Overhead view of injection well

The Hidden Inefficiencies and Environmental Costs of Fracking in Ohio

Ohio continues to increase fracked gas production, facilitated by access to freshwater and lax radioactive waste disposal requirements.

View map fullscreen | How FracTracker maps work

Map: Ohio Quarterly Utica Oil and Gas Production along with Quarterly Wastewater Disposal

Well Volumes

A little under a year ago, FracTracker released a map and associated analysis, “A Disturbing Tale of Diminishing Returns in Ohio,” with respect to Utica oil and gas production, highlighting the increasing volume of waste injected in wastewater disposal wells, and trends in lateral length in fracked wells from 2010 to 2018. In this article, I’ll provide an update on Ohio’s Utica oil and gas production in 2018 and 2019, the demands on freshwater, and waste disposal. After looking at the data, I recommend that we holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste in order to minimize negative externalities.

Recently, I’ve been inspired by the works of Colin Woodward[1] and Marvin Harris, who outline the struggle between liberty and the common good. They relate this to the role that commodities and increasing resource intensity play in maintaining or enhancing living standards. This quote from Harris’s “Cannibals and Kings” struck me as the 122 words that most effectively illustrate the impacts of the fracking boom that started more than a decade ago in Central Appalachia:

“Regardless of its immediate cause, intensification is always counterproductive. In the absence of technological change, it leads inevitably to the depletion of the environment and the lowering of the efficiency of production since the increased effort sooner or later must be applied to more remote, less reliable, and less bountiful animals, plants, soils, minerals, and sources of energy. Declining efficiency in turn leads to low living standards – precisely the opposite of the desired result. But this process does not simply end with everybody getting less food, shelter, and other necessities in return for more work. As living standards decline, successful cultures invent new and more efficient means of production which sooner or later again lead to the depletion of the natural environment.” From Chapter 1, page 5 of Marvin Harris’ “Cannibals and Kings: The Origins of Cultures, 1977

In reflecting on Harris’s quote as it pertains to fracking, I thought it was high time I updated several of our most critical data sets. The maps and data I present here speak to intensification and the fact that the industry is increasingly leaning on cheap water withdrawals, landscape impacts, and waste disposal methods to avoid addressing their increasingly gluttonous ways. To this point, the relationship between intensification and resource utilization is not just the purview of activists, academics, and journalists anymore; industry collaborators like IHS Markit admitting as much in their latest analysis pointing to the fact that oil and gas operators “will have to drill substantially more wells just to maintain current production levels and even more to grow production”. Insert Red Queen Hypothesis analogy here!

Oil and Gas Production in Ohio

The four updated data sets presented here are: 1) oil, gas, and wastewater production, 2) surface and groundwater withdrawal rates for the fracking industry, 3) freshwater usage by individual Ohio fracked wells, and 3) wastewater disposal well (also referred to as Class II injection wells) rates.

Below are the most important developments from these data updates as it pertains to intensification and what we can expect to see in the future, with or without the ethane cracker plants being trumpeted throughout Appalachia.

From a production standpoint, total oil production has increased by 30%, while natural gas production has increased by 50% year over year between the last time we updated this data and Q2-2019 (Table 1).

According to the data we’ve compiled, the rate of growth for wastewater production has exceeded oil and is nearly equal to natural gas at 48% from 2017 to 2018.  On average the 2,398 fracked wells we have compiled data for are producing 27% more wastewater per well now than they did at the end of 2017.

————–2017————– ————–2019————–
Oil (million barrels) Gas (million Mcf) Brine (million barrels) Oil (million barrels) Gas (million Mcf) Brine (million barrels)
Max 0.51 12.92 0.23 0.62 17.57 0.32
Total 83.14 5,768.47 76.01 108.15 8,679.12 112.28
Mean 0.40 2.79 0.37 0.45 3.62 0.47

Table 1. Summary statistics for 2,398  fracked wells in Ohio from a production perspective from 2017 to Q2 2019.

 

Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.

Figure 1. Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.

The increasing amount of resources and number of wells necessary to achieve marginal increases in oil and gas production is a critical factor to considered when assessing industry viability and other long-term implications. As an example, in Ohio’s Utica Shale, we see that total production is increasing, but as IHS Markit admits, this is only possibly by increasing the total number of producing wells at a faster rate. As is evidenced in Figure 1, somewhere around the Winter of 2017-2018, the production rate per well began to flatline and since then it has begun to decrease.

Water demands for oil and gas production in Ohio

Since last we updated the industry’s water withdrawal rates, the Ohio Department of Natural Resources (ODNR) has begun to report groundwater rates in addition to surface water. The former now account for nine sites in seven counties, but amount to a fraction of reported withdrawals to date (around 00.01% per year in 2017 and 2018). The more disturbing developments with respect to intensification are:

1) Since we last updated this data, 59 new withdrawal sites have come online. There are currently 569 sites in total in ODNR’s database. This amounts to a nearly 12% increase in the total number of sites since 2017. With this additional inventory, the average withdrawal rate across all sites has increased by 13% (Table 2).

2) Since 2010, the demand for freshwater to be used in fracking has increased by 15.6% or 693 million gallons per year (Figure 2).

3) We expect to see an inflection point when water production will increase to accommodate the petrochemical buildout with cracker plants in Dilles Bottom, OH; Beaver County, PA; and elsewhere. In 2018 alone, the oil and gas industry pulled 4.69 billion gallons of water from the Ohio River Valley. Since 2010, the industry has permanently removed 22.96 billion gallons of freshwater from the Ohio River Valley. It would take the entire population of Ohio five years to use the 2018 rate in their homes.[2]

As we and others have mentioned in the past, this trend is largely due to the bargain basement price at which we sell water to the oil and gas sector throughout Appalachia.[3] To increase their nominal production returns, companies construct longer laterals with orders of magnitude more water, sand, and chemicals.  At this rate, the fracking industry’s freshwater demand will have doubled to around 8.8-.9.5 billion gallons per year by around 2023.  Figure 3 demonstrates that average fracked lateral length continues to increase to the tune of +15.7-21.2% (+1,564-2,107 feet) per quarter per lateral. This trend alone is more than 2.5 times the rate of growth in oil production and roughly 24% greater than the rate of growth in natural gas production (See Table 1).

4. The verdict is even more concerning than it was a couple years ago with respect to water demand increasing by 30% per quarter per well or an average of 4.73 million gallons (Figure 4). The last time we did this analysis >1.5 years ago demand was rising by 25% per quarter or 3.84 million gallons. At that point I wouldn’t have guessed that this exponential rate of water demand would have increased but that is exactly what has happened. Very immediate conversations must start taking place in Columbus and at the region’s primary distributor of freshwater, The Muskingum Watershed Conservancy District (MWCD), as to why this is happening and how to push back against the unsustainable trend.

2017 2018
Sites 510 569
Maximum (billion gallons) 1.059 1.661
Sum (billion gallons) 18.267 22.957
Mean (billion gallons) 0.358 0.404

Table 2. Summary of fracking water demands throughout Ohio in 2017 when we last updated this data as well as how those rates changed in 2018.

Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (Million Gallons Per Year).

Figure 2. Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (million gallons per year).

Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (Feet).

Figure 3. Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (feet).

Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (Million Gallons).

Figure 4. Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (million gallons).

 

Waste Disposal

When it comes to fracking wastewater disposal, the picture is equally disturbing. Average disposal rates across Ohio’s 220+ wastewater disposal wells increased by 12.1% between Q3-2018 and Q3-2019 (Table 3). Interestingly, this change nearly identically mirrors the change in water withdrawals during the same period. What goes down– freshwater – eventually comes back up.

Across all of Ohio’s wastewater disposal wells, total volumes increased by nearly 22% between 2018 and the second half of 2019. However, the more disturbing trend is the increasing focus on the top 20 most active wastewater disposal wells, which saw  an annual increase of 17-18%. These wells account for nearly 50% of all waste and the concern here is that many of the pending wastewater disposal well permits are located on these sites, within close proximity, and/or are proposed by the same operators that operate the top 20.

When we plot cumulative and average disposal rates per well, we see a continued exponential increase. If we look back at the last time, we conducted this analysis, the only positive we see in the data is that at that time, average rates of disposal per well were set to double by the Fall of 2020. However, that trend has tapered off slightly — rates are now set to double by 2022.

Each wastewater disposal well is seeing demand for its services increase by 2.42 to 2.94 million gallons of wastewater per quarter (Figure 5). Put another way, Ohio’s wastewater disposal wells are rapidly approaching their capacity, if they haven’t already.  Hence why the oil and gas industry has been frantically submitting proposals for additional waste disposal wells. If these wells materialize, it means that Ohio will continue to be relied on as the primary waste receptacle for the fracking industry throughout Appalachia.

Variable ——————-All Wells——————- ——————-Top 20——————-
To Q3-2018 To Q3-2019 % Change To Q3-2018 To Q3-2019 % Change
Number of Wells 223 243 +9.0 ——- ——- ——-
Max (MMbbl) 1.12 1.20 +7.1 ——- ——- ——-
Sum (MMbbl) 203.19 247.05 +21.6 101.43 119.31 +17.6
Average (MMbbl) 0.91 1.02 +12.1 5.07 5.97 +17.8

Table 3. Summary Statistics for Ohio’s Wastewater Disposal Wells (millions of barrels (MMbbl)).

Average Fracking Waste Disposal across all of Ohio’s Class II Injection Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (Million Barrels).

Figure 5. Average Fracking Waste Disposal across all of Ohio’s Wastewater Disposal Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (million barrels).

Using the Pennsylvania natural gas data merged with the Ohio wastewater data, we were able to put a finer point on how much wastewater would be produced with a 100,000 barrel ethane cracker like the one PTT Global Chemical has proposed for Dilles Bottom, Ohio. The following are our best estimate calculations assuming 1 barrel of condensate is 20-40% ethane. These calculations required that we take some liberties with the merge of the ratio of gas to wastewater in Ohio with the ratio of gas to condensate in Pennsylvania:

  1. For 2,064 producing Ohio fracked wells, the ratio of gas to wastewater is 64.76 thousand cubic feet (Mcf) of gas produced per barrel of wastewater.
  2. Assuming 40% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 320.08 Mcf of gas per barrel of ethane condensate. For 100,000 barrels of ethane needed per cracker per day, that would result in 494,285 barrels (20.76 million gallons) of brine per day.
  3. Assuming 20% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 640.15 Mcf per barrel of ethane condensate = For 100,000 barrels of ethane needed per cracker per day that would result in 988,571 barrels/41.52 million gallons of wastewater per day.

But wait, here is the real stunner:

  1. The 40% assumption result is 3.81 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 5.37 times the daily rates of brine taken in by the top 20 wells (Note: the top 20 wastewater disposal wells account for 71% of all wastewater  waste taken in by all of the state’s disposal wells).
  2. The 20% assumption result is 7.62 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 10.74 times the daily rates of wastewater taken in by the top 20 wells.

Therefore, we estimate the fracked wells supplying the proposed PTTGC ethane cracker will generate between 20.76 million and 41.52 million gallons of wastewater per day. That is 3.8 to 7.6 times the amount of wastewater currently received by Ohio’s wastewater disposal wells.

What does this means in terms of truck traffic? We can assume that  at least 80% of the trucks that transport wastewater are the short/baby bottle trucks which haul 110 barrels per trip. This means that our wastewater estimates would require between 4,493 and 8,987 truck trips per day, respectively. The pressures this amount of traffic will put on Appalachian roads and communities will be hard to measure and given the current state of state and federal politics and/or oversight it will be even harder to measure the impact inevitable spills and accidents will have on the region’s waterways.

Conclusion

There is no reason to believe these trends will not persist and become more intractable as the industry increasingly leans on cheap waste disposal and water as a crutch. The fracking industry will continue to present shareholders with the illusion of a robust business model, even in the face of rapid resource depletion and precipitous production declines on a per well basis.

I am going to go out on a limb and guess that unless we more holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste, there will be no other supply-side signal that we could send that would cause the oil and gas industry to change its ways. Until we reach that point, we will continue to compile data sets like the ones described above and included in the map below, because as Supreme Court Justice Louis Brandeis once said, “Sunlight is the best disinfectant!”

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance with invaluable data compilation assistance from Gary Allison

[1] Colin Woodward’s “American Character: A history of the epic struggle between individual liberty and the common good” is a must read on the topic of resource utilization and expropriation.

[2] https://pubs.er.usgs.gov/publication/cir1441

[3] In Ohio the major purveyor of water for the fracking industry is the Muskingum Watershed Conservancy District (MCWD) and as we’ve pointed out in the past they sell water for roughly $4.50 to $6.50 per thousand gallons. Meanwhile across The Ohio River the average price of water for fracking industry in West Virginia in the nine primary counties where fracking occurs is roughly $8.38 per thousand gallons.

Data Downloads

Quarterly oil, gas, brine, and days in production for 2,390+ Unconventional Utica/Point Pleasant Wells in Ohio from 2010 to Q2-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/Production_To_Q2_2019_WithExcel.zip

Ohio Hydraulic Fracturing Freshwater and Groundwater Withdrawals from 2010 to 2018

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_WaterWithdrawals_2010_2018_WithExcel.zip

Lateral length (Feet) for 3,200+ Fracked Utica/Point Pleasant Wells in Ohio up to and including wells permitted in December, 2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/01/OH_Utica_December_2019_StatePlane_Laterals.zip

Freshwater Use for 2,700+ Unconventional Wells in Ohio from Q3-2011 to Q3-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_FracFocus_December_2019_WithExcel.zip

Quarterly Volume Disposal (Barrels) for 220+ Ohio Class II Salt Water Disposal Wells from 2010 to Q4-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_ClassII_Loc_Vols_10_Q4_2019_WithExcel.zi

Support this work

Stay in the know

Fracking in Pennsylvania: Not Worth It

Despite the ever-increasing heaps of violations and drilling waste, Pennsylvania’s fracked wells continue to produce an excess supply of gas, driving prices down. To cut their losses, the oil and gas industry is turning towards increased exports and petrochemical production. Continuing to expand fracking in Pennsylvania will only increase risks to the public and to the climate, all for what may amount to another boom and bust cycle that is largely unprofitable to investors.

Let’s take a look at gas production, waste, newly drilled wells, and violations in Pennsylvania in the past year to understand just how precarious the fracking industry is.

Production

Fracked hydrocarbon production continues to rise in Pennsylvania, resulting in an increase in waste production, violations, greenhouse gas emissions, and public health concerns. There are three types of hydrocarbons produced from wells in Pennsylvania: gas, condensate, and oil. Gas is composed mostly of methane, the most basic of the hydrocarbons, but in some parts of Pennsylvania, there can be significant quantities of ethane, propane, and other so-called “natural gas liquids” (NGLs) mixed in. Each of these NGLs are actually gaseous at atmospheric conditions, but operators try to separate these with a combination of pressure and low temperatures, converting them to a liquid phase. Some of these NGLs can be separated on-site, and this is typically referred to as condensate. Fracked wells in Pennsylvania also produce a relatively tiny amount of oil.

View map fullscreen | How FracTracker maps work

For those of you wondering why we are looking at the November, 2018 through October, 2019 time frame, this is simply a reflection of the available data. In this 12-month period, 9,858 fracked Pennsylvania wells, classified as “unconventional,” reported producing 6.68 trillion cubic feet of gas (Tcf), 4.89 million barrels of condensate, and just over 70,000 barrels of oil.

By means of comparison, Pennsylvania consumed about 1.46 Tcf of gas across all sectors in 2018, of which just 253 billion cubic feet (Bcf) was used in the homes of Pennsylvania’s 12.8 million residents. In fact, the amount of gas produced in Pennsylvania exceeds residential consumption in the entire United States by almost 1.7 Tcf. However, less than 17% of all gas consumed in Pennsylvania is for residential use, with nearly 28% being used for industrial purposes (including petrochemical development), and more than 35% used to generate electricity.

Fracked Gas Production and Consumption in Pennsylvania from 2013 through 2018

Figure 1. Fracked gas production compared to all fracked gas consumption and residential gas consumption in Pennsylvania from 2013 through 2018. Data from ref. Energy Information Administration.

 

While gas production has expansive hotspots in the northeastern and southwestern portions of the state, the liquid production comes from a much more limited geography. Eighty percent of all condensate production came from Washington County, while 87% of all fracked oil came from wells in Mercer County.

Because the definition of condensate has been somewhat controversial in the past (while the oil export ban was still in effect), I asked the Department of Environmental Protection (DEP) for the definition, and was told that if hydrocarbons come out of the well as a liquid, they should be reported as oil. If they are gaseous but condense to a liquid at standard temperature and pressure (60 degrees Fahrenheit and pressure 14.7 PSIA) on-site, then it is to be reported as condensate. Any NGLs that remain gaseous but are removed from the gas supply further downstream are reported as gas in this report. For this reason, it is not really possible to use the production report to find specific amounts of NGLs produced in the state, but it certainly exceeds condensate production by an appreciable margin.

The one-year volume withdrawal of gas from unconventional wells in Pennsylvania is equal to the volume of 3.2 Mount Everests

The volume of gas withdrawn from fracked wells in Pennsylvania in just one year is equal to the volume of 3.2 Mount Everests!

 

Waste

Hydrocarbons aren’t the only thing that come out of the ground when operators drill and frack wells in Pennsylvania. Drillers also report a staggering amount of waste products, including more than 65 million barrels (2.7 billion gallons) of liquid waste and 1.2 million tons of solid waste in the 12-month period.

Waste facilities have significant issues such as inducing earthquakes, toxic leachate, and radioactive sediments in streambeds.

Waste Type Liquid Waste (Barrels) Solid Waste (Tons)
Basic Sediment 63
Brine Co-Product 247
Drill Cuttings 1,094,208
Drilling Fluid Waste 1,439,338 11,378
Filter Socks 143
Other Oil & Gas Wastes 2,236,750 6,387
Produced Fluid 61,376,465 41,165
Servicing Fluid 17,196 3,250
Soil Contaminated by Oil & Gas Related Spills 25,505
Spent Lubricant Waste 1,104
Synthetic Liner Materials 21,051
Unused Fracturing Fluid Waste 7,077 1,593
Waste Water Treatment Sludge 35,151
Grand Total 65,078,240 1,239,831

Figure 2. Oil and gas waste generated by fracked wells as reported by drillers from November 1, 2018 through October 31, 2019. Data from ref: PA DEP.

Some of the waste is probably best described as sludge, and several of the categories allow for reporting in barrels or tons. Almost all of the waste was in the well bore at one time or another, although there are some site-related materials that need to be disposed of, including filter socks which separate liquid and solid waste, soils contaminated by spills, spent lubricant, liners, and unused frack fluid waste.

Where does all of this waste go? We worked with Earthworks earlier this year to take a deep dive into the data, focusing on these facilities that receive waste from Pennsylvania’s oil and gas wells. While the majority of the waste is dealt with in-state, a significant quantity crosses state lines to landfills and injection wells in neighboring states, and sometimes as far away as Idaho.

Please see the report, Pennsylvania Oil & Gas Waste for more details.

 

Drilled Wells

Oil and gas operators have started the drilling process for 616 fracking wells in 2019, which appear on the Pennsylvania DEP spud report. This is less than one third of the 2011 peak of 1,956 fracked wells, and 2019 is the fifth consecutive year with fewer than 1,000 wells drilled. This has the effect of making industry projections relying on 1,500 or more drilled wells per year seem rather dubious.

 

Fracked Unconventional Wells Drilled per Year in Pennsylvania from 2005 through 2019

Figure 3. Unconventional (fracked) wells drilled from 2005 through December 23, 2019, showing totals by regional office. Data from ref: PA DEP.

 

Oil and gas wells in Pennsylvania fall under the jurisdiction of three different regional offices. By looking at Figure 2, it becomes apparent that the North Central Regional Office (blue line) was a huge driver of the 2009 to 2014 drilling boom, before falling back to a similar drilling rate of the Southwest Regional Office.

The slowdown in drilling for gas in recent years is related to the lack of demand for the product. In turn, this drives prices down, a phenomenon that industry refers to as a “price glut.” The situation it is forcing major players in the regions such as Range Resources to reduce their holdings in Appalachia, and some, such as Chevron, are pulling out entirely.

Violations

Disturbingly, 2019 was the fifth straight year that the number of violations issued by DEP will exceed the total number of wells drilled.

Unconventional fracked wells drilled and violations issued from 2005 through 2019

Figure 4. Unconventional (fracked) drilled wells and issued violations from 2005 through December 2019. Data from ref: DEP.

 

Violations related to unconventional drilling are a bit unwieldy to summarize. The 13,833 incidents reported in Pennsylvania fall into 359 different categories, representing the specific regulations in which the drilling operator fell short of expectations. The industry likes to dismiss many of these as being administrative matters, and indeed, the DEP does categorize the violations as either “Administrative” or “Environmental, Health & Safety”. However, 9,998 (72%) of the violations through December 3, 2019, are in the latter category, and even some of the ones that are categorized as administrative seem like they ought to be in environmental, health, and safety. For example, let’s look at the 15 most frequent infractions:

Violation Code Incidents Category
SWMA301 – Failure to properly store, transport, process or dispose of a residual waste. 767 Environmental Health & Safety
CSL 402(b) – POTENTIAL POLLUTION – Conducting an activity regulated by a permit issued pursuant to Section 402 of The Clean Streams Law to prevent the potential of pollution to waters of the Commonwealth without a permit or contrary to a permit issued under that authority by the Department. 613 Environmental Health & Safety
102.4 – Failure to minimize accelerated erosion, implement E&S plan, maintain E&S controls. Failure to stabilize site until total site restoration under OGA Sec 206(c)(d) 595 Environmental Health & Safety
SWMA 301 – MANAGEMENT OF RESIDUAL WASTE – Person operated a residual waste processing or disposal facility without obtaining a permit for such facility from DEP. Person stored, transported, processed, or disposed of residual waste inconsistent with or unauthorized by the rules and regulations of DEP. 540 Environmental Health & Safety
601.101 – O&G Act 223-General. Used only when a specific O&G Act code cannot be used 469 Administrative
402CSL – Failure to adopt pollution prevention measures required or prescribed by DEP by handling materials that create a danger of pollution. 362 Environmental Health & Safety
78.54* – Failure to properly control or dispose of industrial or residual waste to prevent pollution of the waters of the Commonwealth. 339 Environmental Health & Safety
401 CSL – Discharge of pollutional material to waters of Commonwealth. 299 Environmental Health & Safety
102.4(b)1 – EROSION AND SEDIMENT CONTROL REQUIREMENTS – Person conducting earth disturbance activity failed to implement and maintain E & S BMPs to minimize the potential for accelerated erosion and sedimentation. 285 Environmental Health & Safety
102.5(m)4 – PERMIT REQUIREMENTS – GENERAL PERMITS – Person failed to comply with the terms and conditions of the E & S Control General Permit. 283 Environmental Health & Safety
78.56(1) – Pit and tanks not constructed with sufficient capacity to contain pollutional substances. 256 Administrative
78a53 – EROSION AND SEDIMENT CONTROL AND STORMWATER MANAGEMENT – Person proposing or conducting earth disturbance activities associated with oil and gas operations failed to comply with 25 Pa. Code § 102. 247 Environmental Health & Safety
102.11(a)1 – GENERAL REQUIREMENTS – BMP AND DESIGN STANDARDS – Person failed to design, implement and maintain E & S BMPs to minimize the potential for accelerated erosion and sedimentation to protect, maintain, reclaim and restore water quality and existing and designated uses. 235 Environmental Health & Safety
CSL 401 – PROHIBITION AGAINST OTHER POLLUTIONS – Discharged substance of any kind or character resulting in pollution of Waters of the Commonwealth. 235 Environmental Health & Safety
OGA3216(C) – WELL SITE RESTORATIONS – PITS, DRILLING SUPPLIES AND EQUIPMENT – Failure to fill all pits used to contain produced fluids or industrial wastes and remove unnecessary drilling supplies/equipment not needed for production within 9 months from completion of drilling of well. 206 Environmental Health & Safety

Figure 5. Top 15 most frequently cited violations for unconventional drilling operations in Pennsylvania through December 3, 2019. Data from ref: DEP.

Of the 15 most common categories, only two are considered administrative violations. One of these is a general code, where we don’t know what happened to warrant the infraction without reading the written narrative that accompanies the data, and is therefore impossible to categorize. The only other administrative violation in the top 15 categories reads, “78.56(1) – Pit and tanks not constructed with sufficient capacity to contain pollutional substances,” which certainly sounds like it would have some real-world implications beyond administrative concerns.

Check out our Pennsylvania Shale Viewer map to see if there are violations at wells near you.

Bloated With Gas, Fraught With Trouble

To address the excess supply of gas, companies have tried to export the gas and liquids to other markets through pipelines. Those efforts have been fraught with trouble as well. Residents are reluctant to put up with an endless barrage of new pipelines, yielding their land and putting their safety at risk for an industry that can’t seem to move the product safely. The Revolution pipeline explosion hasn’t helped that perception, nor have all of the sinkholes and hundreds of leaky “inadvertent returns” along the path of the Mariner East pipeline system. In a sense, the industry’s best case scenario is to call these failures incompetence, because otherwise they would be forced to admit that the 2.5 million miles of hydrocarbon pipelines in the United States are inherently risky, prone to failure any time and any place.

In addition to increasing the transportation and export of natural gas to new markets, private companies and elected officials are collaborating to attract foreign investors to fund a massive petrochemical expansion in the Ohio River Valley. The planned petrochemical plants intend to capitalize on the cheap feedstock of natural gas.

Pennsylvania’s high content of NGLs is a selling point by the industry, because they have an added value when compared to gas. While all of these hydrocarbons can burn and produce energy in a similar manner, operators are required to remove most of them to get the energy content of the gas into an acceptable range for gas transmission lines. Because of this, enormous facilities have to be built to separate these NGLs, while even larger facilities are constructed to consume it all. Shell’s Pennsylvania Petrochemicals Complex ethane cracker being built in Beaver County, PA is scheduled to make 1.6 million metric tons of polyethylene per year, mostly for plastics.

This comes at a time when communities around the country and the world are enacting new regulations to rein in plastic pollution, which our descendants are going to finding on the beach for thousands of years, even if everyone on the planet were to stop using single-use plastics today. Of course, none of these bans or taxes are currently permitted in Pennsylvania, but adding 1.6 million metric tons per year to our current supply is unnecessary, and indeed, it is only the beginning for the region. A similar facility, known as the PTT Global Chemical cracker appears to be moving forward in Eastern Ohio, and ExxonMobil appears to be thinking about building one in the region as well. Industry analysts think the region produces enough NGLs to support five of these ethane crackers.

Despite all of these problems, the oil and gas industry still plans to fill the Ohio River Valley with new petrochemical plants, gas processing plants, and storage facilities in the hopes that someday, somebody may want what they’ve taken from the ground.

Here’s hoping that 2020 is a safer and healthier year than 2019 was. But there is no need to leave it up to chance. Together, we have the power to change things, if we all demand that our voices are heard. As a start, consider contacting your elected officials to let them know that renewing Pennsylvania’s blocking of municipal bans and taxes on plastic bags is unacceptable.

By Matt Kelso, Manager of Data & Technology, FracTracker Alliance

 

Support this work

Stay in the know

Captina Creek Watershed Feature

Fracking Threatens Ohio’s Captina Creek Watershed

FracTracker’s Great Lakes Program Coordinator Ted Auch explores the risks and damages brought on by fracking in Ohio’s Captina Creek Watershed

 

Scroll down or click here to view the story map full screen

The Captina Creek Watershed straddles the counties of Belmont and Monroe in Southeastern Ohio and feeds into the Ohio River. It is the highest quality watershed in all of Ohio and a great examples of what the Ohio River Valley’s tributaries once looked, smelled, and sounded like. Sadly, today it is caught in the cross-hairs of the oil and gas industry by way of drilling, massive amounts of water demands, pipeline construction, and fracking waste production, transport, and disposal. The images and footage presented in the story map below are testament to the risks and damage inherent to fracking in the Captina Creek watershed and to this industry at large. Data included herein includes gas gathering and interstate transmission pipelines like the Rover, NEXUS, and Utopia (Figure 1), along with Class II wastewater injection wells, compressor stations, unconventional laterals, and freshwater withdrawal sites and volumes.

Ohio Rover NEXUS Pipelines map

The image at the top of the page captures my motivation for taking a deeper dive into this watershed. Having spent 13+ years living in Vermont and hiking throughout The Green and Adirondack Mountains, I fell in love with the two most prominent tree species in this photo: Yellow Birch (Betula alleghaniensis) and Northern Hemlock (Tsuga candadensis). This feeling of being at home was reason enough to be thankful for Captina Creek in my eyes. Seeing this region under pressure from the oil and gas industry really hit me in my botanical soul. We remain positive with regards to the area’s future, but protective action against fracking in the Captina Creek Watershed is needed immediately!

Fracking in the Captina Creek Watershed: A Story Map

Go to the story map fullscreen for a better viewing experience

Support this work

Stay in the know

Want Not, Waste Not? Fossil Fuel Extraction’s Waste Disposal Challenges

Pennsylvania’s fracking industry is producing record amounts of toxic waste — where does it all go?

Drilling for methane and other fossil fuels is an energy-intensive process with many associated environmental costs. In addition to the gas that is produced through high volume hydraulic fracturing (“unconventional drilling,” or “fracking”), the process generates a great deal of waste at the drill site. These waste products may include several dozen tons of drill cutting at every well that is directionally drilled, in addition to liner materials, contaminated soil, fracking fluid, and other substances that must be removed from the site.

In 2018, Pennsylvania’s oil and gas industry (including both unconventional and conventional wells) produced over 2.9 billion gallons (nearly 69 million barrels) of liquid waste, and 1,442,465 tons of solid waste. In this article, we take a look at where this waste (and its toxic components) end up and how waste values have changed in recent years. We also explore how New York State, despite its reputation for being anti-fracking, isn’t exempt from the toxic legacy of this industry.

Waste that comes back to haunt us

According to a study by Physicians, Scientists and Engineers, over 80% of all waste from oil and gas drilling stays within the state of Pennsylvania. But once drilling wastes are sent to landfills, is that the end of them? Absolutely not!

Drilling waste also gets into the environment through secondary means. According to a recent report by investigative journalists at Public Herald, on average, 800,000 tons of fracking waste from Pennsylvania is sent to Pennsylvania landfills. When this waste is sent to landfills, radioactivity and other chemicals can percolate through the landfill, and are collected as leachate, which is then shipped to treatment plants.

Public Herald documented how fourteen sewage treatment plants in Pennsylvania have been permitted by Pennsylvania’s Department of Environmental Protection (PA DEP) to process and discharge radioactive wastes into more than a dozen Pennsylvania waterways.

Public Herald’s article includes an in-depth analysis of the issue. Their work is supported by a map of the discharge sites, created by FracTracker.

Trends over time

Pennsylvania Department of Environmental Protection maintains a rich database of oil and gas waste and production records associated with their Oil and Gas Reporting Website. The changes in waste disposal from Pennsylvania’s unconventional drilling reveal a number of interesting stories.

Let’s look first at overall unconventional drilling waste.

According to data from the federal Energy Information Administration, gas production in Pennsylvania began a steep increase around 2010, with the implementation of high volume hydraulic fracturing in the Marcellus Shale (see Figure 1). The long lateral drilling techniques allowed industry to exploit exponentially more of the tight shale via single well than was ever before possible with conventional, vertical drilling.

Figure 1. Data summary from FracTracker.org, based on EIA data.

The more recently an individual well is drilled, the more robust the production. We see an overall increase in gas production over time in Pennsylvania over the past decade. Paradoxically, the actual number of new wells drilled each year in the past 4-5 years are less than half of the number drilled in 2011 (see Figure 2).

Figure 2: Data summary from FracTracker.org, based on PA DEP data

Why is this? The longer laterals —some approaching 3 miles or more—associated with new wells allow for more gas to be extracted per site.

With this uptick in gas production values from the Marcellus and Utica Formations come more waste products, including copious amounts drilling waste, “produced water,” and other byproducts of intensive industrial operations across PA’s Northern Tier and southwestern counties.

Comparing apples and oranges?

When we look at the available gas production data compared with data on waste products from the extraction process, some trends emerge. First of all, it’s readily apparent that waste production does not track directly with gas production in a way one would expect.

Recall that dry gas production has increased annually since 2006 (see Figure 1). However, the reported waste quantities from industry have not followed that same trend.

In the following charts, we’ve split out waste from unconventional drilling by solid waste in tons (Figure 3) and liquid waste, in barrels (Figure 4).

Figure 3: Annual tonnage of solid waste from the unconventional oil and gas industry, organized by the state it is disposed in. Data source: PA DEP, processed by FracTracker Alliance

Figure 4: Annual volume of liquid waste from the unconventional oil and gas development, organized by state it is disposed in. One barrel is equivalent to 42 gallons. Data source: PA DEP, processed by FracTracker Alliance

Note the striking difference in disposal information for solid waste, compared with liquid waste, coming from Pennsylvania.

“Disposal Location Unknown”

Until just the last year, often more than 50% of the known liquid waste generated in PA was disposed of at unknown locations. The PA DEP waste report lists waste quantity and method for these unknown sites, depending on the year: “Reuse without processing at a permitted facility,” “Reuse for hydraulic fracturing,” “Reuse for diagnostic purposes,” “Reuse for drilling or recovery,” “Reuse for enhanced recovery,” and exclusively in more recent years (2014-2016), “Reuse other than road-spreading.”

In 2011, of the 20.5 million barrels of liquid waste generated from unconventional drilling, about 56% was allegedly reused on other drilling sites. However, over 9 million barrels—or 44% of all liquid waste—were not identified with a final destination or disposal method. Identified liquid waste disposal locations included “Centralized treatment plant for recycle,” which received about a third of the non-solid waste products.

In 2012, the quantity of the unaccounted-for fracking fluid waste dropped to about 40%. By 2013, the percentage of unaccounted waste coming from fracking fluid dropped to just over 21%, with nearly 75% coming from produced fluid, which is briny, but containing fewer “proprietary”—typically undisclosed—chemicals.

By 2017, accounting had tightened up further. PA DEP data show that 99% of all waste delivered to undisclosed locations was produced fluid shipped to locations outside of Pennsylvania. By 2018, all waste disposal was fully accounted for, according to DEP’s records.

In looking more closely at the data, we see that:

  1. Prior to 2018, well drillers did not consistently report the locations at which produced water was disposed of or reused. Between 2012 and 2016, a greater volume of unconventional liquid waste went unaccounted for than was listed for disposal in all other locations, combined.
  2. In Ohio, injection wells, where liquid waste is injected into underground porous rock formations, accounted for the majority of the increase in waste accepted there: 2.9 million barrels in 2017, and 5.7 million barrels in 2018 (a jump of 97%).
  3. West Virginia’s acceptance of liquid waste increased  significantly in 2018 over 2017 levels, a jump of over a million barrels, up from only 55,000. This was almost entirely due to unreported reuse at well pads.
  4. In 2018, reporting, in general, appears to be more thorough than it was in previous years. For example, in 2017, nearly 692,000 barrels of waste were reused at well pads outside PA, but those locations were not disclosed. Almost 7000 more barrels were also disposed of at unknown locations. In 2018, there were no such ambiguities.

A closer look at Pennsylvania’s fracking waste shipped to New York State

Despite a reputation for being resistant to the fracking industry, for most of this decade, the state of New York has been accepting considerable amounts of fracking waste from Pennsylvania. The greatest percentage shipped to New York State is in the form of drilling waste solids that go to a variety of landfills throughout Central and Western New York.

Looking closely at the bar charts above, it’s easy to notice that the biggest recipients of Pennsylvania’s unconventional liquid drilling waste are Pennsylvania itself, Ohio, as well as a significant quantity of unaccounted-for barrels between 2011 and 2016 (“Disposal location unknown”). The data for disposal of solid waste in New York tells a different story, however. In this case, Pennsylvania, Ohio, and New York State all play a role. We’ll take a look specifically at the story of New York, and illustrate the data in the interactive map that follows.

In this map, source locations in Pennsylvania are symbolized with the same color marker as the facility in New York that received the waste from the originating well pad. In the “Full Screen” view, use the “Layers” drop down menu to turn on and off data from separate years.

View map full screenHow FracTracker maps work

Solid waste transported to New York State

From the early days of unconventional drilling in Pennsylvania, New York State’s landfills provided convenient disposal sites due to their proximity to the unconventional drilling occurring in Pennsylvania’s Northern tier of counties. Pennsylvania and Ohio took the majority of solid wastes from unconventional drilling waste from Pennsylvania. New York State, particularly between 2011-2015, was impacted far more heavily than all other states, combined (Figure 5, below).

Figure 5: Known disposal locations (excluding PA and OH) of Pennsylvania’s solid waste. Data source: PA DEP, processed by FracTracker Alliance

Here’s the breakdown of locations in New York to where waste was sent. Solid waste disposal into New York’s landfills also dropped by half, following the state’s ban on unconventional drilling in 2014. Most of the waste after 2012 went to the Chemung County Landfill in Lowman, New York, 10 miles southeast of Elmira.

Figure 6: Solid waste from unconventional drilling, sent to facilities in NYS. Data source: PA DEP, processed by FracTracker Alliance

Is waste immobilized once it’s landfilled?

The fate of New York State’s landfill leachate that originates from unconventional drilling waste is a core concern, since landfill waste is not inert. If drilling waste contains radioactivity, fracking chemicals, and heavy metals that percolate through the landfill, and the resulting leachate is sent to municipal wastewater treatment plants, will traditional water treatment methods remove those wastes? If not, what will be the impact on public and environmental health in the water body that receives the “treated” wastewater? In Pennsylvania, for example, a case is currently under investigation relating to pollution discharges into the Monongahela River near Pittsburgh. “That water was contaminated with diesel fuels, it’s alleged, carcinogens and other pollutants,” said Rich Bower, Fayette County District Attorney.

Currently, a controversial expansion of the Hakes Landfill in Painted Post, New York is in the news. Sierra Club and others were concerned about oversight of radium and radon in the landfill’s leachate and air emissions, presumably stemming from years of receiving drill cuttings. The leachate from the landfill is sent to the Bath Wastewater Treatment plant, which is not equipped to remove radioactivity. “Treated” wastewater from the plant is then discharged into the Cohocton River, a tributary of the Chesapeake Bay. In April 2019, these environmental groups filed a law suit against Hakes C&D Landfill and the Town of Campbell, New York, in an effort to block the expansion.

Similar levels of radioactivity in leachate have also been noted in leachate produced at the Chemung County Landfill, according to Gary McCaslin, President of People for a Healthy Environment, Inc.

In recent years, much of the solid unconventional waste arriving in New York State has gone to the Chemung County Landfill (see Figure 6, above). Over the course of several years, this site requested permission to expand significantly from 180,000 tons per year to 417,000 tons per year. However, by 2016, the expansion was deemed unnecessary, and according, the plans were put on hold, in part “…because of a decline in the amount of waste being generated due to a slower economy and more recycling than when the expansion was first planned years ago.” The data in Figure 5 above also parallel this story, with unconventional drilling waste disposed in New York State dropping from over 200,000 tons in 2011 to just over 20,000 tons in 2018.

Liquid waste transported to New York State

The story about liquid unconventional drilling waste exported from Pennsylvania to states other than Ohio is not completely clear (see Figure 7, below). Note that the data indicate more than a 2000% increase in waste liquids going from Pennsylvania to West Virginia after 2017. While it has not been officially documented, FracTracker has been anecdotally informed that a great deal of waste was already going to West Virginia, but that the record-keeping prior to 2018 was simply not strongly enforced.

Figure 7: Known disposal locations (excluding Pennsylvania and Ohio) of Pennsylvania’s liquid waste. Data source: PA DEP, processed by FracTracker Alliance

Beginning in the very early years of the Pennsylvania unconventional fracking boom, a variety of landfills in New York State have also accepted liquid wastes originating in Pennsylvania, including produced water and flowback fluids (see Figure 8, below).

Figure 8: Liquid waste from unconventional drilling, sent to facilities in New York State. Data source: PA DEP, processed by FracTracker Alliance

In addition, while this information doesn’t even appear in the PA DEP records (which are publicly available back to 2010), numerous wastewater treatment plants did accept some quantity, despite being fully unequipped to process the highly saline waste before it was discharged back into the environment.

One such facility was the wastewater treatment plant in Cayuga Heights, Tompkins County, which accepted more than 3 million gallons in 2008. Another was the wastewater treatment plant in Auburn, Cayuga County, where the practice of accepting drilling wastewater was initially banned in July 2011, but the decision was reversed in March 2012 to accept vertical drilling waste, despite strong public dissent. Another wastewater treatment plant in Watertown, Jefferson County, accepted 35,000 gallons in 2009.

Fortunately, most New York State wastewater treatment plant operators were wise enough to not even consider adding a brew of unknown and/or proprietary chemicals to their wastewater treatment stream. Numerous municipalities and several counties banned fracking waste, and once the ban on fracking in New York State was instituted in 2014, nearly all importation of liquid unconventional drilling waste into the state ceased.

Nevertheless, conventional, or vertical well drilling also generates briny produced water, which the New York State Department of Environmental Conservation (DEC) permits communities in New York to accept for ice and dust control on largely rural roads. These so-called “beneficial use determinations” (BUDs) of liquid drilling waste have changed significantly over the past several years. During the height of the Marcellus drilling in around 2011, all sorts of liquid waste was permitted into New York State (see FracTracker’s map of affected areas) and was spread on roads. As a result, the chemicals—many of them proprietary, of unknown constituents, or radioactive—were indirectly discharged into surface waters via roadspreading.

Overall, in the years after the ban in 2014 on high volume hydraulic fracturing was implemented, restrictions on Marcellus waste coming into New York have strengthened. Very little liquid waste entered New York’s landfills after 2013, and what did come in was sent to a holding facility owned by Environmental Services of Vermont. This facility is located outside Syracuse, New York.

New York State says “no” to this toxic legacy

Fortunately, not long after these issues of fracking fluid disposal at wastewater treatment facilities in New York State came to light, the practice was terminated on a local level. The 2014 ban on fracking in New York State officially prevented the disposal of Marcellus fluids in municipal wastewater treatment facilities and required extra permits if it were to be road-spread.

In New York State, the State Senate—after 8 years of deadlock—in early May 2019, passed key legislation that would close a loophole that had previously allowed dangerous oil and gas waste to bypass hazardous waste regulation. Read the press release from Senator Rachel May’s office here. However, despite strong support from both the Senate, and the Assembly, as well as many key environmental groups, the Legislature adjourned for the 2019 session without bringing the law to a final vote. Said Elizabeth Moran, of the New York Public Interest Research Group (NYPIRG), “I want to believe it was primarily a question of timing… Sadly, a dangerous practice is now going to continue for at least another year.”

 

See Earthworks’ recent three part in-depth reporting on national, New York, and Pennsylvania oil and gas waste, with mapping support by FracTracker Alliance.

All part of the big picture

As long as hydrocarbon extraction continues, the issues of waste disposal—in addition to carbon increases in the atmosphere from combustion and leakage—will result in impacts on human and environmental health. Communities downstream and downwind will bear the brunt of landfill expansions, water contamination, and air pollution. Impacts of climate chaos will be felt globally, with the greatest impacts at low latitudes and in the Arctic.

Transitioning to net-zero carbon emissions cannot be a gradual endeavor. Science has shown that in order to stay under the 1.5 °C warming targets, it must happen now, and it requires the governmental buy-in to the Paris Climate Agreement by every economic power in the world.

No exceptions. Life on our planet requires it.

We have, at most, 12 years to make a difference for generations to come.

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

Support this work

Stay in the know

Ohio’s Secret Fracking Chemicals

Ohio’s Secret Fracking Chemicals

Records Show Widespread Use of Secret Fracking Chemicals Poses Risks to Water Supplies, Health in the Buckeye State

Photo from the U.S. Environmental Protection Agency showing a fire on June 28-29, 2014 at the Eisenbarth Well operated by Statoil in Monroe County, Ohio. The photographer is not listed.[i]

Ohio’s Secret Fracking Chemicals:

Records Show Widespread Use of Secret Fracking Chemicals Poses Risks to Water Supplies, Health in the Buckeye State

A Research Report by Dusty Horwitt, J.D.
Partnership for Policy Integrity
September 16, 2019

This report, by Partnership for Policy Integrity, with mapping and data analysis by FracTracker Alliance, shows that Ohioans may be unknowingly exposed to toxic secret drilling and fracking chemicals through multiple pathways including leaks, spills, air emissions and underground migration at oil and gas production wells.

Evidence compiled by the U.S. Environmental Protection Agency (EPA) including data released in response to a Freedom of Information Act request indicate that these chemicals could have serious health effects including blood toxicity, developmental toxicity, liver toxicity and neurotoxicity.


Take Action

Click on this link to jump to the Call to Action section of this page

On this page, you can read the report, use the interactive map to locate oil and gas wells fracked with secret chemicals, and write a letter of concern to first responders in your Ohio county.




1400

Number of Ohio oil and gas wells that have been injected with secret chemicals (2013 – 2018)

11000

Number of times secret fracking chemicals have been injected into Ohio wells (2013 – 2018)

13000000

average number of gallons used to frack a single well (2018)

70000

fish died after tens of thousands of gallons of chemicals spilled into a tributary from a natural gas well in Monroe County (2014)

Take Action

If you are concerned about the findings presented in the Ohio’s Secret Fracking Chemicals report, please consider taking action today. Multiple first responders, and grassroots organizations working on environmental and public health issues in Ohio ask that you complete the form below to send a letter to first responders in your county. If you do not live in Ohio, your letter will be sent to first responders Franklin County, Ohio.

Halt the Harm Network and FracTracker Alliance will send a paper copy of your letter to the appropriate first responder location(s). See below for a map of these locations by Ohio county.

EXAMPLE LETTER

You may compose your own letter or use the example letter below as a guide.

Take Action

If you are concerned about the findings presented in the Ohio’s Secret Fracking Chemicals report, please consider taking action today. Multiple first responders, and grassroots organizations working on environmental and public health issues in Ohio ask that you complete the form below to send a letter to first responders in your county. If you do not live in Ohio, your letter will be sent to first responders in Franklin County, Ohio.

Halt the Harm Network and FracTracker Alliance will send a paper copy of your letter to the appropriate first responder location(s). See below for a map of these locations by Ohio county.

EXAMPLE LETTER

You may compose your own letter or use the example letter below as a guide.

Dear Chief,

Thanks to you and all first responders for your selfless acts of service. I am reaching out because I am concerned that there are dangerous chemicals being used at fracking sites in our county and across the county. Because the identity of many of these chemicals are kept secret, any spills or accidents present a significant risk to you as a first responder as well as to the public.

The report “Ohio’s Secret Fracking Chemicals” provides research about secret fracking chemicals and maps of oil and gas wells where secret fracking chemicals were used. The report’s author also interviewed Silverio Caggiano, Battalion Chief with the Youngstown Fire Department and an original member of the Ohio Hazardous Materials and Weapons of Mass Destruction Technical Advisory Committee. The Chief, the data, and the stories paint a clear picture of Ohio’s exposure to a mix of dangerous chemicals, lack of equipment, lack of training, and inadequate information. This failure by the State and other authorities creates risks for your first responders and all of us in the community.

Please join us in the fight against secret chemicals in our community by calling for the following measures to be put in place:

  • Require full public disclosure of drilling and fracking chemicals in one location where information can be easily searched and sorted (e.g. citizens can locate each well in which toxic chemicals were used).
  • Require disclosure before drilling and fracking occurs.
  • Require that no Class II wells for underground fracking wastewater disposal be permitted in Ohio unless disposal companies report all of the following in their permit requests: A) Average and Maximum Volumes, B) Average and Maximum wellhead pressures, C) Groundwater/water source and rate of withdrawal, D) Egress
  • Require testing of groundwater and well water for a representative number of homes within 2 miles of oil and gas wells and underground injection wells by impartial third parties to guard against migration of toxic chemicals. Data should be collected monthly.
  • Grant communities the power to determine where, and under what conditions, drilling and fracking occur.
  • Demand companies that operate underground fracking wastewater injection wells pay for independent third parties to conduct groundwater monitoring and data collection about health impacts.
  • Require that all haulers transporting fracking wastewater, also known as brine, permitted to operate in Ohio maintain complete manifests for every truck and maintain GPS tracking for all routes into and out of the state as well as across state lines.
  • Require all brine haulers report the number of trucks in operation and how they go about cleaning each truck on a quarterly basis.
  • Require that all brine haulers list where they maintain truck yards in addition to where they are domiciled.
  • Require that all waste landfills in Ohio collect detailed manifest on tonnage of drill cuttings coming into their facilities, source by company and well API, and that all waste be tested for radioactivity level that the level shall not exceed 1-2 picocuries per gram.

You have my full support in requests for this information. It is important to all of us. Please let me know if you have seen the report, reviewed the chemicals, and have appropriate response, training, and equipment in place.

Sincerely,

Letter to Ohio first Responders Re: Secret Fracking Chemicals

Letter to Ohio first Responders Re: Secret Fracking Chemicals

reCAPTCHA


By signing, you accept Halt the Harm Network’s Terms of Service and agree to receive occasional emails following up on your letter, about Ohio fracking, and related public health campaigns. Your information will never be sold. You can unsubscribe at any time.


Ohio First Responders by County

Click on your county to learn more

Photograph of the Eisenbarth well site is from the U.S. Environmental Protection Agency. The photographer is not listed.[ii]

[i] U.S. Environmental Protection Agency. On Scene Coordinator. Eisenbarth Well Response. Fire Damage on Eisenbarth Well Pad (June 29, 2014). Accessed September 2, 2019 at https://response.epa.gov/site/image_zoom.aspx?site_id=9350&counter=221854&category=.

[ii] U.S. Environmental Protection Agency. On Scene Coordinator. Eisenbarth Well Response. View of Damaged Equipment on Well Pad (June 29, 2014). Accessed September 2, 2019 at https://response.epa.gov/site/image_zoom.aspx?site_id=9350&counter=221847&category=.

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

INTRODUCTION

“The Iroquois…called Pine Creek ‘Tiadaghton’ meaning either ‘The River of Pines’ or ‘The Lost or Bewildered River’.”[i] The river’s iconic watershed in North Central Pennsylvania spans 979 square miles, spanning parts of Clinton, Lycoming, Potter, and Tioga counties, and an infamous 47-mile gorge through which the Pine Creek flows. At 87 miles in length, it is the largest tributary to the West Branch Susquehanna River.[ii]

In 1964, Congress included Pine Creek as one of 27 rivers under study for inclusion in the National Wild and Scenic River System.[iii]  Four years later, the US Department of the Interior designated twelve miles of the canyon a National Natural Landmark. In 1992, Pine Creek was recognized as a Pennsylvania Scenic River.[iv] These accolades underscore its vibrant beauty, ecological value, and cultural significance.

A rugged landscape carved into the Allegheny Plateau, the watershed contains extensive public lands and the highest concentrations of exceptional value (EV) and high quality (HQ) streams anywhere in Pennsylvania.  It is a prized recreational attraction in the region known as the Pennsylvania Wilds, a destination for nature-based tourism. The area has endured episodes of resource extraction – logging, coal mining, and shallow gas development – but nothing quite the same as the assault from hundreds of new unconventional gas wells and the sprawling pads, pipelines, impoundments, compressor stations, and access roads accompanying such development.

Modern extraction is heavy industry – loud, dusty, and dirty. It is incongruent with the thick forests, sensitive habitats, hushed solitude, and star-drenched skies one expects to experience in many wilderness pursuits. Threats to air, water, and wildlife are manifest. Landscape fragmentation and forest loss are collateral damage. Ecological impacts, while sometimes immediate, are often insidious as they slowly degrade environmental health over time. The Oil and Gas Program of the Pennsylvania Department of Conservation and Natural Resources (DCNR) acknowledged in a 2012 presentation: “…that Marcellus Shale will be a long-term influence on the character of Pennsylvania landscapes.”[v] To what extent remains to be determined.

Writer and conservationist Samuel P. Hayes noted “The Pennsylvania Administrative Code of 1929 identified watershed protection as the primary purpose of the state forests.”[vi] Enduring more than 10 years of fracking history, and with more planned, the Pine Creek watershed is an experiment for this tenent and overdue for the geospatial examination that follows.


According to the NOAA, a watershed is a land area that channels rainfall and snowmelt to creeks, streams, and rivers, and eventually to outflow points such as reservoirs, bays, and the ocean.

Use the time slider below to explore the changes in the Pine Creek watershed from 2008 to 2016

A LEGACY OF EXTRACTION

Humans have left their mark on Pine Creek for thousands of years, but the effects of timber and fossil fuel extraction in the last 220 years are most notable. Historical accounts and agency records provide substantial documentation of these impacts.

TIMBER

In 1799, Pine Creek’s first sawmill was set up near the confluence with Little Pine Creek. By 1810, eleven saw mills were in operation. In the next 30 years, that number rose to 145. Pine Creek earned the moniker of “Lumber Capital of the World,” but by the end of the Civil War, the great pine forests along Pine Creek were depleted due to clearcutting. By the end of the Civil War, the great pine forests along Pine Creek were depleted. Underappreciated for lumber, eastern hemlocks remained, but were eventually felled as well, their bark prized for tanning leather. The advent of logging railroads accelerated the forest’s demise. By the first years of the 20th century, the trees were all but gone, “…branches and stumps littered the mountainsides and sparks from locomotives created fires of holocaustal proportions.”[vii]

Sadly, much of the wildlife was gone too. Bounties, market hunting, and habitat loss had taken a toll. The area’s last timber wolf was killed in 1875. The beaver, otter, fisher, martin, lynx, and wolverine were exterminated by the early 1900s. The remaining solitary panthers lasted until the 1930s, then “faded into oblivion.”[viii]

COAL

While not often thought of as a part of Pennsylvania’s coal country, the Pine Creek Watershed has seen its share of coal mining and related activity. Coal was first discovered along the Babb Creek portion of the watershed in 1782, and mining operations began in earnest in the 1860s. By 1990, the area was so impacted by mine drainage and other pollution that there were no fish found in Babb Creek. Efforts to rehabilitate the stream have made some progress, raising the pH of the stream and restoring fish populations, to the point where Babb Creek was officially removed from the list of impaired streams in 2016.

Within the watershed’s abandoned mine areas, 68 specific sites totaling nearly 500 acres are flagged as “containing public health, safety, and public welfare problems created by past coal mining.” This represents more than 11% of the total mined area. Only five of these 68 sites – all strip mines – have completed the reclamation process.

Table 1. Problematic coal mine areas in the Pine Creek Watershed

SITE TYPEABANDONED RECLAMATION COMPLETETOTAL FACILITIESTOTAL ACRES
Dry Strip Mine31536322.0
Flooded Strip Mine221.7
Spoil Pile1313148.4
Refuse Pile121223.2
Known Subsidence Prone Area220.4
Coal Processing Settling Basin331.5
TOTAL63568497.4

OIL & GAS

The oil and gas industry in Pennsylvania started with the Drake Well near Titusville in 1859, before the onset of the Civil War. In the years since, perhaps as many as 760,000 such wells have been drilled statewide.[ix] While the Pennsylvania Department of Environmental Protection (DEP) is the current state agency with regulatory oversight of the industry, it estimates that there could be as many as 560,000 wells drilled that they have no record of in their database. Given the lack of data for these early wells, it is not possible to know exactly how many wells have been drilled in the Pine Creek Watershed.[x]

Over a century ago, pollution was seen as the price to be paid for a job in timbering or mining.  Some politicians seem to want a return to those bad old days by gutting some of our reasonable regulations that protect our air and water. Here, as in the rest of the Marcellus gas play, our politicians are not protecting our air and water as mandated in Article 1, Section 27 of our State Constitution.

-Dick Martin Coordinator for the Pennsylvania Forest Coalition and board member of Pennsylvania Environmental Defense Foundation, PEDF

A Wealth of Public Lands & Recreational Opportunity

The Pine Creek Watershed is in the heart of the Pennsylvania Wilds, a 12-county region in North Central Pennsylvania focused on nature-based tourism. “Adventure to one of the largest expanses of green between New York City and Chicago,” touts the initiative’s website.[xi]  The area includes over two million acres of public land, and is marketed for its notorious starry skies, quaint towns, large elk herd, and other attractions, like Pine Creek.

The watershed and its trails and public lands contribute substantially to the PA Wilds estate and offerings, including:

  • 1,666 stream miles (187.6 miles Exceptional Value and 1,011.5 miles High Quality)
  • Eight state parks, spanning 4,713 acres (7.36 sq. miles)
  • Four state forests, covering 264,771 acres (414 sq. miles)
  • Eight natural areas
  • Three wild areas
  • Seven state game lands, totaling 51,474 acres (80.42 sq. miles)
  • And 31 trails, traversing 789 miles

These largely remote and rugged spaces are relished for their idyllic and pristine qualities. Modern extraction brings discordant traffic, noise, lights, and releases of pollutants into the air and water. Stream waters – ideal for trout, anglers, and paddlers – are siphoned for the fracturing process. Trails are interrupted by pipelines and access roads. The erosion of outdoor experiences is piecemeal and pervasive.

A recent study lends credence to the concern that shale gas development is incongruent with the region’s ecotourism and recreational goals. “The Impacts of Shale Natural Gas Energy Development on Outdoor Recreation: A Statewide Assessment of Pennsylvanians” found that “only a small population of Pennsylvania outdoor recreationists were impacted by [shale natural gas energy development (SGD)] related activities. In the regions of Pennsylvania where SGD was most prominent (e.g., North Central and Southwest), outdoor recreation impacts were considerably higher.”[xii]



Weak rules favor the gas companies and allow them to waste resources, pollute our air, and destroy our climate. Continued exploitation of our public lands diminishes the value of this common good.

Leann Leiter, OH/PA Field Advocate, Earthworks

Read more about Leann’s view on fracking in Pine Creek and using FLIR photography to expose polluting emissions. Go to this post on Earthworks’ blog.

Fracking Comes to Pine Creek

Natural resource extraction in the Pine Creek Watershed did not stop with timber, coal, and traditional oil and gas. The drilling landscape in Pennsylvania changed dramatically around 2005, as operators began to develop the Marcellus Shale, a carbon-rich black shale that had eluded the industry for decades, because the rock formation was reluctant to release the large quantities of gas trapped within it. Based on successes in other shale formations, the Marcellus began to be drilled with a combination of horizontal drilling and high volume hydraulic fracturing – now using millions of gallons of fluids, instead of tens of thousands – and built upon multi-acre well pads. Operators were successful in releasing the gas, and this type of well, known as “unconventional” drilling, took off in vast swaths of Pennsylvania. Similar techniques were extended to other formations, notably the Utica shale formation.

The map below shows the cumulative footprint of extractive practices in Pine Creek, with the exclusion of timber.

Midstream Infrastructure

In 2018, unconventional wells in the Pine Creek Watershed produced 203 billion cubic feet of gas, which is more than the entire state of West Virginia consumed in 2017, not including electricity generation. To get all of that gas to market requires an extensive network of pipelines, and multi-acre compressor stations are required to push the gas through those pipes.

Pipeline data for the region, largely based on the Pipeline and Hazardous Materials Safety Administration’s (PHMSA) public pipeline viewer map, includes over 85 miles of pipelines in the watershed. However, this data does not include any of the gathering lines that crisscross the watershed, connecting the drilling sites to the midstream network.

Among other concerns, gas pipelines need to be placed in areas where they will not be impacted by tree roots, and so operators clear a 50-foot wide right-of-way, at minimum. This width results in the clearing of more than 6 acres per linear mile of pipe, which would be a total of 515 acres for the known pipeline routes in the region. However, the 50-foot width is a minimum, and some rights-of-way exceeding 300 feet were observed in the watershed, which would require the clearing of more than 36 acres per linear mile. These land clearing impacts are in addition to those required for well pads, access roads, and other infrastructure.

Many of the compressor stations in the Pine Creek Watershed are considered major pollution sources, and therefore require a Title V permit from the US Environmental Protection Agency (EPA). This means that they either produce at least 10 tons per year of any single hazardous air pollutant, or at least 25 tons of any combination of pollutants on the list.

Missing pipeline data is evidenced by FracTracker’s records of many compressor stations that are not along documented pipeline routes. Of the 26 compressors in the watershed that we have records for, only six are within 250 meters of known pipeline routes. Similarly, only 29 of the 594 drilled unconventional wells in the watershed are within the quarter-kilometer radius of known pipeline routes. One way or another, all compressors and well sites have to be connected to pipelines.



Table 2. Oil & Gas Well Status in the Pine Creek Watershed


Oil & Gas Well Status# of Wells
Operator reported not drilled404
Proposed but never materialized111
Active (conventional) 25
Active (unconventional) 529
Other304
TOTAL1,374

The PA DEP has records for 1,374 oil and gas wells within the watershed, although not all of these were actually drilled.  Of these wells, 404 wells have an official status of “operator reported not drilled,” while an additional 111 have a similar status of “proposed but never materialized.” Of the remaining 859 wells, 554 are currently considered active (including 25 conventional and 529 unconventional wells). An active status is given once the well is proposed — even before it is officially permitted by DEP, let alone drilled. The status remains until some other status applies.

Seventy-four wells are considered to be “regulatory inactive” (four conventional, 71 unconventional), meaning that the well has not been in production for at least a year, and must meet several other requirements. The remainder of the wells in the watershed have reached the end of their functional life, of which 168 have been plugged (119 conventional, 49 unconventional). This is done by filling the well bore with concrete, and is considered permanent, although the plugs have been known to fail from time to time. Fifty-seven additional conventional wells are considered abandoned, meaning that they are at the end of their useful life but have not been appropriately plugged, neither by the operator nor DEP. Five additional conventional wells are considered to be orphaned, which is a similar status to abandoned, but these wells are no longer linked to an operator active in the state. Given the lack of recordkeeping in the early part of the industry’s history in PA, the number of plugged, abandoned, and orphaned wells in the Pine Creek Watershed is likely significantly underrepresented.

Conventional drilling activity has essentially ceased in the watershed. A single well categorized as conventional, the Bliss 3H well, has been drilled in 2019. In fact, this well is almost certainly miscategorized. Not only does its well name follow conventions for horizontal unconventional wells, but the DEP’s formation report indicates that it is in fact drilled into the Marcellus Shale.  Prior to Bliss 3H, the two most recent conventional wells were drilled in 2011.

Unconventional drilling is a different story altogether. In terms of the number of wells drilled, the peak within the Pine Creek Watershed was in 2011, with 186 wells drilled. That represented 9.5% of the statewide total that year, and Pine Creek is just one of 35 comparably sized watersheds targeted for unconventional development in Pennsylvania.

More recently, there were 16 wells drilled in the watershed in 2018, and 17 wells through the halfway point of 2019, indicating that the extraction efforts are once again on the upswing.

Table 3. Number of unconventional wells drilled in Pennsylvania and the Pine Creek Watershed

YEARSTATEWIDEPINE CREEK WATERSHEDPCT. TOTAL
20063712.7%
200711310.9%
200833292.7%
2009821263.2%
201015981147.1%
201119561869.5%
20121351856.3%
20131212484.0%
20141369302.2%
2015784111.4%
2016503204.0%
2017810293.6%
2018777162.1%
2019 (YTD)366174.6%
TOTAL119995935.8%

The map below shows a heavily forested section of the watershed that has been significantly damaged by unconventional oil and gas development. Notice the forest fragmentation and land disturbance that has occurred as a result of fracking activities.

Use the time slider below to explore the changes in the Pine Creek watershed from 2008 to 2016

On May 9, 2019, nearly two dozen people descended upon the Pine Creek Watershed for the purpose of chronicling the impacts that the oil and gas industry is currently wreaking on the landscape. The documentation began early in the morning at the William T. Piper Memorial Airport in the town of Lock Haven, located in Clinton County. FracTracker  Alliance organized the blitz with numerous partner organizations, including EarthWorks, Sierra Club, Save Our Streams PA, Responsible Drilling Alliance, Pennsylvania Forest Coalition, Environeers, Pine Creek Headwaters Protection Group, and Lebanon Pipeline Awareness.

The massive watershed was broken up into 10 impact zones, which were mostly determined by concentrations of known sites such as well pads, compressor stations, retention ponds, and pipeline corridors.

Some people brought cameras and specialized equipment to Pine Ceek, such methane sensors and global positioning system devices. Participants were encouraged to try out the FracTracker Mobile App, which was designed to allow users to communicate and share the location of oil and gas concerns. Earthworks brought a FLIR infrared camera, which can capture volatile organic compounds and other pollutants that are typically invisible to the human eye, but that still pose significant risks to health and the environment. Others participants brought specialized knowledge of oil and gas operations from a variety of perspectives, from those who had previously interacted with the industry professionally, to those who have been forced to live in close proximity of these massive structures for more than a decade.

While we knew that it would not be possible to photograph every impact in the watershed, the results of this group effort were tremendous, including hundreds of photos, dozens of app submissions, and numerous infrared videos.  All of these have been curated in the map above. In our exuberance, we documented a number of facilities that wound up not being in the Pine Creek Watershed – still impactful but beyond the scope of this project. In some cases, multiple photos were taken of the same location, and we selected the most representative one or two for each site. Altogether, the map above shows 22 aerial images, 84 app submissions, 46 additional photos, and nine infrared FLIR videos.

FracTracker also collaborated with a pilot from LightHawk, a nonprofit group that connects conservation-minded pilots with groups that can benefit from the rare opportunity to view infrastructure and impacts from the air. Together, LightHawk and FracTracker’s Ted Auch flew in a mostly clockwise loop around the watershed, producing the aerial photography highlighted in this article, and in the map below.

The benefits of being able to see these impacts from the air is incalculable. Not only does it give viewers a sense of the full scope of the impact, but in some cases, it provides access to sites and activities that would otherwise be entirely occluded to the public, such as sites with active drilling or hydraulic fracturing operations, or when the access roads are behind barriers that are posted as no trespassing zones.

It can be difficult to maintain a sense of the massive scale of these operations when looking at aerial images. One thing that can help to maintain this perspective is by focusing on easily identifiable objects, such as nearby trees or large trucks, but it is even more useful to cross-reference these aerial images with those taken at ground level.

Water – A Precious Resource

Drilling unconventional wells requires the use of millions of gallons of water per well, sometimes as high as 100 million gallons. Unconventional drilling operations in Pennsylvania are required to self-report water, sand, and chemical quantities used in the hydraulic fracturing stage of well production to a registry known as FracFocus. Because of this, we have a pretty good idea of water used for this stage of the operation.

This does not account for all of the industry’s water consumption. The amount of water required to maintain and operate pipelines, compressor stations and other processing facilities, and to suppress dust on well pads, access roads, and pipeline rights-of-way is unknown, but likely significant. Much of the water used for oil and gas operations in this watershed is withdrawn from rivers and streams and the groundwater beneath the watershed.

Table 3. Water consumption by well in the Pine Creek Watershed

CATEGORYGALLONSEQUIVALENT PERSONS (ANNUAL USAGE)
Average Single Well6,745,697246
Maximum Single Well13,313,916486
All Wells (2013-2017)850,648,21931,074

There are 60 water-related facilities for oil and gas operations active within the watershed in 2019, including two ground water withdrawal locations, 20 surface water withdrawal locations, and 38 interconnections, mostly retention ponds. This dataset does not include limits on the 22 withdrawal locations, however, one of the surface withdrawal sites was observed with signage permitting the removal of 936,000 gallons per day. If this amount is typical, then the combined facilities in the watershed would have a daily capacity of about 20.6 million gallons, which is about 27 times the daily residential consumption within the watershed.

Predictably, water withdrawals ebb and flow with fluctuations in drilling activity, with peak consumption exceeding 1.2 billion gallons in the three-month period between April and June 2014, and an aggregate total of nearly 20.4 billion gallons between July 2008 and December 2016. It is not known what fraction of these withdrawals occurred in the Pine Creek Watershed.

Violations

Between October 22, 2007, and April 24, 2019, the Pennsylvania DEP issued 949 violations to unconventional oil and gas operations within the Pine Creek Watershed.[xiii] It can be difficult to know precisely what happened in the field based on the notations in the corresponding compliance reports. For example, if an operator failed to comply with the terms of their erosion and sediment control permit, it is unclear whether there was a sediment runoff event that impacted surface waters or not. However, as these rules were put into place to protect Pennsylvania’s waterways, there is no question that the potential for negative water impacts exists. Therefore, erosion and sedimentation violations  are included in this analysis.

Other violations are quite explicit, however. The operator of the Hoffman 2H well in Liberty Township, Tioga County was cited for failing to prevent “gas, oil, brine, completion and servicing fluids, and any other fluids or materials from below the casing seat from entering fresh groundwater,” and failing to “prevent pollution or diminution of fresh groundwater.” A well on the Tract 007 – Pad G well pad was left unplugged. “Upon abandoning a well, the owner or operator failed to plug the well to stop the vertical flow of fluids or gas within the well bore.”

The violation description falls into more than 100 categories for sites within the watershed. We have simplified those as follows:

Table 4. Oil and gas violations in the Pine Creek Watershed

VIOLATIONSCOUNTWATER RELATED
Administrative 61No
Casing / Cement Violation31Yes
Clean Streams Law Violation32Yes
Erosion & Sediment84Yes
Failed to Control / Dispose of Fluids279Yes
Failure to Comply With Permit3No
Failure to Plug Well1Yes
Failure to Prevent Pollution Event23Yes
Failure to Protect Water Supplies8Yes
Failure to Report Pollution Event20Yes
Failure to Restore Site8No
Hazardous Venting1No
Industrial Waste / Pollutional Material Discharge229Yes
Rat Hole Not Filled7Yes
Residual Waste Mismanagement2Yes
Restricted Site Access to Inspector1No
Site Restoration Violation9No
Unmarked Plugged Well1No
Unpermitted Residual Waste Processing73Yes
Unsound Impoundment20Yes
Unspecified Violation48No
Waste Analysis Not Completed1No
Water Obstruction & Encroachment7Yes
TOTAL949

Altogether, 816 out of the 949 violations (86%) issued in the Pine Creek Watershed were likely to have an impact on either surface or ground water in the region. Two sites have more than 50 violations each, including the Phoenix Well Pad, with 116 violations in Duncan Township, Tioga County, and the Bonnell Run Hunting & Fishing Corp Well Pad in Pine Township, Lycoming County, with 94 violations.

Water Complaints

When things go wrong with oil and gas operations, it is often residents in the surrounding areas that are exposed to the impacts. There are limited actions that affected neighbors can take, but one thing that they can do is register a complaint with the appropriate regulatory agency, in this case the Pennsylvania DEP.

A thorough file review was conducted by Public Herald for complaints related to oil and gas operations in PA, yielding 9,442 complaints between 2004 and 2016. While this includes all oil and gas related complaints, Public Herald’s analysis show that the frequency is highly correlated with the unconventional drilling boom that occurred within that time frame, with the number of new wells and complaints both peaking in 2011.

Many of these complaints occurred in the Pine Creek Watershed. It is impossible to know the exact number, as the precise location of the events was redacted in the records provided by DEP.  Most of the records do include the county and in some cases, the municipality. Altogether, there were complaints in 32 municipalities that are either partially or entirely within the watershed, for a total of 185 total complaints.  Of those, 116 of (63%) specifically indicate water impacts, spread out over 25 municipalities throughout the watershed.

Additional complaints with unspecified municipalities were received by DEP in Lycoming County (n=4), Potter County (n=4), and Tioga County (n=3). These counties substantially overlap with the Pine Creek Watershed, but the data is unclear as to whether or not these impacts were noted within the watershed or not.

It is worth remembering that complaints are dependent upon observation from neighbors and other passersby. As Pine Creek is composed of rugged terrain with vast swaths of public land, it is relatively sparsely populated. It is likely that if these drilling sites were placed in more densely populated areas, the number of complaints related to these operations would be even higher.


“It was 2007, and my water well was fine. I mean, I didn’t have any problem with it. I was cooking, drinking, bathing with it and everything else. Well, then after they drilled I thought it was kind of…it didn’t taste like it did before.”[xiv]

– Judy Eckhart

A Waste-Filled Proposition

Since the Pine Creek Watershed has been the site of considerable oil and gas extraction activity, it has also been the site of significant quantities of waste generated by the industry, which is classified as residual waste in Pennsylvania. This category is supposedly for nonhazardous industrial waste, although both liquid and solid waste streams from oil and gas operations pose significant risks to people exposed to them, as well as to the environment. Oil and gas waste is contaminated with a variety of dangerous volatile organic compounds and heavy metals, which are frequently highly radioactive. There are also a large number of chemicals that are injected into the well bore that flow back to the surface, the content of which is often kept secret, even from workers who make use of them onsite.

There were 37 sites in the Pine Creek Watershed that accepted liquid waste between 2011 and 2018. Of these sites, 30 (81%) were well pads, where flowback from drilling may be partially reused. While this reduces the overall volume of waste that ultimately needs to be disposed of, it frequently increases the concentration of hazardous contaminants that are found in the waste stream, which can make its eventual disposal more challenging. Most of the sites that accept waste do reuse that waste. However, the largest quantity of waste are from the remaining seven sites.

Table 5. Disposal of liquid gas waste in the Pine Creek Watershed

CATEGORYBARRELSGALLONSPCT. TOTAL
Reuse at Well Pads2,042,66285,791,80123%
Other Facilities6,701,292281,454,26177%
GRAND TOTAL8,743,954367,246,062100%

One single site – the Hydro Recovery LP Antrim Facility in Pine Township, Lycoming County – accounted for the majority of liquid waste disposed in the watershed, with 6,622,255 barrels (278,134,704 gallons.) has This amounts to 98.8% of all liquid waste that was not reused at other well pads.

Wastewater is also spread on roads in some communities, as a way to suppress dust on dirt roads.  3,001 barrels (126,050 gallons) of liquid waste have been used for road spreading efforts in regions intersecting the watershed in Ulysses Township, Potter County, and across private lots and roads throughout Potter and Tioga counties. Note that these figures include waste generated from conventional wells, which have different legal requirements for disposal than waste from unconventional wells, despite a similar chemical profile.

There are three facilities that have accepted solid oil and gas waste in the watershed, including a small one operated by Environmental Products and Services of Vermont (55 tons), Hydro Recovery LP Antrim Facility (10,415 tons), and Phoenix Resources Landfill (900,094 tons). This includes 200,808 tons in 2018, which is close to the previous peak value of 216,873 tons accepted in 2012.

Figure 1. Tons of solid O&G waste accepted at the Phoenix Resources Landfill


Recap: How has a decade of fracking impacted the Pine Creek Watershed?

  • 1,374 recorded oil and gas wells in the watershed
    • 554 are currently considered active
    • including 25 conventional and 529 unconventional wells
  • 949 violations to unconventional oil and gas operations within the Pine Creek Watershed, 86% of which were likely to have an impact on either surface or ground water
  • 185 complaints in 32 municipalities that are either partially or entirely within the watershed
  • A minimum of 515 acres cleared for the known gas pipeline routes in the region
  • 26 compressor stations in the watershed
  • 850,648,219 gallons of water used to frack wells in the watershed between 2013-2017
  • 60 water-related facilities for oil and gas operations active within the watershed active in 2019, including two ground water withdrawal locations, 20 surface water withdrawal locations, and 38 interconnections (mostly retention ponds)
  • 37 sites in the Pine Creek Watershed that accepted liquid waste between 2011 and 2018

And When It’s Over?

In the last ice age, glaciers came from the finger lakes area into Pine Creek. This made the soil there very deep and rich– in fact, people come from all over to study that soil. The Pine Creek area could be a mecca for sustainable agriculture. There is great soil, excellent water, and plenty of space for wind and solar. Under the right leadership, this region of Pennsylvania could feed people in a time when climate resilience is so urgently needed.

Melissa Troutman, Research & Policy Analyst, Earthworks. Director of “Triple Divide.” Journalist, Public Herald

The Pine Creek region retains a primeval grandeur – an alluring wild spirit of great pride and significance to our state. Natural gas development has – and will further – compromise the natural and experiential qualities of this special place. For the benefit of Pennsylvanians today and tomorrow, extraction must be replaced by cleaner forms of energy and conservation values made preeminent.

Brook Lenker, Executive Director, FracTracker Alliance

The Pine Creek Watershed in Pennsylvania’s Susquehanna River Basin has seen more than its fair share of industrial impacts in the centuries since European contact, from repeated timber clearcutting, to coal extraction, to the development of unconventional oil and gas resources in the 21st century. Despite all of this, Pine Creek remains one of the Commonwealth’s natural gems, a cornerstone of the famed Pennsylvania Wilds.

Many of the impacts to the watershed could be thought of as temporary, in that they would likely stop occurring when the oil and gas developers decide to pack up and leave for good. This includes things like truck traffic, with all of the dust and diesel exhaust that accompanies that, pollution from compressor stations and leaky pipe junctions, and even most surface spills.

And yet in some ways, the ability of the land to sustain this industry becomes substantially impaired, and impacts become much more prolonged. Consider, for example, that prior logging efforts have permanently changed both the flora and fauna of the region. Similarly, while there is no more active coal mining in Pine Creek, almost 500 acres of sites deemed to be problematic remain, and some streams impacted by contaminated runoff and mine drainage have yet to return to their former pristine state, even decades later.  

Unconventional drilling in the watershed will have similarly permanent impacts. While there is a legal threshold for site restoration, these multi-acre drill sites will not resemble the heavily forested landscape that once stood there when they reach the end of their useful life. Access roads and gathering lines that crisscross the landscape must be maintained until all well pads in the area are out of service, and then the aging infrastructure will remain in situ. Contaminated groundwater supplies are likely to take centuries to recover, if it is even possible at all.  

Thousands of feet of rock once separated the unconventional formations from the surface. That distance was a barrier not just to the gas, but also to salty brines, toxic heavy metals, and naturally occurring radioactive materials that are present at those depths. To date, 593 holes have been drilled in the Pine Creek Watershed, creating 593 pathways for all of these materials to move to the surface. The only things keeping them in place are concrete and steel, both of which will inevitably fail over the course of time, particularly in the highly saline environment of an old gas well. 

Even if the industry were to leave today and properly plug all of the wells in the Pine Creek Watershed, impacts from the drilling are likely to remain for many years to come.

[i] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P. 11.

[ii] Wikipedia. Pine Creek (Pennsylvania). https://en.wikipedia.org/wiki/Pine_Creek_(Pennsylvania)

[iii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P. 11.

[iv] DCNR. History of Colton Point State Park, 2019. https://www.dcnr.pa.gov/StateParks/FindAPark/ColtonPointStatePark/Pages/History.aspx

[v]  DCNR, Bureau of Forestry.  Marcellus Shale Management Field Tour, 2012. http://www.paforestcoalition.org/documents/Marcellus_Shale_Management_Field_Tour_5-14-12.pdf

[vi] Hayes, Samuel P. Wars in the Woods: The Rise of Ecological Forestry in America. Pittsburgh, PA. University of Pittsburgh Press, 2006.  (2007). P 120-121.

[vii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P.58-60.

[viii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P.61.

[ix] Pennsylvania Department of Environmental Protection, Oil Gas Locations – Conventional Unconventional, 2019. https://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=1088

[x] Pennsylvania Department of Environmental Protection. Abandoned and Orphan Oil and Gas Wells and the Well Plugging Program, 2018. http://www.depgreenport.state.pa.us/elibrary/PDFProvider.ashx?action=PDFStream&docID=1419023&chksum=&revision=0&docName=ABANDONED+AND+ORPHAN+OIL+AND+GAS+WELLS+AND+THE+WELL+PLUGGING+PROGRAM&nativeExt=pdf&PromptToSave=False&Size=411528&ViewerMode=2&overlay=0

[xi] Pennsylvania Wilds. Homepage, 2019. https://pawilds.com/#modal-2

[xii]  Ferguson et al. The impacts of shale natural gas energy development on outdoor recreation: A statewide assessment of pennsylvanians, September 2019. Journal of Outdoor Recreation and Tourism. Volume 27.

[xiii]Pennsylvania Department of Environmental Protection. Oil and Gas Compliance Report Viewer. 2019. http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/OG_Compliance

[xiv] Joshua Pribanic & Melissa Troutman. Triple Divide, 2013.

All aerial photography by Ted Auch with flight support by LightHawk (May 2019).

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

Project funding provided by:

https://www.kvpr.org/post/dormant-risky-new-state-law-aims-prevent-problems-idle-oil-and-gas-wells

Idle Wells are a Major Risk

Designating a well as “idle” is a temporary solution for operators, but comes at a great economic and environmental cost to Californians 

Idle wells are oil and gas wells which are not in use for production, injection, or other purposes, but also have not been permanently sealed. During a well’s productive phase, it is pumping and producing oil and/or natural gas which profit its operators, such as Exxon, Shell, or California Resources Corporation. When the formations of underground oil pools have been drained, production of oil and gas decreases. Certain techniques such as hydraulic fracturing may be used to stimulate additional production, but at some point operators decide a well is no longer economically sound to produce oil or gas. Operators are supposed to retire the wells by filling the well-bores with cement to permanently seal the well, a process called “plugging.”

A second, impermanent option is for operators to forego plugging the well to a later date and designate the well as idle. Instead of plugging a well, operators cap the well. Capping a well is much cheaper than plugging a well and wells can be capped and left “idle” for indefinite amounts of time.

Well plugging

Unplugged wells can leak explosive gases into neighborhoods and leach toxic fluids into drinking waters. Plugging a well helps protect groundwater and air quality, and prevents greenhouse gasses from escaping and expediting climate change. Therefore it’s important that idle wells are plugged.

While plugging a well does not entirely eliminate all risk of groundwater contamination or leaking greenhouse gases, (read more on FracTracker’s coverage of plugged wells) it does reduce these risks. The longer wells are left idle, the higher the risk of well casing failure. Over half of California’s idle wells have been idle for more than 10 years, and about 4,700 have been idle for over 25 years. A report by the U.S. EPA noted that California does not provide the necessary regulatory oversite of idle wells to protect California’s underground sources of drinking water.

Wells are left idle for two main reasons: either the cost of plugging is prohibitive, or there may be potential for future extraction when oil and gas prices will fetch a higher profit margin.  While idle wells are touted by industry as assets, they are in fact liabilities. Idle wells are often dumped to smaller or questionable operators.

Orphaned wells

Wells that have passed their production phase can also be “orphaned.” In some cases, it is possible that the owner and operator may be dead! Or, as often happens, the smaller operators go out of business with no money left over to plug their wells or resume pumping. When idle wells are orphaned from their operators, the state becomes responsible for the proper plugging and abandonment.

The cost to plug a well can be prohibitively high for small operators. If the operators (who profited from the well) don’t plug it, the costs are externalized to states, and therefore, the public. For example, the state of California plugged two wells in the Echo Park neighborhood of Los Angeles at a cost of over $1 million. The costs are much higher in urban areas than, say, the farmland and oilfields of the Central Valley.

Since 1977, California has permanently sealed about 1,400 orphan wells at a cost of $29.5 million, according to reports by the Division of Oil, Gas, and Geothermal Resources (DOGGR). That’s an average cost of about $21,000 per well, not accounting for inflation. From 2002-2018, DOGGR plugged about 600 wells at a cost of $18.6 million; an average cost of about $31,000.

Where are they?

Map of California’s Idle Wells


View map fullscreen | How FracTracker maps work

The map above shows the locations of idle wells in California.  There are 29,515 wells listed as idle and 122,467 plugged or buried wells as of the most recent DOGGR data, downloaded 3/20/19. There are a total of 245,116 oil and gas wells in the state, including active, idle, new (permitted) or plugged.

Of the over 29,000 wells are listed as idle, only 3,088 (10.4%) reported production in 2018. Operators recovered 338,201 barrels of oil and 178,871 cubic feet of gas from them in 2018. Operators injected 1,550,436,085 gallons of water/steam into idle injection wells in 2018, and 137,908,884 cubic feet of gas.

The tables below (Tables 1-3) provide the rankings for idle well counts by operator, oil field, and county (respectively).  Chevron, Aera, Shell, and California Resources Corporation have the most idle wells. The majority of the Chevron idle wells are located in the Midway Sunset Field. Well over half of all idle wells are located in Kern County.

Table 1. Idle Well Counts by Operator
Operator Name Idle Well Count
1 Chevron U.S.A. Inc. 6,292
2 Aera Energy LLC 5,811
3 California Resources Production Corporation 3,708
4 California Resources Elk Hills, LLC 2,016
5 Berry Petroleum Company, LLC 1,129
6 E & B Natural Resources Management Corporation 991
7 Sentinel Peak Resources California LLC 842
8 HVI Cat Canyon, Inc. 534
9 Seneca Resources Company, LLC 349
10 Crimson Resource Management Corp. 333

 

Table 2. Idle Well Counts by Oil Field
Oil Field Count by Field
1 Midway-Sunset 5,333
2 Unspecified 2,385
3 Kern River 2,217
4 Belridge, South 2,075
5 Coalinga 1,729
6 Elk Hills 958
7 Buena Vista 887
8 Lost Hills 731
9 Cymric 721
10 Cat Canyon 661

 

Table 3. Idle Well Counts by County
County Count by County
1 Kern 17,276
2 Los Angeles 3,217
3 Fresno 2,296
4 Ventura 2,022
5 Santa Barbara 1,336
6 Orange 752
7 Monterey 399
8 Kings 212
9 San Luis Obispo 202
10 Sutter 191

 

Risks

According to the Western States Petroleum Association (WSPA) the count of idle wells in California has increased from just over 20,000 idle wells in 2015 to nearly 30,000 wells in 2018! That’s an increase of nearly 50% in just 3 years!

Nobody knows how many orphaned wells are actually out there, beneath homes, in forests, or in the fields of farmers. The U.S. EPA estimates that there are more than 1 million of them across the country, most of them undocumented. In California, DOGGR officially reports that there are 885 orphaned wells in the state.

A U.S. EPA report on idle wells published in 2011 warned that existing monitoring requirements of idle wells in California was “not consistent with adequate protection” of underground sources of drinking water. Idle wells may have leaks and damage that go unnoticed for years, according to an assessment by the state Department of Conservation (DOC). The California Council on Science and Technology is actively researching this and many other issues associated with idle and orphaned wells. The published report will include policy recommendations considering the determined risks. The report will determine the following:

  • State liability for the plugging and abandoning of deserted and orphaned wells and decommissioning facilities attendant to such wells
  • Assessment of costs associated with plugging and abandoning deserted and orphaned wells and decommissioning facilities attendant to such wells
  • Exploration of mechanisms to ameliorate plugging, abandoning, and decommissioning burdens on the state, including examples from other regions and questions for policy makers to consider based on state policies

Current regulation

As of 2018, new CA legislation is in effect to incentivize operators to properly plug and abandon their stocks of idle wells. In California, idle wells are defined as wells that have not had a 6-month continuous period of production over a 2-year period (previously a 5-year period). The new regulations require operators to pay idle well fees.  The fees also contribute towards the plugging and proper abandonment of California’s existing stock of orphaned wells. The new fees are meant to act as bonds to cover the cost of plugging wells, but the fees are far too low:

  • $150 for each well that has been idle for 3 years or longer, but less than 8 years
  • $300 for each well that has been idle for 8 years or longer, but less than 15 years
  • $750 for each well that has been idle for 15 years or longer, but less than 20 years
  • $1,500 for each well that has been idle for 20 years or longer

Operators are also allowed to forego idle well fees if they institute long-term idle well management and elimination plans. These management plans require operators to plug a certain number of idle wells each year.

In February 2019, State Assembly member Chris Holden introduced an idle oil well emissions reporting bill. Assembly bill 1328 requires operators to monitor idle and abandoned wells for leaks. Operators are also required to report hydrocarbon emission leaks discovered during the well plugging process. The collected results will then be reported publicly by the CA Department of Conservation. According to Holden, “Assembly Bill 1328 will help solve a critical knowledge gap associated with aging oil and gas infrastructure in California.”

While the majority of idle wells are located in Kern County, many are also located in California’s South Coast region. Due to the long history and high density of wells in the Los Angeles, the city has additional regulations. City rules indicate that oil wells left idle for over one year must be shut down or reactivated within a month after the city fire chief tells them to do so.

Who is responsible?

All of California’s wells, from Kern County to three miles offshore, on private and public lands, are managed by DOGGR, a division of the state’s Department of Conservation. Responsibilities include establishing and enforcing the requirements and procedures for permitting wells, managing drilling and production, and at the end of a well’s lifecycle, plugging and “abandoning” it.

To help ensure operator liability for the entire lifetime of a well, bonds or well fees are required in most states. In 2018, California updated the bonding requirements for newly permitted oil and gas wells. These fees are in addition to the aforementioned idle well fees. Operators have the option of paying a blanket bond or a bond amount per well. In 2018, these fees raised $4.3 million.

Individual well fees:

  • Wells less than 10,000 feet deep: $10,000
  • Wells more than 10,000 feet deep: $25,000

Blanket fees:

  • Less than 50 wells: $200,000
  • 50 to 500 wells: $400,000
  • 500 to 10,000 wells: $2,000,000
  • Over 10,000 wells: $3,000,000

With an average cost of at least $31,000 to plug a well, California’s new bonding requirements are still insufficient. Neither the updated individual nor blanket fees provide even half the cost required to plug a typical well.

Conclusions

Strategies for the managed decline of the fossil fuel industry are necessary to make the proposal a reality. Requiring the industry operators to shut down, plug and properly abandon wells is a step in the right direction, but California’s new bonding and idle well fees are far too low to cover the cost of orphan wells or to encourage the plugging of idle wells. Additionally, it must be stated that even properly abandoned wells have a legacy of causing groundwater contamination and leaking greenhouse gases such as methane and other toxic VOCs into the atmosphere.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo: Kerry Klein, Valley Public Radio

DOGGR

Literally Millions of Failing, Abandoned Wells

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

In California’s Central Valley and along the South Coast, there are many communities littered with abandoned oil and gas wells, buried underground.

Many have had homes, buildings, or public parks built over top of them. Some of them were never plugged, and many of those that were plugged have since failed and are leaking oil, natural gas, and toxic formation waters (water from the geologic layer being tapped for oil and gas). Yet this issue has been largely ignored. Oil and gas wells continue to be permitted without consideration for failing and failed plugged wells. When leaking wells are found, often nothing is done to fix the issue.

As a result, greenhouse gases escape into the atmosphere and present an explosion risk for homes built over top of them. Groundwater, including sources of drinking water, is known to be impacted by abandoned wells in California, yet resources are not being used to track groundwater contamination.

Abandoned wells: plugged and orphaned

The term “abandoned” typically refers to wells that have been taken out of production. At the end of their lifetime, wells may be properly abandoned by operators such as Chevron and Shell or they may be orphaned.

When operators properly abandon wells, they plug them with cement to prevent oil, natural gas, and salty, toxic formation brine from escaping the geological formation that was tapped for production. Properly plugging a well helps prevent groundwater contamination and further air quality degradation from the well. The well-site at the surface may also be regraded to an ecological environment similar to its original state.

Wells that are improperly abandoned are either plugged incorrectly or are “orphaned” by their operators. When wells are orphaned, the financial liability for plugging the well and the environmental cleanup falls on the state, and therefore, the taxpayers.

You don’t see them?

In California’s Central Valley and South Coast abandoned wells are everywhere. Below churches, schools, homes, they even under the sidewalks in downtown Los Angeles!

FracTracker Alliance and Earthworks recently spent time in Los Angeles with an infrared camera that shows methane and volatile organic compound (VOC) emissions. We visited several active neighborhood drilling sites and filmed plumes of toxic and carcinogenic VOCs floating over the walls of well-pads and into the surrounding neighborhoods. We also visited sites where abandoned, plugged wells had failed.

In the video below, we are standing on Wilshire Blvd in LA’s Miracle Mile District. An undocumented abandoned well under the sidewalk leaks toxic and carcinogenic VOCs through the cracks in the pavement as mothers push their children in walkers through the plume. This is just one case of many that the state is not able to address.

California regulatory data shows that there are 122,466 plugged wells in the state, as shown below in the map below. Determining how many of them are orphaned or improperly plugged is difficult, but we can come up with an estimate based on the wells’ ages.

While there are no available data on the dates that wells were plugged, there are data on “spud dates,” the date when operators begin drilling into the ground. Of the 18,000 wells listing spud dates, about 70% were drilled prior to 1980. Wells drilled before 1980 have a higher risk of well casing failures and are more likely to be sources of groundwater contamination.

Additionally, wells plugged prior to 1953 are not considered effective, even by industry standards. Prior to 1950, wells either were orphaned or plugged and abandoned with very little cement. Plugging was focused on protecting the oil reservoirs from rain infiltration rather than to “confine oil, gas and water in the strata in which they are found and prevent them from escaping into other strata.” Of the wells with drilling dates in the regulatory data, 30% are listed as having been drilled prior to the use of cement in well plugging.

With a total of over 245,000 wells in the state database, and considering the lack of monitoring prior to 1950, it’s reasonable to assume there are over 80,000 improperly plugged and unplugged wells in California.

Map of California’s Plugged Wells

View map fullscreen | How FracTracker maps work

The regions with the highest counts of plugged wells are the Central Valley and the South Coast. The top 10 county ranks are listed below in Table 1. Kern County has more than half of the total plugged wells in the entire state.

Table 1. Ranks of Counties by Plugged Well Counts
  • Rank
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • County
  • Kern
  • Los Angeles
  • Orange
  • Fresno
  • Ventura
  • Santa Barbara
  • Monterey
  • San Luis Obispo
  • Solano
  • Yolo
  • Plugged Well Count
  • 65,733
  • 17,139
  • 7,259
  • 6,970
  • 4,302
  • 4,192
  • 2,266
  • 1,463
  • 1,456
  • 1,383

The issue is not unique to California. Nationally, an estimated 2.56 million oil and gas wells have been drilled and 1.93 million wells had been abandoned by 1975. Using interpolated data, the EPA estimates that as of 2016 there were 3.12 million abandoned wells in the U.S. and 69% of them were left unplugged.

In 2017, FracTracker Alliance organized an exercise to track down the locations of Pennsylvania’s abandoned wells that are not included in the PA Department of Environmental Protection’s digital records. Using paper maps and the FracTracker Mobile App, volunteers explored Pennsylvania woodlands in search of these hidden greenhouse gas emitters.

What are the risks?

Emissions

Studies by Kang et al. 2014, Kang et al 2016, Boothroyd et al 2016, and Townsend-Small et al. 2016 have all measured methane emissions from abandoned wells. Both properly plugged and improperly abandoned wells have been shown to leak methane and other VOCs to the atmosphere as well as into the surrounding groundwater, soil, and surface waters. Leaks were shown to begin just 10 years after operators plugged the wells.

Well density

The high density of aging and improperly plugged wells is a major risk factor for the current and future development of California’s oil and gas fields. When fields with old wells are reworked using new technology, such as hydraulic fracturing, CO2 flooding, or solvent flooding (including acidizing, water flooding, or steam flooding), the injection of additional fluid and gas increases pressure in a reservoir. Poorly plugged or aging wells often lack the integrity to avoid a blowout (the uncontrolled release of oil and/or gas from a well). There is a consistent risk that formation fluids will be forced to migrate up the plugged wellbores and bypass the existing plugs.

Groundwater

In a 2014 report, the U.S. Geological Service warned the California State Water Resources Control Board that the integrity of abandoned wells is a serious threat to groundwater sources, stating, “Even a small percentage of compromised well bores could correspond to a large number of transport pathways.”

The California Council on Science and Technology (CCST) has also suggested the need for additional research on existing aquifer contamination. In 2014, they called for widespread testing of groundwater near oil and gas fields, which has still not occurred.

Leaks

In addition to the contamination of underground sources of drinking water, abandoned well failures can even create a pathway for methane and fluids to escape to Earth’s surface. In many cases, such as in Pennsylvania, Texas, and California, where drilling began prior to the turn of the 20th century, many wells have been left unplugged. Of the abandoned wells that were plugged, the plugging process was much less adequate than it is today.

If plugged wells are allowed to leak, surface expressions can form. These leaks can travel to the Earth’s crust where oil, gas, and formation waters saturate the topsoil. A construction supervisor for Chevron named David Taylor was killed by such an event in the Midway-Sunset oil field near Bakersfield, CA. According to the LA Times, Chevron had been trying to control the pressure at the well-site. The company had stopped injections near the well, but neighboring operators continued high-pressure injections into the pool. As a result, migration pathways along old wells allowed formation fluids to saturate the Earth just under the well-site. Tragically, Taylor fell into a 10-foot diameter crater of 190° fluid and hydrogen sulfide.

California regulations

Following David Taylor’s death in 2011, California regulators vowed to make urgent reforms to the management of underground injection, and new rules finally went into effect on April 1, 2018. These regulations require more consistent monitoring of pressure and set maximum pressure standards. While this will help with the management of enhanced oil recovery operations, such as steam and water flooding and wastewater disposal, the issue of abandoned wells is not being addressed.

New requirements incentivizing operators to plug and abandon idle wells will help to reduce the number of orphan wells left to the state, but nothing has been done or is proposed to manage the risk of existing orphaned wells.

Conclusion

Why would the state of California allow new oil and gas drilling when the industry refuses to address the existing messes? Why are these messes the responsibility of private landholders and the state when operators declare bankruptcy?

New bonding rules in some states have incentivized larger operators to plug their own wells, but old low-producing or idle wells are often sold off to smaller operators or shell (not Shell) companies prior to plugging. This practice has been the main source of orphaned wells. And regardless of whether wells are plugged or not, research shows that even plugged wells release fugitive emissions that increase with the age of the plug.

If the fossil fuel industry were to plug the existing 1.666 million currently active wells, there would be nearly 5 million plugged wells that require regular inspections, maintenance, and for the majority, re-plugging, to prevent the flow of greenhouse gases. This is already unattainable, and drilling more wells adds to this climate disaster.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Getting Rid of All of that Waste – Increasing Use of Oil and Gas Injection Wells in Pennsylvania

Oil and gas development generates a lot of liquid waste.

Some of the waste comes that comes out of a well is from the geologic layer where the oil and gas resources are located. These extremely saline brines may be described as “natural,” but that does not make them safe, as they contain dangerous levels of radiation, heavy metals, and other contaminants.

Additionally, a portion of the industrial fluid that was injected into the well to stimulate production, known as hydraulic fracturing fluid, returns to the surface.  Some of these substances are known carcinogens, while others remain entirely secret, even to the personnel in the field who are employed to use the additives.

The industry likes to remind residents that they have used this technique for more than six decades, which is true. What separates “conventional” fracking from developing unconventional formations such as the Marcellus Shale is really a matter of scale.  Conventional formations are often stimulated with around 10,000 gallons of fluid, while unconventional wells now average more than 10 million gallons per well.

In 2017 alone, Pennsylvania oil and gas wells generated 57,653,023 barrels (2.42 billion gallons) of liquid waste.

Managing the waste stream

Liquid waste can be reused to stimulate other oil and gas wells, but reuse concentrates the contaminant load in the fluid. There is a limit to this concentration that operators can use, even for this industrial purpose.

Another strategy is to decrease the volume of the waste through evaporation and other treatment methods. This also increases the contaminant concentration. Pennsylvania used to permit “treatment” of wastewater at sewage treatment facilities, before being forced to concede that the process was completely ineffective, and resulted in contaminating streams and rivers throughout the Commonwealth.

In many states, much of this waste is disposed of in facilities known as salt water disposal (SWD) wells, a specific type of injection well. These waste facilities fall under the auspices of the US Environmental Protection Agency’s Underground Injection Control (UIC) program. Such wells are co-managed with states’ oil and gas regulatory agencies, although the specifics vary by state.

These photos show SWD wells in other states, but what about in Pennsylvania?

The oil and gas industry in Pennsylvania has not used SWD wells as a primary disposal method, as the state’s geology has been considered unsuitable for this process.  For example, on page 67 of this 2009 industry report, the authors saw treatment of flowback fluid at municipal facilities as a viable option (before the process was  banned in 2011), but underground injection as less likely (emphasis added):

The disposal of flowback and produced water is an evolving process in the Appalachians. The volumes of water that are being produced as flowback water are likely to require a number of options for disposal that may include municipal or industrial water treatment facilities (primarily in Pennsylvania), Class II injection wells [SWDs], and on-site recycling for use in subsequent fracturing jobs. In most shale gas plays, underground injection has historically been preferred. In the Marcellus play, this option is expected to be limited, as there are few areas where suitable injection zones are available.

The ban on surface “treatment” being discharged into Pennsylvania waters has increased the pressure for finding new solutions for brine disposal.  This is compounded by the fact that the per-well volume of fluid injected into shale gas wells in the region has nearly tripled in that time period. Much of what is injected comes back up to the surface and is added to the liquid waste stream.

Chemically-similar brine from conventional wells has been spread on roadways for dust suppression. This practice was originally considered a “beneficial use” of the waste product, but the Pennsylvania Department of Environmental Protection (DEP) halted that practice in May 2018.

None of these waste management decisions make the geology in Pennsylvania suddenly suitable for underground injection, however, they do increase the pressure on the state to find a disposal solution.

Concerns with SWD wells

There are numerous concerns with salt water disposal wells.  In October 2018, the DEP held a hearing in Plum Borough, on the eastern edge of Allegheny County, where there is a proposal to convert the Sedat 3A conventional well to an injection well. Some of the concerns raised by residents include:

  • Fluid and/or gas migration- There are numerous routes for fluids and gas to migrate from the injection formation to drinking water aquifers or even surface water.  Potential conduits include coal mines, abandoned gas wells, water wells, and naturally occurring fissures in crumbling sedimentary formations.
  • Induced seismicity- SWD wells have been linked to increased earthquake activity, either by lubricating or putting pressure on old faults that had been dormant. Earthquakes can occur miles away from the injection location, and in sedimentary formations, not just igneous basement rock.
  • Noise, diesel pollution, loss of privacy, and road degradation caused by a constant stream of industrial waste haulers to the well location.
  • Complicating existing issues-  Plum Borough and surrounding communities are heavily undermined, and in fact the well bore goes right through the Renton Coal Mine (another part of which has been on fire for decades).  Mine subsidence is already a widespread issue in the region, and many fear that even small seismic events could exacerbate this.
  • Possibility of surface spill-  Oil and gas is, sadly, a sloppy industry, with unconventional operations having accumulated more than 13,000 violations in Pennsylvania since 2008.  If a major spill were to happen at this location, there is the possibility of release into Pucketa Creek, which drains into the Allegheny River, the source of drinking water for multiple communities.
  • Radioactivity and other contaminants- Flowback fluids are often highly radioactive, contain heavy metals, and other contaminants that are challenging to effectively clean.  The migration of radon gas into homes above the injection formation is also a possibility.

The current state of SWDs in Pennsylvania

Pennsylvania has numerous data sources for oil and gas, but they are not always in agreement. To account for this, we have mapped SWDs (and a five mile buffer around them) from two different data sources in the map below. The first source is a subset of SWD wells from a larger dataset of oil and gas locations from the DEP’s mapping website. The second source is from a Waste Facility Report, represented in pink triangles that are offset at an angle to allow users to see both datasets simultaneously in instances where they overlap.

Map of existing, proposed, and plugged salt water disposal (SWD) injection wells in Pennsylvania.

 View map fullscreen How FracTracker maps work

According to the first data set of DEP’s oil and gas locations, Pennsylvania contains 13 SWDs with an active status, one SWD with a regulatory inactive status, and eight that are plugged. The Waste Facility Report shows 10 SWD wells total, including one well that was left out of the other data set in Annin Township, McKean County.

It is worth noting that Pennsylvania’s definition for an “active” well status is confusing, to put it charitably. It does not mean that a well is currently in operation, nor does it even mean that it is currently permitted for the activity, whether that is waste disposal or gas production, or some other function. An active status means that the well has been proposed for a given use, and the well hasn’t been plugged, or assigned some other status.

The Sedat 3A well in Plum, for example, has an active status, although the DEP has not yet granted it a permit to operate as a SWD well. Another  status type is “regulatory inactive,” which is given to a well that hasn’t been used for its stated purpose in 12 months, but may potentially have some future utility.

Karst, coal mines, and streams

While there are numerous factors worthy of consideration when siting SWD wells, this map focuses on three: the proximity of karst formations, coal mines and nearby streams that the state designates as either high quality or exceptional value.

Karst formations are unstable soluble rock formations like limestone deposits which are likely to contain numerous subsurface voids. These voids are concerning in this context. For one reason, there’s the possibility of contaminated fluids and gasses migrating into underground freshwater aquifers. Also, the voids are inherently structurally unstable, which could compound the impacts of artificially-induced seismic activity caused by fluid injections in the well.

Our analysis found over 78,000 acres (123 square miles) of karst geology within five miles of current, proposed, or plugged SWD wells in Pennsylvania.

Coal mines, while a very different sedimentary formation, have similar concerns because of subsurface voids. Mine subsidence is already a widespread problem in many of the communities surrounding SWD well sites.  Pennsylvania has several available data sets, including active underground mine permits and digitized mined areas, which are used in this map.  Active mine permits show current permitted operations, while digitized mine areas offer a highly detailed look at existing mines, including abandoned mines, although the layer is not complete for all regions of the state.

In Pennsylvania, there are 56,542 acres (88 square miles) of active mines within five miles of SWD wells. Our analysis found 97,902 acres (153 square miles) of digitized mined areas within five miles of SWD wells.  Combined, there are 139,840 acres (219 square miles) of existing and permitted mines within the 5 mile buffer zone around SWDs in Pennsylvania.

Streams with the designation “high quality” and “exceptional value” are the best streams Pennsylvania has to offer, in terms of recreation, fishing, and biological diversity. In this analysis, we have identified such streams within a five mile radius of SWD wells, irrespective of the given watershed of the well location.

While the rolling topography of Western Pennsylvania sheds rainwater in a complicated network of drainages, groundwater is not subject to that particular geography. Furthermore, groundwater regularly interacts with surface water through water wells, abandoned O&G wells, and natural seeps and springs. Therefore, it is possible for SWDs to contaminate these treasured streams, even if they are not located within the same watershed.

Altogether, there are 716 miles of high quality streams and 110 miles of exceptional value streams within 5 miles of the SWDs in this analysis.

Conclusion

For decades, geologists have concluded that the subsurface strata in Pennsylvania were not suitable for oil and gas liquid waste disposal in underground injection wells.  The fact that vast quantities of this waste are now being produced in Pennsylvania has not suddenly made it a suitable location for the practice.  If anything, additional shallow and deep wells have further fractured the sedimentary strata, thereby increasing the risk of contamination.

The only factor that has changed is the volume of waste being produced in the region. SWD wells in nearby Ohio and West Virginia have capacity issues from their own production wells, and it is not clear that the geologic formations across the border are that much better than in Pennsylvania. But as new wells are drilled and volumes of hydraulic fracturing fluid continue to spiral into the tens of millions of gallons per well, the pressure to open new SWD wells in the state will only increase.

Perhaps because of these pressures, DEP has become quite bullish on the technology:

Several successful disposal wells are operating in Pennsylvania and options for more sites are always being considered. The history of underground disposal shows that it is a practical, safe and effective method for disposing of fluids from oil and gas production.
Up against this attitude, residents are facing an uphill battle trying to prevent harm to their health and property from these industrial facilities in their communities.  Municipalities that have attempted to stand up for their residents have been sued by DEP to allow for these injection wells.  The Department’s actions, which put the interests of industry above the health of residents and the environment, is directly at odds with the agency’s mission statement:
The Department of Environmental Protection’s mission is to protect Pennsylvania’s air, land and water from pollution and to provide for the health and safety of its citizens through a cleaner environment. We will work as partners with individuals, organizations, governments and businesses to prevent pollution and restore our natural resources.
It’s time for DEP to live up to its promises.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Bird's eye view of an injection well (oil and gas waste disposal)

A Disturbing Tale of Diminishing Returns in Ohio

Utica oil and gas production, Class II injection well volumes, and lateral length trends from 2010-2018

The US Energy Information Administration (EIA) recently announced that Ohio’s recoverable shale gas reserves have magically increased by 11,076 billion cubic feet (BCF). This increase ranks the Buckeye State in the top 5 for changes in recoverable shale natural gas reserves between 2016 and 2017 (pages 31- 32 here). After reading the predictable and superficial media coverage, we thought it was time to revisit the data to ask a pertinent question: What is the fracking industry costing Ohio?

Recent Shale Gas Trends in Ohio

According to the EIA’s report, Ohio currently sits at #7 on their list of proven reserves. It is estimated there are 27,021 BCF of shale gas beneath the state (Figure 1).

Graph of natural gas reserves in different states 2016-2017

Figure 1. Proven and change in proven natural gas reserves from 2016 to 2017 for the top 11 states and the Gulf of Mexico (calculated from EIA’s “U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2017”).

There are a few variations in the way the oil and gas industry defines proven reserves:

…an estimated quantity of all hydrocarbons statistically defined as crude oil or natural gas, which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions. Reservoirs are considered proven if economic producibility is supported by either actual production or conclusive formation testing. – The Organization of Petroleum Exporting Countries

… the quantity of natural resources that a company reasonably expects to extract from a given formation… Proven reserves are classified as having a 90% or greater likelihood of being present and economically viable for extraction in current conditions… Proven reserves also take into account the current technology being used for extraction, regional regulations and market conditions as part of the estimation process. For this reason, proven reserves can seemingly take unexpected leaps and drops. Depending on the regional disclosure regulations, extraction companies might only disclose proven reserves even though they will have estimates for probable and possible reserves. – Investopedia

What’s missing from this picture?

Neither of the definitions above address the large volume of water or wastewater infrastructure required to tap into “proven reserves.” While compiling data for unconventional wells and injection wells, we noticed that the high-volume hydraulic fracturing (HVHF) industry is at a concerning crossroads. In terms of “energy return on energy invested,” HVHF is requiring more and more resources to stay afloat.

OH quarterly Utica oil & gas production along with quarterly Class II injection well volumes:

The map below shows oil and gas production from Utica wells (the primary form of shale gas drilling in Ohio). It also shows the volume of wastewater disposed in Class II salt water disposal injection wells.


 View map fullscreen | How FracTracker maps work

Publications like the aforementioned EIA article and language out of Columbus highlight the nominal increases in fracking productivity. They greatly diminish, or more often than not ignore, how resource demand and waste production are also increasing. The data speak to a story of diminishing returns – an industry requiring more resources to keep up gross production while simultaneously driving net production off a cliff (Figure 2).

Graph of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September, 2010 to December, 2018

Figure 2. Number of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September 2010 to December 2018

The Great Decoupling of New Year’s 2013

In the following analysis, we look at the declining efficiency of the HVHF industry throughout Ohio. The data spans the end of 2010 to middle of 2018. We worked with Columbus-area volunteer Gary Allison to conduct this analysis; without Gary’s help this work and resulting map, would not have been possible.

A little more than five years ago today, a significant shift took place in Ohio, as the number of producing gas wells increased while oil well numbers leveled off. The industry’s permitting high-water mark came in June of 2014 with 101 Utica permits that month (a level the industry hasn’t come close to since). The current six-month permitting average is 25 per month.

As the ball dropped in Times Square ringing in 2014, in Ohio, a decoupling between oil and gas wells was underway and continues to this day. The number of wells coming online annually increased by 229 oil wells and 414 gas wells.

Graph showing Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 3. Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Graph of Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 4. Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Permits

The ringing in of 2014 also saw an increase in the number of producing wells as a percentage of those permitted. In 2014, the general philosophy was that the HVHF industry needed to permit roughly 5.5 oil wells or 7 gas wells to generate one producing well. Since 2014, however, this ratio has dropped to 2.2 for oil and 1.4 for gas well permits.

Put another way, the industry’s ability to avoid dry wells has increased by 13% for oil and 18% for gas per year. As of Q2-2018, viable oil wells stood at 44% of permitted wells while viable gas wells amounted to 71% of the permitted inventory (Figure 4).

Production declines

from the top-left to the bottom-right

To understand how quickly production is declining in Ohio, we compiled annual (2011-2012) and quarterly (Q1-2013 to Q2-2018) production data from 2,064 unconventional laterals.

First, we present average data for the nine oldest wells with respect to oil and gas production on a per day basis (Note: Two of the nine wells we examined, the Geatches MAH 3H and Hosey POR 6H-X laterals, only produced in 2011-2012 when data was collected on an annual basis preventing their incorporation into Figures 6 and 7 belwo). From an oil perspective, these nine wells exhibited 44% declines from year 1 to years 2-3 and 91% declines by 2018 (Figure 5). With respect to natural gas, these nine wells exhibited 34% declines from year 1 to years 2-3 and 79% declines by 2018 (Figure 5).

Figure 5. Average daily oil and gas production decline curves for the above seven hydraulically fractured laterals in Ohio’s Utica Shale Basin, 2011 to Q2-2018

Four of the nine wells demonstrated 71% declines by the second and third years and nearly 98% declines by by Q2-2018 (Figure 6). These declines lend credence to recent headlines like Fracking’s Secret Problem—Oil Wells Aren’t Producing as Much as Forecast in the January 2nd issue of The Wall Street Journal. Four of the nine wells demonstrated 49% declines by the second and third years and nearly 81% declines by Q2-2018 (Figure 7).

Figure 6. Oil production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 7. Natural gas production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Fracking waste, lateral length, and water demand

from bottom-left to the top-right

An analysis of fracking’s environmental and economic impact is incomplete if it ignores waste production and disposal. In Ohio, there are 226 active Class II Salt Water Disposal (SWD) wells. Why so many?

  1. Ohio’s Class II well inventory serves as the primary receptacle for HVHF liquid waste for Pennsylvania, West Virginia, and Ohio.
  2. The Class II network is situated in a crescent shape around the state’s unconventional wells. This expands the geographic impact of HVHF to counties like Ashtabula, Trumbull, and Portage to the northeast and Washington, Athens, and Muskingum to the south (Figure 8).
Map of Ohio showing cumulative production of unconventional wells and waste disposal volume of injection wells

Figure 8. Ohio’s unconventional gas laterals and Class II salt water disposal injection wells. Weighted by cumulative production and waste disposal volumes to Q3-2018.

Disposal Rates

We graphed average per well (barrels) and cumulative (million barrels) disposal rates from Q3-2010 to Q3-2018 for these wells. The data shows an average increase of 24,822 barrels (+1.05 million gallons) per well, each year.

That’s a 51% per year increase (Figure 9).

A deeper dive into the data reveals that the top 20 most active Class II wells are accepting more waste than ever before: an astounding annual per well increase of 728,811 barrels (+30.61 million gallons) or a 230% per year increase (Figure 10). This divergence resulted in the top 20 wells disposing of 4.95 times the statewide average between Q3-2010 and Q2-2013. They disposed 13.82 times the statewide average as recently as Q3-2018 (Figure 11).

All of this means that we are putting an increasing amount of pressure on fewer and fewer wells. The trickle out, down, and up of this dynamic will foist a myriad of environmental and economic costs to areas surrounding wells. As an example, the images below are injection wells currently under construction in Brookfield, Ohio, outside Warren and minutes from the Pennsylvania border.

More concerning is the fact that areas of Ohio that are injection well hotspots, like Warren, are proposing new fracking-friendly legislation. These disturbing bills would lubricate the wheels for continued expansion of fracking waste disposal and permitting. House bills 578 and 393 and Senate Bill 165 monetize and/or commodify fracking waste by giving townships a share of the revenue. Such bills “…would only incentivize communities to encourage more waste to come into their existing inventory of Class II… wells, creating yet another race to the bottom.” Co-sponsors of the bills include Democratic Reps. Michael O’Brien, Glenn Holms, John Patterson, and Craig Riefel.

Lateral Lengths

The above trends reflect an equally disturbing trend in lateral length. Ohio’s unconventional laterals are growing at a rate of 9.1 to 15.6%, depending on whether you buy that this trend is linear or exponential (Figure 12). This author believes the trend is exponential for the foreseeable future. Furthermore, it’s likely that “super laterals” in excess of 3-3.5 miles will have a profound impact on the trend. (See The Freshwater and Liquid Waste Impact of Unconventional Oil and Gas in Ohio and West Virginia.)

This lateral length increase substantially increases water demand per lateral. It also impacts Class II well disposal rates. The increase accounts for 76% of the former and 88% of the latter when graphed against each other (Figure 13).

Figure 12. Ohio Utica unconventional lateral length from Q3-2010 to Q4-2018

Figure 13. Ohio Utica unconventional water demand and Class II SWD injection well disposal volumes vs lateral length from Q3-2010 to Q4-2018.

Conclusion

This relationship between production, resource demand, and waste disposal rates should disturb policymakers, citizens, and the industry. One way to this problem is to more holistically price resource utilization (or stop oil and gas development entirely).

Unfortunately, states like Ohio are practically giving water away to the industry.

Politicians are constructing legislation that would unleash injection well expansion. This would allow disposal to proceed at rates that don’t address supply-side concerns. It’s startling that an industry and political landscape that puts such a premium on “market forces” is unwilling to address these trends with market mechanisms.

We will continue to monitor these trends and hope to spread these insights to states like Oklahoma and Texas in the future.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance – with invaluable data compilation assistance from Gary Allison


Data Downloads

FracTracker is a proponent of data transparency, and so we often share the data we use to construct our maps analyses. Click on the links below to download the data associated with the present analysis:

  • OH Utica laterals

    Ohio’s Utica HVHF laterals as of December 2018 in length (feet) (zip file)
  • Wastewater disposal volumes

    Inventory of volumes disposed on a quarterly basis from 2010 to Q3-2018 for all 223 active Class II Salt Water Disposal (SWD) Injection wells in Ohio (zip file)