Shell Ethane Cracker

A Formula for Disaster: Calculating Risk at the Ethane Cracker

by Leann Leiter, Environmental Health Fellow
map & analysis by Kirk Jalbert, Manager of Community-Based Research & Engagement
in partnership with the Environmental Integrity Project

On January 18, 2016, Potter Township Supervisors approved conditional use permits for Shell Chemical Appalachia’s proposed ethane cracker facility in Beaver County, PA. A type of petrochemical facility, an ethane cracker uses energy and the by-products of so-called natural gas to make ethylene, a building block of plastics. FracTracker Alliance has produced informative articles on the jobs numbers touted by the industry, and the considerable negative air impacts of the proposed facility. In the first in a series of new articles, we look at the potential hazards of ethane cracker plants in order to begin calculating the risk of a disaster in Beaver County.

As those who stand to be affected by — or make crucial decisions on — the ethane cracker contemplate the potential risks and promised rewards of this massive project, they should also carefully consider what could go wrong. In addition to the serious environmental and human health effects, which might only reveal themselves over time, what acute events, emergencies, and disasters could potentially occur? What is the disaster risk, the potential for “losses, in lives, health status, livelihoods, assets and services,” of this massive petrochemical facility?

Known Ethane Cracker Risks

A well-accepted formula in disaster studies for determining risk, cited by, among others, the United Nations International Strategy for Disaster Reduction (UNISDR), is Disaster Risk = (Hazard x Vulnerability)/Capacity, as defined in the diagram below. In this article, we consider the first of these factors: hazard. Future articles will examine the remaining factors of vulnerability and capacity that are specific to this location and its population.

disaster-risk-infographic-websize

Applied to Shell’s self-described “world-scale petrochemical project,” it is challenging to quantify the first of these inputs, hazard. Not only would a facility of this size be unprecedented in this region, but Shell has closely controlled the “public” information on the proposed facility. What compounds the uncertainty much further is the fact that the proposed massive cracker plant is a welcome mat for further development in the area—for a complex network of pipelines and infrastructure to support the plant and its related facilities, and for a long-term commitment to continued gas extraction in the Marcellus and Utica shale plays.

williams-geismar-explosion-websize

U.S. Chemical Safety and Hazard Investigation Board, Williams Geismar Case Study, No. 2013-03-I-LA, October 2016.

We can use what we do know about the hazards presented by ethane crackers and nearby existing vulnerabilities to establish some lower limit of risk. Large petrochemical facilities of this type are known to produce sizable unplanned releases of carcinogenic benzene and other toxic pollutants during “plant upsets,” a term that refers to a “shut down because of a mechanical problem, power outage or some other unplanned event.” A sampling of actual emergency events at other ethane crackers also includes fires and explosions, evacuations, injuries, and deaths.

For instance, a ruptured boiler at the Williams Company ethane cracker plant in Geismar, Louisiana, led to an explosion and fire in 2013. The event resulted in the unplanned and unpermitted release of at least 30,000 lbs. of flammable hydrocarbons into the air, including ethylene, propylene, benzene, 1-3 butadiene, and other volatile organic chemicals, as well as the release of pollutants through the discharge of untreated fire waters, according to the Louisiana Department of Environmental Quality. According to the Times-Picayune, “workers scrambl(ed) over gates to get out of the plant.” The event required the evacuation of 300 workers, injured 167, and resulted in two deaths.

The community’s emergency response involved deployment of hundreds of personnel and extensive resources, including 20 ambulances, four rescue helicopters, and buses to move the injured to multiple area hospitals. The U.S. Chemical Safety and Hazard Investigation Board chalked up the incident to poor “process safety culture” at the plant and “gaps in a key industry standard by the American Petroleum Institute (API).” The accident shut the plant down for a year and a half.

Potential Risks & Shell’s Mixed Messages

Shell has done little to define the potential for emergencies at the proposed Beaver County ethane cracker plant, at least in materials made available to the public. Shell has revealed that general hazards include “fire, explosion, traffic accidents, leaks and equipment failures.”

However, we located numerous versions of Shell’s handout and found one notable difference among them—the brochure distributed to community members at a December 2016 public hearing held by the Pennsylvania Department of Environmental Protection (PA DEP) excluded the word “explosion” from the list of “potential safety concerns.” The difference is seen in comparing the two documents.

Figure #1 below: Excerpt of online version of a handout for Beaver County, dated May 2015, with “explosion” included in list of “potential safety concerns.” (Other Shell-produced safety documents, like the one included as an exhibit in the conditional use permit application on file with the township, and Shell’s webpage for the project, also include “explosion” in the list of hazards.)

Figure #2 below: Excerpt of handout, dated November 2016 and provided to the community at December 15, 2016 meeting, with the word “explosion” no longer included.

 

Additional hints about risks are peppered throughout the voluminous permit applications submitted by Shell to the PA DEP and Potter Township, such as references to mitigating acts of terror against the plant, strategies for reducing water contamination, and the possibility of unplanned upsets. But the sheer volume of these documents, coupled with their limited accessibility challenge the public’s ability to digest this information. The conditional use permit application submitted by Shell indicates the existence of an Emergency Response Plan for the construction phase, but the submission is marked as confidential.

Per Pennsylvania law, and as set forth in PA DEP guidelines, Shell must submit a Preparedness, Prevention, and Contingency Plan (PPC Plan) at an unspecified point prior to operation. But at that likely too-late stage, who would hear objections to the identified hazards, when construction of the plant is already a done deal? Even then, can we trust that the plan outlined by that document is a solid and executable one?

Shell’s defense of the Beaver County plant is quick to point out differences between other plants and the one to come, making the case that technical advances will result in safety improvements. But it is noteworthy that the U.S. Chemical Safety and Hazard Investigation Board attributes failures at the Williams Geismar plant, in part, to “the ineffective implementation of…process safety management programs… as well as weaknesses in Williams’ written programs themselves.” The Geismar explosion demonstrates some of the tangible hazards that communities experience in living near ethane cracker plants. It is worth noting that the proposed Beaver County facility will have about 2½ times more ethylene processing capacity than the Geismar plant had at the time of the 2013 explosion.

Opening the Floodgates

In an effort to expand our understanding of risk associated with the proposed Beaver County ethane cracker and the extent of related developments promised by industry leaders, FracTracker Alliance has constructed the below map. It shows the site of the Shell facility and nearby land marked by Beaver County as “abandoned” or “unused.” These land parcels are potential targets for future build-out of associated facilities. Two “emergency planning zones” are indicated—a radius of 2 miles and a radius of 5 miles from the perimeter of Shell’s site. These projections are based upon FracTracker’s discussions with officials at the Saint Charles Parish Department of Homeland Security and Emergency Preparedness, who are responsible for emergency planning procedures in Norco, Louisiana, the site of another Shell ethane cracker facility. The emergency zones are also noted in the 2015 Saint Charles Hazard Mitigation Plan.

Also shown on the map is an estimated route of the Falcon pipeline system Shell intends to build, which will bring ethane from the shale gas fields of Ohio and Pennsylvania. Note that this is an estimated route based on images shown in Shell’s announcement of the project. Finally, our map includes resources and sites of vulnerability, including schools, fire stations, and hospitals. The importance of these sites will be discussed in the next article of this series.

Ethane Cracker Hazards Map


View map fullscreenHow FracTracker maps work

While the site of the Shell cracker is worth attending to, it would be a mistake to limit assessments of disaster risk to the site of the facility alone. Shell’s proposed plant is but one component in a larger plan to expand ethane-based processing and use in the region, with the potential to rival the Gulf Coast as a major U.S. petrochemical hub. An upcoming conference on petrochemical construction in the region, scheduled for June 2017 in Pittsburgh, shows the industry’s commitment to further development. These associated facilities (from plants producing fertilizers to plastics) would utilize their own mix of chemicals, and their potential interactions would produce additional, unforeseen hazards. Ultimately, a cumulative impact assessment is needed, and should take into account these promised facilities as well as existing resources and vulnerabilities. The below Google Earth window gives a sense of what this regional build-out might look like.

What might an ethane cracker and related petrochemical facilities look like in Beaver County? For an idea of the potential build-out, take a tour of Norco, Louisiana, which includes Shell-owned petrochemical facilities.

Final Calculations

As discussed in the introduction, “hazard,” “vulnerability,” and “capacity” are the elements of the formula that, in turn, exacerbate or mitigate disaster risk. While much of this article has focused on drastic “hazards,” such as disastrous explosions or unplanned chemical releases, these should not overshadow the more commonplace public health threats associated with petrochemical facilities, such as detrimental impact on air quality and the psychological harm of living under the looming threat of something going wrong.

The second and third articles in this series will dig deeper into “vulnerability” and “capacity.” These terms remind us of the needs and strengths of the community in question, but also that there is a community in question.

Formulas, terminology, and calculations should not obscure the fact that people’s lives are in the balance. The public should not be satisfied with preliminary and incomplete risk assessments when major documents that should detail the disaster implications of the ethane cracker are not yet available, as well as when the full scale of future build-out in the area remains an unknown.

Much gratitude to Lisa Graves-Marcucci and Lisa Hallowell of the Environmental Integrity Project for their expertise and feedback on this article.

The Environmental Integrity Project is a nonpartisan, nonprofit watchdog organization that advocates for effective enforcement of environmental laws. 

The BP Whiting, IN Oil Refinery

US Oil Refineries and Economic Justice

How annual incomes in the shadow of oil refineries compare to state and regional prosperity

North American Oil Refinery Capacity (Barrels Per Day (BPD))

Figure 1. North American Oil Refinery Capacity

Typically, we analyze the potential economic impacts of oil refineries by simply quantifying potential and/or actual capacity on an annual or daily basis. Using this method, we find that the 126 refineries operating in the U.S. produce an average of 100,000-133,645 barrels per day (BPD) of oil – or 258 billion gallons per year.

In all of North America, there are 158 refineries. When you include the 21 and 27 billion gallons per year produced by our neighbors to the south and north, respectively, North American refineries account for 23-24% of the global refining capacity. That is, of course, if you believe the $113 dollar International Energy Agency’s 2016 “Medium-Term Oil Market Report” 4.03 billion gallon annual estimates (Table 1 and Figure 1).

Table 1. Oil Refinery Capacity in the United States and Canada (Barrels Per Day (BPD))

United States Canada Mexico Total
Refinery Count 126 17 6 158
Average Capacity 133,645 BPD 104,471 BPD 228,417 BPD 139,619 BPD
Low Foreland & Silver Eagle Refining in NV & WY, 2-3K BPD Prince George & Moose Jaw Refining in BC and SK, 12-15K BPD Pemex’s Ciudad Madero Refinery, 152K BPD
High Exxon Mobil in TX & LA, 502-560K BPD Valero and Irving Oil Refining in QC & NS, 265-300K BPD Pemex’s Tula Refinery, 340K BPD
Median 100,000 BPD 85,000 BPD 226,500 109,000
Total Capacity 16.8 MBPD 1.8 MBPD 1.4 MBPD 22.1 MBPD

Census Tract Income Disparities

However, we would propose that an alternative measure of a given oil refinery’s impact would be neighborhood prosperity in the census tract(s) where the refinery is located. We believe this figure serves as a proxy for economic justice. As such, we recently used the above refinery location and capacity data in combination with US Census Bureau Cartographic Boundaries (i.e., Census Tracts) and the Census’ American FactFinder clearinghouse to estimate neighborhood prosperity near refineries.

Methods

Our analysis involved merging oil refineries to their respective census tracts in ArcMAP 10.2, along with all census tracts that touch the actual census tract where the refineries are located, and calling that collection the oil refinery’s sphere of influence, for lack of a better term. We then assigned Mean Income in the Past 12 Months (In 2014 Inflation-Adjusted Dollars) values for each census tract to the aforementioned refinery tracts – as well as surrounding regional, city, and state tracts – to allow for a comparison of income disparities. We chose to analyze mean income instead of other variables such as educational attainment, unemployment, or poverty percentages because it largely encapsulates these economic indicators.

As the authors of the UN’s International Forum of Social Development paper Social Justice in an Open World wrote:

In today’s world, the enormous gap in the distribution of wealth, income and public benefits is growing ever wider, reflecting a general trend that is morally unfair, politically unwise and economically unsound… excessive income inequality restricts social mobility and leads to social segmentation and eventually social breakdown…In the modern context, those concerned with social justice see the general  increase  in  income  inequality  as  unjust,  deplorable  and  alarming.  It is argued that poverty reduction and overall improvements in the standard of living are attainable goals that would bring the world closer to social justice.

Environmental regulatory agencies like to separate air pollution sources into point and non-point sources. Point sources are “single, identifiable” sources, whereas non-point are more ‘diffuse’ resulting in impacts spread out over a larger geographical area. We would equate oil refineries to point sources of socioeconomic and/or environmental injustice. The non-point analysis would be far more difficult to model given the difficulties associated with converting perceived quality of life disturbance(s) associated with infrastructure like compressor stations from the anecdotal to the empirical.

Results

Primarily, residents living in the shadow of 80% of our refineries earn nearly $16,000 less than those in the surrounding region – or, in the case of urban refineries, the surrounding Metropolitan Statistical Areas (MSAs). Only residents living in census tracts within the shadow of 25 of our 126 oil refineries earn around $10,000 more annually than those in the region.

On average, residents of census tracts that contain oil refineries earn 13-16% less than those in the greater region and/or MSAs (Figure 2). Similarly, in comparing oil refinery census tract incomes to state averages we see a slightly larger 17-21% disparity (Figure 3).

Digging Deeper

United States Oil Refinery Income Disparities (Note: Larger points indicate oil refinery census tracts that earn less than the surrounding region or city)

Figure 4. United States Oil Refinery Income Disparities (Note: Larger points indicate oil refinery census tracts that earn less than the surrounding region or city.)

Oil refinery income disparities seem to occur not just in one region, but across the U.S. (Figure 4).

The biggest regional/MSA disparities occur in northeastern Denver neighborhoods around the Suncor Refinery complex (103,000 BPD), where the refinery’s census tracts earn roughly $42,000 less than Greater Denver residents1. California, too, has some issues near its Los Angeles’ Valero and Tesoro Refineries and Chevron’s Bay Area Refinery, with a combined daily capacity of nearly 600 BPD. There, two California census associations in the shadow of those refineries earn roughly $38,000 less than Contra Costa and Los Angeles Counties, respectively. In the Lone Star state Marathon’s Texas City, Galveston County refinery resides among census tracts where annual incomes nearly $33,000 less than the Galveston-Houston metroplex. Linden, NJ and St. Paul, MN, residents near Conoco Phillips and Flint Hills Resources refineries aren’t fairing much better, with annual incomes that are roughly $35,000 and nearly $33,000 less than the surrounding regions, respectively.

Click on the images below to explore each of the top disparate areas near oil refineries in the U.S. in more detail. Lighter shades indicate census tracks with a lower mean annual income ($).

Conclusion

Clearly, certain communities throughout the United States have been essentially sacrificed in the name of Energy Independence and overly-course measures of economic productivity such as Gross Domestic Product (GDP). The presence and/or construction of mid- and downstream oil and gas infrastructure appears to accelerate an already insidious positive feedback loop in low-income neighborhoods throughout the United States. Only a few places like Southeast Chicago and Detroit, however, have even begun to discuss where these disadvantaged communities should live, let alone how to remediate the environmental costs.

Internally Displaced People

There exists a robust history of journalists and academics focusing on Internally Displaced People (IDP) throughout war-torn regions of Africa, the Middle East, and Southeast Asia – to name a few – and most of these 38 million people have “become displaced within their own country as a result of violence.” However, there is a growing body of literature and media coverage associated with current and potential IDP resulting from rising sea levels, drought, chronic wildfire, etc.

The issues associated with oil and gas infrastructure expansion and IDPs are only going to grow in the coming years as the Shale Revolution results in a greater need for pipelines, compressor stations, cracker facilities, etc. We would propose there is the potential for IDP resulting from the rapid, ubiquitous, and intense expansion of the Hydrocarbon Industrial Complex here in the United States.

N. American Hydrocarbon Industrial Complex Map


View map fullscreenHow FracTracker maps work | Download map data

Footnotes and Additional Reading

  1. The Suncor refinery was implicated in a significant leak of tar sands crude associated benzene into the South Platte River as recently as 2013. According to Suncor’s website this refinery “supplies about 35% of Colorado’s gasoline and diesel fuel demand and is a major supplier of jet fuel to the Denver International Airport. The refinery is also the largest supplier of paving-grade asphalt in Colorado.”
  2. New York Times story on the growing footprint of BP’s Whiting Refinery: Surrounded by Industry, a Historic Community Fights for Its Future

By Ted Auch, PhD – Great Lakes Program Coordinator, FracTracker Alliance

** Feature image of the Richmond Chevron Refinery courtesy of Paul Chinn | The Chronicle

Petrochemical Industry Presence in East Bay CA’s North Coast Refinery Corridor

Who Lives Near the Refineries?
By

Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community-Based Research & Engagement

Key Takeaways

  • Communities living along the North Coast of the East Bay region in California are the most impacted by the presence of the petrochemical industry in their communities.
  • Emissions from these facilities disproportionately degrade air quality in this corridor region putting residents at an elevated risk of cancer and other health impacts.
  • People of color are more likely to live near the refineries and are therefore disproportionately affected.

Refinery Corridor Introduction

The North Coast of California’s East Bay region hosts a variety of heavy industries, including petroleum refineries, multiple power plants and stations, chemical manufacturing plants, and hazardous waste treatment and disposal facilities. Nationwide, the majority of petroleum refineries are located in heavily industrialized areas or near crude oil sources. The north coast region is unique. Access to shipping channels and the location being central to the raw crude product from North Dakota and Canada to the North, and California’s central valley oil fields to the south has resulted in the development of a concentrated petrochemical infrastructure within the largely residential Bay Area. The region’s petrochemical development includes seven fossil fuel utility power stations that produce a total of 4,283 MW, five major oil refineries operated by Chevron, Phillips 66, Shell Martinez, Tesoro, and Valero, and 4 major chemical manufacturers operated by Shell, General Chemical, DOW, and Hasa Inc. This unequal presence has earned the region the title, “refinery corridor” as well as “sacrifice zone” as described by the Bay Area Refinery Corridor Coalition.

The hazardous emissions from refineries and other industrial sites are known to degrade local air quality. It is therefore important to identify and characterize the communities that are affected, as well as identify where sensitive populations are located. The communities living near these facilities are therefore at an elevated risk of exposure to a variety of chemical emissions. In this particular North Coast region, the high density of these industrial point sources of air pollution drives the risk of resultant health impacts. According to the U.S.EPA, people of color are twice as likely to live near refineries throughout the U.S. This analysis by FracTracker will consider the community demographics and other sensitive receptors near refineries along the north coast corridor.

In the map below (Figure 1) U.S. EPA risk data in CalEnviroscreen is mapped for the region of concern. The map shows the risk resulting specifically from industrial point sources. Risk along the North Coast is elevated significantly. Risk factors calculated for the region show that these communities are elevated above the average. The locations of industrial sites are also mapped, with specific focus on the boundaries or fencelines of petrochemical sites. Additional hazardous sites that represent the industrial footprint in the region have been added to the map including sites registered with Toxic Release Inventory (TRI) permits as well as Superfund and other Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites. The Toxmap TRI sites are facilities that require a permit to emit hazardous air pollutants. The superfund and other CERCLA sites are locations where a historical footprint of industry has resulted in contamination. The sites are typically abandoned or uncontrolled hazardous waste sites that are part of register for tax-funded clean-ups.

Figure 1. Interactive map of risk in the East Bay’s North Coast refinery corridor

View Map Fullscreen | How Our Maps Work

Oil refineries in particular are unique sources of air emissions. There are 150 large domestic refineries throughout the United States. They are shown in the map in Figure 2 below. The majority (90%) of the refined products from these refineries are fuels; motor vehicle gasoline accounts for 40%. The refinery sites have hundreds of stacks, or point sources, and they emit a wide variety of pollutants, as outlined by the U.S. EPA:

  • Criteria Air Pollutants (CAPs)
    • Sulfur Dioxide (SO2)
    • Nitrogen Oxides (NOx)
    • Carbon Monoxide (CO)
    • Particulate Matter (PM)
  • Volatile Organic Compounds (VOCs)
  • Hazardous Air Pollutants (HAPs)
    • Carcinogens, including benzene, naphthalene, 1,3-butadiene, PAH
    • Non-carcinogenic HAP, including HF and HCN
    • Persistent bioaccumulative HAP, including mercury and nickel
  • Greenhouse Gases (GHG)
  • Hydrogen Sulfide (H2S)

Figure 2. Map of North American Petroleum Refineries


View Map Fullscreen | How Our Maps Work

BAAQMD Emissions Index

Figure 3. BAAQMD emissions index visualization

Disparate health impacts are therefore a known burden for these Bay Area communities. The region includes the cities of Richmond, Pinole, Hercules, Rodeo, Crockett, Port Costa, Benicia, Martinez, Mt. View, Pacheco, Vine Hill, Clyde, Concord, Bay Point, Antioch, and Oakley. In addition to preserving the ecological system health of this intercostal region is also important for both the ecological biodiversity of the marsh as well as commercial and recreational purposes. These wetlands provide a buffer, able to absorb rising waters and abate flooding.

The Bay Area Air Quality Management District’s (BAAQMD) Cumulative Impacts report identified areas where air pollution’s health impacts are relatively high in the San Francisco Bay Area. The report is does not limit their analysis to the North Coast, but shows that these regions with the most impacts are also the most vulnerable due to income, education level, and race and ethnicity. The report shows that there is a clear correlation between socio-economic disadvantages and racial minorities and the impacted communities. Figure 3 shows the regions identified by the BAAQMD as having the highest pollution indices.

Analysis

This analysis by FracTracker focuses specifically on the north shore of the East Bay region. Like the BAAQMD report, National Air toxic Assessment (NATA) data to identify census tracts with elevated risk. Specifically, elevated cancer and non-cancer risk from point sources emitting hazardous air pollutants (HAPs) as regulated by the U.S. EPA were used. CalEnviroScreen 2.0 data layers were also incorporated, specifically the U.S. EPA’s Risk Screening Environmental Indicators (RSEI) data. RSEI uses toxic release inventory (TRI) data, emission locations and weather to model how chemicals spread in the air (in 810m-square grid units), and combines air concentrations with toxicity factors.

The census tracts that were identified as disproportionately impacted by air quality are shown in the map below (Figure 4). The demographics data for these census tracts are presented in the tables below. Demographics were taken from the U.S. census bureau’s 2010 Census Summary File 1 Demographic Profile (DP1). The census tracts shapefiles were downloaded from here.

Figure 4. Interactive Map of Petrochemical Sites and Neighboring Communities in the East Bays North Coast Industrial Corridor

View Map Fullscreen | How Our Maps Work

Buffers were created at 1,000 ft; 2,000 ft; and 3,000 ft buffers from petrochemical sites. These distances were developed as part of a hazard screening protocol by researchers at the California Air Resources Board (ARB) to assess environmental justice impacts. The distances are based on environmental justice literature, ARB land use guidelines, and state data on environmental disamenities (Sadd et al. 2011). A demographical profile was summarized for the population living within a distance of 3,000 feet, and for the census tracts identified as impacted by local point sources in this region. The analysis is summarized in Table 1 below. Additional data on the socioeconomic status of the census tracts is found in Table 2.

Based on the increased percentage of minorities and indicators of economic hardship shows that the region within the buffers and the impacted census tracts host a disproportionate percentage of vulnerable populations. Of particular note is 30% increase in Non-white individuals compared to the rest of the state. We see in Table 2 that this is disparity is specifically for Black or African American communities, with an over 150% increase compared to the total state population. The number of households reported to be in poverty in the last 12 months of 2014 and those households receiving economic support via EBT are also elevated in this region. Additional GIS analysis shows that 7 healthcare facilities, 7 residential elderly care facilities, 32 licensed daycares, and 17 schools where a total of 10,474 students attended class in 2014. Of those students, 54.5% were Hispanic and over 84% identified as “Non-white.”

Table 1. Demographic Summaries of Race. Data within the 3,000 ft buffer of petrochemical sites was aggregated at the census block level.

Total Population Non-White Non-White (%ile)  Hispanic or Latino  Hispanic or Latino (%ile)
Impacted Census Tracts 387,446 212,307 0.548 138,660 0.358
3,000 ft. Buffer 77,345 41,696 0.539 30,335 0.392
State Total 37,253,956 0.424 0.376

Table 2. Additional Status Indicators taken from the 2010 census at the census tract level

Indicators (Census Tract data) Impacted Count Impacted Percentile State Percentile
Children, Age under 5 27,854 0.072 0.068
Black or African American 60,624 0.156 0.062
Food Stamps (households) 0.1103 0.0874
Poverty (households) 0.1523 0.1453

Conclusion

The results of the refinery corridor analysis show that the communities living along the North Coast of the East Bay region are the most impacted by the presence of the petrochemical industry in their communities. Emissions from these facilities disproportionately degrade air quality in this corridor region putting residents at an elevated risk of cancer and other health impacts. The communities in this region are a mix of urban and single family homes with residential land zoning bordering directly on heavy industry zoning and land use. The concentration of industry in this regions places an unfair burden on these communities. While all of California benefits from the use of fossil fuels for transportation and hydrocarbon products such as plastics, the residents in this region bear the burden of elevated cancer and non-cancer health impacts.

Additionally, the community profile is such that residents have a slightly elevated sensitivity when compared to the rest of the state. The proportion of the population that is made up of more sensitive receptors is slightly increased. The region has suburban population densities and more children under the age of 5 than average. The number of people of color living in these communities is elevated compared to background (all of California). The largest disparity is for Black or African American residents. There are also a large number of schools located within 3,000 ft of at least one petrochemical site, where over half the students are Hispanic and the vast majority are students of color. Overall, people of color are disproportionately affected by the presence of the petrochemical industry in this region. Continued operation and any increases in production of the refineries in the East Bay disproportionately impact the disadvantaged and disenfranchised.

With this information, FracTracker will be elaborating on the work within these communities with additional analyses. Future work includes a more in depth look at emissions and drivers of risk on the region, mapping crude by rail terminals, and working with the community to investigate specific health endpoints. Check back soon.

References

  1. U.S.EPA. 2011. Addressing Air Emissions from the Petroleum REfinery Sector U.S. EPA. Accessed 3/15/16.
  2. Sadd et al. 2011. Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California. International Journal of Environmental Research and Public Health. 2011;8(5):1441-1459. doi:10.3390/ijerph8051441.

** Feature image of the Richmond Chevron Refinery courtesy of Paul Chinn | The Chronicle