and very young families building up savings.  These demographics, she feels, may give off the impression that the residents will not come together and fight for their rights.  Speaking to the comments directed at Colliers from the more populous Naples community, Pamela responded by saying, “This is the first time I’ve felt people think we’re poor.  It’s not like we’re an urban location with super poor people surviving on welfare, but yes, lots of people here are foreign, and we don’t have much material wealth.”

According to the Durans, the surge of gas drilling activity in Collier County has drastically altered the day-to-day lifestyle of many of its residents.  Pamela and Jaime have dedicated much of their time to fighting the companies and following discussions surrounding the issue, which takes up a significant amount of their time. Pamela notes:

For the past 14 months, our lives have been on hold, dedicating the past months to stopping drilling.  We wanted to do certain things to our house, but we’ve put it on hold.   Why invest in a home if we might have to leave it for health reasons later? I’m not going to stay and watch us get sick.

Dwyer has similar feelings on the issue.  He is concerned about the human rights aspect of the problem, such as equal access to clean water and air, as well as the difficulty of communicating with large corporations.  Dwyer would like to see the state and federal government buy the mineral rights from Collier Resources and set that land aside as a reserve, which is what it was prior to drilling. Feeling that the drilling will most likely be permitted, Dwyer believes that companies should concentrate on improving procedures and communication.

Dwyer recognizes that even though resisting the industry has proved to be frustrating, she now knows about the issues surrounding gas and is determined to continue informing as many people as possible and is continuing an open dialogue with the county commissioners.  She feels that progress towards stopping gas companies can be made when more people know about the problems that are occurring.

Learn more about the unique aspects of drilling in Florida.

The interviews that served as the basis for this article were conducted in the summer 2014. This article is an update to an article we wrote in 2013. Read more.

Fracking vs. Ohio’s Renewable Energy Portfolio – A False Distinction

Changes to OH Wind Power

Part I of a Multi-part Series – By Ted Auch, OH Program Coordinator, FracTracker Alliance

Governor Kasich recently signed SB 310 “Ohio’s Renewable Energy Portfolio Standard” and HB 483.1 This action by all accounts will freeze energy efficiency efforts (such as obtaining 25% of the state’s power from renewables by 20252) and impose a tremendous degree of uncertainty on $2.5 billion worth of wind farm proposals in Ohio.

Active & Proposed Wind Projects in the U.S.


The above map describes active and proposed renewable energy projects, as well as energy related political funders and think tanks. We will be relying heavily on this map throughout our Ohio renewable energy series. Click the arrows in the upper right hand corner of the map to view the legend, metadata, and more.

Opposing Views

Sides of the SB 310 and HB 483 Debate

Opposition to SB 310 and HB 483 is coming from the business community3 and activists, while powerful political forces provide support for the bill (see figure right). Opponents feel that renewables and a more diversified energy portfolio are the true “bridge fuel,” and unlike hydrocarbons, renewables provide a less volatile or globally priced source of energy.

HB 483 will change new commercial wind farms setbacks to 1,300 ft. from the base of the turbine to the closest property line – rather than the closest structure. The bill will also change the setback for permitted and existing wind projects to 550 feet from a property line in the name of noise reduction, potential snow damage (Kowalski, 2014; Pelzer, 2014). This imposed distance is curious given that setbacks for Utica oil and gas wells are only 100-200 feet.

OH’s turbine setback requirements instantly went from “middle of the pack” to the strictest in the nation. OH is now in the dubious position of being the first of 29 states with Renewable Energy Standards (RESs) to freeze renewable energy before it even got off the ground. Is the road being intentionally cleared for an even greater reliance on shale gas production and waste disposal in OH?

An Environment of Concerns

As Mary Kuhlman at the Public News Service pointed out, the concern with both bills from the renewable energy industry – including wind giant, Iberdrola – is that the bills will “create a start-stop effect that will confuse the marketplace, disrupt investment, and reduce energy savings for customers.” These last minute efforts to roll back the state’s renewable energy path were apparently inserted with no public testimony; the OH Senate spent no more than 10 minutes on them, and there was overwhelming support in both the House and the Senate.

Ohioans, unlike their elected officials, support the renewable energy standards according to a recent poll (Gearino, 2014). Voters are in favor of such measures to the tune of 72-86%, with the concern being the potential for organic job growth4, reduced pollution, and R&D innovation in OH rather than marginal cost increases.

The elephant in the room is that fossil fuel extraction may not improve residents’ quality of life. Many of the most impoverished counties in this country are the same ones that relied on coal mining in the past and hydrocarbon production presently. The best examples of this “resource curse” are the six Appalachian Mountain and Texas Eagle Ford Shale counties chronicled by The New York Times (Fernandez and Krauss, 2014; Flippen, 2014; Lowrey, 2014).

Ohio Wind Potential

Ohio Wind Speed, Utica Shale Play, and Permitted Utica Wells

Figure 1. OH Wind Speed, Utica Shale Play, & Permitted Utica Wells. Click to enlarge.

According to the American Wind Energy Association (AWEA), OH currently has 425-500 megawatts (MW) worth of operating wind power, which ranks it ahead of only Kentucky in the Appalachian shale gas corridor and #26 nationally.6 Using factors provided by Kleinhenz & Associates, a 428 MW capacity equates to 856-1,284 jobs, $628 million in wages (i.e., $49-73K average), $1.85 billion in sales, and $48.9 million in public revenues.

Seventy-one percent of OH’s capacity is accounted for by the $600 million Iberdrola owned and operated Blue Creek Wind Farm in northwestern OH. The terrestrial wind speeds are highest there – in the range of 14.3-16.8 mph as compared to the slow winds of the OH Utica Shale basin (Figure 1).6 It is worth noting that the recent OH renewable energy legislation would have diminished the Blue Creek project by 279 MW if built under new standards, given that only 12 of the turbines would fall within the new setback criteria.

Ohio Wind Capacity (MW) Added Between 2011 and 2014

Figure 2. OH Wind Capacity (MW) Added Between 2011 and 2014. Click to enlarge.

If OH were to pursue the additional 900 MW public-private partnership wind proposals currently under review by the Ohio Power Siting Board (OPSB), an additional 900,000-1.2 million jobs, $1.3 billion in wages, $3.9 billion in sales, and $102.9 million in revenue would result. These figures are conservative estimates for wind power but would result in markedly more jobs for Ohioans with the component manufacturing and installation capacity already in OH (Figure 2). The shale gas industry, in comparison, relies overwhelmingly on the import of goods, services, capital, and labor for their operations. Additionally, lease agreements with firms like Iberdrola compare favorably with the current going rate for Utica leases in OH; landowners with turbines on their properties receive $8K. Nearby neighbors receive somewhat smaller amounts depending on distance from turbines, noise, and visibility.

OH’s current inventory of wind projects alleviate the equivalent of 45 Utica wells worth of water consumption.7 Considering current wind energy capacity and the proposed 900 MWs, OH will have only tapped into 2.4% of the potential onshore capacity in the Buckeye State. If the state were to exploit 10% more of the remaining wind capacity, the numbers would skyrocket into an additional 5.5-7.1 million jobs, $8.1 million in wages, $23.8 billion in sales, and $627.9 million in public revenues.

Taking the Wind out of the Sails

However, SB 310 and HB 483 took the wind out of Iberdrola and the rest of the AWEA’s membership’s proverbial sails. Their spokesperson noted that “The people (who will be hurt) most are the ones who have spent a couple of million dollars to go through the OPSB process expecting those (renewable-energy) standards to be there.” OH’s increased capacity historically has accounted for approximately 2.3% of increases nationwide.

Equally, hydrocarbon production dependent states like Texas have found time, resources, and regulatory room for wind even as they continue to explore shale gas development. Texas alone – home to 26% of the nation’s active oil and gas wells according to work by our Matt Kelso – accounted for 14% of wind-power installation capacity coming online (Gearino, 2013). This figure stands in contrast to the claims of those that supported SB 310 and HB 483 that increase in renewable energy equate to declines in jobs, tax revenue, and countless other metrics of success. The politics of Texas and the state’s higher reliance on hydrocarbon generation should demonstrate that support for renewables is not a zero-sum game for traditional energy sources.

The average US wind farm has a potential of 300 MWs, with approximately 88 turbines or 3.4 MW per turbine spread across an average footprint of 7,338 acres. The actual footprint of these turbines, however, is in the range of 147-367 acres. Tower and turbine heights are generally 366 and 241 feet, respectively. These projects generate 0.89 jobs per MW and nearly 175,000 labor hours.

Thus, the potential of wind power from a tax revenue, employment, and energy independence standpoint is substantial but will only be realized if OH strengthens and diversifies renewable energy standards in Columbus.

Next in the Series

In the next part of this series we will look at the potential of woody biomass as an energy feedstock in OH.


References

Footnotes

  1. Most of HB 483 focuses on taxation and social programs with the one hydrocarbon provision doubling maximum penalties for gas pipeline violations removed by the Ohio House Finance Committee.
  2. According to Ohio’s Public Utilities Commission “At least 12.5 percent must be generated from renewable energy resources, including wind, hydro, biomass and at least 0.5 percent solar. The remainder can be generated from advanced energy resources, including nuclear, clean coal and certain types of fuel cells…at least one half of the renewable energy used must be generated…in Ohio.”
  3. Supporters include Honda, Whirlpool, Owens-Corning, Campbell Soup Co., and most of the big players in the alternative-energy sector.
  4. Ohio is at the vanguard of wind turbine component manufacturing with its thriving steel industry and more than 60 supply chain companies that would assuredly mushroom with a more robust RES. Ohio is home to 11% of the nations’ wind-related manufacturing facilities making it #1 in the nation.
  5. This is equivalent to 305,278 Ohioans, 18.07 million tons of CO2 or 950,012 Ohioans annual emissions.
  6. Note that the wind speed map includes measurements made at 50 meters in height, while OH turbines are typically installed at 80-100 m hub height, which “is the distance from the turbine platform to the rotor of an installed wind turbine and indicates how high your turbine stands above the ground, not including the length of the turbine blades. Commercial scale turbines (greater than 1MW) are typically installed at 80 m (262 ft.) or higher, while small-scale wind turbines (approximately 10kW) are installed on shorter towers.”
  7. Assuming the following claim from the American Wind Energy Association is true: “The water consumption savings from wind projects in Ohio total more than 248,000,000 gallons of water a year.”
Photo by Lara Marie Rauschert-Mcfarland

Florida’s Geographic and Geologic Challenges

By Maria Rose, Communications Intern, FracTracker Alliance

FracTracker has received numerous emails and phones calls wondering about unconventional drilling activity in Florida. Part of the concern related to fracking in the Sunshine State stems from Florida’s unique geographic and geologic characteristics, including a variety of environmental, geologic, and social issues that make drilling a very different challenge from other states. This article provides a brief compilation and explanation of those issues.

Everglades & Big Cypress National Preserve

Everglades

FL Everglades. Photo: Lara Marie Rauschert-Mcfarland, 2013.

Florida is home to the Everglades and the Big Cypress National Preserve, two locations that have a unique climate, assortment of wildlife, and diversity of fauna. Drilling has occurred in Southwest Florida since the 1940s,2 but it has been contained to traditional vertical drilling, until recently. The transition to more extreme methods of extraction, such as acid or hydraulic fracturing, may have more severe consequences on the fragile environment. The current rules and regulations in place are specific to vertical drilling, not focused on the distinct risks of fracking.2

Citizens have expressed concern that more drilling, and more extreme drilling, may contaminate regional groundwater and disrupt the habitat of the animals in the area. The endangered Florida panther is one species of particular concern; there are plans to drill close to the Florida Panther National Wildlife Refuge on the western edge of the Everglades. Drilling requires a host of preparation and set up, including clearing out areas, building roads, and seismic testing for underground reserves. Both animals and the environment can be disturbed or destroyed by these processes, whether it is from accidental spills from drilling, clearing out forested areas, or road traffic.3

Currently, there are 350,000 acres in southwest Florida leased for seismic testing to determine what areas underground have the most promising oil reserves: 115,00 acres in the greater Everglades by the company Tocala for dynamite blasting, and 234,510 acres in the Big Cypress National Park by Burnett Oil Co., for testing with “thumper trucks”.3 Thumper trucks drop heavy weights on the ground and use the vibrations to estimate oil reserves there. These weights have the potential to fracture the crust over porous limestone formations that hold aquifers, where people get their drinking water.4

 References and Resources

  1. Senator Nelson on Drilling 
  2. Florida Halts Fracking Near Everglades 
  3. Concern Over Plans to Drill for Oil in the Everglades 
  4. Senator Nelson Prevents Oil Drilling in Southwest Florida 

Water

The natural gas drilling industry requires large amounts of water to frack wells, using approximately four million gallons of fresh water per well.4 The water becomes extremely saline from the elements that mix with the water and earth underground. This fluid will also contain frac fluid chemicals added by the industry – some of which are toxic.3 After the drilling process is complete, the resulting waste must then be treated and disposed of properly either via deep well injection sites, limited reuse, recycling, and/or landfills. The potential for contamination of underground aquifers or aboveground mixing with freshwater sources is an important risk to consider.2

Florida has an already sensitive relationship with water. Being so close to the ocean, Florida often bears the brunt of natural disasters such as hurricanes and heavy storms, which all pose threats to freshwater sources above ground. There is also a high water table in Florida that lies directly under and very close to the Sunniland Basin, a layer of fossil fuel rich rock that is of interest to drillers. Drilling in the area, if done hastily, could contaminate a very important fresh water source.1

References and Resources

  1. Legislators Prepare for Potential Fracking in Florida 
  2. Drilling for Natural Gas Jeopardizes Clean Water 
  3. Environment America-Fracking By the Numbers
  4. Oil and Gas Extraction and Hydraulic Fracturing
  5. EPA Oil and Gas Production Wastes

Tourism

For Dr. Karen Dwyer, a concerned citizen of Collier County, the issue of parks and water also ties in to one of Florida’s most important industries: tourism. As Dwyer sees it, if what draws crowds to the state is diminished — the natural beauty of the Everglades and beaches and water — then tourism will falter. The communities impacted by the 2010 BP Gulf Oil Spill can attest to this fact. Small Florida towns near drilling activity  that rely on the income generated by tourism could fall into obscurity.

“People rely on touristy things here,” Dwyer said. “If people aren’t going to come here, we’re going to be a ghost town. If we have a huge accident, we’re not going to have [tourism anymore].”1

Reference:

  1. Interview with Dr. Karen Dwyer, Wednesday June 11th.

Karst Formations

Karst geologic formations visible near a spring. Photo: Richard Gant

Karst geologic formations visible near spring. Photo: Richard Gant

In addition to the unique environmental landscape, need for water, and dependence on tourism, Florida also has a vulnerable geology. The majority of the rock formation underground is made up of sand and limestone, which erodes and dissolves easily both above and below ground from exposure to rainwater. This feature causes karst formations in the rock, leading to sinkholes and fractures in the ground. There is some concern that the drilling processes required to access the gas might disturb the already sensitive environment and cause more stress or damage in areas already affected by sinkholes. Karst geology also has potential for increased aquifer contamination; if the ground is extremely porous, then water — and therefore, other chemicals and radioactive materials — may move through the ground more easily than in other geologies and contaminate water sources.

 References and Resources:

  1. Florida Development and Legislation
  2. USGS – The Science of Sinkholes
  3. Florida Hydraulic Fracturing

Demographics

Environmental justice can be a challenge that accompanies oil and gas drilling at times, defined as the inequitable distributions of environmental burdens. In Florida, we see a potential example of environmental justice, as the drilling completed thus far has dominantly affected low-income communities such as Collier County. Collier County has a large proportion of older, retired families, as well as younger families that may hold multiple jobs and relatively low incomes. In these communities, people are less resistant to the introduction of large, new industries that promise economic growth, since opportunities for such economic stimulation are rare. Similarly, people are less resistant to these issues simply because they may not have enough influence or understanding to reject such risky industries. It is clear then, that impoverished or under-stimulated communities often have to deal with the repercussions – environmentally, economically, and socially – of industry presence more than in places where people can afford and know how to repel industries that may pose environmental risks.

 References and Resources

  1. Florida Census 
  2. Florida County Profile
  3. Environmental Racism

Demographics content originated from interview with Pamela Duran, Monday June 30th.

Offshore oil and gas exploration federally approved

By Karen Edelstein, NY Program Coordinator

Right whale (Eubalaena glacialis) with calf

Background

Drilling in the Atlantic Ocean off the coast of the United States has been off-limits for nearly four decades. However, last Friday, the Obama administration’s Bureau of Ocean Energy Management (BOEM) opened the Atlantic outer continental shelf for oil and gas exploration starting in 2018, with oil production commencing in 2026. In a December 2013 report by the American Petroleum Institute (API) , API estimated that offshore exploration and federal lease sales could generate $195 billion between 2017 and 2035.

Problems for marine mammals, sea turtles, fish

Aside from the inherent risks of catastrophic drilling accidents similar to BP’s Deepwater Horizon in April 2010, open ocean oil and gas exploration can pose severe problems for marine life. Environmentalists have voiced alarm over the techniques used to explore for hydrocarbons deep below the ocean floor. Using “sonic cannons” or “‘seismic airguns,” pulses of sound are directed at the sea bottom to detect hydrocarbon deposits.

Underwater communication by marine mammals, such as whales and dolphins, relies on sound transmission over long distances — sometimes thousands of miles. These animals use sound to navigate, find mates and food, and communicate with each other. Noise pollution by common ships and supertankers is known to disrupt and displace marine mammals, but naval sonar has been documented as a cause of inner ear bleeding, hearing loss, tissue rupture, and beach strandings. According to the Ocean Mammal Institute:

These sonars – both low -frequency (LFAS) and mid -frequency can have a source level of 240 dB, which is one trillion times louder than the sounds whales have been shown to avoid. One scientist analyzing underwater acoustic data reported that a single low frequency sonar signal deployed off the coast of California could be heard over the entire North Pacific Ocean.

Natural Resources Defense Council also expressed concern over naval sonar: “By the Navy’s own estimates, even 300 miles from the source, these sonic waves can retain an intensity of 140 decibels – a hundred times more intense than the level known to alter the behavior of large whales.”

As destructive as naval sonar may be, oil and gas exploration sonic cannons–also known as seismic airguns– (at 216 – 230 dB) create disruptions to marine life many orders of magnitude greater. Fish and sea turtles are also affected, with catch rates of fish decreasing up to 70% when airguns were used in a commercial fishing area, according to a study by the Norwegian Institute of Marine Research.

The intensity and duration of the sonic cannon pulses during oil and gas exploration are an important factor in this equation. According to the Huffington Post, “The sonic cannons are often fired continually for weeks or months, and multiple mapping projects are expected to be operating simultaneously as companies gather competitive, secret data.” Collateral damage for the exploration is far from insignificant, the article continues:

The bureau’s environmental impact study estimates that more than 138,000 sea creatures could be harmed, including nine of the 500 north Atlantic right whales remaining in the world. Of foremost concern are endangered species like these whales, which give birth off the shores of northern Florida and southern Georgia before migrating north each year. Since the cetaceans are so scarce, any impact from this intense noise pollution on feeding or communications could have long-term effects, Scott Kraus, a right whale expert at the John H. Prescott Marine Laboratory in Boston, said.

‘No one has been allowed to test anything like this on right whales,” Kraus said of the seismic cannons. “(The Obama administration) has authorized a giant experiment on right whales that this country would never allow researchers to do.’

North Atlantic right whales are one of the most endangered species of cetaceans in the world.

Map of ranges of marine mammals potentially affected and towns opposing sonic cannon exploration for oil and gas

Although currently, the waters off New Jersey and New England are off-limits for exploration, North Carolina, South Carolina, and Virginia encouraged the federal government to open their off-shore waters for oil and gas surveys. Nevertheless,  many ocean-front communities have come out strongly against the use of sonic cannons and their impacts on marine life. To date, 15 communities from New Jersey to Florida have passed resolutions opposing this form of oil and gas exploration.

FracTracker has mapped the locations of these communities, with pop-up links to the resolutions that were passed, as well as the ranges of 17 marine mammals found along the Atlantic seaboard of the US.  These data come from the International Union for Conservation of Nature (IUCN) 2014 Red List of Threatened Species. You can toggle ranges on and off by going to the “Layers” drop-down menu at the top of the map. The default presentation for this map currently shows only the range of North Atlantic right whales. For a full-screen version of this map, with access to the other marine mammal ranges, click here.

West Virginia shale viewer

West Virginia

Photo by the NY Times

In Solidarity With Argentina

Update: The Indiegogo crowdfunding campaign for this initiative ended on August 20, 2014

An International Expedition to Address the Perils of Oil & Gas Extraction

Photo by the NY Times

Signs point to exploration areas in the Vaca Muerta, or Dead Cow, a field in the Patagonian desert where Chevron is currently drilling fracking exploratory wells. (Photo by NY Times)

People in Argentina are concerned about fracking increasing in their country. They are aware of the impacts to people’s health and the environment that oil and gas fracking has caused – spills, leaks and explosions; air and water pollution; nausea, headaches and other health problems from toxic exposure; destruction of forests and parklands; increased earthquake risks.

They want to know the truth from those who have lived and worked near oil and gas operations in the U.S. Argentina sin Fracking has invited Earthworks, FracTracker Alliance and Ecologic Institute to come to Argentina to tell the real story.

To help fund this initiative, we have launched an Indiegogo campaign. Your contributions will make it possible for experts from these 3 American organizations to travel to Argentina, and share their experiences from the U.S. with fracking. We’ll hold several workshops in Buenos Aires and other affected communities, such as the Vaca Muerta region, where fracking is already occurring, and visit others who face the potential dangers of fracking.

With your help, we can help Argentina avoid making the mistakes that we’ve made in the U.S., and we can connect Argentinians to a new international network of environmental groups fighting fossil fuel development worldwide.

What’s in PA Senate Bill 1378?

State Senator Joseph Scarnati III, from north-central Pennsylvania, has introduced a bill that would redefine the distinction between conventional and unconventional oil and gas wells throughout the state.  In Section 1 of the bill, the sponsors try to establish the purpose of the legislation,  making the case that:

  1. Conventional oil and gas development has a benign impact on the Commonwealth
  2. Many of the wells currently classified as conventional are developed by small businesses
  3. Oil and gas regulations, “must permit the optimal development of oil and gas resources,” as well as protect the citizens and environment.
  4. Previous legislation already does, and should, treat conventional and unconventional wells differently
This diagram shows geologic stata in Pennsylvania.  The Elk Sandstone is between the Huron and Rhinestreet shale deposits from the Upper Devonian period.

This diagram shows geologic stata in Pennsylvania. The Elk Group is between the Huron and Rhinestreet shale deposits from the Upper Devonian period. Click on the image to see the full version. Source: DCNR

Certainly, robust debate surrounds each of these points, but they are introductory in nature, not the meat and potatoes of Senate Bill 1378.  What this bill does is re-categorize some of the state’s unconventional wells to the less restrictive conventional category, including:

  1. All oil wells
  2. All natural gas wells not drilled in shale formations
  3. All shale wells above (shallower than) the base of the Elk Group or equivalent
  4. All shale wells below the Elk Group from a formation that can be economically drilled without the use of hydraulic fracturing or multi-lateral bore holes
  5. All wells drilled into any formation where the purpose is not production, including waste disposal and other injection wells

The current distinction is in fact muddled, with one DEP source indicating that the difference is entirely due to whether or not the formation being drilled into is above or below the Elk Group, and another DEP source indicates that the difference is much more nuanced, and really depends on whether the volumes of hydraulic fracturing fluid required to profitably drill into a given formation are generally high or low.

This table shows the number of wells in each formation in Pennsylvania that has both conventional and unconventional wells drilled into it.  Data source:  DEP, downloaded 7/9/2014.

This table shows the number of distinct wells in each producing formation in Pennsylvania that has both conventional and unconventional wells drilled into it. Data source: DEP, downloaded 7/9/2014.

As one might expect, this ambiguity is represented in the data. The chart at the left shows the number of distinct number of wells by formation, for each producing formation that has both conventional and unconventional wells in the dataset.  Certainly, there could be some data entry errors involved, as the vast majority of Bradford wells are conventional, and almost all of the Marcellus wells are unconventional.  But there seems to be some real confusion with regards to the Oriskany, for example, which is not only deeper than the Elk Group, but the Marcellus formation as well.

While an adjustment to the distinction of conventional and unconventional wells in Pennsylvania is called for, one wonders if the definitions proposed in SB 1378 is the right way to handle it.  If the idea of separating the two is based on the relative impact of the drilling operation, then a much more straightforward metric might be useful, such as providing a cutoff in the amount of hydraulic fracturing fluid used to drill a well.  Further, each of the five parts of the proposed definition serve to make the definition of unconventional wells less inclusive, meaning that additional wells would be subject to the less stringent regulations, and that the state would collect less money from the impact fees that were a part of Act 13 of 2012.

Instead, it is worth checking to see whether the definition of unconventional is inclusive enough.  In May of this year, FracTracker posted a blog about conventional wells that were drilled horizontally in Pennsylvania.


Conventional, non-vertical wells in Pennsylvania. Please click the expanding arrows icon at the top-right corner to access the legend and other map controls. Please zoom in to access data for each location.

These wells require large amounts of hydraulic fracturing fluids, and are already being drilled at depths of only 3,000 feet, and could go as shallow as 1,000 feet.  It’s pretty easy to argue that due to the shallow nature of the wells, and the close proximity to drinking water aquifers, these wells are deserving of even more rigorous scrutiny than those drilled into the Marcellus Shale, which generally ranges from 5,000 to 9,000 feet deep throughout the state.

A summary of the different regulations regarding conventional and unconventional wells can be found from PennFuture.  In general, unconventional wells must be further away from water sources and structures than their conventional counterparts, and the radius of presumptive liability for the contamination of water supplies is 2,500 feet instead of 1,000.

SB 1378 has been re-referred to the Appropriations Committee.