FracTracker in the news and press releases

Right to a healthy home - Photo credit: Leann Leiter

The Right to a Healthy Home

Reframing Fracking in Our Communities

Imagine that tonight you head home to cook dinner. But, standing at your kitchen sink, you find that your tap water is suddenly running a funny color or gives off a bad smell. So instead of cooking, you order a pizza and decide to work outside in your garden. Just as you’re getting your hands dirty, however, you hear the roar of the compressor station that you see from your yard as its “blows off” some substance. Going back inside, and closing your windows to keep out the foul air, you think of the tap water and decide a shower is out of the question. Imagine that you resign yourself to just going to bed early – only to be kept awake by the bright and unnatural glow of gas being flared at the nearby wellhead.

Scenarios just like these can and do happen when hydraulic fracturing, or fracking, encroaches upon residential areas.

In Part 1 of this two-part series, we described how the many aspects of fracking can destroy a healthy home environment and argued for a frame that focuses on those impacts. A frame is a way of contextualizing, communicating about, and understanding an issue.

This article brings in the idea of rights, and lists several declared rights that fracking violates. Returning to the topic of framing, we then challenge the fracking-friendly frame, by calling into question three common ways of talking about fracking that ignore the rights of those impacted.

In short, the push to support fracking often ignores the rights of people living near it.

Healthy Homes for Human Flourishing

First, let’s explore why a having healthy home matters.

Everyone has a basic need for a safe, healthy place to live. The World Health Organization identifies the social determinants of health (SDH) as the “conditions in which people are born, grow, work, live, and age, and the wider set of forces and systems shaping the conditions of daily life.” Applied to healthy homes, these SDH include access to clean air and safe drinking water, and protection from intrusion and disaster. Health is not merely the absence of disease. Health can mean the ability to function, to live one’s life,[1] to flourish.

Human flourishing demands a healthy home environment. Picture again the scenario at the beginning of this article. Would you be able to care for yourself and your family members, to meet your basic needs, or to lead a satisfying life if your home didn’t seem like a safe place to live?

Using Rights to Make the Case

Many people who live near drilling often ask themselves that very question. These include people like Pam Judy, with a compressor station less than 800 feet from her house, who questions the long term effects of breathing in the 16 chemicals detected in air test conducted by the PA Department of Environmental Protection.

Greene County, PA resident Pam Judy and the compressor station near her home in Gas Rush Stories, part 5: A Neighbor from Kirsi Jansa on Vimeo.

Simply reading or watching the stories of those directly impacted by gas development makes a moving argument for the right to a healthy home environment – and that argument also has a lot of backing. Researchers[2] have made a powerful case that fracking can and has violated human rights, by impacting the health for those downwind or downstream and by denying civil liberties to those pushed aside or silenced during the debate. These same researchers showed specifically that fracking has violated the rights to privacy, family, home, and protection of property.

Various governments and non-governmental organizations around the world have likewise called out human rights violations due to fracking. Other human rights declarations are relevant here, too. Fracking’s impacts are incompatible with the rights to health and to housing. Here’s a sampling:

side-by-side-rights-table

This sampling of precedents includes statements and declarations by the United Nations and the Organization of American States. It shows that when it comes to human rights and fracking, a strong case has already been made by respected international organizations.

Challenging the fracking-friendly frame

A rights-based perspective, informed by precedents like those above, gives us a strong platform from which to examine and counter arguments that support or promote fracking. We can call those pro-fracking arguments a “fracking-friendly” frame.

A fracking-friendly frame denies or minimizes the human impacts. We can hear elements of the fracking-friendly frame underlying industry promises and political talking points, and witness how they leach into common dialogue between citizens.

Element #1: “Economic impacts”- but only the positives

An “economic impacts ” emphasis tends to focus on narrowly-defined economic benefits , while excluding other real, negative economic drawbacks , like the latter half of boom & bust cycles. Consider this infographic of the “economic impacts” of an Appalachian petrochemical hub scenario–an industry reliant upon the cheap and abundant fracked natural gas of the region. The document offers projected estimates for industry profits and employment levels potentially generated by the five ethane crackers planned for the region. But this document – and its focus on economics – says nothing about the negative consequences to the community. Due to air emissions from these facilities, health costs from fine particulate matter (PM 2.5) could amount to between $120 and $270 million each year, without even factoring in the additional impacts of ozone or toxics. A focus on economic impacts also says nothing about  the incalculable value of lives – and quality of life – lost, which could amount to between 14 and 32 additional deaths annually, plus increased asthma, heart attacks, and bronchitis.[3]

Element #2: “Choice”

A false assumption of choice is built into the fracking-friendly frame. This element assumes that people have a choice–if they don’t like the drilling next door, they can just move. Yet, as well water becomes degraded and countryside views become dominated by unprecedented industrial development, selling a home can be a difficult proposition. As one researcher summed it up,

the various forms of land damage from fracking often result in decreased property values, making resale and farming difficult , and also making it harder to acquire mortgages and insurance. Properties adjoining drilling sites are often simply unsellable, as no one wants to live with the noise, the bad air, and the possibility of water pollution.[4]

Others confirm this fallout to home values. A recent report assessing 16 other studies on how UOGD affects home prices points to significant potential decreases in housing values for those on well water (up to -$33,000) and those without ownership of their mineral rights (up to -$60,000). These unfortunate realities belie the idea of choice.

drilling-rig-home-town-of-mcdonald

pipeline-path-among-homes-washington-county

On left, a white fracking rig at the far left of the image sits near a cabin overlooking the town of McDonald, PA. On right, a pipeline cut descends a hillside and into a residential development outside of Houston, PA. Photo credit: Leann Leiter.

In interviews conducted with women living in close quarters to drilling activity, three health care professionals[5] discovered the sense of powerlessness experienced they felt. One woman contemplated moving away from the region in spite of opposition from her husband and her own attachment to her home. In my own interaction with affected families, many express powerful feelings about relocation like sadness about leaving land owned for generations, or an eagerness to escape a home that no longer feels safe. Many express a sense of injustice for being forced to make such painful choices.

Element #3: “Sacrifice of the few for the good of the many”

Another underlying assumption of a fracking-friendly frame is that of “sacrifice of the few for the good of the many.” It declares that a “few” people will have to live near fracking and bear the unfortunate consequences, so many others can have cheap oil and gas. The belief bubbles up among the public, such as in this comment collected during a survey[6] of people living in the Marcellus shale gas region:

Energy has to come from somewhere. The needs of the many may outweigh the inconvenience of the few who live near the exploration efforts. This is not an ideal situation for all residents, but it is the reality.

This person’s statement shows acceptance of the assumption that energy for all requires unevenly shared sacrifice, and indicates a drastic underestimation of the populations impacted. It also indicates a misperception of the impacts, which unfortunately go far beyond mere “inconvenience” for many residents.

We can break down these assumptions by questioning how many people make sacrifices in the name of gas extraction. An interactive map by FracTracker shows that over 12 million Americans live within a risky ½ mile of oil and gas facilities (including both fracking wells and other types). Mounting research indicates health threats for distances of ½ mile or greater. That meaning this ever-growing number of Americans have increased rates of asthma and prenatal harms, with the most vulnerable – the young, the elderly, and those with pre-existing conditions – at the highest risk. The 12 million figure, already a conservative estimate, would be significantly higher if factoring in other oil and gas infrastructure like pipelines or frac sand mining operations, each of which carry their own risks.

Populations in US near activity oil and gas drilling activity in 2016

Populations in US near activity oil and gas drilling activity in 2016. Click to explore the interactive map.

We can also question the nature of their sacrifice. In terms of health, research has shown correlations between how close women live to fracking operations and certain birth defects and noise-induced sleep disturbance and cardiovascular disease, as just a few examples. Facilities like well pads also come with risks to public safety, such as the Monroe County, Ohio well pad fire that burned unknown chemicals for five days near homes and resulted in 70,000 fish killed in a creek that flows to the Ohio River. Other fracking infrastructure likewise poses potential dangers from the 2.5 million miles of gas pipeline and additional 200,000 for hazardous liquids including  crude oil that crisscross the United States. Between 2010 and 2016 the US experienced 230 reported pipeline explosions, 635 fires, over 20,000 people evacuated, 470 injured, and 100 lives lost.

emergency-contacts-sign-at-pipeline-road-crossing

The view of nearby homes from a pipeline right-of-way, along with list of emergency contacts in case of incident. Safety precautions like these remind us of the potentially injurious nature of gas infrastructure. They also highlight the level of sacrifice being demanded of households near the hazard. Photo credit: Leann Leiter.

Building social support

These elements of a fracking-friendly frame function to isolate those who are experiencing negative effects in their own homes by minimizing, even denying, the impacts they are experiencing. Researchers in extractive regions have observed the power of this isolation. In some rural areas, isolation may be supported in part by cultural norms, such as an Appalachian appreciation for “minding one’s own business.” In at least one fracking-affected community, this widely-accepted norm hampers sharing among neighbors, prompting one resident’s complaint that “we’re all fighting like individuals.”[7] In a study of a community being driven from their homes by coal mining and power generation, another set of extractive, industrial activities, one participant lamented:

I think one of the problems of the mining and the industry is, they play on the basic everyday person’s lack of resources. There’s no social support for displacement, none whatsoever.[8]

A healthy homes frame, focused on universally shared human rights, powerfully counters the isolation. It reminds those who are suffering or have concerns about the changes to their home environment that they are not alone; others around the world are experiencing similar impacts to their households. Adopting this frame for understanding fracking is a show of support, one that acknowledges their plight.

Nearly everyone values and desires a healthy home, regardless of whether that home is an apartment, a nursing home, a cabin, or a mobile home. This frame extends beyond geographical, economical, and cultural barriers. It encourages social support from those currently removed from shale plays and the hydraulic fracturing used in extracting their resources. It empowers action, with the home front as a site of resistance, by articulating the range of rights being violated.

Focusing on what we’re fighting for

Re-centering the problems of fracking as they impact the right to a healthy home makes sense to those of us witnessing the degradation of the places people need in order to live and flourish. A rights-based approach focuses on what we’re fighting for, rather than giving extra airtime to the already-powerful frame we must fight against.

  • If you need assistance protecting your rights from planned fracking, the Delaware Riverkeeper Network offers a guide for communities and their local leaders to defending environmental rights at the municipal level.
  • For those already impacted, Fair Shake Environmental Legal Services provides “sliding scale” legal help to people in the Appalachian basin.
  • For communities at any stage of gas development, Environmental Health Project has created a Where to Turn for Help directory full of sources for air testing services, community organizing, health information, tracking and reporting fracking development and violations, and much more.

Whether or not you feel the direct impacts of fracking, we are all connected to this extensive process. Fracking’s commodity products – energy and plastics – are part of all of our lives; it’s climate-altering effect diminishes all of our futures. More importantly, we all have a crucial role to play. Here is how you can get further involved:

  • Communicate with your lawmakers – share with them this article series or your own take on fracking, and ask what frame they are using when they make decisions on this and other dangerous modes of energy extraction.
  • Join Halt the Harm Network to get connected to people, groups and events “working to fight the harms of oil and gas development.”
  • Follow @EnvironmentalHealthProject on Facebook and @EHPinfo on Twitter, and participate in the evolving discussion!

Bringing rights into the conversation on fracking challenges the fracking-friendly frame, and promotes instead protection for those in fracked households.


Special thanks to the many individuals and families who shared the experiences that informed this article series. 

References:

  1. Resick, L. K., Knestrick, J. M., Counts, M. M., & Pizzuto, L. K. (2013). The meaning of health among mid-Appalachian women within the context of the environment. Journal of Environmental Studies and Sciences , 3 (3), 290-296.
  2. Short, D., Elliot, J., Norder, K., Lloyd-Davies, E., & Morley, J. (2015). Extreme energy, ‘fracking’ and human rights: a new field for human rights impact assessments? , The International Journal of Human Rights, 19:6, 697-736, DOI:10.1080/13642987.2015.1019219
  3. John Graham, Senior Scientist at Clean Air Task Force, personal communication, June 9, 2017. Health impacts modeling completed using EPA Co-Benefits and Risk Assessment (COBRA) Screening Tool, using estimated PM 2.5 air emissions for permitted Shell ethane cracker in Beaver County, PA and four additional facilities planned in Ohio and West Virginia.
  4. Richard Heinberg cited in Short, D., Elliot, J., Norder, K., Lloyd-Davies, E., & Morley, J. (2015). Extreme energy, ‘fracking’ and human rights: a new field for human rights impact assessments? , The International Journal of Human Rights, 19:6, 697-736, DOI:10.1080/13642987.2015.1019219
  5. Resick, L. K., Knestrick, J. M., Counts, M. M., & Pizzuto, L. K. (2013). The meaning of health among mid-Appalachian women within the context of the environment. Journal of Environmental Studies and Sciences , 3 (3), 290-296.
  6. Cooley, R., & Casagrande, D. (2017). Marcellus Shale as Golden Goose. ExtrACTION: Impacts, Engagements, and Alternative Futures. Routledge.
  7. Resick, L. K., Knestrick, J. M., Counts, M. M., & Pizzuto, L. K. (2013). The meaning of health among mid-Appalachian women within the context of the environment. Journal of Environmental Studies and Sciences , 3 (3), 290-296.
  8. Connor et al., p. 54. Linda Connor, Glenn Albrecht, Nick Higginbotham, Sonia Freeman, and Wayne Smith. (2004). Environmental Change and Human Health in Upper Hunter Communities of New South Wales, Australia. EcoHealth 1 (Suppl.2), ,47-58. DOI: 10.1007/s10393-004-0053-2

By Leann Leiter, Fellow with the Environmental Health Project and FracTracker Alliance

Healthy Homes article in PA

Healthy Homes: Re-Framing Fracking Impacts

An Ohio family took joy in raising their kids and cattle at their farmhouse, built in 1853 with crooked walls and no indoor bathrooms. When they leased land to fracking activity, however, the “beep, beep, beep” of heavy truck traffic kept them up all night, and a cow died after drinking a strange fluid flowing on the land during the cold of winter. They dedicated their retirement savings to moving and building a new home, only to soon after receive a compressor station as their neighbor – close enough to hear the engines at all hours and loud enough to make them dread even walking out to their mailbox.

During the upswing of a boom-and-bust cycle of the gas industry in Greene County, the influx of outside workers and the high demand on rental housing resulted in one particular family being unable to secure an apartment. Without adequate housing, their children were temporarily taken from their custody.

In Huntingdon, a young woman resisted a pipeline being forced through her property by stationing herself in a tree, while workers with chainsaws felled those around her. Eminent domain enabled the gas company to claim this privately-owned land under a weak guise of “public good.”

These unsettling but true stories hint at the countless ways fracking plays out in individual households. A healthy home environment – with clean air, potable drinking water, and safety from outside elements – is essential to human life and functioning. Yet, the industrial processes involved in unconventional oil and gas development (UOGD), often summed up with the term “fracking,” may interfere with or even take away the ability to maintain a healthy home.

This article aims to put these household impacts, and the right to a healthy home, at the center of the fracking debate.

Framing the issue

definition-of-a-frame

The way we understand just about anything depends on our frame of reference. A frame, like the frame around a picture, brings its contents into focus. At the same time, it excludes the information outside its borders. A frame declares that what’s inside is what matters. When it comes to the human effects of fracking, various conflicting frames exist, each dictating their own picture of what fracking actually does and means.

health-frame

The frame we use to look at the fracking debate is so important, because it dictates how we talk about and think about the problem. Likewise, if we can identify the frame others are using when they talk about fracking, we can see more clearly what they have prioritized and what they are leaving out of the conversation.

Two researchers who conducted surveys, interviews, and focus groups in five Pennsylvania counties in 2014 and 2015 argue for the need for a new frame.1 Some of the common ways of talking about fracking not only favor shale gas development for reasons like those included in the frame on the left above, they also work against those trying to make a stand against the negative effects fracking. These researchers suggest that, rather than arguing within the existing, dominant frames, activists should consider proactively “reframing the debate around other core values.” The right to a healthy home is a widely-shared value. I propose we adopt a frame that puts that right at the center of the picture.

What is a “healthy home”?

The term healthy home isn’t new. The federal agencies Housing and Urban Development (HUD) and the Centers for Disease Control (CDC) both use this phrase in defining the importance of a home environment free from hazards and contaminants, like lead and radon. Simply put, a healthy home is one that supports health.

Why Now?

We sit poised at a unique moment to take on the task of reframing fracking. While new drilling in some places appears to be on the decline, countless large-scale petrochemical projects, like a growing crop of plastic-producing ethane crackers in the northeast US, are ramping up. These facilities will demand massive supplies of natural gas and byproducts, perpetuating and likely increasing drilling.

The renewed demand on wells and their associated infrastructure increase the burden on those households in its wake, living amid stimulated wells, near odorous compressor stations, next to pipelines with pig launchers spewing emissions.

Continued demand on natural gas – for energy or cheap plastics – also requires less-discussed but equally-invasive infrastructure, such as the massive underground gas storage underlying communities in growing numbers in states like Ohio and Pennsylvania. Such infrastructure exposes residents to the possibility of leaks, like the one that forced the evacuation of thousands of families in Porter Ranch, California. It burdens other communities with the disposal of toxic waste fluids, including underground injection and the associated earthquakes, like the hundreds pockmarking Ohio and now encroaching on Pennsylvania. Keeping the fracking going means communities, like some dairy farming regions in Wisconsin, continue to see the environmental and quality-of-life impacts of frac sand mining.

Engagement is urgent and timely,2 and the entire country has a role to play. This moment in our energy history is a chance for all of us – those affected by, in favor of, concerned about, eager to welcome, or otherwise learning about UOGD – to get clear on our frame of understanding fracking.

pipeline-route-runs-behind-home-and-swingset

A pipeline right-of-way, about 200 yards behind this house and children’s swingset, shows how close fracking infrastructure comes to homes. Photo credit: Leann Leiter

Why a “Healthy Homes” Frame?

Proponents of frames that endorse fracking often live at a considerable distance from the processes involved,3 buffering them and their families from its impacts. According to researchers4 who listened to the testimonies of residents at a community hearing, the distance they lived from the industrial activities shows up in how they talk about fracking. Those in favor tend to use a depersonalized, “birds-eye view” in describing the impacts. People for whom the negative impacts are or will be a part of their lives rely on more descriptive, specific, and place-based language.

Similarly, a frame that focuses on household impacts emphasizes the on-the-ground, lived experience of living near fracking infrastructure. This frame approaches the debate on fracking by continually asking, what is this like for the people who live with the process? What are the impacts to their home environment? Such a frame does not ignore large-scale issues of jobs and energy supply, but grounds these bigger questions with the real and urgent consequences to the people who are suffering.

oval-healthy-homes-frame

Household impacts

Despite rulings that define UOGD as an industrial process, drilling companies locate all manner of infrastructure – wells, pipelines, compressor stations, among others – in areas formerly residential or agricultural. Rules dictating distances from UOGD facilities to structures like houses vary by municipality and state. Yet, these new and often imposing facilities repeatedly occupy the immediate view of homes, or are within close proximity that defy medical and safety warnings.


Video: Glaring light of burning flares and noises both droning and sudden, along with major truck traffic and other changes to the immediate landscape around the household, produce high levels of stress, leading to its own health problems, creating an environment where water may become unsafe to drink and breathing the air becomes a hazard.

The Oil & Gas Threat Map (by Earthworks and FracTracker) shows the populations within a half-mile “threat radius” of infrastructure that includes fracking – close enough for residents to be exposed to contaminated air emissions, and possibly smell disturbing odors, hear loud sounds and feel vibrations, and see bright lights and the fire of emergency flares. As confirmed by the EPA, in some cases, UOGD results in contamination of drinking water, as well.

Researchers at The Environmental Health Project (EHP) offer individual health assessments to residents living in the shadow of fracking operations. In a physician’s thorough review of over 61 assessments, they identified the following symptoms to be temporally related to gas activity:

Table 1. Symptoms temporally related to UOGD

SYMPTOM CATEGORY n Symptom %
UPPER RESPIRATORY SYMPTOMS 39 64% Nose or throat irritation 25 41%
 Sinus pain or infections 17 28%
Nose bleeds 8 13%
CONSTITUTIONAL SYMPTOMS 33 54% Sleep disruption 26 43%
Fatigue 13 21%
 Weak or Drowsy 9 15%
NEUROLOGICAL SYMPTOMS 32 52% Headache 25 41%
Dizziness 11 18%
Numbness 9 15%
Memory loss 8 13%
PSYCHOLOGICAL SYMPTOMS 32 52% Stress or anxiety 23 38%
Irritable or moody 12 20%
Worry 6 10%
LOWER RESPIRATORY SYMPTOMS 30 49% Cough 21 34%
Shortness of breath 19 31%
Weezing 14 23%
GASTRO-INTESTINAL SYMPTOMS 27 44% Nausea 13 21%
Abdominal pain 12 20%
EYE SYMPTOMS 23 38% Itchy eyes 11 18%
Painful or dry 10 16%
DERMATOLOGICAL SYMPTOMS 19 31% Rash 10 16%
Itching 7 11%
Lesions or blisters 6 10%
CARDIAC SYMPTOMS 17 28% Palpitations 9 15%
Chest pain 6 10%
Other cardiac symptoms 6 10%
HEARING CHANGES OR TINNITUS 10 16% Hearing loss 3 5%
Tinnitus (ringing in the ear) 10 16%
 MUSCULOSKELETAL 10 16% Painful joints 9 15%
Aches 7 11%
ENDOCRINE 7 11% Hair loss 7 11%
n =  Number of patients reporting symptom, out of 61 patients assessed
% = Percentage of patients reporting symptom, out of 61 patients assessed
Table adapted from EHP – Click to download Excel spreadsheet

Mental and emotional stress can exacerbate and create physical health symptoms. For households close to fracking, the fear of a disaster, like a well pad fire, or concern for the long term health effects of exposures through air and water can create serious stress. These developments change communities, sometimes in divisive, negative ways, potentially adding to the stress.

Fracking, a disruptive, landscape-altering process can also produce what’s called solastalgia, whereby negatively-perceived changes to the land alter a person’s sense of belonging. In the case of fracking in residential areas, people may lose not only their relationship to the land, but their homes as they once knew them.5 Solastalgia, considered by some researchers to be a new psycho-social condition, is “the lived experience of the physical desolation of home.”6

When Home is Unsafe, Where to Get Help

EHP Trifold Cover

Click to expand and explore the tri-fold. Click here to access and print this free resource, and many others by EHP.

EHP offers a new resource for protecting your health at a household level, called: “Protecting Your Health from Unconventional Oil and Gas Development.” We created this free informational resource in collaboration with residents and health care providers in four different shale gas counties.

The final product is the direct result of input and knowledge from 15 focus groups and project meetings in these affected communities with over 100 participants, including residents and healthcare providers. EHP has packed this resource with practical steps for households amid shale gas development to limit their exposure to air and water contamination that may be associated with fracking.

For follow-up questions, or for free personalized health services for those experiencing fracking-related exposures, you can contact EHP directly at 724-260-5504 or by email at info@environmentalhealthproject.org.

Re-Centering Home in the Fracking Debate

Putting affected households at the center of the fracking debate better reflects the experiences of people on the front lines. This powerful frame could help counter the power of those who speak positively about fracking, but lack direct experience of the process.

For those at the frontlines of fracking, the intent is that these resources and tools will help you protect your health and your homes.

For those not yet directly affected by fracking, you can lend a hand. Show support for health protective measures by signing up at EHP for updates on events, education, and opportunities to make your voice heard. And, whenever and wherever you can weigh in on the debate, put a frame around fracking that puts impacted households at the center.

References

  1. Cooley, R., & Casagrande, D. (2017). Marcellus Shale as Golden Goose. ExtrACTION: Impacts, Engagements, and Alternative Futures.
  2. Short, D., Elliot, J., Norder, K., Lloyd-Davies, E., & Morley, J. (2015). Extreme energy, ‘fracking’ and human rights: a new field for human rights impact assessments?, The International Journal of Human Rights, 19:6, 697-736, DOI:10.1080/13642987.2015.1019219
  3. Cooley, R., & Casagrande, D. (2017). Marcellus Shale as Golden Goose. ExtrACTION: Impacts, Engagements, and Alternative Futures.
  4. Mando, J. (2016). Constructing the vicarious experience of proximity in a Marcellus Shale public hearing. Environmental Communication, 10(3), 352-364.
  5. Resick, L. K. (2016). Gender, protest, and the health impacts of unconventional natural gas development. In Y. Beebeejaum (Ed.), The participatory city (pp. 167-175). Berlin: Jovis Verlag GmgH.
  6. Albrecht et al (2007). Solastalgia: the distress caused by environmental change, Australasian Psychiatry . Vol 15 Supplement.

By Leann Leiter, Environmental Health Fellow for the SW-PA Environmental Health Project and FracTracker Alliance

Feature photograph: A compressor station sits above a beautiful farm in Washington County, Pennsylvania. Photo credit: Leann Leiter

New York: A Sunshine State!

Photovoltaic solar resources of the US (NREL)

Photovoltaic solar resources of the US (NREL)

It’s difficult to talk about the risks of oil and gas extraction without providing data on energy alternatives in the conversation. Let’s look at New York State, as an example. There, solar power is taking a leadership position in the renewable energy revolution in the United States. Although New York State receives far less sunshine than many states to the west and south, the trends are bright! Currently, New York State ranks seventh in the nation in installed solar capacity, with over 700 MW of power generated by the sun, enough to power 121,000 homes.

Despite common assumptions that solar power only makes sense where the sun shines 360 days a year, we’ve been seeing successful adoption of solar in Europe for years. For example, in Germany, where even the most southern part of the country is further north of the Adirondack Mountains in New York State, close to 7% of all the power used comes from combined residential and commercial scale photovoltaic sources–35.2 TWh in all. Munich, one of the sunniest places in all of Germany, has a lower average solar irradiation rate of 3.1 kWh/m2/day than most cities in New York State; compare it with locations in New York like Rochester (3.7 kWh/m2/day), New York City (4.0 kWh/m2/day), and Albany (3.8 kWh/m2/day). At present, Germany still leads New York State by more than double the electrical output from solar for equivalent areas.

cumulative_capacity

Cumulative Solar Capacity in New York

The cumulative capacity for completed photovoltaic systems in New York State has risen steeply in the past three years, with ground-mounted and roof-top residential capacity outpacing commercial capacity by a wide margin.

Nonetheless, commercial and industrial scale installations in New York account for over 100 MW of power capacity in the state.

Large-Scale Solar Installations Map

This map shows the location of those large-scale solar installations in the US (zoom out to see full extent of US), as of March 2016. Here is our interactive map:

View map full screen | How FracTracker maps work

In the past fifteen years, the increase in small to medium-sized solar installations in New York State has been significant, and growth is projected to continue.  The following animation, based on data from the New York State Energy Research and Development Authority (NYSERDA), shows that increase in capacity (by zip code) since 2000:

solar_animation_cumulative_2000-15

Solar Installations by Zip Code

NYSERDA also provides maps that show distributions of residential, governmental/NGO, and commercial solar energy projects (images shown below). For example, Suffolk County leads the way in the residential arena, with nearly 8200 photovoltaic (PV) systems on roofs and in yards, with an average size of 8.3 kW each.

Erie County has 128 PV systems run by governmental and not-for-profit groups, with an average size of about 27 kW each. Albany County has over 320 commercial installations, with an average size each of about 117 kW.

New York State’s Future Solar Contribution

pricing

Price of Completed Solar Systems 2003-2016

The prices of solar panels is steeply declining, and is coupled with generous tax incentives. The good news, according to the Solar Energy Industries Association (SEIA), is that over the next five years, New York State’s solar capacity is expected to quadruple its current output, adding over 2900 MW of power. This change would elevate New York State from seventh to fourth place in output in the US.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

Bill Hughes giving tour to students in shale fields, WV

A Cross-Country Ride to Support Oil and Gas Tours in West Virginia

Bill Hughes giving tours of gas fields in West Virginia. Photo by Joe Solomon. https://flic.kr/s/aHskkXZj3z

Bill Hughes giving a tour of gas fields in West Virginia. Photo by Joe Solomon.

As many of you know, educating the public is a FracTracker Alliance core value – a passion, in fact. In addition to our maps and resources, we help to provide hands-on education, as well. The extraordinary Bill Hughes is a FracTracker partner who has spent decades “in the trenches” in West Virginia documenting fracking, well pad construction, water withdrawals, pipeline construction, accidents, spills, leaks, and various practices of the oil and gas industry. He regularly leads tours for college students, reporters, and other interested parties, showing them first-hand what these sites look, smell, and sound like.

While most of us have heard of fracking, few of us have seen it in action or how it has changed communities. The tours that Bill provides allow students and the like to experience in person what this kind of extraction means for the environment and for the residents who live near it.

Biking to Support FracTracker and Bill Hughes

Dave Weyant at the start of his cross-country bike trip in support of WV tours

Dave Weyant at the start of his cross-country Pedal for the Planet bike trip

In the classic spirit of non-profit organizations, we work in partnership with others whenever possible. Right now, as you read this posting, another extraordinary Friend of FracTracker, Dave Weyant (a high school teacher in San Mateo, CA), is finishing his cross-country cycling tour – from Virginia to Oregon in 70 days.

Dave believes strongly in the power of teaching to reach the hearts of students and shape their thinking about complicated issues. As such, he has dedicated his journey to raising money for FracTracker. He set up a GoFundMe campaign in conjunction with his epic adventure, and he will donate whatever he raises toward Bill’s educational tours.

Help us celebrate Dave Weyant’s courage, vision, and generosity – and support Bill Hughes’s tireless efforts to open eyes, evoke awareness, and foster communication about fracking – by visiting Dave’s GoFundMe page and making a donation. Every gift of any size is most welcome and deeply appreciated.

100% of the funds raised from this campaign will go to support Bill’s oil and gas tours in West Virginia. FracTracker Alliance is a registered 501(c)3 organization. Your contribution is tax deductible.

And to those of you who have already donated, thank you very much for your support!

Public Herald’s #fileroom Update

Crowdsourcing Digital PA Oil & Gas Data

FracTracker Alliance worked with Public Herald this spring to update and map oil and gas complaints filed by citizens to the Pennsylvania Department of Environmental Protection (PA DEP) as of March 2015. The result is the largest release of oil and gas records on water contamination due to fracking in PA. Additionally, Public Herald’s investigation revealed evidence of Pennsylvania state officials keeping water contamination related to fracking “off the books.”

Project Background

The mission of Public Herald, an investigative news non-profit formed in 2011, is two-fold: truth + creativity. Their work uses investigative journalism and art to empower readers and hold accountable those who put the public at risk. For this project, Public Herald aims to improve the public’s access to oil and gas information in PA by way of file reviews and data digitization. Public Herald maintains an open source website called #fileroom, where people can access a variety of digital information originally housed on paper within the PA DEP. This information is collected and synthesized with the help of donors, journalists and researchers in a collective effort with the community. To date, these generous volunteers have already donated more than 2,000 hours of their time collecting records.

The site includes complaints, permits, waste, legal cases, and gas migration investigations (GMI) conducted by the PA DEP. Additionally, there is a guide on how to conduct file reviews and how to access information through the “Right-to-Know” law at the PA DEP. They have broken down complaints and permits by county; wastes and GMI categories by cases, all of which include test results from inspections; and correspondence and weekly reports.

Some partners and contributors to the file team include Joshua Pribanic as the co-founder and Editor-in Chief, Melissa Troutman as co-founder and Executive Director, John Nicholson, who collects and researches for several databases, Nadia Steinzor as a contributor through Earthworks, and many more. Members of FracTracker working on this project include Matt Kelso, Samantha Rubright, and Kirk Jalbert.

#fileroom’s update expands the number of complaint data records collected to 18 counties – and counting!


View Map Fullscreen

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

Quick Sand: Frack Sand Mining in Wisconsin

Each silica sand mine displaces 871 acres of wetlands and more than 12 square miles of forests and agriculture land in Wisconsin to provide the shale gas industry with fracking proppant.

By Juliana Henao, Communications Intern

Silica sand is used by the oil and gas industry as a way to prop open the fractures made during fracking – and is also referred to as a proppant. The industry’s demand for silica sand is steadily increasing (i.e., 4-5K tons per shale lateral, +86 tons per lateral per quarter), directly affecting the Great Lakes, their ecosystems, and land use. Silica sand is often found in Wisconsin and Michigan, which have felt the effects of increased sand mining demands through altered landscapes, impacted ecosystem productivity, and altering watershed resilience; these impacts will only continue to increase as the demand for silica sand increases.

To better understand frack sand mining’s current and potential effects, FracTracker’s Ted Auch and intern Elliott Kurtz, with generous support from the Save The Hills Alliance, explored mining and land use changes data in West Central Wisconsin (WCW). In their research paper, Auch and Kurtz show the current and future environmental impacts of increased sand mining in WCW in order to supply the oil and gas industry with sand. Not only does this research illustrate what is at risk in the WCW landscape, it also showcases what sand mining has already done to the region.

Key Frack Sand Mining Findings

Land alterations due to silica sand mining in WI

Sixteen percent, or 2,396 square miles, of the West Central Wisconsin (WCW) is made up of wetlands or open waters. These and the other existing WCW landscapes are unquestionably profitable. The forests buffer climate change impacts – to date accumulating between 4.8-9.8 billion tons of CO2 assuming they are 65-85 years old – and have a current stumpage value of $253-936 million.

The 25 producing silica mines in this region occupy 12 square miles of WCW and have already displaced:

  • 3 mi2 of forests
  • 7 mi2 of agricultural land-cover
  • 1.36 mi2 of wetlands (equal to 11% of all mined lands)
    Formerly, these wetlands were one of three types:

    • 18% (158 acres) forested wetlands
    • 41% (353 acres) lowland shrub wetlands, and
    • 41% (361 acres) emergent/wet meadows
Breakdown of the current landscape types near these expanding mines, based on an analysis of satellite imagery

Breakdown of the current landscape types near these expanding mines, based on an analysis of satellite imagery

Why Wisconsin?

There are more than 125 silica sand mines throughout WCW, a stretch of ~16,000 square miles. Previously, the mining industry focused their efforts in Oklahoma and Texas’s Riley, Hickory/Brady, and Old Creek formations, where the land is not as agriculturally or ecologically productive as WCW. Now, more and more mines are being proposed and built in the WCW region. We wanted to determine what this change would mean for such an ecosystem diverse area of Wisconsin – many of which are considered “globally imperiled” or “globally rare” including oak savanna, dry prairies, southern dry-mesic forests, pine barrens, moist cliffs and oak openings.

The St. Peter Sandstone – along with the early Devonian and much smaller Sylvania Sandstone in Southeastern Michigan – is the primary target of the silica sand industry. Carbon-rich grassland soils cover 36% of the St. Peter, where they aid the ecosystem by capturing and sorting 20.9 tons of CO2 per year, as well as purifying precipitation inputs. This ecosystem, amongst many others around sand mining activities, will be dramatically altered if silica sand mining continues at its increasing rate. We will see CO2 capturing levels drop from 20.9 tons to 10.6 tons per acre per year if the highly productive temperate forests are not reassembled and reclaimed to their original acreage, as well as a significant loss (75%) in agricultural productivity on sites that are not reclaimed properly.

Out-of-state mining companies are settling into Wisconsin and displacing the land at a very high rate. As the president of Iowa’s Allamakee County Protectors Ric Zarwell told us by email “Frac sand mining companies do not come from the area where I live.  So efforts to destroy landscapes for frac sand are going to involve Neighbors Opposing Invaders.”

A high demand in silica sand from the shale gas industry will continue to drive this influx of mining companies into WI, providing a potentially collapsed ecosystem in the future. Factors at play include additional – and often much larger – mines under consideration, the average shale gas lateral grows by > 50 feet per quarter, and silica sand usage will grow from 5,500 tons to > 8,000 tons per lateral (i.e., 85 tons per quarter per lateral). Auch and Kurtz’s research paper describes in detail where how much silica sand might be needed in the future, as well as a detailed set of maps depicting land cover and usage in WI.

Convergence in Buenos Aires Argentina

A South American Crossroads

by Brook Lenker, Executive Director

Gracious. Passionate. Determined.

Few words fully capture the evocative resilience of Argentina where history is as turbulent as the winds of Patagonia. Fracking for oil and natural gas is a growing storm on the national horizon, and the effects will be fueled or mitigated by the ceaseless power of the Argentine people.

In the plains of Vaca Muerta, the forces collide. Democracy and calls for transparency meet big energy and nonresponsive government. Chevron has seduced YPF, the state-supported oil company, for a heavily-subsidized stake in the hydrocarbon riches. The shale play represents some of the largest oil and gas reserves in the world, proportional to the scale of concern about excessive use of water and its possible contamination; ranching and agriculture are the lifeblood of this drought-prone land. So much is at stake.

Our Energy Solutions in South America

FracTracker, Earthworks, and Ecologic Institute sent a delegation to Argentina and Uruguay from May 5 through the 12th as part of an outreach program called Our Energy Solutions made possible by our hosts’ generosity, foundation support, and last year’s Indiegogo campaign.

Eager audiences greeted our presentations about the American experience with unconventional oil and gas development and the promise of renewable energy. It was standing room only at a Senate forum in Buenos Aires and the offices of El Telegrafo in Paysandu. In Parana, we kicked-off a national conference about fracking and concluded our tour in San Rafael – a city on the northern fringe of the drilling boom. In total, we addressed more than 650 people, answering their concerns, cultivating their understanding of the perils of extraction, and sharing the opportunities for cleaner energy. Our ultimate reach was even greater, magnified by television and newspaper coverage and connections fostered with other organizations and institutions. The new relationships in South America may achieve unfathomable good.

A Moral Imperative

With his Argentine roots, Pope Francis is a ubiquitous and revered figure across the country. He’s also a gentle global force calling on humanity to confront climate change and care for the earth. One of our unforgettable hosts, Juan Pablo Olsson, had been in Rome the week prior to meet with the pontiff and participate in an environmental conference at the Vatican. Inspired, Juan Pablo and other speakers cited the moral imperative of the issues we were communicating and shared this papal plea: “a humble and simple request to work together to defend the future of the planet.”

The call still resonates. Every day we are confronted by the acute harms of unrestrained extraction – from contamination of air and water to the violation of fundamental human and constitutional rights. The glaciers of Patagonia aren’t melting, they are crying – for a global demonstration of compassion.

Stay tuned for news in the fall from the next leg of this journey – Europe.

Jay Bee Lisby Pad Inspection – Sept. 11, 2014

I regularly visit the Jay Bee Lisby pad on Big Run in Tyler County, WV. Given its significant and continuing problems over the past year, and also due to the total absence of any environmental enforcement, it is important to give all those JB well pads extra attention. In fact, I happened upon a few new issues during my recent visits and site inspections on Sept. 11, 2014 and again on Oct. 1st.

There seems to be an effort by Jay-Bee to literally bury their evidence in a ditch along their poorly constructed well pad. New dirt has recently been put into the low area along the jersey barriers (photo above). It appears that they are trying now to build some type of well pad, whereas most drillers usually build a proper well pad before they drill the wells.

An additional issue is the orange fluid pouring out of the well pad (photos below). While I have conducted my own sampling of this contaminant, regulatory sampling should be conducted soon to find out the nature of this fluid and its source from the Jay Bee Lisby pad.

Orange Liquid Seeping from Lisby Pad

Orange Liquid Close Up

Given the many spills at this pad, this issue is not surprising. However, we still need to find out what this is, as it will not be going away on its own. JB should not be allowed to bury its evidence before they are required to test and reclaim the whole area.

Please keep in mind that the law might allow a driller to force a well pad on a land owner to recover the gas, and to also locate it next to a stream, but it does not give them the right to contaminate and pollute private property – which has been done here numerous times.

MonitorResults

Readings from conductivity meter

When I sampled the fluid from the puddle below the orange stream and tested its conductivity, the meter read ~2.34 millisiemens – or 2340 microsiemens (photo right).

The orange fluid continues to flow under the fence and beyond their limits of disturbance. However, given the wide area covered in sludge after the January explosion, it is hard to say where their limits of disturbance actually stop.


By Bill Hughes, WV Community Liaison, FracTracker Alliance
Read more Field Diary articles here.

Here They Come Again! The Impacts of Oil and Gas Truck Traffic

Part of the FracTracker Truck Counts Project
By Mary Ellen Cassidy, Community Outreach Coordinator, FracTracker Alliance

I was recently invited by a community member to visit his home. It sits in a valley that is surrounded by drilling pads, as well as compressors and processing stations. While walking down the road that passes directly in front of his home, several caravans of gas trucks roared past and continued far into the evening. Our discussion about the unexpected barrage of this new invasion of intense truck traffic was frequently interrupted by the noise of the diesel engines passing nearby. Along with the noise, truck headlights pierced through the windows of the home, and dust flew up from the nearby road onto his garden.

There are many stories like this about homes and families impacted by the increased truck traffic associated with fracking-related activities. FracTracker is currently working with some of these communities to document the intensity of gas and oil trucks travelling their roads. In response to these concerns we have a launched a pilot Truck Counts project to provide support, resources, and networking opportunities to communities struggling with high volume gas truck traffic.

Preliminary Results

Volunteers in PA, WV, OH and WI have already started to participate in the project, with some interesting results, photos, observations, and suggestions.

TruckCountsChart

To-date, truck counts have varied significantly, as to be expected. Some of the sites where we chose to count passing trucks were very close to drilling activity, and some were more remote. While developing the counting protocol, we often included large equipment and tanker trucks, as well as gas company personnel vehicles (as indicated by white pickup trucks and company logos on the side). While the data vary, the spikes in truck counts do tell the story of a bigger and broader issue – the influx of heavy equipment during certain stages of drilling can be a significant burden on the local community. In total, we counted 676 trucks over 13 sites The average number of trucks that passed by per hour was 44, with a high of 116 an hour, and a low of 5.

About the Project

FracTracker Truck Counts partners with communities to: help identify issues of concern related to high volume gas truck traffic; collect data, photos, videos and narratives related to gas truck traffic; and analyze and share results through shared database and mapping options.

What motivates volunteers to join us in our Truck Counts program? Community concerns include dust, diesel exhaust, spills, accidents, along with other health and safety issues, as well as the cost and inconvenience of deteriorating road conditions resulting from the increased weights and numbers of vehicles. So, what do we already know about the extent of the damages caused by heavy truck traffic?

Public Safety

Several studies have found that shale gas development is strongly linked to increased traffic accidents and that the increases cannot be attributed only to more trucks and people on the road.

Unlike gas truck traffic issues from past oil and gas booms, this recent shale gas boom impacts traffic and public safety in many different ways. The hydraulic fracturing process requires 2,300 to 4,000 truck trips per well, where older drilling techniques needed one-third to one-half as many trips. Another difference is the speed of development that often far outpaces the capacity of communities to build better roads, bridges, install more traffic signals or hire extra traffic officers. Some experts explain increased truck traffic related accidents by pointing to regulatory loopholes such as federal rules that govern how long truckers can stay on the road being less stringent for drivers in the oil and gas industry. Others note that out of state drivers in charge of large heavy duty loads are not always accustomed to the regional weather patterns or the winding, narrow and hilly country roads that they travel.

An Associated Press analysis of traffic deaths in six drilling states shows that in some counties, fatalities have more than quadrupled since 2004 when most other American roads have become much safer in that period (even with growing populations). Marvin Odum, who runs Royal Dutch Shell’s exploration operations in the Americas, said that deadly crashes are “recognized as one of the key risk areas of the business”. Along with the community, gas truck drivers themselves are at risk. According to a study by the National Institute for Occupational Safety and Health, vehicle crashes are the single biggest cause of fatalities to oil and gas workers. The AP study finds that:

  •  In North Dakota drilling counties, the population has soared 43% over the last decade, while traffic fatalities increased 350%. Roads in those counties were nearly twice as deadly per mile driven than the rest of the state
  • From 2009-2013-
    • Traffic fatalities in West Virginia’s most heavily drilled counties…rose 42%. Traffic deaths in the rest of the state declined 8%.
    • In 21 Texas counties where drilling has recently expanded, deaths/100,000 people are up an average of 18 % while for the rest of Texas, they are down by 20%.
    • Traffic fatalities in Pennsylvania drilling counties rose 4%, while in the rest of the state they fell 19 %.
    • New Mexico’s traffic fatalities fell 29%, except in drilling counties, where they only fell 5%.

A separate analysis by Environment America using data from the Upper Great Plans Institute finds that – “While the expanding oil industry in North Dakota has produced many benefits, the expansion has also resulted in an increase in traffic, especially heavy truck traffic. This traffic has contributed to a number of crashes, some of which have resulted in serious injuries and fatalities.” In the Bakken Shale oil region of North Dakota, the number of highway crashes increased by 68% between 2006 and 2010, with the share of crashes involving heavy trucks also increasing over that period.”1

Truck accident and spill in WV. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Truck accident and spill in WV. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Public health concerns do not end with traffic accidents and fatalities. An additional cost of heavy gas truck traffic is the strain it places on emergency service personnel. A 2011 survey by State Impact Pennsylvania in eight counties found that:

Emergency services in heavily drilled counties face a troubling paradox: Even though their population has fallen in recent years, 911 call activity has spiked — by as high as 46 percent, in one case.” Along with the demands placed on emergency responders from the number of increased calls, it also takes extra time to locate the accidents since many calls are coming from transient drivers who “don’t know which road or township they are in.

In Bradford County, a heavily drilled area, increased traffic has delayed the response times of emergency vehicles. According to an article in The Daily Review, firefighters and emergency response teams are delayed due to the increased number of accidents, gas trucks breaking down, and gas trucks running out of fuel (some companies only allow refueling once a night).

Road Deterioration and Regional Costs

Roadway degradation from truck traffic. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Roadway degradation from truck traffic. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

An additional cost often passed on to the impacted communities is infrastructure maintenance. In an article from Business Week, Lynne Irwin, director of Cornell University’s local roads program in Ithaca, New York, states, “Measures to ensure that roads are repaired don’t capture the full cost of damage, potentially leaving taxpayers with the bill.”

This Food and Water Watch Report calculated the financial burden imposed on rural counties by traffic accidents alone, estimating that if the heavy truck accident rate in fracked counties had matched those untouched by the boom, $28 million would have been saved.2

Garrett County is currently struggling with anticipating potential gas traffic and road costs. The Garrett County Shale Gas Advisory Committee uses recent studies from RESI ‘s New York and Pennsylvania data to project gas truck traffic for 6 wells/pad at 22,848 trips/pad and 91,392 total truck trips the first year with increasing numbers for the next 10 years. Like many counties, Garrett County also faces the issue that weights and road use are covered by State, not County code.  There is a possibility, however, that the County could determine best “routes” for the trucks. (This is a prime example of the need and benefit for truck counts.)

Although truck companies and contractors pay permit fees, often they are either insufficient to cover costs or are not accessible to impacted counties. The Texas Tribune reports, “The Senate unanimously passed a joint resolution which would ask voters to approve spending $5.7 billion from the state’s Rainy Day Fund, including $2.9 billion for transportation debt. But little, if any, of that money is likely to go toward repairing roads in areas hit hardest by the drilling boom.”

Commenting on the argument that gas companies already pay their fair share for road damages they cause, George Neal posts calculations on the Damascus Citizens for Sustainability website that lead him to conclude that, although “the average truck pays around 27 times the fuel taxes an average car pays… according to the Texas Department of Transportation, they do 8,000 times the damage per mile driven and drive 8 times as far each year.”

The funds needed to fill the gap between the costs of road repairs and the amount actually paid by the oil and gas companies must come from somewhere. According to a draft report from the New York Department of Transportation looking at potential Marcellus Shale development costs, “The annual costs to undertake these transportation projects are estimated to range from $90 to $156 million for State roads and from $121-$222 million for local roads. There is no mechanism in place allowing State and local governments to absorb these additional transportation costs without major impacts to other programs and other municipalities in the State.”

Poor Air Quality

Caravan of trucks. Photo by Savanna Lenker, 2014.

Caravan of trucks. Photo by Savanna Lenker, 2014.

Along with public safety and infrastructure costs, increased truck traffic associated with unconventional oil and gas extraction is found to be a major contributor to public health costs due to elevated ozone and particulate matter levels from increased emissions of heavy truck traffic and the refining and processing activities required.

In addition to ozone and particulate matter in the air, chemicals used for extraction and development also pose a serious risk. A recent study in the journal of Human and Ecological Health Assessment found that 37% of the chemicals used in drilling operations are volatile and could become airborne. Of those chemicals, more than 89% can cause damage to the eyes, skin, sensory, organs, respiratory and gastrointestinal tracts, or the liver, and 81% can cause harm to the brain and nervous system. Because these chemicals can vaporize, they can enter the body not only through inhalation, but also absorption through the skin.

The Union of Concerned Scientists note that air pollution from traffic may be worsened in North Dakota by the use of unpaved roads that incorporate gravel containing a fibrous mineral called erionite, which has properties similar to asbestos. Trucks driving over such gravel roads can release harmful dust plumes into the air, which could present health risks for workers and area residents

To address and solve these problems associated with heavy truck traffic, information is needed to assess both qualitatively and quantitatively the scope of the increased truck traffic and its impacts on communities. Collection and analysis of data, as well as community input, are needed to both understand the scope of the problem and to inform effective solutions.

Joining FracTracker’s Truck Counts

In response to community concerns about the impacts of increased truck traffic in their community, FracTracker has developed the Truck Count project to document the intensity of oil and gas traffic in your region, map heavy traffic locations, and offer networking opportunities for impacted communities.

Participation in FracTracker’s Truck Counts can provide grassroots organizations with a valuable opportunity to collect local data, engage volunteers, and educate stakeholders and the public. The data, pictures and narratives collected can be used to support concerned citizens’ efforts to reroute traffic from schools, playgrounds and other sensitive areas; to inform decision makers, public health researchers, and transportation agencies; to serve as a potential launching point for more detailed, targeted studies on public health and safety along with economic development analyses; to compare costs and benefits of oil and gas energy sources to the cost and benefits of energy conservation, efficiency and renewable energy.

Also, by sharing your community’s counts and stories on FracTracker.org, you serve other communities by increasing the awareness of the impacts of oil and gas truck traffic nationwide.

FracTracker’s Truck Counts provides the following resources to conduct the counts:

  • information and education on gas and oil truck identification,
  • data sheets for easy counting, and
  • tips for selecting safe and accessible counting locations in your community.

We look forward to working with you and supporting your community. If you are interested in working on this important crowdsourcing project with us, please contact:

Mary Ellen Cassidy
Community Outreach Coordinator
Cassidy@Fractracker.org
304-312-2063


Endnotes and References

  1. In addition, a 2013 study from Resources for the Future found that shale gas development is linked to traffic accidents in Pennsylvania with a significant increase in the number of total accidents and accidents involving a heavy truck in counties with a relatively large degree of shale gas development as compared to counties with less (or no) development.
    The 2013 Food and Water Watch Report finds similar correlations. Shale gas drilling was associated with higher incidents of traffic accidents in Pennsylvania. This trend was strongest in counties with the highest density of fracking wells. The decrease in the average annual number of total vehicle crashes was 39% larger in unfracked rural counties than in heavily fracked counties. (analysis based on data from US Census Bureau, PA DEP and PennDOT).
    In a recent Karnes County, Texas analysis “Traffic accidents and fatalities have skyrocketed in the shale boom areas….with an increases of 1,000% in commercial motor vehicle accidents from 2008-2011.
    According to a 2013 Texas Public Threat Safety Report, “In the three Eagle Ford Shale counties where drilling is most active, the number of crashes involving commercial vehicles rose 470 percent between 2009 and 2011. In the 17 counties that make up the Permian Basin, fatal car crashes involving commercial vehicles have nearly tripled from 14 in 2010 to 41 in 2012.
    As a result of heavily using of publicly available infrastructure and services, fracking imposes both immediate and long-term costs on taxpayers. An Environment Texas study reveals that, “Trucks required to deliver water to a single fracking well cause as much damage to roads as 3.5 million car journeys, putting massive stress on roadways and bridges not constructed to handle such volumes of heavy traffic. Pennsylvania estimates that repairing roads affected by Marcellus Shale drilling would cost $265 million”.
  2. Researchers from the RAND Corporation and Carnegie Mellon University looked at the design life and reconstruction cost of roadways in the Marcellus Shale formation in Pennsylvania. Their findings in Estimating the Consumptive Use Costs of Shale Natural Gas Extraction on Pennsylvania Roadways, note that local roads are generally designed to support passenger vehicles, not heavy trucks, and that “the useful life of a roadway is directly related to the frequency and weight of truck traffic using the roadway.” The study’s findings include:
    1. “The estimated road-reconstruction costs associated with a single horizontal well range from $13,000 to $23,000. However, Pennsylvania often negotiates with drilling companies to rebuild smaller roads that are visibly damaged, so the researchers’ conservative estimate of uncompensated roadway damage is $5,000 and $10,000 per well.
    2. While the per-well figure of $5,000-$10,000 appears small, the increasingly large number of wells being drilled means that substantial costs fall on the state: “Because there were more than 1,700 horizontal wells drilled [in Pennsylvania] in 2011, the statewide range of consumptive road costs for that year was between $8.5 and $39 million,” costs paid by state transportation authorities, and thus taxpayers.”
  3. The feature photo at the top of the page was taken by Savanna Lenker, 2014.

In-depth Review of the Statoil Well Pad Fire

Commentary on Shale Gas Operations: First in a Series of Articles
By Bill Hughes, Community Liaison, FracTracker Alliance
Statoil Well Pad Fire: June 28-29, 2014

The early riser residents along Long Ridge Road in Monroe County are among the first in Ohio to see the sun coming up over the West Virginia hills.  It rose about 6:00 am on the morning of June 28th.  Everyone assumed that this would be a normal Saturday morning.  Well, at least as normal as it had been for the better part of two years since the site preparation and drilling started.

For those residents on Long Ridge who were not early risers, the blaring sirens, the smell of acrid smoke, and the presence of fire trucks and other emergency vehicles shortly after 9:00 am must surely have made them wonder if they were in the midst of a nightmare. A quick glance outside toward the Statoil Eisenbarth well pad and they would have seen this view:

Statoil 1

Figure 1. View from the southeast, as the fire spread on Sat. June 28th

The image in Fig. 1 would be enough to make most folks feel somewhat panicky and consider evacuating the neighborhood. That is exactly what soon happened – definitely not the start of a normal Saturday morning.

Adjusting to the New Normal

The traffic in the area had been a problem ever since site preparation started on the nearby well pad. The State expected the drillers to keep up the road. Crews also provided lead escort vehicles to help the many big trucks negotiate the narrow road way and to clear the residential traffic. Access to the well site required trucks to climb a two-mile hill up to the ridge top.

Statoil 2

Fig. 2. Neighbors’ views of the fire

Until June 28th, most folks had become accustomed to the extra noise, diesel fumes, and congestion and delays that always come with any shale gas well exploration and development in the Marcellus shale gas active area. Most of the neighbors had gotten used to the new normal and reluctantly tolerated it. Even that was about to change, dramatically.  As the sun got higher in the eastern sky over WV, around 9:00 AM, suddenly the sky started to turn dark. Very dark. Sirens wailed. Red trucks started a frenzied rush down Long Ridge from all directions. There was a fire on the well pad. Soon it became a very large, all consuming fire.  Smoke, fire, bitter fumes, and no one seemed to know yet exactly what had happened, and what was likely to happen soon.

This gas well location, called the Eisenbarth pad, recently changed operators. In January 2013, the well pad property and its existing well and equipment were bought out by Statoil, a company based in Norway.  Statoil had since drilled seven more wells, and even more were planned.  The original single well was in production.  Now in late spring and early summer of 2014 the new wells were to be “fracked.”  That means they were ready to be hydraulically fractured, a procedure that follows the completion of the drilling process.

Statoil hired as their fracturing sub-contractor Halliburton. All of the fracturing pump trucks, sand kings, Sand Castles, and control equipment were owned and operated by Halliburton.  The fracturing process had been ongoing for some weeks when the fire started. The eastern Ohio neighbors now watched ~$25 million worth of equipment go up in smoke and flames (Fig. 2). The billowing smoke was visible for over 10 miles.

Industrial accidents are not rare in the Ohio Valley

Many of the residents nearby had worked in the coal mining industry, aluminum plants, chemical plants, or the coal fired power plant that were up and down the Ohio River. Many had since retired and had their own industrial accident stories to tell. These were frequently private stories, however, which mostly just their co-workers knew about. In an industrial plant, the common four walls and a roof kept the dangerous processes confined and enabled a trained response to the accidents. The traditional, industrial workplace had well-proven, customized workplace safety standards.  Professional maintenance personnel were always nearby.  In stark contrast, unconventional gas well pads located in our rural communities are very different. They are put in our hayfields, near our homes, in our pastures and just down the road. You cannot hide a community accident like this.

Sept 2014 Update: Video of the fire, Copyright Ed Wade, Jr.

Print Media Coverage of the Fire

Within days, many newspapers were covering the well pad fire story. The two nearby weekly newspapers, one in Monroe County, Ohio and the other in Wetzel County, West Virginia both had detailed, long articles the following week.

Statoil 3

Fig. 3. View from the east as the fire started

The Monroe County Beacon on July 2, 2014 said that the fire spread quickly from the small original fire which was totally surrounded within the tangled complex of equipment and high pressure piping.  Early Saturday morning, the first responder would likely have seen a rather small somewhat localized fire as shown in Fig. 2. The photo to the right (Fig. 3) is the view from the east, where the access road is on Long Ridge road. This point is the only access into the Statoil well pad. The view below, showing some still intact tanker trucks in the foreground, is looking west toward the well location. Pay attention to the couple of trucks still visible.

The Monroe County emergency director said it was his understanding that the fire began with a ruptured hydraulic hose. The fluid then ignited on a hot surface. He said, “…by 9:10 AM the fire had spread to other pumps on the location and was spreading rapidly over the well pad.”   Emergency responders needed water now, lots of it. There is only one narrow public road to the site at the top of a very long, steep hill and only one narrow entrance to the densely congested equipment on the pad.  Many Volunteer Fire Departments from both Ohio and West Virginia responded.  A series of tanker trucks began to haul as much water to the site as possible.  The combined efforts of all the fire departments were at best able to control or contain but not extinguish the powerful, intensely hot and growing blaze.  The Volunteer firemen did all they could. The EMS director and Statoil were very grateful for the service of the Volunteer Fire Departments. There was a major loss of most equipment, but none of the 45-50 workers on site were injured.

Statoil 4

Fig. 4. Well pad entrance

The article from the Wetzel Chronicle also praised the coordinated effort of all the many fire departments. At first they attempted to fight the fire, and then prudently focused on just trying to limit the damage and hoping it did not spread to the well heads and off the well pad itself. The New Martinsville fire chief also said that,  “… the abundance of chemicals and explosives on the site, made attempts to halt the fire challenging, if not nearly impossible… Numerous plans to attack the fire were thwarted each time by the fires and numerous explosions…”  The intense heat ignited anything nearby that was at all combustible. There was not much choice but to let the fire burn out.

Eventually the view at the well pad entrance as seen from the east (Fig. 3) would soon look like the overhead view (Fig. 5). This aerial imagery shows what little remained after the fire was out – just some aluminum scrap melted into the decking is left of the original, white Hydrochloric Acid tanker truck. Everything near it is has almost vaporized.

Statoil 5

Figure 5. Post-fire equipment identification

Efforts to Limit the Fire

Statoil 6

Fig. 6. Protected white trailer

An excellent example of VFD’s successfully limiting the spread of the fire and controlling the extreme heat can be seen in the photo to the right (Fig. 6). This white storage trailer sure seems to be a most favored, protected, special and valuable container. It was.

It was filled with some particularly dangerous inventory. The first EPA report explains it thus:

A water curtain was maintained, using pump lines on site, to prevent the fire from spreading to a trailer containing 1,100 pounds of SP Breaker (an oxidizer), 200 pounds of soda ash and compressed gas cylinders of oxygen (3-2000 lb.), acetylene (2-2000 lb.), propane (6-20 lb.), among miscellaneous aerosol cans.

Statoil 7

Fig. 7. Post-fire pad layout

Yes, this trailer got special treatment, as it should. It contained some hazardous material.  It was also at the far southwest corner of the well pad with minimal combustibles near it.  That was also the closest corner to the nearby holding pond, which early on might have held fresh water. Now the holding pond is surely very contaminated from flowback and runoff.

The trailer location can be seen in the picture to the right in the red box (Fig. 7), which also shows the complete well pad and surrounding area. However, in comparison to the one white storage trailer, the remainder of the well pad did not fare so well. It was all toast, and very burned toast at that.

Columbus Dispatch and the Fish Kill

Besides the two local newspapers, and Wheeling Jesuit researchers, the Columbus Dispatch also covered the story and provided more details on the 3- to 5-mile long fish kill in the stream below the well pad. Additional facts were added by the two EPA reports:

Those reports list in some detail many of the chemicals, explosives, and radiological components on the well pad.  Reader note: Get out your chemical dictionary, or fire up your Google search. A few excerpts from the first EPA report are provided below.

…Materials present on the Pad included but was not limited to: diesel fuel, hydraulic oil, motor oil, hydrochloric acid, cesium-137 sources, hydrotreated light petroleum distillates, terpenes, terpenoids, isoproponal, ethylene glycol, paraffinic solvents, sodium persulfate, tributyl tetradecyl phosphonium chloride and proprietary components… The fire and explosion that occurred on the Eisenbarth Well Pad involved more than 25,000 gallons of various products that were staged and/or in use on the site… uncontained run-off was exiting the site and entering an unnamed tributary of Opossum Creek to the south and west and flowback water from the Eisenbarth Well #7 was spilling onto the well pad.

Reader Warning:  If you found the above list overly alarming, you might choose to skip the next equally disturbing list. Especially since you now know that this all eventually flowed into our Ohio River.

The EPA report continues with more specific chemical products involved in the fire:

Initial reports identified the following products were involved and lost in the fire: ~250 gallons of hydrochloric acid (28%), ~7,040 gallons of GasPerm 1000 (terpenes, terpenoids, isopropanol, citrus extract, proprietary components), ~330 gallons of LCA-1 (paraffinic solvents), ~ 1900 gallons of LGC-36 UC (hydrotreated light petroleum distillate, guar gum), ~1000 gallons of BC-140 (monoethanolamine borate, ethylene glycol), ~3300 gallons of BE-9 (tributyl tetradecyl phosphonium chloride), ~30,000 gallons of WG-36 (polysaccharide gel), ~1,000 gallons of FR-66 (hydrotreated light petroleum distillate), ~9000 gallons of diesel fuel, ~300 gallons of motor and hydraulic oil.

Even more details of the incident and the on-site chemicals are given in the required Statoil 30-day report (PDF).

The EPA reports detail the “sheet” flow of unrestricted contaminated liquids off of the well pad during and after the fire. They refer to the west and south sides. The below Google Earth-based map (Fig. 8) shows the approximate flow from the well pad. The two unnamed tributaries join to form Opossum Creek, which then flows into the Ohio River four miles away.

Statoil 8

Figure 8. Map showing path of unrestricted flow off of the Statoil well pad due to a lack of berm

After describing some of the known chemicals on the well pad, the EPA report discusses the construction of a new berm, and where the liquid components flowed. Below is a selection of many excerpts strung together, from many days, taken directly from the EPA reports:

…unknown quantities of products on the well pad left the Site and entered an unnamed tributary of Opossum Creek that ultimately discharges to the Ohio River. Runoff left the pad at various locations via sheet flow….Initial inspections in the early hours of June 29, 2014 of Opossum Creek approximately 3.5 miles downstream of the site identified dead fish in the creek…. Equipment was mobilized to begin constructing an earthen berm to contain runoff and to flood the pad to extinguish remaining fires…. Once fires were extinguished, construction of a berm near the pad was begun to contain spilled liquids and future runoff from the well pad… Statoil continued construction of the containment berm currently 80% complete. (6-30-14)… Assessment of chemicals remaining on the well pad was completed. The earthen berm around the pad was completed,  (7-2-14)… ODNR Division of Wildlife completed their in stream assessment of the fish kill and reported an estimated 70,000 dead fish from an approximately 5 mile stretch extending from the unnamed tributary just west of the Eisenbarth Well Pad to Opossum Creek just before its confluence with the Ohio River… Fish collection was completed. In total, 11,116 dead fish were collected (20 different species), 3,519 crustaceans, 7 frogs and 20 salamanders.

The overall conclusion is clear. Large quantities of various chemicals, mixed with very large amounts of already contaminated water, when flooding a well pad that had no berms around it, resulted in a significant fish kill over several miles. After the fire Statoil then constructed a berm around the well pad. If there had been a pre-existing berm – just 12 inches high and level – around the well pad, it could have held over 600,000 gallons of runoff. That amount is twice the estimated quantity of water used to fight the fire.  (Note: my old 35 HP farm tractor and a single bottom plow can provide a 12-inch high mound of dirt in one pass.)

The significance for safe, potable drinking water, is that all the chemicals and petroleum products on the well pad either burned and went up in a toxic plume of black smoke, or were released in liquid form down into the well pad or flowed off of it. Since the original liner on the well pad also completely burned and there was no overall berm on the well pad, there was nothing to restrict the flow of polluted liquid. Therefore, it all seeped into the ground and/or ran off of the pad with the 300,000 gallons of water that was estimated to have been sprayed onto the burning equipment fire.

Follow Up Questions

Since this fire happened over 6 weeks ago, there have been many opportunities for nearby citizens and neighbors to meet and discuss their many concerns.  Many of the question have revolved around the overall lack of information about the process of shale gas fracturing, the equipment used, and the degree of risk that it all may present to our communities. These communities include the nearby residents, the travelling public, and all of the first responders. Unless someone has a well pad on or near their property and they are able to actively follow the process, it is usually difficult to find out the details of a specific gas operation. (We have even known of operators that have told landowners to get off of their own property both during drilling and fracturing operations and afterwards.)

Questions that follow incidents like this one typically look like this:

  1. Why was there no perimeter berm?
  2. Why could the fire not be put out quickly and easily? What all was lost? What did this site look like in the beginning?
  3. Why was there so much equipment onsite? Is this typical? What is it all called and how is it used?

1. Lack of Berm

The first and somewhat unanswered question concerns the absence of a simple containment berm around the completed well pad. Statoil must not have thought one would be very helpful, and/or the State of Ohio must not require them.

However, I had raised concern over this very topic more than a year ago from WV. In response, I received a letter in September 2013 from Statoil North America to the WVDEP. It provides some insight into Statoil thinking. Based on my interpretation of that letter, the official position of Statoil last year was that berms around the well pad do not help and are not needed. Given the recent fire, perhaps that position has changed. All we know for sure now is that at least their Eisenbarth well pad now does have a complete perimeter berm. We now have empirical proof, if any was ever needed, that in the presence of spills the absence of berms makes for greater and more expensive downstream problems.

2. An Obstinate Fire

Setting aside the berm problem, I will attempt to address the next set of questions: Why could the fire not be put out quickly and easily? What all was lost ? What did this site look like in the beginning?

The simplest way to start on such questions is to look at other hydraulic fracturing sites to identify what is there and why, and then to compare those with the charred remains on the Statoil Eisenbarth well pad in Monroe County.  Since Statoil’s contractor was Halliburton, it would help to look at their equipment when in process elsewhere.  In Figure 9 below is a clean, bright red and grey Halliburton fracking fleet.

Statoil 9

Figure 9. Example of Halliburton fracking fleet

It needs to be stated up front that I consider Halliburton to be among one of the more reputable, experienced, and dependable fracturing companies. We have seen way worse here in Wetzel County over the past seven years. Halliburton has good equipment and well-trained, safety-conscious employees. It seems to be a well-run operation. If so, then how did this massive fire happen? It simply seems that it is the nature of the beast; there are many inherent dangers to such operations. Plus there is an enormous amount of equipment on site, close coupled and stuffed into a small amount of real estate. Not to mention, the whole setup is temporary – with a lot of fuel and ignition sources. Therefore, many of the available engineered-in safeguards that would normally be installed in an industrial, fixed, permanent location, just cannot be incorporated on my neighbor’s hay field, creek bottom, or farmland.

The whole process has many risks, and many of them cannot be eliminated, just minimized. I do not think that anyone could have predicted a weak hydraulic hose. Some accidents are just that — unpreventable accidents. This is why we need to be very careful with how close we allow these sites in residential areas.

3. Serious Equipment

In Figure 10 below is a wide-angle composite photo of a Halliburton fracturing project in process. Given the shallow angle viewpoint, not all equipment is visible or numbered. The photo is still very representative of frac sites in general and equivalent to what can be seen in the scorched remains on the Statoil Eisenbarth site. The major qualification on the fracturing pumps above and the ones below, is that they are a newer generation of Halliburton dual fuel pumps. They can run on natural gas.

Statoil 10

Figure 10. Halliburton fracturing project in process

Just about everything seen in the above bright red and grey hardware can be seen in Figure 11’s charred leftovers on the Statoil site from July 5, 2014 below (six days after the fire). It is also all Halliburton equipment. The quantities and arrangement are different, but the equipment and process are the same. The numbers on the provided legend or chart should help identify the specific pieces of equipment. The newly constructed containment berm is also clearly visible here.

Statoil 11

Figure 11. Statoil site post-fire equipment identification

The above or a similar photo has been seen by many neighbors both in OH and WV. Hardly anyone can recognize what they are looking at. Even those people who are somewhat familiar with general hydraulic fracturing operations are puzzled. Nothing is obvious when viewing charred remains of burned iron, steel, and melted aluminum. All tires (over 400 of them) have been burned off the rims. Every bit of rubber, foam, composites, plastics and fiberglass truck cabs has been consumed – which is what made the black plume of smoke potentially so dangerous.

Statoil 12

Fig. 12. 16 fracturing pumps

Statoil 13

Fig. 13. 18-wheeler

What might not be so obvious is why the fire could not be extinguished.

If we look at a close-up of a small section of the well pad (Fig. 12) it is easy to see how crowded the well pad is during fracturing. The 16 fracturing pumps are all the size of a full-length 18-wheel tractor trailer (Fig. 13). Note the three fuel tanks.

The fire began between the blender-mixer trucks and the 16 hydraulic fracturing pumps. The blenders were between the fracturing pumps and the sand kings. Halliburton always keeps fire extinguishers available at every truck. They are put on the ground in front of every pump truck. Everyone knows where to find them. However, on any fracking project that location is also the most congested area. The fracturing pumps are usually parked no more than two feet apart. It is just enough room for an operator or maintenance fellow to get between them. With high pressure fluid spraying and the fire already started and now spreading, there is precious little room to maneuver or to work. It is a plumbing nightmare with the dozens of high pressure pipes connecting all the pumps together and then to a manifold. In those conditions, in the face of multiple fuel sources, then the many small explosions, prudence and self-preservation dictates a swift retreat.

To their credit, Halliburton employees knew when to retreat. No one was injured. We just burned up some trucks (and killed some fish). All the employees and all the first responders were able to go home safely, uninjured, to their families and friends. They survived a very dangerous situation to come back again in the service of their employer or their community. We wish them well.

Some Observations and Conclusions

  1. The hydraulic fracturing process is dangerous, even when done properly.
  2. Environmental and employee safeguards must be in place because “accidents will happen.”
  3. Setbacks from personal farm and residential buildings must be great enough to protect all.
  4. Setbacks from streams and creeks and rivers must be taken very seriously, especially when private or municipal water supply systems are downstream.
  5. Our communities must know what all chemicals are being used so that correct lab protocols are established ahead of time to test for contamination.

This now ends this first article addressing the Statoil Fire, its burned fracturing equipment, and the resulting water contamination. Later, I will show many examples of the quantity of equipment used on fracturing sites and why it is there. You patient readers thought this would never end. You now know more about Statoil, well pad fires, and fracturing hardware than you ever wanted to know. We will soon address the more generic questions of fracturing equipment.