Risky Byhalia Connection Pipeline Threatens Tennessee & Mississippi Health, Water Supply

 

VIEW MAP & DATA

Overview

In December 2019, Plains All-American and Valero pipeline companies announced plans to build the 49-mile Byhalia Pipeline through southwestern Tennessee and northwestern Mississippi. The proposed Byhalia Connection Pipeline is a 24-inch, high pressure (1500 psi) conduit, conveying crude oil coming Oklahoma, bound for the Gulf coast. The pipeline, which is designed to carry up to 420,000 barrels of oil a day, provides a link between the Diamond Pipeline to the west and the Capline Pipeline to the east. Construction is planned to begin in early 2021, and be completed by year’s end. Plains All-American insists that all safety precautions are being considered, but the outcry among residents and environmental advocates has been considerable.

Many factors—environmental, geological, social, and economic—have emerged as reasons that this pipeline should not move ahead. And industry most certainly didn’t count on pushback from the local community. Residents, allies, and the media have risen up to challenge the project. In this article, we’ll take a look at the story from various perspectives, augmented by FracTracker’s mapping insights.

Contents

Environmental and hydrological

Human health

Geological

Demographics and disaster preparedness

Economics and land ownership

Pipeline Incidents

Where From Here?


Byhalia Connection Pipeline

This interactive map looks at the various risks associated with the proposed Byhalia Connection Pipeline. The map contains all of the data layers related to the topics in this article. Scroll down in this article to find interactive maps separated out by topic. All data sources are listed in the “Details” section of the maps, as well as at the end of this article. Items will activate in this map dependent on the level of zoom in or out.

View Full Screen | Updated March, 2021

Environmental and hydrological

The 49-mile route of the proposed Byhalia Connection Pipeline passes through a patchwork of rural, suburban, and urban landscapes. Along the route, the pipeline would cross seven named waterways — Johnson Creek, Hurricane Creek, Bean Patch Creek, Camp Creek, Short Brook, Camp Creek Canal, and Coldwater Creek — and also pass immediately adjacently to a nearly 5-mile-long wetlands complex that surrounds the Coldwater River. But the natural environment is home to many more waterways than those that have official names on topographic maps. According to FracTracker’s inspection of National Wetlands Inventory data collected by the United States Fish and Wildlife Service, the proposed pipeline crosses or touches 62 streams in 102 separate locations, 25 forested wetlands, an emergent wetland, 17 ponds, and one lake.

Close to the City of Memphis, 0.8 miles of the pipeline would run directly through the Davis Wellfield Wellhead Protection Zone. The proposed pipeline is located over the extraordinary Memphis Sands Aquifer, which provides potable water for more than 400,000 people. Memphis Light, Gas and Water (MLGW) Company pumps water from over 175 artesian wells in Shelby County, Tennessee, alone—right in the path of the pipeline route. The aquifer itself is a sensitive resource, already under demand by the human population of the area, as well as many industries such as breweries and as a supply of cooling water for a nearby power plant.

Memphis Sands Aquifer is part of the larger Middle Claiborne Aquifer, a groundwater and geological unit in the lower Mississippi drainage. Technically speaking, the Memphis Sands portion of the aquifer is located in Tennessee, but is continuous with the Sparta Sands Aquifer, located in Mississippi. In the eastern portion of the Byhalia Connection’s proposed route, wetlands along Coldwater River are directly part of the recharge zone of this aquifer.

Byhalia hydrologic components

To learn more about the hydrologic features that may be impacted by the proposed Byhalia Connection Pipeline, explore our interactive map. When this map is viewed full-size, you can choose to view additional layers from the drop-down Layers menu.

View Full Screen | Last updated March 2021

 

The Memphis Sands Aquifer lies 350 to 1000 feet under Memphis (see Figure 1), and spans an area of 7500 square miles, roughly the size of Lake Ontario. “It’s one of the best (aquifers) in the world in terms of thickness, aerial content, quality of water”, according to Roy Van Arsdale, Professor of Geology at University of Memphis. Under Shelby County alone — where Memphis is located — the aquifer contains approximately 58 trillion gallons of clean water. Over time, the aquifer has seen threats from overpumping, as the population of Memphis grew. In addition, industrial pollution has turned up in some samples, including cancer-causing benzene. Policy protections on the aquifer have been lacking, although there is increasingly vocal public awareness about the need for more comprehensive groundwater resource protection in the area.

 

Figure 1. Cross-section of aquifers under Memphis, TN. Graphic modified from here.

 

Although water withdrawals from the aquifer have declined significantly since 2000 due, in part, to more water-efficient household appliances that reduce demand in comparison with older models, the MLGW pumped 126 million gallons a day from the aquifer in 2015. Consequently, the level of the aquifer has been rising in recent years, as the rate of recharge has exceeded use.

The courts have suggested that the water in the aquifer is an intrastate resource, and that therefore, Mississippi cannot have sole governance over the extraction of the water within its state boundaries. Instead, usage should be through “equitable apportionment.” Further arguments are still pending, as of late 2020. In short, as Figure 1 shows, withdrawal and recharge of the aquifer do not respect state boundaries.

The details of water law, and who can tap into these, and other deep, ancient aquifers, are complex questions in which agriculture, ecology, geology, and technology bump up against each other. All of these interests, not to mention human health, could be heavily impacted by a crude oil pipeline rupture or other accident that resulted in contamination of this groundwater resource.

Human health

Crude oil spills release a panoply of volatile organic compounds into the air and water that are extremely harmful to human and environmental health. These include benzene, ethylbenzene, toluene, and xylene. Polycyclic aromatic hydrocarbons (PAHs), such as carcinogenic benzo[a]pyrene, are also released. In addition, if the oil combusts, hydrogen sulfide gas, as well as heavy metals, including nickel, mercury, and cadmium, will become airborne.

Figure 2. Observed/documented oil spill-induced acute and chronic human health effects. Source: Guidance for the Environmental Public Health Management of Crude Oil Incidents, Health Canada (2018).

 

The take-away is that crude oil spills from pipelines are not uncommon, result in environmental damage, impacts on the health and safety of workers and nearby residents. Most importantly, despite monitoring and inspections, pipelines fail. A partial list of pipeline failures is shown in the sidebar.

Within the 2-mile buffer of the pipeline, there are 20 facilities that the United States Environmental Protection Agency (US EPA) lists in its Toxic Release Inventory (TRI), including several chemical plants associated with hydrocarbon extraction. Carcinogens such as polycyclic aromatic compounds, benzene, styrene, dioxins, and naphthalene are just a few of the compounds produced by facilities owned by Valero Energy Corporation, Drexel Chemical Company, and other companies within the 2-mile buffer zone of the pipeline, which compound the risks to the populations there. In addition, while the TRI lists exposure to toluene and xylene from these facilities, neither are categorized by EPA’s TRI database as a carcinogen due to a lack of data; however, their deleterious impacts on the central nervous system are undeniable, and well- documented (see examples here and here).

Byhalia civic and industrial facilities

View Full Screen | Updated March, 2021

In this interactive map, you can see sites in the proposed Byhalia Connection route that are listed in the TRI, as well as civic facilities like schools, daycare centers, and health care facilities. When this map is viewed full-size, you can choose to view additional layers from the drop-down Layers menu.

Geological

The most active seismic fault line in the eastern United States — the New Madrid Fault — is located about 40 miles from one end of the proposed pipeline (see Figure 2). The last major earthquakes along this fault line occurred in 1811 and 1812. Although the current Richter scale was not in use at that time, first quake in mid-December 1811 was estimated to have had a magnitude of between 7.2 and 8.2, and was followed by an aftershock of about 7.4. In January and February of 1812, there were additional earthquakes of this magnitude. Obviously, at this time in history, there was relatively sparse population in the area, and little infrastructure. Were such a quake to occur today, the outcomes would be catastrophic.

Figure 3: New Madrid Seismic Zone. Source: United States Geological Survey

 

According to a Wikipedia entry, “[i]n October 2009, a team composed of University of Illinois and Virginia Tech researchers headed by Amr S. Elnashai, funded by the Federal Emergency Management Agency, considered a scenario where all three segments of the New Madrid fault ruptured simultaneously with a total earthquake magnitude of 7.7. The report found that there would be significant damage in the eight states studied – Alabama, Arkansas, Illinois, Indiana, Kentucky, Mississippi, Missouri, and Tennessee – with the probability of additional damage in states farther from the New Madrid Seismic Zone. Tennessee, Arkansas, and Missouri would be most severely impacted, and the cities of Memphis, Tennessee, and St. Louis, Missouri, would be severely damaged. The report estimated 86,000 casualties, including 3,500 fatalities, 715,000 damaged buildings, and 7.2 million people displaced, with two million of those seeking shelter, primarily due to the lack of utility services. Direct economic losses, according to the report, would be at least $300 billion.” Source: University of Illinois report]

Another article on the New Madrid fault added that “….the US Geological Survey and the University of Memphis Center for Earthquake Research estimate there’s a 7 to 10 percent chance of a major quake — one with a magnitude between 7.5 and 8.0 — occurring in the region in the next 50 years….’ The scope is about as big as you could possibly have,’ said Jonathon Monken, director of the Illinois Emergency Management Agency and chairman of the Central U.S. Earthquake Consortium… ‘Putting it in a purely financial context, Hurricane Katrina was a $106 billion disaster. We estimate this would be a $300 billion disaster, the worst in the history of the United States.’”

Earthquake damage to pipelines can occur from movement on the fault itself, soil liquefaction, uplift, and landslides, resulting in potentially catastrophic situations. Engineering solutions to minimize or prevent seismic damage to pipelines do exist. These solutions must be part of the overall pipeline design, however. For example, the Trans-Alaska oil pipeline was constructed with considerations for earthquake impacts in mind. For more information, read about the solution that was implemented there.

Byhalia geological context

This map shows the New Madrid seismic zone in the context of the proposed Byhalia Connection Pipeline. When this map is viewed full-size, you can choose to view additional layers from the drop-down Layers menu.

View Full Screen | Updated March 2021

Demographics and disaster preparedness

As eloquently reported in a series of articles in mlk50.com, the siting of the Byhalia Connection Pipeline is not only an issue environmental tied with the natural environment. This is very much an issue of environmental justice, as well. Many of the census blocks along the proposed, preferred route of the pipeline, are 99% Black. Boxtown, a community in southwest Memphis is one of places, and already has a long history of impacts by environmental contamination from the dozens of industries that operate there. Toxic waste from coal power plants includes heavy metals and radioactive materials.

The pipeline route from Memphis to its terminus in Mississippi takes a circuitous route, avoiding wealthier parts of the city and its suburbs, but goes directly through low-income areas, some of which are inhabited by a nearly 100% Black population.

FracTracker looked at US Census data along the pipeline route, and calculated a half-mile (minimum recommended) and two-mile buffer zone from the pipeline right-of-way to consider populations that might be impacted in the case of an accident.

Byhalia route demographics

Explore the the demographics along the proposed Byhalia Connection Pipeline route. When this map is viewed full-size, you can choose to view additional layers from the drop-down Layers menu, such as the non-white population ration along the proposed pipeline route.

View Full Screen | Updated March 2021

There are 15,000 people living in the immediate evacuation zone of a half mile from the pipeline. In some parts of South Memphis, within this half-mile evacuation zone, population density is above 4,000 people per square mile, and the Black population approaches 100%. Within a two mile distance, the number climbs to over 76,000. Depending on the direction of the wind, a crude oil-induced fire could spew dangerous levels of volatile organic compounds through the air towards these populations. The disproportional risks to minority and low-income populations make the location of this pipeline — undeniably — an issue of environmental justice.

 

Demographic Within ½ mile of Byhalia Connection Pipeline Within 2 miles of Byhalia Connection Pipeline
Total population 15,041 76,016
Non-white population 7204 (48%, although some parts of South Memphis are 99+%) 27,548 (36%, although some parts of South Memphis are 99+%)
Low income population 4272 (28%, although some parts of South Memphis are 90+%) 43,486(57%, although some parts of South Memphis are 90+%)

Table 1: Population demographics along the proposed Byhalia Connection pipeline corridor.

 

Key civic facilities are also located within the half-mile evacuation zone of the pipeline. Were a disaster to occur, would the schools, childcare centers and medical facilities be able to successfully usher their residents and students to safety? Would they have had regular safety trainings to prepare them for this possibility?

 

Facility Within ½ mile of pipeline Within 2 miles of pipeline
Child care 4 (one within 800 feet) 30
Public school 2 (one within 800 feet) 26
EMS 2 11
Hospital 0 1
Private school 0 1

Table 2: Facilities along the proposed Byhalia Connection pipeline corridor (also shown in the interactive map here).

 

Al Gore calls proposed Byhalia Connection pipeline ‘reckless, racist rip-off’ at rally

Former Vice President Al Gore voiced his opposition to the Byhalia Connection and put Memphis elected officials on notice during a rally against the pipeline on March 14, 2021.

Source: Article in commercialappeal.com

“Why is it that 64% of the polluting facilities of these pipeline communities are located in or adjacent to Black communities? Why is it that the cancer rate in SW Memphis four times higher than the national average? Why is it that Black children suffer from asthma three times more than white children? Why is it that the death rate from asthma for Black children is ten times higher than for white children?” – Former Vice President Al Gore

And two days later, on March 16th, the Memphis City Council unanimously approved a resolution that opposes the Byhalia Connection Pipeline project.

Economics and land ownership

Approximately 300 property owners adjacent to the pipeline have already accepted monetary compensation to abandon their homes or sell property easements to make way for the pipeline. If a landowner refuses payment offered by the pipeline company for a property easement — often far under market value — the company can take the landowner to court, and seize the property (or portion of it) with no requirement of compensation. Although a majority of property owners accepted the terms of the easements drawn up by Byhalia’s developers, at least 14 did not. When numerous owners refused, nine properties were targeted for taking by eminent domain, and sued by the pipeline company. The Southern Environmental Law Center (SELC) is defending many of these property owners, claiming that the seizures — regardless of whether they are temporary or permanent — do not comply with the criteria of meeting a public good. The oil being transported in the proposed pipeline is entirely bound for export.

“The pipeline company is not created by, affiliated with or owned by the government, and the general public would have no access to the proposed crude oil pipeline… So, there is no ‘public use’ justifying the use of the condemnation power as required by Tennessee law,” said one of SELC’s attorneys. In addition, SELC has cited the illegality of the pipeline route because it runs through the municipal wellfield, and therefore violates permits issued by the Army Corps of Engineers. The Army Corp was still considering this request, as of mid-January 2021.

Furthermore, the eminent domain targeting of land owned by Black Americans in the south is a pointed question of racial justice. Historically, black and brown people throughout the United States have had far lower levels of home ownership than whites. This gap is most pronounced in lower income areas.

Figure 5: Homeownership rate in the US, by household income (2017). Source: The Urban Institute.

 

“The 71.9 percent white homeownership rate in 2017 represented a 0.7 percentage point decline since 2010, and the 41.8 percent black homeownership rate represented a 2.7 percentage point decline during that same period. The 30.1 percentage point gap is wider than it was when race-based discrimination against homebuyers was legal.” The Urban Institute

Figure 6: Homeownership in the US by race or ethnicity. Source: The Urban Institute.

 

Losing land to eminent domain represents a loss of control for a landowner — white or black. But the loss is especially unjust when a property may have been so hard won, and sometimes the result of a multi-generational lineage of ownership, as is the case for many properties along the Byhalia right-of-way.

Pipeline Incidents

Crude oil spills, 2010-2021

FracTracker has created an interactive map showing the locations of crude oil spills across the United States between 2010 and 2021, using the most up-to-date information from PHMSA, the Pipeline and Hazardous Materials Safety Administration.

View Full Screen | Updated March, 2021


You can also read more about a wider diversity of hazardous liquid materials accidents analyzed by FracTracker in an article from February 2020, entitled “Pipelines Continue to Catch Fire and Explode”.

Case study of a pipeline explosion

A 2020 research paper states, “Modeling and analysis of a catastrophic oil spill and vapor cloud explosion in a confined space upon oil pipeline leaking” provides a stark example of the damage done from the leak and explosion of a crude oil pipeline operating at a third of the pressure proposed for Byhalia.

“It is obvious that the explosion caused big damages to the adjacent buildings, roads, and public structures. Moreover, the explosion, combustion, and the shock wave caused injuries and deaths of workers, pedestrians, and residents. The total affected zone spread nearly 5 km [3.1 miles].”

 

Note: The oil pipeline shown in Shengzhu, Xu, et al.’s paper in was 28 inches in diameter, and operating at a pressure of between 400 and 660 psi. A vapor cloud from the spill into a municipal drainage area caused this explosion, which killed 62 people and injured 136 in November 2013. The 24-inch, proposed Byhalia pipeline would operate at triple the pressure of the pipeline shown in these photos of its explosion.

(a) bird’s eye view of the location of the explosion point, (b) scene of the oil spill point after explosion, (c) scene of the nearby street, (d) scene of the drainage of the adjacent plant.

Figure 7: Scene of an oil pipeline explosion site in China. (a) bird’s eye view of the location of the explosion point, (b) scene of the oil spill point after explosion, (c) scene of the nearby street, (d) scene of the drainage of the adjacent plant. Image from Shengzhu, Xu, et al.

Guidance in the case of a crude oil incident

Health Canada published the information document Guidance on the Management of Crude Oil Incidents (2018), which details important information about how to deal with crude oil spills. Here are checklists on whether to evacuate or shelter in place and information on determining protective zone distances, particularly downwind of a spill from the 2016 Emergency Response Guidebook.

In case of a large spill: Consider initial downwind evacuation for at least 300 meters (1000 feet).

In case of a fire: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. Source: Petroleum crude oil hazards

Where from here?

The Byhalia Connection Pipeline is receiving considerable scrutiny, both from media sources like the Memphis Daily News and MLK50, as well as advocacy groups including Sierra Club’s Tennessee Chapter, the Southern Environmental Law Center, Memphis Community Against the Pipeline, and Protect Our Aquifer. In a move considered egregious by a vast swath of stakeholders, in early February 2021, the US Army Corps of Engineers approved a Nationwide 12 permit to fast-track the Byhalia project, effectively cutting out public comment from the process, and lightening the environmental review requirements. Because the project touches vulnerabilities in the intersection of environment, economics, health, safety, and social justice, this discussion is not likely to easily recede into the background, despite placating claims by the companies that are poised to profit.

Protests are ongoing, and just recently, on February 22, 2021, United States Congressional Representative Steve Cohen sent a direct appeal to President Biden to revoke a key permit for Byhalia, directly citing the burden the pipeline would impose on long-suffering Black neighborhoods in South Memphis. Simultaneously, the Public Works Department of Memphis is considering a resolution condemning the pipeline, and asking the Memphis Light, Gas, and Water Division to oppose the project.

This story will undoubtedly continue to evolve in the upcoming months.

The Takeaway

Regardless of where a pipeline is sited, there are inevitably risks to the environment, and to human communities living nearby. The proposed Byhalia Connection pipeline project is situated in a particularly problematic intersection where environmental justice, hydrology, geology, and risks to human and environmental health intersect. Without taking all of these factors into consideration, a potentially catastrophic cascade of impacts may ensue. Engagement and resistance to the project by the residents in the area, as well as support by advocacy groups, will hopefully result in comprehensive consideration of all the risks. Time will tell whether the project is modified, or simply defeated.

References & Where to Learn More

MLK50.com maintains an archive of excellent reading materials on this controversial project that can be found here.

Topics in this Article

Pipelines | Social | Water

Data Sources in this Article


Los Angeles, California skyline

California Oil & Gas Setbacks Recommendations Memo

 

Kyle Ferrar, Western Program Coordinator for FracTracker Alliance, contributed to the December 2020 memo, “Recommendations to CalGEM for Assessing the Economic Value of Social Benefits from a 2,500’ Buffer Zone Between Oil & Gas Extraction Activities and Nearby Communities.”

 

Below is the introduction, and you can find the full memo here.

Introduction

The purpose of this memo is to recommend guidelines to CalGEM for evaluating the economic value of the social benefits and costs to people and the environment in requiring a 2,500 foot setback for oil and gas drilling (OGD) activities. The 2,500’ setback distance should be considered a minimum required setback. The extensive technical literature, which we reference below, analyzes health benefits to populations when they live much farther away than 2,500’, such as 1km to 5km, but 2,500’ is a minimal setback in much of the literature. Economic analyses of the benefits and costs of setbacks should follow the technical literature and consider setbacks beyond 2,500’ also.

The social benefits and costs derive primarily from reducing the negative impacts of OGD pollution of soil, water, and air on the well-being of nearby communities. The impacts include a long list of health conditions that are known to result from hazardous exposures in the vulnerable populations living nearby. The benefits and costs to the OGD industry of implementing a setback are more limited under the assumption that the proposed setback will not impact total production of oil and gas.

The comment letter submitted by Voices in Solidarity against Oil in Neighborhoods (VISIÓN) on November 30, 2020 lays out an inclusive approach to assessing the health and safety consequences to the communities living near oil and gas extraction activities. This memo addresses how CalGEM might analyze the economic value of the net social benefits from reducing the pollution suffered by nearby communities. In doing so, this memo provides detailed recommendations on one part of the broader holistic evaluation that CalGEM must use in deciding the setback rule.

This memo consists of two parts. The first part documents factors that CalGEM should take into account when evaluating the economic benefits and costs of the forthcoming proposed rule. These include factors like the adverse health impacts of pollution from OGD, the hazards causing them and their sources, and the way they manifest into social and economic costs. It also describes populations that are particularly vulnerable to pollution and its effects as well as geographic factors that impact outcomes.

The second part of this memo documents the direct and indirect economic benefits of the proposed rule. Here, the memo discusses the methods and data that should be leveraged to analyze economic benefits of reducing exposure to OGD pollution through setbacks. This includes the health benefits, impacts on worker productivity, opportunity costs of OGD activity within the proposed setback, and the fact that impacted communities are paying the external costs of OGD.

 

 

Please find the full memo here.

 

 

 

Support this work

Stay in the know

 

Pipeline Map

Mariner East 2 Causes Dozens of Spills Since Lockdown Began, Over 300 in Total

FracTracker Alliance has released a new map of drilling fluid spills along the Mariner East 2 pipeline route, showing 320 spills from its construction since 2017. Of those, a combined 147 incidents have released over 260,000 gallons of drilling fluid into Pennsylvania waterways. 

The unpermitted discharge of drilling fluid, considered “industrial waste,” into waters of the Commonwealth violates The Clean Streams Law.

What you need to know:

  • Sunoco’s installation of the Mariner East 2 pipeline has triggered 320 incidences of drilling mud spills since 2017, releasing between 344,590 – 405,990 gallons of drilling fluid into the environment. View an interactive map and see a timeline of these incidents.
  • Construction has caused between 260,672 – 266,223 gallons of drilling fluid to spill into waterways, threatening the health of ecosystems and negatively affecting the drinking water of many residents.
  • There have been 36 spills since Pennsylvania entered a statewide shutdown on March 16th, 2020, in response to the COVID-19 pandemic. These spills released over 10,000 gallons of drilling fluid — most of which poured into Marsh Creek Lake in Marsh Creek State Park. See a map of this incident.

Pipeline Map

 

While the total reported volume of drilling fluid released into the environment from the pipeline’s construction is between 344,590 – 405,990 gallons, the actual total is larger, as there are 28 spills with unknown volumes. Spills of drilling mud are also referred to as “inadvertent returns,” or “frac-outs.” 

Most of these spills occurred during implementation of horizontal directional drills (HDD). HDDs are used to install a pipeline under a waterway, road, or other sensitive area. This technique requires large quantities of drilling fluid (comprising water, bentonite clay, and chemical additives), which when spilled into the environment, can damage ecosystems and contaminate drinking water sources. 

ME2 Background

The Mariner East 2 pipeline project is part of the Mariner East pipeline system, which carries natural gas liquids (NGLs) extracted by fracked wells in the Ohio River Valley east, to the Marcus Hook Facility in Delaware County, Pennsylvania. The NGLs will then go to Europe to be turned into plastic. Explore FracTracker’s other resources on this project:

Three dozen spills during COVID-19 pandemic

There have been 36 spills since the Commonwealth shutdown statewide on March 16th, 2020, leaks that have jeopardized drinking water sources, putting communities at even higher risk during the COVID-19 pandemic.

The most concerning occurred on August 10th, when pipeline construction released 8,163 gallons of drilling fluids into a wetland and stream system that drains into Marsh Creek Lake in Chester County, a drinking water reservoir (Figure 1). The Department of Environmental Protection (DEP), Pennsylvania Fish and Boat Commission, private contractors, and the Department of Conservation and Natural Resources are responding to the incident and conducting water tests.

On August 11th, construction caused a 15-foot wide and eight-foot deep subsidence event in the wetland (Figure 1). This caused drilling fluid to flow underground and contaminate groundwater, while also “adversely impacting the functions and values of the wetland.” Thirty-three acres of the lake are now closed to boating, fishing, and other uses of the lake — an extra blow, given the solace state parks have provided to many during this pandemic.

Map of Spills at Marsh Creek Lake

Figure 1. This HDD crossing in Upper Uwchlan Township, Chester County, caused over 8,000 gallons of drilling mud to spill into waterways. However, installation of the parallel 16-inch pipeline also caused spills at this same location in 2017.

A plume of drilling mud, captured here on video, entered the Marsh Creek Lake and settled on the lake bottom. 

Upper Uwchlan Reroute

Last week, the PA DEP ordered Sunoco to suspend work on this HDD site and to implement a reroute using a course Sunoco had identified as an alternative in 2017:

“A 1.01 mile reroute to the north of the HDD is technically feasible. This would entail adjusting the project route prior to this HDD’s northwest entry/exit point to proceed north, cross under the Pennsylvania Turnpike, then proceed east for 0.7 miles parallel to the turnpike, cross Little Conestoga Road, then turn south, cross under the turnpike, and then reintersect the existing project route just east of this HDD’s southeast entry/exit point. There is no existing utility corridor here, however; therefore, this route would create a Greenfield utility corridor and would result in encumbering previously unaffected properties. The route would still cross two Waters of the Commonwealth and possible forested wetlands, and would pass in near proximity or immediately adjacent to five residential home sites. Both crossings of the turnpike would require “mini” HDDs or direct pipe bores to achieve the required depth of cover under the highway. Considered against the possibility of additional IRs [inadvertent returns] occurring on the proposed HDD, which are readily contained and cleaned up with minimal affect to natural resources, the permanent taking of the new 4 easement and likely need to use condemnation against previously unaffected landowners results in SPLP’s opinion that managing the proposed HDD is the preferred option.”

Based on that description, the route could follow the general direction of the dashed line in Figure 2:

Map of pipeline

Figure 2. Possible reroute of Mariner East 2 Pipeline shown with dashed line

The DEP’s order also requires Sunoco to restore and remediate “impacted aquatic life, biota, and habitat, including the functions and values of the impacted wetlands resources, and all impacted recreational uses.” Sunoco must submit an Impact Assessment and Restoration Plan for this drill site by October 1, 2020, and the plan must provide for five years of monitoring after its completed restoration. In the meantime, Sunoco must secure the borehole using “grouting or equivalent method,” and continue to monitor the site. 

Sunoco’s continued negligence

The August incident likely surprised no one, as it was not the first spill at this location, and Sunoco’s own assessment acknowledged that this HDD crossing came with “a moderate to high risk of drilling fluid loss and IRs.”

Residents also sounded alarm bells for this drilling site. The proposal for just this location garnered over 200 public comments, all of which called on the DEP to deny Sunoco’s permit for drilling in this area. Many implored the DEP to consider the alternate route Sunoco must now use. 

George Alexander, a Delaware County resident who runs a blog on this pipeline, the Dragonpipe Diary, says, “Sunoco/Energy Transfer continues to demonstrate in real time that they cannot build the Mariner Pipelines without inflicting harm upon our communities … The Marsh Creek situation is reminiscent of the damage to another favorite Pennsylvania lake, Raystown Lake in Huntingdon County.”

In 2017, Sunoco spilled over 200,000 gallons of drilling fluid into Raystown Lake, and released millions more underground. The spill caked acres of the lakebed with a coating of mud, hurting aquatic life and limiting recreational access to the lake. Sunoco failed to report the spills when they occurred, and the DEP fined the company $1.95 million for the incident. The fine is one of many Sunoco has incurred, including a $12.6 million penalty in February 2018 for permit violations, and more recently, a $355,636 penalty for drilling fluid discharges into waterways across eight counties.

Bleak outlook for oil and gas pipelines

On top of the delays, fines, strong public opposition, and even House and Senate members calling for permits to be revoked,  there’s another factor working against Sunoco — the bleak financial outlook of the petrochemical industry.

The fracking boom triggered investment in projects to convert the fracked gas to plastic, leading to an oversupply in the global market. The industry made ambitious plans based on the price of plastic being $1/pound. Now, in 2020, the price is 40 – 60 cents per pound. If the Mariner East 2 pipeline is brought online, it likely will not be as profitable as its operators expected.

The poor finances of the oil and gas industry have led to the demise of several pipeline projects over the last few months. Phillips 66 announced in March it was deferring two pipelines — the Liberty Pipeline, which would transport crude oil from Wyoming to Oklahoma — and the Red Oak Pipeline system, planned to cross from Oklahoma to Texas. Kinder Morgan expressed uncertainty for its proposed Texas Permian Pass pipeline,  and Enterprise Products Partners cancelled its Midland-to-ECHO crude oil pipeline project. The Atlantic Coast Pipeline also was cancelled this past July by Duke Energy and Dominion Energy, following “an unacceptable layer of uncertainty and anticipated delays,” and the Williams Constitution pipeline was also abandoned after years of challenges. In fact, the EIA recently reported that more pipeline capacity has been cancelled in 2020 than new capacity brought in service.

Will the Mariner East 2 be the next to fall?

Before you go

A note from the Safety 7: The Safety 7 are seven residents of Delaware and Chester Counties who are challenging Sunoco before the [Pennsylvania Public Utility Commission]. If you are outraged at the ongoing threat to our communities from this dangerous, destructive pipeline, please consider donating to the Safety 7 Legal fund … Our next hearing begins September 29, and funds from your support are urgently needed. This motion is representative of the kind of legal work we need, if we are to prevail in protecting our communities from this dangerous pipeline project. Please contribute today if you are able, and please share this appeal widely and let your friends and family know why this case matters to you!

Learn more and donate here.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

This map and analysis relied on data provided by the Pennsylvania Department of Environmental Protection.

Support this work

Stay in the know

 

Health & Environmental Effects of Fracking

The Health & Environmental Effects of Fracking

As unconventional oil and natural gas extraction operations have expanded throughout the United States over the past decade, the harmful health and environmental effects of fracking have become increasingly apparent and are supported by a steadily growing number of scientific studies and reports. Although some uncertainties remain around the exact exposure pathways, it is clear that issues associated with fracking negatively impact public health and the surrounding environment.

Health Effects

Holding oil and gas companies accountable for the environmental health effects of unconventional oil and natural gas development (UOGD), or “fracking,” has been challenging in the US because current regulations do not require drilling operators to disclose exactly what chemicals are used. However, many of the chemicals used for fracking have been identified and come with serious health consequences. The primary known compounds of concern include BTEX chemicals (benzene, toluene, ethylbenzene, and xylene) and associated pollutants such as tropospheric ozone and hydrogen sulfide. BTEX chemicals are known to cause cancer in humans, and can lead to other serious health problems including damage to the nervous, respiratory, and immune system. While some of these BTEX chemicals can occur naturally in groundwater sources, spills and transport of these chemicals used during fracking can be a major source of groundwater contamination. 

Exposure to pollution caused from fracking activity can lead to many negative short-term and long-lasting health effects. Reported health effects from short-term exposures to these pollutants include headaches, coughing, nausea, nose bleeds, skin and eye irritation, dizziness, and shortness of breath. Recent studies have also found an association between pregnant women living in close proximity to fracking sites and low-birth weights and heart defects. Additionally, a recent study conducted in the rural area of Eagle Ford, Texas found that pregnant women living within five kilometers (or about three miles) of fracking operations that regularly engaged in “flaring,” or the burning of excess natural gas, were 50% more likely to have a preterm birth than those without exposure. 

1
2
3
4
5
6

Figure 1. Summary of known health impacts associated with unconventional oil and natural gas development (UOGD).

Exposure to radioactive materials is also a serious concern. During the fracking process as  high-pressured water and chemicals fracture the rock formations, naturally occurring radioactive elements like radium are also drawn out of the rocks in addition to oil and natural gas. As the oil and natural gas are extracted from the ground, the radioactive material primarily comes back as a component of brine, a byproduct of the extraction process. The brine is then hauled to treatment plants or injection wells, where it’s disposed of by being shot back into the ground. Exposure to radioactivity can lead to adverse health effects such as nausea, headaches, skin irritation, fatigue, and cancer. 

With fracking also comes construction, excessive truck traffic, noise, and light pollution. This has led to a rise in mental health effects including stress, anxiety, and depression, as well as sleep disruptions. 

A 2020 report published by Pennsylvania’s Attorney General contains numerous testimonials from those impacted by fracking, as well as grand jury findings on environmental crimes among shale gas operations. 

How can I be exposed?

Exposure to the hazardous materials used in fracking can occur through many pathways including breathing polluted air, drinking, bathing or cooking with contaminated water, or eating food grown in contaminated soil. Especially vulnerable populations to the harmful chemicals used in fracking include young children, pregnant women, the elderly, and those with preexisting health conditions.

Considerations Around Scientific Certainty

While it is clear that fracking adversely impacts our health, there is still some uncertainty surrounding the exact exposure pathways and the extent that fracking can be associated with certain health effects. A compendium published in 2019 reviewed over 1,500 scientific studies and reports about the risks of fracking, and revealed that 90% found evidence of harm. Although there have been various reports of suspected pediatric cancer clusters in heavily fracked regions, there are minimal longitudinal scientific studies about the correlation between fracking and cancer. The primary reason for this is because the time between the initial exposure to a cancer-causing substance and a cancer diagnosis can take decades. Because fracking in the Marcellus Shale region is a relatively new development, this is an area of research health scientists should focus on in the coming years. While we know that drilling operations use cancer-causing chemicals, more studies are needed to understand the public’s exposure to this pollution and the extent of excess morbidity connected to fracking. 

Methane and Air & Water Quality Concerns

Figure 2. FracTracker’s photo album of air and water quality concerns

Environmental Effects



Air Quality

Fracking has caused detrimental impacts on local air quality, especially for those living within 3-5 miles of UOGD operations. Diesel emissions from truck traffic and heavy machinery used in the preparation, drilling, and production of natural gas release large amounts of toxins and particulate matter (PM). These small particles can infiltrate deeply into the respiratory system, elevating the risk for asthma attacks and cardiopulmonary disease. Other toxins released during UOGD operations include hydrogen sulfide (H2S), a toxic gas that may be present in oil and gas formations. Hydrogen sulfide can cause extensive damage to the central nervous system. BTEX (benzene, toluene, ethylbenzene, and xylene) chemicals and other volatile organic compounds (VOCs) are also released during fracking operations, and have been known to cause leukemia; liver damage; eye, nose and throat irritation; and headaches. While oil and gas workers use personal protective equipment (PPE) to protect themselves from these harmful toxins, residents in surrounding communities are exposed to these hazardous conditions without protection. 

Regional air quality concerns from UOGD include tropospheric ozone, or ‘smog’. VOCs and other chemicals emitted from fracking can react with sunlight to form smog.  While ozone high in the atmosphere provides valuable protection from the sun’s harmful UV rays, ozone at ground level is hazardous for human health. Ozone may cause a range of respiratory effects like shortness of breath, reduced lung function, aggravated asthma and chronic respiratory disease symptoms. 

Expanding beyond local and regional impacts, fracking and UOGD has global implications. With increasing emissions from truck traffic, construction, and high rates of methane leaks, fracking emissions will continue to worsen the climate change crisis. Methane is a potent greenhouse gas, with 86 times the global warming potential (GWP) of carbon dioxide (on a weight basis) over a 20 year period. Fracking wells can leak 40-60% more methane than conventional natural gas wells, and recent studies have indicated that emissions are significantly higher than previously thought. 

Unhealthy air quality also presents occupational exposures to oil and gas workers through frac sand mining. Frac sand, or silica, is used to hold open the fractures in the rock formations so the oil and gas can be released during the drilling process. Silica dust is extremely small in diameter and can easily be inhaled, making its way to the lower respiratory tract. Silica is classified as a human lung carcinogen, and when inhaled may lead to shortness of breath, chest pain, respiratory failure, and lung cancer. 





Water Quality

 Many states allow this brine to be reused on roads for dust control and de-icing. Regulations vary from state to state, but many areas do not require any level of pretreatment before reuse.  

Not only does fracking affect water quality, but it also depletes the quantity of available fresh water. Water use per fracking well has increased dramatically in recent years, with each well consuming over 14.3 million gallons of water on average. For more information about increasing fracking water use, click here

A summary of other water contamination pathways can be found on page 13 of Earthworks’ Pennsylvania Oil and Gas Waste Report (2019). 

Soil

In addition to air and water contamination, UOGD operations can also harm soil quality. Harmful chemicals including BTEX chemicals and heavy metals like mercury and lead have contaminated agricultural areas near fracking operations.  Exposure can occur from eating produce grown on contaminated soil, or by consuming animals that consumed contaminated feed. These contaminants can also alter the pH and nutrient availability of the soil, resulting in decreased crop production and economic losses. Children are also at high risk of exposure to contaminated soil due to their frequent hand to mouth behavior. Lastly, the practice of frac sand mining can make land reclamation nearly impossible, leaving irreparable damage to the landscape.

Toledo Refining Co Refinery in Toledo, OH, July 2019

Figure 3. Toledo Refining Company Refinery in Toledo, OH, July 2019. Ted Auch, FracTracker Alliance.

Report Your Environmental and Health Concerns

If you think that your health or environment have been negatively impacted by fracking operations, contact:

  • For an emergency requiring immediate local police, fire, or emergency medical services, always call 911 first
  • To report a spill or other emergency in PA, contact the PA Department of Environmental Protection (PADEP): 1-800-541-2050 or report to your regional office. In Southwestern PA, call 412-442-4000.
  • PA Department of Environmental Protection (PADEP) Environmental Complaint Line (PA only): 1-888-723-3721 or online. (To find your state environmental or health agency, click here.)
  • Environmental Protection Agency (EPA) Environmental Violations form online.
  • Join the Environmental Health Project Shale Gas & Oil Health Registry & Resource Network here

Support this work

Stay in the know