Posts

Ohio, West Virginia, Pennsylvania Fracking Story Map

FracTracker’s aerial survey of unconventional oil & gas infrastructure and activities in northeast PA to southern OH and central WV

Ohio & Fracking Waste: The Case for Better Waste Management

Insights on Ohio’s massive fracking waste gap, Class II injection well activity, and fracking waste related legislation

Pennsylvania conventional wells

Pennsylvania Conventional Well Map Update

There are over 100,000 active conventional wells in PA, with more permitted each year. Most are unplugged, posing serious threats to the climate.

Mapping Gathering Lines in Bradford County, Pennsylvania

FracTracker mapped gathering lines in Bradford County, PA. Public data on gathering lines are incomplete, leaving us to fill in the gaps.

Birds of Northeastern Pennsylvania Threatened by Fracking Development

Information on which bird species in northeastern Pennsylvania are affected by the fracking industry’s expansion.

Trends in fracking waste coming to New York State from Pennsylvania

Over the past decade, New York State has seen a steep decline in the quantity of waste products from the fracking industry sent to its landfills for disposal. Explore FracTracker’s 2020 updated data.

Shell’s Falcon Pipeline Under Investigation for Serious Public Safety Threats

 

VIEW MAP & DATA

Breaking News

The Falcon Ethane Pipeline System is at the center of major investigations into possible noncompliance with construction and public safety requirements and failing to report drilling mud spills, according to documents obtained from the Pennsylvania Department of Environmental Protection (PA DEP) by FracTracker Alliance. These investigations, which are yet to be released, also uncovered instances of alleged data falsification in construction reports and Shell Pipeline Company firing employees in retaliation for speaking up about these issues.

3/17/21 Press release: https://www.fractracker.org/falcon-investigation-press-release-fractraccker-alliance/

Key Takeaways

  • Shell’s Falcon Pipeline, which is designed to carry ethane to the Shell ethane cracker in Beaver County, PA for plastic production, has been under investigation by federal and state agencies, since 2019. The construction of the pipeline is nearing completion.
  • Allegations in these investigations include issues with the pipeline’s coating, falsified reports, and retaliation against workers who spoke about issues.
  • Organizations are calling on public agencies to take action to protect public welfare and the environment along the entire pipeline route through Ohio, West Virginia, and Pennsylvania.
  • These investigations reveal yet another example of the life-threatening risks brought on by the onslaught of pipeline construction in the Ohio River Valley in the wake in the fracking boom. They also reveal the failure of public agencies to protect us, as documents reveal the federal agency that oversees pipeline safety did not adequately respond to serious accusations brought to its attention by a whistleblower.
  • These new concerns are coming to light as people across the country are demanding bold action on plastic pollution and the climate crisis through campaigns such as Build Back Fossil Free, Plastic Free President, and Future Beyond Shell. On a local level, residents in the Ohio River Valley continue to shoulder the health burdens of the fracking industry, despite a recent ban on fracking in the eastern part of Pennsylvania, which a growing body of scientific evidence verifies. The Falcon Pipeline, which would transport fracked gas for plastic production, is directly at odds with these demands.

Shell’s attempts to cut corners while constructing this 98-mile pipeline, likely motivated by the increasingly bleak economic prospects of this project, present serious public safety concerns for the thousands of residents along its route in Pennsylvania, West Virginia, and Ohio.

These allegations are serious enough to warrant immediate action. We’re calling on the Pipeline and Hazardous Materials Safety Administration (PHMSA) to thoroughly examine these allegations and suspend construction if not yet completed, or, in the case that construction is complete, operation of the Falcon Pipeline. Furthermore, we call on state environmental regulators to fully investigate construction incidents throughout the entire pipeline route, require Shell Pipeline to complete any necessary remediation, including funding independent drinking water testing, and take enforcement action to hold Shell accountable. Read our letters to these agencies here.

These investigations were featured in a March 17th article by Anya Litvak in the Pittsburgh Post-Gazette.

3/18/21 update:

Additional coverage of this story was published in a Times Online article by Daveen Ray Kurutz, a StateImpact Pennsylvania article by Reid Frazier, and an Observer-Reporter article by Rick Shrum.

Pipeline workers speak out

According to documents obtained through a public records request, a whistleblower contacted PHMSA in 2019 with serious concerns about the Falcon, including that the pipeline may have been constructed with defective corrosion coating. PHMSA is a federal agency that regulates pipeline operation. The whistleblower also shared environmental threats occurring within the DEP’s jurisdiction, prompting the PA DEP and Pennsylvania Attorney General’s Office to get involved.

Many of the issues with the Falcon relate to a construction method used to install pipelines beneath sensitive areas like roads and rivers called horizontal directional drilling (HDD). Shell Pipeline contracted Ellingson Trenchless LLC to complete over 20 HDDs along the Falcon, including crossings beneath drinking water sources such as the Ohio River and its tributaries. FracTracker and DeSmog Blog previously reported on major drilling mud spills Shell caused while constructing HDDs and how public agencies have failed to regulate these incidents.

Falcon Pipeline Horizontal Directional Drilling locations and fluid losses

This map shows the Falcon Pipeline’s HDD crossings and spills of drilling fluid spills that occurred through 3/5/2020. To see the data sources, click on the information icon found in the upper right corner of the map header as well as under the map address bar.

View Map Full Sized | Updated 6/16/20

 

PHMSA’s incomplete investigation

Correspondence between the PA DEP and PHMSA from February 26, 2020 reveal the gravity of the situation. While PHMSA conducted an inquiry into the whistleblower’s complaints in 2019 and concluded there were no deficiencies, PA DEP Secretary Patrick McDonnell wrote that his agency felt it was incomplete and urged PHMSA to conduct a more thorough investigation. Secretary McDonnell noted the PA DEP “has received what appears to be credible information that sections of Shell’s Falcon Pipeline project in western PA, developed for the transportation of ethane liquid, may have been constructed with defective corrosion coating protection,” and that “corroded pipes pose a possible threat of product release, landslide, or even explosions.”

FracTracker submitted a Freedom of Information Act request with PHMSA asking for documents pertaining to this inquiry, and was directed to the agency’s publicly available enforcement action webpage. The page shows that PHMSA opened a case into the Falcon on July 16, 2020, five months after Secretary McDonnell sent the letter. PHMSA sent Shell Pipeline Company a Notice of Amendment citing several inadequacies with the Falcon’s construction, including:

  • inadequate written standards for visual inspection of pipelines;
  • inadequate written standards that address pipeline location as it pertains to proximity to buildings and private dwellings;
  • compliance with written standards addressing what actions should be taken if coating damage is observed during horizontal directional drill pullback; and
  • inadequate welding procedures

Shell responded with its amended procedures on July 27, 2020, and PHMSA closed the case on August 13, 2020.

Of note, PHMSA states it is basing this Notice on an inspection conducted between April 9th and 11th, 2019, when construction on the Falcon had only recently started. PHMSA has con­firmed its in­ves­ti­ga­tion on the Falcon is on­go­ing, however we question the accuracy of self reported data given to PHMSA inspectors should be questioned

The PA DEP also brought the matter to the attention of the US Environmental Protection Agency.

Timeline of events in the Falcon investigation

Public knowledge of these investigations is limited. Here’s what we know right now. Click on the icons or the event descriptions for links to source documents.

Ohio and West Virginia

The Falcon pipeline also crosses through Ohio and briefly, West Virginia. While we do not know how these states are involved in these investigations, our past analyses raise concerns about the Ohio Environmental Protection Agency’s (OEPA) ability to regulate the pipeline’s HDD crossings.

One of the focuses of the Pennsylvania DEP’s investigation is the failure to report drilling fluid spills that occur while constructing a HDD crossing. The PA DEP shut down all HDD operations in November, 2019 and forced Shell to use monitors to calculate spills, as was stated in permit applications.

 

A horizontal directional drilling (HDD) construction site for the Falcon Pipeline in Southview, Washington County, Pennsylvania. You can see where the drilling mud has returned to the surface in the top left of the photo. Photo by Cyberhawk obtained by FracTracker Alliance through a right-to-know request with the Pennsylvania Department of Environmental Protection.

 

 

The Falcon Pipeline’s HDD locations are often close to neighborhoods, like the HOU-02 crossing in Southview, Washington County, Pennsylvania. Photo by Cyberhawk obtained by FracTracker Alliance through a right-to-know request with the Pennsylvania Department of Environmental Protection.

 

To our knowledge, the OEPA did not enforce this procedure, instead relying on workers to manually calculate and report spills. Shell’s failure to accurately self-report raises concerns about the safety of the Falcon’s HDD crossings in Ohio, including the crossing beneath the Ohio River, just upstream of drinking water intakes for Toronto and Steubenville, Ohio.

Public water system wells, intakes, and Drinking Water Source Protection Areas nears the Falcon Pipeline Route

Public water system wells, intakes, and Drinking Water Source Protection Areas nears the Falcon Pipeline Route. Note, the pipeline route may have slightly changed since this map was produced. Source: Ohio EPA

 

The Shell ethane cracker

The Falcon is connected to one of Shell’s most high-profile projects: a $6 billion to $10 billion plastic manufacturing plant, commonly referred to as the Shell ethane cracker, in Beaver County, Pennsylvania. These massive projects represent the oil and gas industry’s far-fetched dream of a new age of manufacturing in the region that would revolve around converting fracked gas into plastic, much of which would be exported overseas.

Many in the Ohio River Valley have raised serious concerns over the public health implications of a petrochemical buildout. The United States’ current petrochemical hub is in the Gulf Coast, including a stretch of Louisiana known colloquially as “Cancer Alley” because of the high risk of cancer from industrial pollution.

Construction of the ethane cracker and the Falcon pipeline have forged forward during the COVID-19 pandemic. In another example of the culture of fear at the worksite, several workers expressed concern that speaking publicly about unsafe working conditions that made social distancing impossible would cost them their jobs. Yet the state has allowed work to continue on at the plant, going so far as to grant Shell the approval to continue work without the waiver most businesses had to obtain. As of December 2020, over 274 Shell workers had contracted the coronavirus.

Weak outlook for Shell’s investment

While the oil and gas industry had initially planned several ethane crackers for the region, all companies except for Shell have pulled out or put their plans on hold, likely due to the industry’s weak financial outlook.

A June 2020 report by the Institute for Energy Economics and Financial Analysis (IEEFA), stated that:

Royal Dutch Shell owes a more complete explanation to shareholders and the people of Pennsylvania of how it is managing risk. Shell remains optimistic regarding the prospects for its Pennsylvania Petrochemical Complex in Beaver County, Penn. The complex, which is expected to open in 2021 or 2022, is part of a larger planned buildout of plastics capacity in the Ohio River Valley and the U.S. IEEFA concludes that the current risk profile indicates the complex will open to market conditions that are more challenging than when the project was planned. The complex is likely to be less profitable than expected and face an extended period of financial distress.

Many of Pennsylvania’s elected officials have gone to great lengths to support this project. The Corbett administration enticed Shell to build this plastic factory in Pennsylvania by offering Shell a tax break for each barrel of fracked gas it buys from companies in the state and converts to plastic (valued at $66 million each year). The state declared the construction site a Keystone Opportunity Zone, giving Shell a 15-year exemption from state and local taxes. In exchange, Shell had to provide at least 2,500 temporary construction jobs and invest $1 billion in the state, giving the company an incredible amount of power to decide where resources are allocated in Pennsylvania.

Would the state have asked Shell for more than 2,500 construction jobs if it knew these jobs could be taken away when workers spoke out against life-threatening conditions? Will the politicians who have hailed oil and gas as the only job creator in the region care when workers are forced to hide their identity when communicating with public agencies?

States fail to regulate the oil and gas industry

The PA DEP appears to have played a key role in calling for this investigation, yet the agency itself was recently at the center of a different investigation led by Pennsylvania Attorney General Josh Shapiro. The resulting Investigating Grand Jury Report revealed systematic failure by the PA DEP and the state’s Department of Health to regulate the unconventional oil and gas industry. One of the failures was that the Department seldom referred environmental crimes to the Attorney General’s Office, which must occur before the Office has the authority to prosecute.

The Office of Attorney General is involved in this investigation, which the PA DEP is referring to as noncriminal.

The Grand Jury Report also cited concerns about “the revolving door” that shuffled PA DEP employees into higher-paying jobs in the oil and gas industry. The report cited examples of PA DEP employees skirting regulations to perform special favors for companies they wished to be hired by. The watchdog research organization Little Sis listed 47 fracking regulators in Pennsylvania that have moved back and forth between the energy industry, including Shell’s Government Relations Advisor, John Hines.

National attention on pipelines and climate

The Falcon Pipeline sits empty as people across the nation are amping up pressure on President Biden to pursue bold action in pursuit of environmental justice and a just transition to clean energy. Following Biden’s cancellation of the Keystone XL pipeline, Indigenous leaders are calling for him to shut down other projects including Enbridge Line 3 and the Dakota Access Pipeline.

Over a hundred groups representing millions of people have signed on to the Build Back Fossil Free campaign, imploring Biden to create new jobs through climate mobilization. Americans are also pushing Biden to be a Plastic Free President and take immediate action to address plastic pollution by suspending and denying permits for new projects like the Shell ethane cracker that convert fracked gas into plastic.

If brought online, the Falcon pipeline and Shell ethane cracker will lock in decades of more fracking, greenhouse gasses, dangerous pollution, and single-use plastic production.

Just as concerning, Shell will need to tighten its parasitic grip on the state’s economic and legislative landscape to keep this plant running. Current economic and political conditions are not favorable for the Shell ethane cracker: financial analysts report that its profits will be significantly less than originally presented. If the plant is brought online, Shell’s lobbyists and public relations firms will be using every tactic to create conditions that support Shell’s bottom line, not the well-being of residents in the Ohio River Valley. Politicians will be encouraged to pass more preemptive laws to block bans on plastic bags and straws to keep up demand for the ethane cracker’s product. Lobbyists will continue pushing for legislation that imposes harsh fines and felony charges on people who protest oil and gas infrastructure, while oil and gas companies continue to fund police foundations. Shell will ensure that Pennsylvania keeps extracting fossil fuels to feed its ethane cracker.

The Falcon pipeline is at odds with global demands to address plastic and climate crises. As these new documents reveal, it also poses immediate threats to residents along its route. While we’re eager for more information from state and federal agencies to understand the details of this investigation, it’s clear that there is no safe way forward with the Falcon Pipeline.

Royal Dutch Shell has been exerting control over people through the extraction of their natural resources ever since it began drilling for oil in Dutch and British colonies in the 19th Century. What will it take to end its reign?

 

References & Where to Learn More

Topics in this Article

Health & Safety | Legislation & Politics | Petrochemicals & Plastics | Pipelines

Support this work

Stay in the know

Mapping intersectionality: Empowering youth addressing plastics

VIEW MAP & DATA

Overview

A new collaboration between FracTracker Alliance and Algalita is aiming to help middle school and high school students understand the connection between plastics and fracking and the wide ranging implications for climate change, environmental injustice, and human health.


Most young people today understand that plastics are problematic. But, there is still often a disconnect between the symptom of plastics in our oceans, and the root causes of the problem. Algalita’s mission is to empower a new generation of critical thinkers to shift the broken and unjust systems that are causing the plastic pollution crisis. Algalita’s strategy is creating educational experiences directly with the movement’s diverse leaders, and this new project with FracTracker is a perfect example. 

Specifically, Algalita and FracTracker have been working together to add new lessons to Algalita’s brand-new online, gamified, action platform: Wayfinder Society. Through this program, students can guide their own exploration of the complexities of the plastics issue, and can take action at their own pace and scale, by completing lessons and action-items (called Waymarks) based on difficulty, topic, and type of impact. 

The first of two FracTracker Waymarks outlines the connection between fracking and plastic production. Students explore a map showing the full plastics production process from fracking pads, to pipelines, to ethane crackers, and packaging factories. 

In a second Waymark that builds off of the first, students explore the massive petrochemical buildout on the Gulf Coast and in the Ohio River Valley. The map allows students to analyze the greenhouse gas emissions predicted for this buildout using the data point pop-up boxes. They can also examine the effects of climate change on communities amongst the buildout by viewing the coastal flood zone areas in Texas and Louisiana. Beyond that, students can investigate how facilities are impacting their peers in schools close to massive ethane cracker facilities. Finally, students are introduced to the movement’s #PlasticFreePresident Campaign, giving them a direct action to apply their new knowledge. 

Mapping Fracking’s Link to Plastic Production

This StoryMap was created by FracTracker for Wayfinder Society, a program by Algalita. Learn more at Algalita.org. Place your cursor over the image and scroll down to advance the StoryMap and explore a series of maps charting the fracking-for-plastic system. Click on the icon in the bottom left to view the legend. Scroll to the end of the StoryMap to learn more and access the data sources.

View Full Sized Map | Updated 11/20

 

Algalita is excited about this partnership for so many reasons. For one, GIS is a critical skill for young people to learn. These two Waymarks pose an accessible and non-intimidating introduction to ArcGIS by using simple maps and StoryMaps like the one above. The maps let students get comfortable with GIS concepts and capabilities like layers, data attribute tables, measuring tools, and filters. Allowing students to explore how plastics are produced through a geographical lens provides a unique visual and interactive experience for them. The goal is for students to be able to connect petrochem buildout, with the plastics, climate and justice issues that they are focusing on often separately. Our aim is that by putting this part of the story in context of real physical space they will more easily make those connections. We hope these lessons spark some students’ interest in mapping, geography, and GIS, providing a new generation of changemakers with GIS in their toolbox. 

On top of that, we are stoked to be building this partnership with FracTracker because the success of our collective movement depends on strong, clear communication and synergies between the nodes of the movement’s network.  The FracTracker Waymarks give our Wayfinders direct access to real-time data, visualizations, and expert insights that they can then use to level-up their actions and stories around their activism. And, they connect the dots not just for students, but also for educators and movement partners like us at Algalita we are all for this powerful lever for change!

Check out Wayfinder Society here. Access the FracTracker Waymarks here and here but you’ll need to be logged in. If you’re a student, get started by creating a profile, and then start earning Cairns (points)! If you’re an educator, parent or mentor, and interested in exploring the site, email us here for the guest login. 

By Anika Ballent, Education Director, Algalita

Algalita empowers a new generation of critical thinkers who will shift the broken and unjust systems that are causing the plastic pollution crisis.  We do this by offering educational experiences created directly with the movement’s diverse leaders.

Anika has been working in the movement against plastic pollution for ten years, studying microplastics in benthic and freshwater environments. She brings together her science background and creativity to educate young changemakers through hands-on experiences in schools, Algalita’s International Youth Summit, and online programs.


References & Where to Learn More

Algalita.org

Data Sources:

ATEX Pipeline: EIA

Railroad: Selection from ArcGIS online

Process information: Houston Chronicle

Falcon Pipeline: Shell/AECOM and FracTracker Alliance

Mariner East 2 Pipeline: PA DEP

Greenhouse gas emission increases: Environmental Integrity Project. (2020, November 30). Emission Increase Database. Retrieved from https://environmentalintegrity.org/oil-gas-infrastructure-emissions.

All other data points were mapped by FracTracker Alliance referencing various online sources. While this map is based on actual infrastructure, it is intended as a model of the fracking-for-plastic lifecycle and certain steps may vary in real life.

Topics in This Article

Petrochemicals & Plastics


Support this work

Stay in the know

Utica and Marcellus shale plays in the Appalachian Basin map

Fracking Waste in the Appalachian Basin – A Story Map

 

The production of fracking waste in the Appalachian Basin puts public health and safety at risk.

 

Fracking produces more than just oil and gas — billions of gallons of highly toxic waste are also created in the process. Regulatory loopholes have led to limited oversight into how this waste is tracked and treated, putting public health and safety at risk.

The maps below explore issues related to fracking waste from the Marcellus and Utica Shale regions of Pennsylvania, Ohio, New York, and West Virginia.

We suggest viewing this map fullscreen (click the link to do so)

View the map fullscreen

 

This mapping platform is an evolving tool based on available data — yet the opaqueness of the fracking industry limits our ability to map and analyze the full scope of the problem of fracking waste in the Appalachian Basin.

Unfortunately, even after sifting through thousands of data points, we’re left with many outstanding questions — what are the chemical components of the waste created? Where is it all sent? Where are its byproducts sent? What facilities are being planned and proposed? How much illegal dumping occurs?

The production of fracking waste in the Appalachian Basin will continue to create environmental and public health threats for decades after the industry leaves the region. Wells can continue to generate wastewater for years and contaminated equipment sent to landfills will leach toxins into the environment. Furthermore, with the industry’s history of failing to restore land after it has been used for oil and gas operations, we can expect abandoned fracking sites to become an increasing source of pollution in the Appalachian Basin in the coming decades. It’s imperative that the public have access to accurate and detailed data on fracking waste to protect the health of workers and residents.

By Erica Jackson, Community Outreach & Communications Specialist, FracTracker Alliance

Support this work

Stay in the know

 

Fracking and the 2020 Presidential Election

Fracking has been raised as an issue that could determine the outcome of the 2020 US presidential election. Republican candidates have cited erroneous figures of how many fracking jobs exist in Pennsylvania, and have falsely claimed that Democratic presidential candidate Joe Biden and running mate Kamala Harris seek to ban fracking. And while the Democratic candidates have made suggestive comments in the past, they have made their position clear. As Senator Harris stated in the vice presidential debate: “I will repeat, and the American people know, that Joe Biden will not ban fracking. That is a fact.”

The debate around this issue is not on whether or not fracking should be banned– something neither party advocates– but rather around the facts. Republican candidates have inflated the extent of fracking jobs by up to 3500 percent. But the natural gas industry and the fracking boom have failed to deliver the job growth and prosperity that was predicted by proponents a decade ago. In reality, the total number of jobs in the natural gas industry in Pennsylvania never reached more than 30,000 over the last five years and is now less with the industry’s economic decline.

The total number of jobs in the natural gas industry in Pennsylvania never reached more than 30,000 over the last five years and is now less with the industry’s economic decline.

The debate should not be around the facts- those are already firmly established. The debate should be around how to best support fossil fuel workers in the inevitable transition to cleaner energy. What does a just transition that supports workers and the climate look like?

 

Pipeline construction in the Loyalsock Watershed, PA. Photo by Barb Jarmoska.

Pipeline construction in the Loyalsock Watershed, PA. Photo by Barb Jarmoska.

FracTracker Newsletter

Learn more about fracking and the 2020 presidential election

FracTracker Alliance and The Breathe Project have compiled a fact sheet to help us answer this question based on where Pennsylvania currently stands.

As unconventional oil and natural gas extraction operations have expanded throughout the United States over the past decade, the harmful health and environmental effects of fracking have become increasingly apparent and are supported by a steadily growing number of scientific studies and reports. Although some uncertainties remain around the exact exposure pathways, it is clear that issues associated with fracking negatively impact public health and the surrounding environment.

The Pennsylvania Shale Viewer

This map contains numerous data layers that help understand unconventional drilling activity in PA. View the map details below to learn more, or click on the map to explore the dynamic version of this data.

Last updated 8/28/2020


 View the map full screen

 

 

Breathe Project
Energy Innovation Center – Suite 140
1435 Bedford Avenue
Pittsburgh, PA 15219

breathe@breatheproject.org

 

Straight Talk on the Future of Jobs in Pennsylvania (September 2020)

 

The Breathe Project and FracTracker Alliance have crafted the following messaging for refuting the conflated job numbers being touted by pro-fossil fuel organizations and political candidates regarding fracking and jobs in Pennsylvania that, in some cases, has inflated natural gas jobs in the state by 3500 percent.

The natural gas industry and the fracking boom have failed to deliver the job growth and prosperity that was predicted by proponents a decade ago. The total number of jobs in the natural gas industry in Pennsylvania never reached more than 30,000 over the last five years and is now less with the industry’s economic decline.

 

FACTThe Pa. Dept. of Labor and Industry (DLI) reported that direct employment in natural gas development totaled 19,623 in 2016. This was down from 28,926 total natural gas development jobs in 2015. This includes jobs in drilling, extraction, support operations and pipeline construction and transportation. (StateImpact, 2016)

Pa. DLI  calculated the employment figures using data from six data classifications at the U.S. Bureau of Labor Statistics — specifically, the North American Industry Classification System (NAICS) codes for cured petroleum and natural gas extraction, natural gas liquid extraction, drilling oil and gas wells, support activities for oil and gas operations, oil and gas pipeline and related structures and pipeline transportation of natural gas. (Natural Gas Intel, 2016)

Inflated estimates of fracking-related jobs in Pennsylvania under previous Gov. Tom Corbett included regulators overseeing the industry as gas jobs, truck drivers, and those working in highway construction, steel mills, coal-fired power plants, sewage treatment plants, and others. Pa. Gov. Tom Wolf’s administration revised the way gas industry jobs were calculated to reflect a more accurate depiction of jobs in the sector.

 

FACT: Food & Water Watch calculated that there were 7,633 jobs pre-boom (2001 – 2006), which rose to 25,960 oil and gas industry jobs post-boom (2016 – 2018). (FWW, March 2020)

 Food & Water Watch created a more accurate model using a definition that encompasses only jobs directly involved with domestic oil and gas production, specifically: oil and gas extraction; support activities for oil and gas operations; drilling oil and gas wells; oil and gas pipeline construction; and pipeline transportation.

FACT:  The Food & Water Watch analysis also reports that misleadingly broad definitions in industry-supported job reports overstated the industries’ scope. The industry analysis included broad swaths of manufacturing industries including “fertilizer manufacturing,” convenience store workers, and gas station workers, which accounted for nearly 35 percent of all oil and gas jobs in their analysis. (FWW, PwC at 5 and Table 4 at 9, 2019)

FACT: As a point of comparison, in 2019, close to 1 million state residents were working in healthcare, 222,600 in education, and over 590,000 in local and state government. (Pennsylvania Bureau of Labor Statistics, July, 2020)

FACT: To forecast fracking-related job growth, the American Petroleum Institute used a model with exaggerated multipliers and faulty assumptions, such as the amount of purchases made from in-state suppliers, and it double counted jobs, leading to wildly optimistic estimates. (Ohio River Valley Institute, August 2020)

FACT: In addition, many of the jobs claimed in a 2017 American Chemistry Council Appalachian petrochemical economic impact study would arise in plastics manufacturing, which raises two concerns. First, both the ACC study and subsequent reports by the U.S. Department of Energy assume that 90% of the ethylene and polyethylene produced by imagined Appalachian cracker plants would be shipped out of the region to be used in manufacturing elsewhere in the country and the world. Of the 10% that would presumably stay in the region, much or most of it would serve to replace supplies that the region’s plastics manufacturers currently source from the Gulf Coast. (Ohio River Valley Institute, August 2020)

 

The fracking and petrochemical industries create unsustainable boom and bust cycles that do not holistically improve local economies.

FACT: Economic analyses show that the oil and gas industry is a risky economic proposition due to the current global oversupply of plastics, unpredictable costs to the industry, a lower demand for plastics, and increased competition. The analyses call into question industry’s plans to expand fracking and gas infrastructure in the region. (IEEFA, August 2020)

FACT: Plans to build petrochemical plants in Beaver County, Pennsylvania and Belmont, Ohio, for the sole purpose of manufacturing plastic nurdles will not be as profitable as originally portrayed. (IEEFA Report, June 2020)

 

A clean energy economy is the only way forward.

FACT: The Dept. of Energy’s U.S. Energy and Employment Report (2017) and E2 Clean Jobs Pennsylvania Report (2020) shows that clean energy jobs in Pennsylvania employ twice as many people as the fossil fuel industry prior to the pandemic.

FACT: The 4-state region of Ohio, West Virginia, Kentucky and Pennsylvania has formed a coalition of labor, policy experts and frontline community leaders called Reimagine Appalachia. This coalition is in the process of addressing the vast number of jobs in renewable and clean energy industries in a report that will be published this fall.

Reimagine Appalachia seeks major federal funding packages that will create jobs, rebuild infrastructure and addresses climate change that will ensure that no one is left behind going forward.

 

Sources

O’Leary, Sean. “The Not-So-Natural Gas Boom,” Westvirginiaville.com, Aug. 10, 2020.

O’Leary, Sean. “Lies, damned lies, and economic impact studies,” Ohio River Valley Institute, Aug. 31, 2020.

O’Leary, Sean. “Game Unchanged . . . But, Not Unchangeable,” Ohio River Valley Institute, Aug. 11, 2020.                                                                                                                                                 Food & Water Watch. “Phantom Jobs: Fracking Job Creation Numbers Don’t Add Up,” March 2020.

Natural Gas Intel

Pa. Dept. of Environmental Protection Energy Programs. 2020 Pennsylvania Energy Employment Report,

Institute for Energy Economics and Financial Analysis (IEEFA). “IEEFA report: Financial risks loom for Shell’s Pennsylvania petrochemicals complex,” June 4, 2020.

IEEFA. “Petrochemicals may be another bad bet for the oil industry,” Aug. 19, 2020.

E2. “Clean Jobs Pennsylvania 2020,” April 15, 2020.

Natural Gas Intel. “Direct Employment in Natural Gas Development Declines by One-Third in Pennsylvania,” Dec. 23, 2016.

PennLive. “How many jobs has Marcellus Shale Really Created?” Jan. 5, 2019.

StateImpact, “Pa. oil and gas jobs down 32 percent since last year,” Dec. 23, 2016.

 

The Breathe Project is a coalition of citizens, environmental advocates, public health professionals and academics using the best available science and technology to improve air quality, eliminate climate pollution and make our region a healthy, prosperous place to live.

FracTracker Alliance is a 501(c)3 organization that maps, analyzes, and communicates the risks of oil, gas, and petrochemical development to advance just energy alternatives that protect public health, natural resources, and the climate.

 

Feature image of construction of the Royal Dutch Shell cracker plant in Beaver County, Pennsylvania, October 2019. Ted Auch, FracTracker Alliance.

Support this work

Stay in the know

Pages

Lycoming Watershed Digital Atlas

Water at Risk


A Digital Atlas Exploring the Impacts of Natural Gas Development in

the Lycoming Creek Watershed of Pennsylvania

Introduction


Coursing through lush valleys of the Allegheny Plateau, Lycoming Creek flows over 37 miles to its confluence with the West Branch Susquehanna River in Williamsport, Pennsylvania. The 272-square-mile watershed includes idyllic tributaries like Pleasant Stream and Trout Run, names reflecting the intrinsic beauty and bounty of the area. Rock Run in Loyalsock State Forest by some accounts is, “one of the most beautiful streams in all of Pennsylvania.” 

The mightier Pine Creek to the west perhaps carries greater notoriety, as does the enchanting Loyalsock to the east. But make no judgement about Lycoming Creek’s smaller stature. Forest covers 81% of the basin and only one percent is developed, with the rest of the land used for agriculture. Through the heart of this rugged terrain, a picturesque waterway beckons anglers and other revelers of the wilds.   

The Lenape people called the watershed home before European occupation. They knew the creek as Legani-hanne, meaning “sandy or gravelly stream.” The native residents and those who displaced them used it as a means of transportation, whether traveling by canoe or walking the Sheshequin Path that runs north and east along the shores.  

Lumber fueled the regional economy of the 19th century, and Lycoming’s forests fell. By rail and by water, saw logs were sent to Williamsport for milling. Wood-powered wealth gave rise to the city’s “Millionaire’s Row,” but prosperity apexed in the early 20th century. Today, the Williamsport area is home to nearly 30,000 people, down from a peak of around 45,000 in 1950. Comparatively, about 20,000 persons live within the Lycoming Creek watershed. 

These days, Williamsport buzzes with breweries, bookstores, and the vitality of an urban hub. The Little League World Series still comes to town every summer, ushering memories of simpler, quieter times. 

Nearby, the serene creek surges with life, including the Eastern hellbenderNorth America’s largest amphibian. But the same water can turn tempestuous and destructive. Notable floods in 1972, 1996, 2011, and 2016 caused loss of life and property damage. As climate change intensifies, heavy downpours and rapid snowmelt exacerbate flood risks. 

Unconventional drilling brought new threats to the area: congested truck traffic, exorbitant consumptive water use, myriad air pollution sources, extensive land clearing, and ecological disturbance; and, the dangers of spills, leaks, and water contamination. 

This report explores these impacts, underscoring the heavy footprint of extractionand related activitieson public and private lands throughout the Lycoming Creek watershed.

A wealth of public lands & recreational opportunities

The Lycoming Creek watershed provides ample opportunities for nature-based recreation. While there are no state parks in the watershed, a 507-acre (0.8 square miles) portion of the Tioga State Forest occupies the northern boundary of the watershed in Tioga County. Further south lies 45,022 acres (71.1 square miles) of the Loyalsock State Forest. This includes 332 acres (0.52 square miles) of the Devil’s Elbow Natural Area, a site known for its many wetlands—home to carnivorous sundew and pitcher plants—waters that feed the stunning Rock Run. 

The McIntyre Wild Area covers a 7,226 acre (11.3 square mile) expanse of the Loyalsock State Forest, situated entirely in the Lycoming Creek watershed. It includes spectacular waterfalls on streams that feed the aforementioned Rock Run, a tributary known for its vibrant trout population.



Recreational Opportunities in the Lycoming Creek Watershed

View Full Size Map | Updated 3/1/2021 | Data Tutorial




To the west of Lycoming Creek and State Route 14 is Bodine Mountain, another sweeping feature of the Loyalsock State Forest. Bodine Mountain is a north-to-south ridge rising over 1,300 feet above the Lycoming Creek valley.

In addition to state forests, the watershed contains 238 acres of State Game Land 335 at the northern boundary, and 2,430 acres (3.8 square miles) of State Game Land 133, situated southeast of Bodine Mountain. These conserved lands are designated to protect wildlifea goal that seems at odds with current oil and gas leasing practices.



Fishing and enjoying mountain streams


Pennsylvania has two separate designations for streams with excellent water quality: exceptional value (EV) and high quality (HQ). The Department of Environmental Protection (DEP) explains that the quality of HQ streams can be lowered, “if a discharge is the result of necessary social or economic development, the water quality criteria are met, and all existing uses of the stream are protected.” The water quality of EV streams cannot be lowered.  

Sadly, there are no streams in the beautiful Lycoming Creek watershed with an EV designation, however deserving. On the other hand, 412 miles of streams in its drainage are designated as HQ, representing 76% of the watershed’s 542 total stream miles, according to the state’s official designated use inventory. Statewide, 3,838 out of 86,473 miles (4.4%) of inventoried streams are categorized as EV, while 58,748 miles (67.9%) are HQ, making the Lycoming Creek watershed below average for the former, and above average for the latter.

Prior to industrialization, native brook trout populations were widespread in small, forested streams across Pennsylvania. While many streams are now stocked with several species of trout, the combination of pollution and deforestation has decimated the areas where trout—especially native brook trout—thrive in sustainable wild populations. Suitable streams are designated as Class A trout streams, and they are rare, accounting for just 3,037 miles, or 3.5% of streams across the Commonwealth. The Lycoming Creek watershed contains slightly fewer Class A streams than is typical, with 17.5 miles, representing just 3.2% of all streams in the drainage. Nevertheless, it remains an important respite for trout species and the anglers who seek them.

Split estates and the Clarence Moore lands


Hundreds of thousands of acres of Pennsylvania state forest are under lease agreements for fracked gas extraction, diminishing outdoor experiences and posing ongoing environmental threats. In those situations, the state Department of Conservation and Natural Resources (DCNR) clearly controls the surface and the gas that lies beneath. However, in some areas of the state forest, private interests claim mineral ownership, even in gaseous form—a situation called “split estate.” Loyalsock State Forest contains about 25,000 split estate acres, known as the Clarence Moore Lands.

In the Lycoming Creek watershed, most of the Clarence Moore lands lie east of US Highway 15, occupying areas that drain into Rock Run and Pleasant Stream, including some of the area’s few remaining Class A wild trout waters. Another section of the Clarence Moore lands extends west of Highway 15, on Bodine Mountain’s eastern flank. In their current state, the lands provide invaluable ecological services and—coupled with the Loyalsock Creek to the east—comprise critical source waters for two major watersheds.

Gas drilling requires a significant amount of infrastructure, including multiacre well pads, miles of gathering pipelines, retention ponds, waste processing facilities, and compressor and metering stations. Allowing surface disturbance in the Clarence Moore lands could have lasting, devastating consequences.

Nearly a decade ago, the Anadarko Petroleum Corporation approached DCNR with extensive plans for dozens of fracked gas wells and all the disruptive destruction that accompanies them in a large swatch of the Loyalsock State Forest and the Clarence Moore lands. Over the years, the Clarence Moore players have changed significantly. Southwestern Energy scored a stake, while Anadarko sold their interest to Alta Resources, a privately-held company scheduled for purchase by EQT, the nation’s largest fracked gas company. While the operators play their game of musical chairs, the situation remains a serious threat to some of the few remaining portions of the region that haven’t been spoiled with industrial gas drilling.

Ironically, modern horizontal drilling enables access to Clarence Moore’s reserves from miles away—from well pads on private land. There is no need—nor social license—to expunge the forest for future generations for short-lived, selfish gain. Organizations near and far, led by the Responsible Drilling Alliance and Save PA Forests Coalition, have rallied tirelessly to save this land from development, a truly special place deserving permanent protection.




Figure 2. The Clarence Moore Lands are a complicated split estate situation in the Loyalsock State Forest, including parts of the Lycoming, Loyalsock, and Schrader Creek watersheds.


Unique wetland biomes


Countless wetlands feed Lycoming Creek’s headwaters, providing a unique opportunity to observe aquatic flora and fauna beneath the forested canopy of Penn’s Woods. The US Fish and Wildlife Service (USFWS) explains their importance, as well as their precarious state:



“Wetlands provide a multitude of ecological, economic and social benefits. They provide habitat for fish, wildlife and plantsmany of which have a commercial or recreational valuerecharge groundwater, reduce flooding, provide clean drinking water, offer food and fiber, and support cultural and recreational activities. Unfortunately, over half of America’s wetlands have been lost since 1780, and wetland losses continue today. This highlights the urgent need for geospatial information on wetland extent, type, and change.”



The geospatial data referred to above is the National Wetland Inventory (NWI), which seeks to document all the wetlands in the United States, based primarily in aerial imagery. According to NWI data, there are 3,136 acres (4.9 square miles) of wetlands in the Lycoming Creek watershed. However, further field research is necessary to properly identify wetland boundaries, particularly in the case of ephemeral wetlands, for example, where the presence of aquatic plants help determine boundaries. All of this suggests that while there is every reason to believe the USFWS’ claim that over half of the nation’s wetlands have been lost since around the time of the Revolutionary War, it is believed the NWI discounts the total acreage.

A University of Vermont team developed another model for calculating wetlands, based primarily on, “2006-2008 leaf-off LiDAR data, 2005-2008 leaf-off orthoimagery, 2013 high-resolution land-cover data, and moderate-resolution predictive wetlands maps, incorporating topography, hydrological flow potential, and climate data.” This model calculates 6,943 wetlands acres (10.8 square miles) in the Lycoming Creek drainage, more than double the NWI’s estimated acreage.



Trails


Five trails traverse the Lycoming Creek watershed, crossing 152 miles total. This includes nearly 44 miles of the Loyalsock State Forest Cross-Country Ski Trail system south and east of the McIntyre Wild Area, suitable for hiking, biking, equestrian pursuits, and of course, cross-country skiing. The watershed also contains 33 miles of Bicycle PA Route J, which runs along Lycoming Creek from the confluence with the West Branch Susquehanna River on the southern end, all the way to the wetland border that feeds Lycoming Creek and neighboring Towanda Creek to the northeast. The watershed’s most popular trail may be the famous Old Loggers Path, a coveted backpacking route that meanders nearly 23 miles. The Hawkeye Cross-Country Ski Trail—frequented by hikers, bikers, and skiers—loops over seven miles in the northeastern corner of the watershed. Yet another watershed trail is the Lycoming Creek Bikeway, a mostly straight five-mile stretch from Hepburnville to the West Branch Susquehanna River.



Figure 3. Rock Run in Loyalsock State Forest’s McIntyre Wild Area. Photo by Ann Pinca.



Figure 4. A flyfisher casts in Lycoming Creek right beside Sheshequin Campground in Trout Run. Photo by Rebecca Johnson.



Figure 5. This wetland lies just beyond the northeastern boundary of the Lycoming Creek watershed and is similar to those feeding the headwaters of Rock Run near Devil’s Elbow Natural Area in Loyalsock State Forest. Photo by Shannon Smith.

Fracking comes to the Lycoming

The commercial oil and gas industry got its start in Pennsylvania in 1859 with the famous Drake Well, followed by a frenzy of drilling in the central and western portions of the state. The DEP has records of over 185,000 conventional oil and gas wells throughout the Commonwealth, and—because the industry preceded permitting requirements by almost a century—yearly estimates range between 480,000 and 760,000 conventional wells have punctured Pennsylvania’s surface. 

The Lycoming Creek watershed was further east than most of the conventional oil and gas pools, so it has seen very little conventional drilling. Of the 185,000 known well locations, only 25 (0.01%) are within the watershed. Of those, 11 (44%) have a status of “proposed but never materialized,” or “operator reported not drilled.” Eight wells (32%) are plugged, four (16%) have active status, one (four percent) is considered being in a regulatory inactive period, and one (four percent) is on the DEP’s orphan list—awaiting funding to be plugged properly.



Fracking boom


While drillers had long known about the Marcellus Shale, it wasn’t until 2004 that drilling in the formation became a profitable enterprise, through the combination of industrial-scale hydraulic fracturing and horizontal drilling. Soon thereafter, the Lycoming Creek watershed was no longer on the periphery of oil and gas exploration, but part of a densely drilled cluster of new unconventional wells in northeastern Pennsylvania.  



Fracking in the Lycoming Creek Watershed

View Full Size Map | Updated 3/1/2021 | Data Tutorial



The first unconventional well in the Lycoming Creek watershed was permitted by Range Resources at the Bobst Mountain Hunting Club on May 31, 2007, and drilling started less than two months later.

In the years that followed, 592 unconventional wells have been proposed for the watershed, 586 (99%) of which received permits, with 384 (65%) drilled as of June 28, 2021. Some wells had a short life, with 41 (10.6%) already plugged—a figure slightly higher than the statewide average of 8.7%. Fifteen operators have been active in the watershed.

As with the rest of Pennsylvania, the total number of drilled wells peaked in 2012, with 100 wells drilled that year. In the past seven years, the highest annual total was only one-fourth of that, with 25 wells drilled in 2019. However, these trends do not foretell an end to drilling in the region. The reduced number of wells drilled is offset by drilling each well more intensively, using five times as much water per well for hydraulic fracturing. 

Gas production has flooded markets, reducing gas prices and profit margins. At the very start of the Marcellus boom in October 2005, gas prices were $13.42 per million British Thermal Units (BTUs), but have fluctuated between $1.75 and $4.00 per million BTUs in recent years. Many of the 202 wells permitted but not drilled in the watershed are located on existing well pads and can easily be drilled and brought into production as market forces dictate. For these reasons, the area is unlikely to see an end to drilling, pipeline construction, truck convoys—and all the other ancillary activities—any time soon.




Figure 6. Active fracking operation in May 2021 on ARD Operating’s COP Tract 551 A well pad, originally planned by Anadarko E&P in 2014. Photo by Ted Auch.



Figure 7. This video was taken at the same site as Figure 6, capturing ARD Operating’s well pad and the incessant noise it makes during hydraulic fracturing activities. Video footage captured by Brook Lenker.



Figure 8. Permitting, drilling, and plugging summary of unconventional wells in the Lycoming Creek watershed by year. Data through June 28, 2021.


Figure 9. Proposed unconventional wells by current operators in the Lycoming Creek watershed. Data through June 28, 2021.  Note that wells that were proposed but not drilled are still associated with the original operator, which are not always still active in the watershed. 



Figure 10. FracTracker’s partners at LightHawk provided aerial assistance to fly our photographer over the Lycoming Creek watershed. This video offers a glimpse at the oil and gas industry’s expansion in the watershed, juxtaposed with houses, farms, forests, wetlands, and numerous waterways. FracTracker’s Ted Auch captured still images while LightHawk pilot David Hartnichek gathered video footage, captured May 2021.

TimeSlider of Bodine Mountain

On the right, we see imagery from June 2021, with a substantial number of well pads, impoundments, compressors, pipelines, and access roads. Imagery on the left is from June 2014, with significantly less infrastructure. Users can zoom, pan, and choose different dates to explore the impacts of the industry over time.


Violations


In the Lycoming Creek watershed, unconventional wells and the well pads they operate on have been issued 634 violations between 2008 and June 28, 2021. This works out to 1.65 violations per drilled well, considerably above the statewide average of 1.3 violations per well.  

 Most of the violations (545, or 86%) are considered to negatively impact environmental health and safety, with the remaining 89 (14%) assessed for administrative infractions. However, the distinction between the two categories is murky at best. For example, the most common administrative violation is, “pits and tanks not constructed with sufficient capacity to contain pollutional substances,” an infraction documented 18 times in the watershed—presenting obvious hazards to health, safety, and the environment. 

Altogether, there are 66 different violation codes cited within the watershed. The ten most frequent are seen in Figure 11.

For these 634 violations, the DEP has collected fines totaling $2,460,700 from four operators. Range Resources leads the way with $1,461,000 in fines, followed by Seneca Resources with $600,000, East Resources with $380,700, and Chief Oil & Gas with $19,000. For comparison, the average cost of drilling a single well in the Marcellus Shale is $8.3 million, according to 2017 financial data from a major operator in the region. At this rate, while assuming no inflation, the watershed will have to suffer 2,138 violations before the DEP’s penalties equal the cost of drilling and fracking one well.

Clearly, operators are not cowed by receiving violations, nor do they look at the occasional fine as anything more than the cost of doing business. It seems that in practice, the DEP’s regulatory role is chronicling the industry’s misdeeds, instead of protecting the environment and the people who live among the hundreds of wells in the area.



Figure 11. The ten most frequent violations for unconventional wells and well pads in the Lycoming Creek watershed through June 28, 2021.

Fracking’s aquatic impacts


The DEP maintains a statewide list of water resource sites. In the Lycoming Creek watershed, 76 out of 128 (59%) listed water resource facilities are associated with oil and gas activity, including 13 surface water withdrawal sites and 63 interconnections—large impoundments where water is collected and stored for future use. As excessive as these figures are, the state’s water resources data is incomplete. By examining aerial imagery, FracTracker found six impoundments adjacent to oil and gas operations that were not listed in the inventory. The DEP was aware of these facilities and provided data upon request. Multiacre lined impoundments can be identified from such imagery, but the inventory might be missing smaller withdrawal sites occluded from view by the tree canopy.



Lycoming Creek Watershed Water Usage

View Full Size Map | Updated 3/1/2021 | Data Tutorial




Overall, 259 wells reported using between 891,900 and 33,193,599 gallons of water as a base for their fracking chemical cocktail. 


These numbers only represent the water consumed for hydraulic fracturing and don’t include any water used for pipeline hydrostatic testing, dust suppression on dirt and gravel roads, or any other purpose. For example, the voluminous 33,193,599 gallons used to frack Alta Resources’ Mac North B-3H well pad represents only a fraction of its permitted capacity for fracking operations.


Figure 12. A lined impoundment that does not appear on DEP’s Water Resources inventory. Photo by Karen Edelstein.

FracFocus

The unconventional oil and gas industry dominates water extraction, distribution, and use throughout the watershed. The amount of water used per fracked well has increased dramatically over the years, according to data from the industry’s frack fluid registry, FracFocus.  

However, the registry is riddled with some obvious data inaccuracies—perhaps stemming from the fact that the registry is self-reported by the various operators.

For example, there are 272 well reports with latitude and longitude coordinates placing them inside the Lycoming Creek watershed, excluding wells where operators left the water usage field blank. There are some problematic data points with those remaining. 

Five wells reported a negative number of gallons used to stimulate wells, including four from Seneca Resources’ Gamble K well pad—with quantities ranging from -214.7 million to -1.18 billion gallons of water—and one well from EXCO Resources’ Emig Unit well pad that registered -859.0 million gallons. At the other end of the spectrum, eight wells reported water consumption over 100 million gallons, including four from Rockdale Marcellus’ Cochran well pad, two from Seneca Resources’ Gamble K well pad, and two from EXCO Resources’ Emig Unit well pad.  

As water consumption data of these 13 wells is obviously erroneous, they were excluded from the following analysis. 

These withdrawal allowances are truly staggering. 

Based on observations of consumptive use permit signs across the watershed, these water withdrawal limits are typical. Taking the 7.62 billion gallons per well pad average from Figure 15, this equates to about 716 billion gallons of permitted water consumption for the 94 well pads in the watershed that have at least one well with an active, regulatory inactive, or plugged well status. Given the average household consumes about 300 gallons of water per day—and that Pennsylvania has just over 5 million householdsthis volume is nearly equal to the entire residential consumption of the state for 628 days. If this is applied to each of the 125 proposed well pads, that figure rises to about 953 billion gallons, or a little less than the full capacity of Florida’s vast Lake Okeechobee.



Groundwater contamination


Contamination from spills and leaks can affect more than just surface water. In 2014, 75 water wells in Lycoming County—which includes most of the Lycoming Creek watershed—were tested for various contaminants by the United States Geologic Survey (USGS). Six wells with the highest methane concentrations were further analyzed for their ratio of chloride to bromide, with half of that smaller subset showing water chemistry indicative of mixing with oilfield brine. Although the study posited that it could be mixing deep in the aquifer, it did not mention the frenzied drilling in the region at the time of sampling.

Stemming from thousands of complaints across the Marcellus Shale region, there are 378 private water supplies where DEP determined the loss of water quality or quantity was because of oil and gas activities. The public isn’t provided with the exact location of these fouled wells due to privacy concerns of impacted residents, but it is known that 18 incidents occurred in municipalities wholly or partially within the Lycoming Creek watershed. 

According to Pennsylvania’s Act 13—an instrumental law governing various aspects of unconventional drilling in the state—oil and gas operators are presumed responsible for water wells negatively affected within 12 months and 2,500 feet of operations. Of course, the actual spread of a pollution plume depends on the characteristics of the aquifer itself, rather than definitions from Act 13, so it is possible that wells further than 2,500 feet from an incident could be negatively impacted—potentially years after the leak or spill occurred. 

Of the 18 determination letters issued by DEP, one occurred in Fox Township in Sullivan County, six in Liberty Township in Tioga County, and two in Union Township. In Lycoming County, Eldred Township received three, Hepburn Township got one, Jackson Township received two, and McNett Township got two.  

As previously mentioned, DEP also tracks violations of various state oil and gas regulations. The vast majority of incidents in the Lycoming Creek watershed resulted in an impact to surface or groundwater. Of the 634 total citations associated with unconventional wells and well pads: 41 (six percent) related to erosion and sedimentation concerns, which could harm aquatic life; 379 (60%) citations were for spills, leaks, or pollution discharges that degraded surface or groundwater; and 41 (six percent) were for other water issues. The remaining 173 (27%) violations were for various other shortcomings—most issued for improper handling of waste materials. Depending on what happened in the field to merit these violations, many of these incidents may also have had an impact on Pennsylvania’s waters.

Water is a defining characteristic for any watershed. From the expansive wetlands uphill to the brisk trout streams around Rock Run and the McIntyre Wild Area, down to the steep ravines of the Lycoming Creek, water makes this area special. In the rush to accommodate the thirsty and pollutive oil and gas industry, the state has allowed vast portions of the region to be spoiled. 


Figure 13. Water consumption per well in the Lycoming Creek watershed has increased nearly five-fold in less than a decade, from 3,679,467 gallons in 2011 to 17,512,356 gallons in 2020, according to FracFocus data downloaded April 28, 2021.



Figure 14. Water consumption postings for six ARD (Alta Resources Development) well pads. Of the five visible signs, water consumption was permitted at 3 to 4 million gallons per pad, per day, for over five years. Photo by Erica Jackson.



Figure 15. The five visible signs in Figure 14 show that well pads are permitted to withdraw over 38.1 billion gallons of water, or an average of 7.62 billion gallons per well pad.

Waste

When fossil fuel companies portray fracked gas as “clean,” they better hope the public doesn’t notice the enormous stream of liquid and solid waste. In the Lycoming Creek watershed, operators reported 9,064,377 barrels (380.7 million gallons) of liquid waste and 416,248 tons of solid waste were generated in the drainage between January 2011 and April 2021.

As a point of comparison, this volume of liquid waste—from 362 wells in the watershed—is equal to about 577 Olympic-sized swimming pools, or an acre of land covered in toxic waste 1,168 feet deep. In terms of solid waste, disposal of drill cuttings and other substances equals the garbage left behind after 8,672 Kenny Chesney concertslike having about 2.3 concerts every day. This estimation is based on 330 wells reporting solid waste generation in the watershed.



Lycoming Creek Waste

View Full Size Map | Updated 3/1/2021 | Data Tutorial



Problems with oil & gas waste


To compare chemical-laden flowback fluid and radioactive brines to pool water based on volume alone does little to communicate the dangers of liquid waste—just as comparing drill cuttings and filter socks to beer cans and food wrappers is insufficient.

Oil and gas waste is much more harmful to human health and the environment than normal household refuse. 

Flowback fluid includes a portion of the liquid injected into a wellbore during hydraulic fracturing. As presented in the Water section, the volume of water injected into each well averaged over 17.5 million gallons in 2020. The industry’s chemical registry site FracFocus estimates that between one-half percent and two percent of the injected volumes are composed of various chemical additives. To get an accurate estimate of the volumes of these chemicals, it is necessary to add the water volume and the non-water volume together, then calculate the above range. Unfortunately, only 18 out of the 259 wells in the watershed that provide believable water volumes also provide non-water volumes.

Approximately 25% of these chemical additives could cause cancer, according to recent studies—while others may inflict skin or respiratory damage.

What is now the Marcellus Shale formation was an ancient, shallow seabed around 384 million years ago in the Middle Devonian epoch. As this sea dried out, organic content concentrated, which would eventually be the source of hydrocarbon gasses. Other components saturated with this organic matter—including barium, benzene, chloride, radium, thallium, and more. These contaminants resurface with the oil and gas, either dissolved or suspended in fluid waste called brine. Brine will continue to rise to the surface in significant quantities during a well’s operating lifespan.

Drill cuttings comprise most of the solid waste from oil and gas sites in Pennsylvania. As with brine, these cuttings contain concentrations of the same toxic and radioactive chemicals. Whether used onsite or sent to landfills, these cuttings are problematic when precipitation causes contaminants to leach, posing risks to aquifers and surface waters. Traditionally, landfill leachate is taken to water treatment facilities. However, these facilities are ill-equipped to handle oil and gas waste and cannot effectively remove the contaminant load.


What happens to the waste?


In 2019, FracTracker analyzed and mapped the destination of Pennsylvania’s oil and gas waste from 2011 through 2018 in a project with Earthworks. Most waste stays in Pennsylvania and neighboring states, but this still requires thousands of heavy tankers travelling tens or even hundreds of miles to reach their destinations. The industry ships some waste as far as Texas, Utah, and Idaho, despite enormous transportation costs. The project underscored Pennsylvania’s incapacity to deal with this noxious and problematic waste stream.

This waste is handled in various ways, with about 54% reused at other fracking sites, 30% sent to residual waste processing facilities, and ten percent disposed in injection wells. Most of the remaining six percent is sent to surface impoundments—but it is not clear what happens to the waste from there.

For solid waste, 56% goes to landfills, 34% is reused at well pads, and eight percent goes to residual waste processing facilities—with the rest handled by other methods.

There is record of 124 waste facilities in the Lycoming Creek watershed, including 121 well pads, one landfill, one residual waste processing facility, and one temporary storage site, pending future reuse or disposal.

The Clean Earth facility—a landfill and drilling mud processing facility—has taken 157,457 tons of solid oil and gas waste and 315 barrels of liquid waste from 2013 to 2016. Between 2012 and 2013, the facility operated as Clean Streams, LLC, and accepted 10,610 additional tons of solid waste and 513,894 barrels of liquid waste. At the watershed’s northern border in Tioga County is Rockdale Marcellus’ Harer Beneficial Reuse facility. Beech Resources proposed an additional facility in currently forested land across US Highway 15 from the Clean Earth facilities.


Figure 16. Estimated chemical components of fracking fluid for the 18 wells in the Lycoming Creek watershed that provide non-water volumes. The minimum estimate is 965,434 gallons, based on 0.5% chemical concentrations, while the maximum estimate is 3,861,737 gallons, based on two percent concentrations.



Figure 17. Disposition method of liquid waste from unconventional wells in Pennsylvania in 2020, based on DEP waste reports. The total liquid waste volume was 61,832,431 barrels, or about 2.6 billion gallons.



Figure 18. Disposition of solid waste from unconventional wells in Pennsylvania in 2020. Total statewide mass was 1,397,678 tons.


Mountains of waste

As drilling continues in the Lycoming Creek watershed and nearby, enormous waste streams will continue to be a conundrum. Even reused material might contaminate the land, streams, and groundwater, and harm human health. As wells are fracked with ever-increasing volumes of fluid, they will return ever-increasing volumes of waste, requiring more and more resources to process.



To see more footage & photos from this project:





Field Day Description

On a sunny and brisk Thursday in May 2021, a group of 11 FracTracker staff members and volunteers gathered in the Lycoming watershed outside Williamsport to find and document unconventional oil and gas activities and infrastructure.

This field day was in part informed by insights from members of the Responsible Drilling Alliance, a regional organization, and the knowledge and experiences of Peter Petokas, a biology and environmental science professor at Lycoming College who has explored and kept tabs on the area’s hellbender habitats for years.

FracTracker’s Matt Kelso used DEP data to develop maps illustrating various infrastructure, including 384 drilled wells on 96 different pads, nine compressor and metering stations, and 67 water facilities related to oil and gas extractionincluding 12 surface water withdrawal sites and 55 storage reservoirs. He then divided an area of about 272 square miles into five sections, and at least two participants explored each section. 

Using Matt’s maps, FracTracker’s mobile app, cameras, decibel and distance measuring apps, and other tools, the group visited and documented various infrastructure—while observing significant truck traffic and other evidence of the industry’s pervasiveness. As the groups navigated rural back roads and small state highways, many were struck by the juxtaposition of a bucolic landscape of rolling hills, green forests, and peaceful farmland with imposing, pollutive, and sometimes noisy and smelly fracking sites.

Additional fieldwork was conducted with assistance from Earthworks’ staff and their FLIR technology, as well as aerial photography and videography captured by FracTracker’s Ted Auch—with flying assistance from partners at LightHawk.

FracTracker then used the geolocated photos, video, and site-specific descriptionscoupled with variable datasets, research, and other literatureto compile this Story Atlas, an educational tool for concerned residents of the Lycoming Creek watershed, and an insightful resource for others living near fracking activity. 

The mobile app reports from this reconnaissanceand from locations across the U.S.are visible on the FracTracker mobile app, available for download on your iOS or Android device, or by visiting the web app at https://app.fractracker.org/.



Figure 19. The field day volunteers gathered before exploring the Lycoming Creek watershed. Photo by Shannon Smith, FracTracker Alliance.



Figure 20. This FLIR footage was recorded by Earthworks at NFG Midstream Trout Run LLC’s Hagerman gas processing and metering facility in Trout Run, Pennsylvania in June 2021. This recording captures visible air pollution from combustion and fugitive emissions at the facility.

Lycoming Creek Photo Map

View Full Size Map | Updated 3/1/2021 | Data Tutorial


Local insights

Much has changed in the Lycoming watershed since unconventional oil and gas exploration ramped up over the last 15 years—in terms of ecological deterioration, as well as the deterioration of locals’ attitudes toward the industry.

At first welcomed by many as a chance for financial gain through mineral rights leasing, some community members—especially those whose families have lived in the area for generations—watched their land drastically degenerated and their sovereign land rights eclipsed by industrial encroachment they did not foresee.

Between 2011 and 2018, unconventional oil and gas drilling—notably, hydraulic fracturing—transformed sections of forest and farmland into comparatively gritty industrial zones. 

“They were assured that, after the drilling phase was completed, they would hardly know the wells were there. They were also told that they had to decide quickly, and that everyone around them had already leased. A local anti-drilling advocacy group tried to warn them, but many locals distrusted environmentalists.”

As author and professor Colin Jerolmack references in his recent article for The New Republic, some landowners who willingly leased their mineral rights to oil and gas companies now view the industry’s activities with consternation. Incessant noise, traffic congestion, and foul odors have tarnished the once peaceful countryside. Even more disconcerting for property owners, the industry often operates however they please, with little consultation or consent—making some feel that they have lost their decision-making power and agency.

This disaffection potentially makes room for environmentalists to find common ground with those who embraced the industry, couched not in anti-fracking sentiments—and not necessarily in the essential need to mitigate the climate crisis—but in their shared love for the land.

Another big ecological concern in the punctured watershed centers on the fragile Eastern hellbender populations. Five conservation groups filed a lawsuit on July 1, 2021, challenging a 2019 decision to deny the amphibian protection under the Endangered Species Act. 

“The hellbender is an ancient species that deserves better protections,” said Betsy Nicholas, Executive Director of Waterkeepers Chesapeake, one of the groups involved in the lawsuit. “The hellbender reminds us that we all live downstream. As the upstream tributaries are disturbed and polluted, the hellbender disappears. And the same pollution flows downstream to our populated areas, threatening the use and enjoyment of our rivers. We need to pay attention to what happens to the hellbender.”

Once widespread across 15 states, Eastern hellbenders have been eliminated from most of their historic range and continue to face many threats, including low water flow and poor water quality, increasing water pollution, deforestation, residential development, mining—and of course—oil and gas development. 

Peter Petokas has been studying Eastern hellbender populations in the Lycoming watershed for 16 years. He is very concerned for the future of the species in the watershed, which holds one of the richest populations in Pennsylvania, concentrated in one of the few remaining streams with optimal water quality. Even so, a drought in 2020 left the area’s waterways with very low flows, which constrains the hellbender’s habitat and stresses the population. Because they lack protection under endangered species status, agencies may be remiss to implement enhanced regulations on discharges and withdrawals in the basin. Petokas remains hopeful that the pending lawsuit against the US Fish & Wildlife Service will restart an assessment for federal endangered/threatened species protection.

“If there’s ever a spill of anything, it’s the end, it would wipe out one of the best hellbender populations in Pennsylvania,” Petokas said.

Besides concerns about low water levels, the watershed is losing tree cover along streams to invasive insects and erosion. Riparian species like ash, sycamore, and river birches provide shade and keep the water cool enough for hellbenders to thrive. 


Figure 21. A pipeline path cuts through forest in McNett Township, Lycoming County. Photo by Shannon Smith.

What does the future hold?

“An ecological threshold is the tipping point at which incremental changes or disturbances cause drastic or disproportionate results … When you remove land past the ecological threshold, a species no longer has the options to tolerate the disturbance. Beyond this point, the losses become disproportionately large.” [i]

In addition to creating new stressors on aquatic life, natural gas development in the Lycoming Creek watershed—particularly land use changes—affect bird communities. The area contains nesting habitat for many species or is an important stopover during seasonal migrations. Forest interior birds, like the cerulean warbler, are most vulnerable. They need pristine habitat.

A watch list of birds threatened by gas development in northeastern Pennsylvania features several warblers, thrushes, vireos, and woodpeckers. Nearly half of the birds are on a conservation priority list, underscoring that fracking jeopardizes species already at risk. All bird species on the watch list are known to nest in or visit the Lycoming Creek watershed.

The noise, noxious fumes, and land clearing correspondent with fracked gas takes a toll on human communities, too. 

A loud and obtrusive competitor has complicated access to unfettered public forests. This troublesome tenant strains local resourcesand relationships. Rural qualities erode like the overburdened roads.

According to Colin Jerolmack—when writing about this very place in Up to Heaven and Down to Hellone’s decision to lease, “… alienates others’ rights to liberty and property.” [ii] This paradigm, “prevents many community stakeholders from having a say in decisions even though they absorb the externalities.” [iii]

The externalities here and in other gas and oilfields are consequential for the entire global community. “It seems increasingly apparent that to prevent catastrophic global warming, society must decarbonize rapidly,” [iv] says Jerolmack. 

Burning more methane will not get us to that goal. Words of wisdom flow from native sources: 

“At the height of battles over strip mining for coal, back in the 70s, it seemed unimaginable that we would knowingly make the same mistakes again with potential for doing such harm,” says Tim Palmer, former Lycoming County resident and author of Twilight of the Hemlocks and Beeches, “but here we are with another fossil-fuel industry leaving its mark that may last for generations on our land, waters, and communities.”  

“Fight like hell to mitigate the harm … while trying to stop the industry’s spread,” [v] says Ralph Kisberg, an activist from Williamsport. People are making a difference, from afar and closer to home, and Kisberg is optimistic. “I doubt I’ll live to see a clean energy world, but maybe a clean energy U.S. economy…” [vi]

Clean and restorative, like the promise of a cool mountain stream.


Figure 22. Miner’s Run, a stream in the Lycoming Creek watershed. Photo by Tim Palmer.

THANKS TO…



Thank you to all the inspiring and persistent environmental stewards who have contributed to the creation of this digital atlas:


Project funding provided by:


SOURCES

Fig. 1. Appalachia Midstream SVC LLC , Cherry Compressor Station in Cherry, Sullivan County, PA. (FLIR camera footage by Earthworks, July 2020)

An Introduction to the Loyalsock Creek Watershed


Nestled in Pennsylvania’s scenic Endless Mountains region, the Loyalsock Creek flows 64 miles from its headwaters in Wyoming County near the Sullivan County line, to a peaceful confluence with the West Branch Susquehanna River at Montoursville, east of Williamsport in Lycoming County. The lively, clear water drains 495 square miles, journeying through thick forests of the Allegheny Plateau over a landscape prized for rugged outdoor recreation, bucolic wooded respites, and quaint villages. 

Local place names reflect the Munsee-Lenape, Susquehannock, and Iroquois peoples who called the area home at the time of early colonial settlement. The name Loyalsock stems from the native word Lawi-sahquick, meaning “middle creek.” 

A favorite for angling, swimming, and whitewater paddling, the waterway supports a notorious resident – the aquatic eastern hellbender, the largest salamander in North America. In 2018, the Pennsylvania Department of Conservation and Natural Resources (DCNR) crowned the Loyalsock “River of the Year,” a program honoring the state’s premier rivers and streams and encouraging their stewardship.



Fig 2. Loyalsock Watershed Overview Map. (FracTracker Alliance, July 2020)

A Wealth of Public Lands and Recreational Opportunity

Public Lands

Nearly one third of the Loyalsock watershed consists of state-owned public lands, including the 780-acre Worlds End State Park; 37,519 acres of state game lands; and, 65,939 acres of the Loyalsock State Forest. The State Forest encompasses two Natural Areas, Tamarack Run (201 acres) and Kettle Creek Gorge (774 acres), as well as a 1935-acre portion of Kettle Creek Wild Area.

Worlds End State Park was originally purchased by the state in 1929 in an attempt to allow the area to recover from clear-cutting. The land was significantly improved due to the work of the Civilian Conservation Corps in the 1930s. There is some uncertainty about the historical name of the region, and as a result, the park was renamed Whirl’s End in 1936, but reverted to Worlds End in 1943. 

The area is a deep gorge cut by water rushing over millions of years through the Loyalsock Creek, over sedimentary formations known as the Sullivan Highlands. The gorge reaches 800 feet deep in some locations, where the fossilized remnants of 350-million-year-old lungfish burrows can be found.

Current amenities include 70 tent camping sites, 19 cabins, as well as group camping options accommodating up to 90 campers. A small swimming area on Loyalsock Creek is open in the summer months, and the Creek is also used for boating and fishing.

The Tamarack Run Natural Area protects one of the few enclaves of the tamarack tree, a species of larch common in Canada, but relatively rare as far south as the Loyalsock watershed. 

The Kettle Creek Gorge Natural Area follows the path of Falls Run, which as the name suggests, contains numerous majestic waterfalls, including Angel Falls, which drops around 70 feet. The Natural Area is buffered by the Kettle Creek Wild Area. Kettle Creek is a Class A Wild Trout stream, meaning that natural populations of trout are sufficient in quantity and size to support fishing activities.


Fig. 3. A view of Loyalsock Creek from the High Rock Trail in Worlds End State Park. (Brook Lenker, FracTracker Alliance, August 2019)


Fig. 4. Tubing on Loyalsock Creek. (Brook Lenker, FracTracker Alliance, August 2019)

Relaxing on the Water

The Loyalsock watershed contains 909 miles of streams, with more than 395 miles (43%) classified as high quality (358 miles) or exceptional value (37 miles). The watershed contains 10,573 acres of wetlands, including 4,844 acres of forested wetlands, 3,261 acres of riverine wetlands, 1,013 acres of freshwater ponds, 761 acres of lakes, and 694 acres of emergent wetlands.

Another popular recreation spot within the Loyalsock watershed is Rose Valley Lake, a 389-acre artificial reservoir managed by the Pennsylvania Fish and Boat Commission. The lake contains a variety of fish, including bigmouth bass, bluegill, and walleye. Boating is restricted to electric motors and unpowered craft, making the area an idyllic getaway.

Trails

There are 238 miles of trails in the watershed, accommodating a variety of uses, including hiking, biking, horseback riding, cross-country skiing, and snowmobiles. Some notable examples include: 

  • over 90 miles of snowmobile trails in the Loyalsock State Forest and Worlds End State Park; 
  • most of the 64-mile-long Loyalsock Trail, showcasing numerous waterfalls; 
  • the Double Run Ski Trail, providing cross-country opportunities in the Loyalsock State Forest; 
  • and the 19-mile Loyalsock State Forest Bridle Trail for equestrian pursuits.

The Loyalsock Watershed also contains the entirety of state Game Lands #134 and #298, as well as parts of six others, including Game Lands #12, #13, #36, #57, #66, and #133. Not only hunting locations, these tracts preserve habitat for important bird and mammal species, provide opportunities for birding, and offer a variety of outdoor education resources.



Commercial Opportunities

There are also privately-owned recreational opportunities in the region. A portion of the historic Eagles Mere Country Club has provided golf and other activities for over 100 years. Eagles Mere Lake, just south of the watershed boundary, provides recreation opportunities for members of the privately-held Eagles Mere Association. At the south of the lake is the regionally-famous Eagles Mere Tobaggan Slide, where riders race down a specialized track at speeds up to 45 miles per hour, when winters are cold enough for sufficient ice conditions – a fleeting situation due to climate change. 

A few miles to the east of Eagles Mere lies a cluster of lakes that surround the borough of Laporte, in Sullivan County. The largest of these lakes is Lake Mokoma, administered by the Lake Mokoma Association. Participation in the Association is limited to those who own residences or vacation homes in Sullivan County.

Loyalsock State Forest Trail

Fig. 5. Hiking trail in the Loyalsock State Forest. (FracTracker Alliance, July, 2020)

Fig. 6. An interactive map of recreation opportunities in the Loyalsock Watershed. (FracTracker Alliance, July 2020)

View map fullscreen


Note: Wetland data presented are from the National Wetlands Inventory (NWI), which is a geographically comprehensive dataset compiled by the US Fish and Wildlife Service from aerial photographs, but not a complete or accurate depiction of regulated wetlands for site-specific purposes.  A relatively newer wetland mapping dataset for Pennsylvania appears to identify more areas of potential wetlands than NWI.  Nevertheless, the NWI and other available map sources generally underestimate actual wetland coverage in Pennsylvania.  Accurate wetland mapping requires the application of technical criteria in the field to identify the site-specific vegetation, soil, and hydrology indicators that define regulated wetlands (25 Pa. Code 105.451).  

Stream data presented are from the Pennsylvania DEP Designated Use listing (25 Pa. Code 93.9), which is based on the National Hydrography Dataset.  Some streams have updated designations of their existing water uses as depicted on other DEP datasets.  Available electronic datasets and topographic maps do not display all permanent or intermittent streams included as Regulated Waters of the Commonwealth (25 Pa. Code 105.1).  It is possible to map additional streams with the help of existing photo-based digital elevation models, although use of that technique was beyond the scope of this informational project.  Such streams would add significantly to the total mileage, but they have not yet been acknowledged by the Pennsylvania DEP, and therefore are not included in the DEP’s inventories of high quality, exceptional value, or other streams.

The datasets used in this map collection can be found by following the links in the Details section of each map, found near the top-left corner of the page.

Fracking comes to the Loyalsock

Figures 7-9. Aerial imagery of unconventional oil and gas infrastructure in the Loyalsock State Forest. (Ted Auch, FracTracker Alliance, with aerial assistance from Lighthawk. June, 2020)

On November 17, 2009, Inflection Energy began drilling the Ultimate Warrior I well in Upper Fairfield Township, Lycoming County. In quick succession came Pennsylvania General Energy, Chesapeake Appalachia, Chief Oil & Gas, Anadarko E&P, Alta Resources (ARD), and Southwestern Production (SWN), all of which drilled a well by the end of 2010. It was a veritable invasion on the watershed, one that ushered in a dramatic change from a mostly agrarian landscape, to one with heavy industrial presence.

Residents have to deal with constant construction of well pads, pipelines, compressor stations, and staging grounds. Since each drilled well requires thousands of truck trips, enormous traffic jams are common, with each idling engine spewing diesel exhaust into the once clean air. The noise of drilling and fracking continues into the night, and bright flaring of gasses at wells and other facilities disrupts sleep schedules, and may contribute to serious health issues as well.

Fig. 10. An interactive map of the impacts of the unconventional oil and gas industry to the Loyalsock Creek Watershed. Note: Pipelines may be only partially depicted due to data limitations. (FracTracker Alliance, 2020)

View map fullscreen

Fracking is a nuisance and a risk in the best of times, but the Marcellus boom in the Loyalsock watershed has been notably problematic. The most frequent violations in the watershed are casing and cementing infractions, for which the “operator conducted casing and cementing activities that failed to prevent migration of gas or other fluids into sources of fresh groundwater.” This particular violation has been reported 47 times in the watershed, although there are dozens of additional casing and cementing issues that are similarly worded (see appendix). Erosion and sediment violations have also been commonplace, and these can have significant impacts on stream system health.

Improperly contained waste pits have leached toxic waste into the ground. A truck with drilling mud containing 103,000 milligrams per liter of chlorides – about five times more than ocean water – was driving down the road with an open valve, spewing fluids over a wide area. Some spills sent plumes of pollution directly into streams.

  • Fig. 11. Diesel truck traffic carrying fracking equipment in the Loyalsock watershed. (FracTracker Alliance, June, 2020)

  • Fig. 12. Diesel exhaust spewing from fracking equipment. (Barb Jarmoska)

    Diesel exhaust spewing from fracking equipment. Photo by Barb Jarmoska.
  • Fig. 13. Fracking is a heavily industrial activity. Many of these sites in the Loyalsock Creek watershed are immediately adjacent to homes. (Barb Jarmoska)

    Fracking is a heavily industrial activity. Many of these sites in the Loyalsock Creek watershed are immediately adjacent to homes. Photo by Barb Jarmoska.
  • Fig. 14. Open pits used to be permitted for temporary storage of oil and gas waste. Here, the liner is not properly covering the bottom-right corner, sludge is piled up past the liner in the top-right corner, and temporary fencing is failing in numerous locations. (Barb Jarmoska)

    Open pits used to be permitted for temporary storage of oil and gas waste. Here, the liner is not properly covering the bottom-right corner, sludge is piled up past the liner in the top-right corner, and temporary fencing is failing in numerous locations. Photo by Barb Jarmoska.

In short, it has been a mess. Altogether, there have been 631 violations issued for 317 unconventional wells drilled in the Loyalsock, an average of two violations per well. 

The Pennsylvania Department of Environmental Protection (DEP) issues violations on pipelines as well, but we are unable to match pipeline violations to a specific location, so there is no way to know which ones occurred in the Loyalsock watershed. 

We also know that pipeline construction is a process filled with mishaps. Specifically, there is a technique for drilling a pipeline segment underneath existing obstacles – such as streams and roads – known as horizontal directional drilling (HDD). These HDD sites frequently bleed large quantities of drilling mud into the ground or surface water. When these leaks surface, these spills are known euphemistically as “inadvertent returns.” Sometimes, the same phenomenon occurs but the fluid drains instead to an underground cavity, referred to as “loss of circulation.” We do not have data on either category for pipelines in the Loyalsock watershed. However, the DEP has published inadvertent returns for the Mariner East II route to the south, and when combining spills impacting the water and ground, these occur at a rate of about two spills for every three miles of installed pipe. Many of these releases are measured in thousands of gallons. 

Unfortunately, drilling and all related activity continue in the Loyalsock Creek watershed. As the industry has proven incapable of conducting these activities in an unsullied manner that is protective of the environment and the health of nearby residents, we can expect the litany of errors to continue to grow.

A Brief Timeline of Infractions

In 2016, a major incident was reported to the Pipeline and Hazardous Materials Safety Administration (PHMSA), a federal agency under the Department of Transportation (DOT). On October 21, a Sunoco pipeline ruptured, spilling 55,000 gallons of gasoline into Wallis Run, a tributary of Loyalsock Creek. The eight-inch pipeline burst when high winds and heavy floods triggered mudslides, sweeping away at least two homes and leaving flooded roads impassable. Water suppliers and national and state agencies advised locals to conserve water, and the DEP and water supplier American Water shut down intake valves until they had measured contamination levels in three water supplies serving thousands of people downstream, including populations in Lewisburg, Milton, and Gamble Township. 

Limited access to the area delayed identifying the source of the rupture, though Sunoco shut off the pipeline that runs from Reading to Buffalo, NY. When waters receded, Sunoco officials replaced the broken pipe, which they said was broken by debris from a washed out bridge ten feet upstream. The pipeline was buried five feet below the creek, but heavy rains exposed it. 

Agency authorities later found that heavy rains had flushed out much of the pollution, though they recorded the highest levels in the Loyalsock Creek. While this is obviously a weather-related event, local residents questioned the placement of a hazardous liquids pipeline crossing at such a volatile location, noting that the same pipeline had been exposed, (although not breached), just five years earlier.

Sunoco tops the list of U.S. crude oil spills. Sunoco and their subsidiaries reported 527 hazardous liquids pipeline incidents between 2002 and 2017, incidents that released over 87,000 barrels of hazardous liquids, according to Greenpeace USA and Waterkeeper Alliances’ 2018 report on Energy Transfer Partners (ETP) & Sunoco’s History of Pipeline Spills. Sunoco and its subsidiary ETP are developing the Dakota Access Pipeline, the Mariner East pipeline, and the Permian Express pipeline, sites that have already seen construction errors causing leaks and spills.

The area suffered another heavy spill in 2017, when a well operated by Colorado-based Inflection Energy leaked over 63,000 gallons of natural gas drilling waste into a Loyalsock Creek tributary. The spill occurred when waste was being transferred from one container to another, a neglect of the contracted worker who had fallen asleep. DEP spokesman Neil Shader said the waste – called “flowback” – was filtered and treated, but this brine can contain chemicals, metals, salts, and other inorganic materials that can pollute soil and groundwater. Carol Parenzan, at the time serving as Middle Susquehanna’s Riverkeeper, said many residents are supplied by well water, and were not alerted of the spill until a local began investigating and calling local and state authorities.

Chesapeake Manning July 2020 Earthworks

Fig. 16. At the Chesapeake Appalachia LLC Manning Well Site and Lambert Farms Well Site, the emissions sources appear to be engines or combustion devices. (FLIR camera footage by Earthworks, July 2020)

One of Earthworks’ trained and certified thermographers visited the Loyalsock watershed and surrounding area in mid-July with a FLIR optical gas imaging (OGI) camera. This industry standard tool can make visible pollutants that are typically invisible to the human eye, but that still pose significant risks to health and the environment–including 20 volatile organic compounds, such as the carcinogens benzene and toluene, and methane, a greenhouse gas 86 times more potent than carbon dioxide.

Oil and gas air pollution isn’t isolated to the Loyalsock watershed, and Earthworks has gathered optical gas imaging evidence of leaks and other air emissions on more PA public lands–like the Allegheny National Forest and the Pine Creek watershed area.


To see more photos and videos FracTracker collected in the Loyalsock Watershed, visit our Flickr album.

Water – a precious resource

Water is the lifeblood of the Loyalsock watershed, as it is in any basin. However, in the Loyalsock, water is of particular importance. As we have seen, recreation opportunities in the area are defined by water, including fantastic fishing streams and lakes, meandering trails passing many waterfalls, various boating sites, and inviting swimming holes. For one reason or others, most visitors come to the Loyalsock to enjoy these natural aquatic locations.

Perhaps the most important water assets are underground aquifers. The majority of the watershed is rural, and private wells for potable household water are typical. Even the municipal water supply for the Borough of Montoursville is fed by groundwater, including five wells and an artesian spring.

Contamination

For a region so dependent on surface water for tourism, commercial activities, and groundwater for drinking supplies, the arrival of fracking is a significant concern. Unfortunately, spills and other violations are common at well pads and related infrastructure, with over 631 violations in the watershed since 2010. 

Even pipelines that are not yet operational can have impacts on the waterways in the Loyalsock Creek watershed. In September 2012, for example, a “significant amount” of sediment and mud spilled into the Loyalsock Creek during the construction of Central New York Oil and Gas’ Marc I pipeline project. Such incidents introduce silt and clay into waterways, fine sediments that have the potential to deplete aquatic fauna. These types of episodes have received considerably more attention since this event, and it turns out that they are quite common during pipeline construction. For example, the Mariner East pipeline has had hundreds of these so-called inadvertent returns, many of which directly affected the waters of the Commonwealth. 

Trucks withdrawing water for drilling-related activities at the Forksville Heritage Freshwater Station, operated by Chief Oil & Gas. Photo from FracTracker mobile app report.

Fig. 17. Trucks withdrawing water for drilling-related activities at the Forksville Heritage Freshwater Station, operated by Chief Oil & Gas. Photo from FracTracker mobile app report.

Average water use per well in the Loyalsock Watershed

Fig. 18. The average amount of water used per well in the Loyalsock Watershed has increased over time. In recent years, several wells exceeded 30 million gallons (FracTracker Alliance, 2020).

In addition to contamination concerns, unconventional oil and gas wells are extremely thirsty operations. FracTracker has analyzed wells in the watershed using the industry’s chemical registry site FracFocus. Of the 274 wells in the watershed reporting to FracFocus between January 2011 and April 2020, 38 did not include a value for total water usage. These wells were all fracked on or before September 13, 2012, when the registry was still in its early phase and its use was not well standardized. Two wells fracked in 2018 by Pennsylvania General Energy had very low water consumption figures, with one reporting 2,100 gallons, and the other reporting 6,636 gallons. These two reports appear to be erroneous, and so these wells were removed from our analysis.

Of the remaining 234 wells in the data repository, one reported using less than one million gallons, although it came close, with 925,606 gallons. Another 63 wells used between one and five million gallons, 137 wells used between five and ten million gallons, 25 wells used between ten and 20 million gallons, and eight used more than 20 million gallons. The average consumption was 7,739,542 gallons, while the maximum value was for Alta Resources’ Alden Evans A 2H well, which used 34,024,513 gallons of water.

The well’s operator has a tremendous impact on the total amount of water usage reported on FracFocus in the Loyalsock watershed. 

However, it is worth noting that time factors into this analysis. None of the three companies averaging less than five million gallons of water per well – including Anadarko, Atlas, and Southwestern – have records after 2014, and water consumption has increased dramatically since then. Still, Alta’s average of nearly 24.7 million gallons per well stands out, with more than twice the amount of water consumed per well, compared to the next highest user. 

Altogether, the wells on the FracFocus registry in the Loyalsock watershed consumed over 1.8 billion gallons of water, enough water to supply nearly 36,000 households for a year, assuming an average of 138 gallons per household, per day. This is a real need in the United States, as a 2019 report by DigDeep and US Water Alliance estimated that there were twmillion people in the U.S. without running water in their homes.

Operator Average Gallons per Well
Alta Resources 24,658,871
Anadarko Petroleum Corporation 3,320,469
Atlas Energy, L.P. 4,926,427
Chesapeake Operating, Inc. 6,572,047
Chief Oil & Gas 8,537,475
Inflection Energy (PA) LLC 7,716,069
Pennsylvania General Energy 11,680,249
Seneca Resources Corporation 8,410,013
Southwestern Energy 2,355,864

Fig. 19. Total amount of water usage reported by oil and gas operators in the Loyalsock watershed. (FracFocus, 2020)

Fig. 20. An interactive map of oil and gas related water sites in the Loyalsock Creek Watershed. (FracTracker Alliance, 2020)

View map fullscreen

A Waste-Filled Proposition

Between January 2011 and April 2020, two conventional wells and 297 unconventional wells combined to produce 7,017,102 barrels (294.7 million gallons) of liquid waste, and 340,856 tons (681.7 million pounds) of solid waste.

Liquid oil and gas waste produced in the Loyalsock Creek watershed, in barrels. Note that 2020 includes data from January to March only.

Fig. 21. Liquid oil and gas waste produced in the Loyalsock Creek watershed, in barrels. Note that 2020 includes data from January to April only. (FracTracker Alliance, July 2020)

Solid oil and gas waste produced in the Loyalsock Creek watershed, in tons. Note that 2020 includes data from January to March only.

Fig. 22. Solid oil and gas waste produced in the Loyalsock Creek watershed, in tons. Note that 2020 includes data from January to April only. (FracTracker Alliance, July, 2020)

For sake of comparison, this amount of liquid waste could fill the Lincoln Memorial Reflecting Pool more than 43 times, while the solid waste from this modest-sized watershed exceeds the weight of three Nimitz-class aircraft carriers.

This averages out to 23,469 barrels (985,680 gallons) and 1,140 tons (2,279,973 pounds) per well drilled in the basin, and most of these wells are active and continue to produce waste. Many of these wells have generated waste quantities in great excess of these averages.

Unlike gas production, which tends to drop off precipitously after the first year, liquid waste production remains at an elevated level for years. For example, the Brooks Family A-201H well, the well reporting the largest quantity of liquid waste in the basin, produced 1,499 barrels in 2017, 28,847 barrels in 2018, 35,143 barrels in 2019, and 23,829 barrels in the first four months of 2020. The volumes from this well increase substantially each year. 

For all wells in the watershed reporting liquid waste between 2018 and 2019, waste totals decreased by almost 42%. While a significant decrease, these 237 wells still generated 829,267 barrels (34.8 million gallons) of waste in 2019, and some have been generating waste since at least 2011. Wells will continue to produce waste until they are permanently plugged, but unfortunately, there are plans for more drilling in the watershed. There are 17 active status wells that have been permitted and not yet drilled. Important to remember is that fracking waste is often radioactive, and laden with salt, chemicals, and other contaminants, making it a hazardous product to transport, treat, or dispose. 

Cumulative liquid waste totals produced by oil and gas wells in Loyalsock Creek watershed between January 2011 and April 2020.

Fig. 23. Cumulative liquid waste totals produced by oil and gas wells in Loyalsock Creek watershed between January 2011 and April 2020. (FracTracker Alliance, July, 2020)

Fig. 24. An interactive map of oil and gas waste generated in the Loyalsock Creek Watershed between January 2011 and May 2020. (FracTracker Alliance, July, 2020)

View map fullscreen

Documentation Field Day

On a sunny Friday in June 2020, a group of 18 FracTracker staff members and volunteers gathered in the Loyalsock watershed to document activities and infrastructure related to unconventional oil and gas activities. FracTracker’s Matt Kelso used a variety of data from the DEP to prepare maps depicting an array of infrastructure, including 317 drilled wells on 110 different pads, five compressor stations, a compressed natural gas truck terminal, and 24 water facilities related to oil and gas extraction – including five surface water withdrawal sites and 19 storage reservoirs. He then divided an area of about 496 square miles into five sections, and at least two participants were assigned to explore each section. 

Using the FracTracker mobile app, cameras, and other documentation tools, the group was able to verify the location of 91 infrastructure sites, including well pads, compressor stations, pipelines, water withdrawal sites and reservoirs, as well as significant truck traffic. As they made their way over the rural back roads, many participants were struck by the juxtaposition of a breathtaking landscape and peaceful farmlands with imposing, polluting fracking sites.

The day was also documented by Rachel McDevitt from StateImpact Pennsylvania, a reporting project of NPR member stations, as well as the filmmakers Justin Grubb, Alex Goatz, and Michael Clark from Running Wild Media

With the geolocated photos and site descriptions documented on this day, FracTracker was able to compile this story atlas to serve as an educational tool for concerned residents of the Loyalsock. 

You can find these reports and many more by downloading the FracTracker app on your iOS or Android device, or by going to the web app at https://app.fractracker.org/.

  • Fig. 25. FracTracker’s Executive Director Brook Lenker addresses the gathering of volunteers, media members, and FracTracker staff at Canfield Island Heritage Trail Park on documentation day. (FracTracker Alliance, June, 2020)

    Loyalsock watershed fractracker app expedition
  • Fig. 26 FracTracker’s Matt Kelso explains the maps he made of different sections in the Loyalsock Watershed. (FracTracker Alliance, June, 2020)

  • Fig. 27 Running Wild Media’s filmmaker captures the introduction to the documentation day by FracTracker staff. These filmmakers tagged along for additions to a film about the eastern hellbender, to be released in spring 2021. (FracTracker Alliance, June, 2020)

  • Fig. 28. A compressor station is seen across a field of wildflowers, somewhere in the Loyalsock Watershed. (FracTracker Alliance, June, 2020)

  • Fig. 29. Volunteers stand outside gated infrastructure in the watershed on the documentation field day. (FracTracker Alliance, June, 2020)

  • Fig. 30. A pipeline path cutting through forest in the Loyalsock watershed. (FracTracker Alliance, June, 2020)

  • Fig. 31. Grass has grown to cover a pipeline path traversing a hillside in the Loyalsock. (FracTracker Alliance, June, 2020)

Click on various elements in te map to see visualizations such as videos, FLIR camera footage, gifs, and photos.


Fig. 32. An interactive map of community-led documentation of oil and gas related impacts in the Loyalsock Creek Watershed. (FracTracker Alliance, 2020)

View map fullscreen

Local Insights

Barb Jarmoska is a lifelong environmental and social justice activist with property adjacent to the Loyalsock State Forest that has been in her family for five generations. She has witnessed a dramatic and devastating transformation of the pristine area surrounding her home as the fracking industry moved into what they consider the Marcellus Sacrifice Zone.

This is Barb’s account, in her own words:


“For me, the door to the woods is the door to the temple,” wrote poet Mary Oliver. I understand those words, they are part of my lifetime of lived experience in the Loyalsock watershed. 

I am a retired special-ed teacher and a business owner – a mother and a grandmother – and someone who treasures and reveres the rapidly dwindling wild places in Penns Woods.

Where my front yard ends, the Loyalsock State Forest (LSF) begins. Access to my property is via a no-outlet gravel road that dead-ends in the Forest. 

In 1933, my grandfather bought 20 acres with an old cabin and barn bordering what is now the LSF. 

As a child, I didn’t miss indoor plumbing or air conditioning in that cabin beside the Loyalsock Creek where we spent our summers. I now live on the land year-round, in a home I built in 2007, before I had ever heard the words Marcellus Shale. I have indoor plumbing now, but still no desire for air conditioning, preferring to rely on open windows and big shade trees. 

The memories my family has made on this land are priceless, and my grandchildren are the fifth generation to run in the meadow, swim and fish in the creek, climb the trees, and play in the nearby woods of the PA Wilds. In our increasingly transient society, roots this deep are precious and rare. 

My appalled, angry, and admittedly frightened response to the gas industry invasion of the Loyalsock watershed began in 2010, when a parade of trucks spewing diesel fumes rumbled up the no-outlet road I live on, enroute to leased COP tracts in the LSF. 

That dirt trail that we loved to hike was the first thing to go. Dump trucks carrying fist-sized gravel and heavy equipment transformed the forest trail into a road – gated off and posted with trespass warnings carrying severe penalties. In my neighborhood, as in so many places in the watershed, land that legally belongs to the citizens now carries grim warnings of the consequences of trespassing. 

When the drilling and fracking equipment passed my driveway, the ground shook. Oftentimes, I had to wait 15 or 20 minutes just to leave – or come home. There was a flag car pretty much permanently blocking my driveway for a while. I also walked out for the mail one day and found a porta-potty had been set up on my land. No one thought to ask permission. They just put it on my property – a few yards from my mailbox. 

Life in my Loyalsock watershed neighborhood has forever changed at the hands of industry permitted to remove millions of gallons of water for fracking from the Loyalsock – the beautiful Creek that carries the designation “Exceptional Value”. Named PA’s River of the Year in 2018, the Loyalsock Creek begins in the endless mountain region of the PA Wilds, and travels 64 miles on its way to the West Branch of the Susquehanna River.

The beloved Loyalsock Creek provides recreation for hundreds of fishermen, kayakers, inner-tubers, swimmers, and summer cabin dwellers – offering clear water that to this day supports abundant fish, amphibians, birds, and wildlife – clear water the gas industry now pumps out by the millions of gallons, to be mixed with toxic chemicals and forced at great pressure through boreholes a mile deep and miles long, to release methane trapped in the Marcellus Shale. 

In 2018, about two miles from my home, an estimated 55,000 gallons of “produced water” spilled from a well pad ironically named TLC. This toxic fluid ran downhill into a tributary and directly into the Loyalsock Creek. On its approximately two-mile path, the chemicals flooded a little tributary that runs through a rural neighborhood where children play in the water. Frightened residents gathered to question DEP about the safety of their private drinking water wells, and they expressed concern over the tadpoles and frogs, and in the deeper, shady pools – native trout they were used to seeing. 

Pennsylvania lawmakers could obey the Constitution, protect the watershed, and choose a way forward that leads to a future of renewable energy and well-paying green jobs for Pennsylvania citizens, as well as the promise of a brighter future for our children and grandchildren. 

Time is running out.

I look at my grandchildren and believe that such a shift of consciousness and political will is truly their last, great hope. 

Keep It Wild

-By Barb Jarmoska

What Does the Future Hold?

On its own, climate change brings with it a wave of new and/or intensified challenges to PA’s state forests, parks, and natural areas. Flooding and erosion, insect-borne illnesses, invasive species, and changes to plant and animal life are ongoing issues the state’s natural resource managers have to consider as the climate changes. These interactive stressors will continue to disrupt ecosystem function, processes, and services; result in the loss of biodiversity and shifts in forest compositions; and negatively impact industries and communities reliant on Penns Woods.

Over the past 110 years, PA’s average temperature has increased nearly two degrees Fahrenheit, and the Commonwealth has also seen a gradual uptick in annual precipitation, but a decline in and shorter span of snow cover. As ranges shift, the state will see the distribution and abundance of native plants and animals change, a pattern that will continue to accelerate. 

Penns Woods are home to over 100 species of trees. Oak/hickory forests contain primarily oaks, maples, and hickories, with an understory of rhododendrons and blueberry bushes. Northern hardwood forests are composed of black cherry, maples, American beech, and birch, with understories of ferns, striped maple and beech brush. But the composition of PA’s forests are changing. Smithsonian’s Conservation Biology Institute compared colonial-era data to recent U.S. Forest Service data, and found that maples have increased by as much as 20%, but beeches, oaks and chestnuts – important foliage for wildlife – have declined. The presence of pine trees has been more volatile, seeing increases in some areas, and decreases in others.

Overall, PA’s forests are becoming more unsustainable, conditions compounded by misaligned harvesting, suburban sprawl, insect infestations, and disease. These impacts trickle down to the wildlife that call Penns Woods home. PA’s Natural Heritage Program has begun to compile this Environmental Review List, to identify threatened and endangered species, species of special concern, and rare and significant ecological features. 

One of the most notable among these is North America’s largest salamander, the eastern hellbender, designated PA’s official amphibian in April 2019. This salamander is a great indicator of clean and well-oxygenated water, as it requires fast-flowing, freshwater habitat with large rock deposits to thrive. Originally dispersed across the Appalachians from Georgia to New York, the eastern hellbender’s population has suffered greatly from the impacts of pollution, erosion and sedimentation, dams, and amphibious fungal disease. 

These salamanders can reach lengths up to two feet, and live for as long as 50 years, so their presence is a key indicator of long-term stream and riparian health. Western Pennsylvania Conservancy has monitored their habitats throughout PA since 2007. Though named the state’s official amphibian, this title does not incorporate its special protection.



Fig. 33. An aerial view of the Loyalsock Creek. (Ted Auch, FracTracker Alliance, June 2020)



In its recent Loyalsock State Forest Resource Management Plan (SFRMP), PA DCNR states that “Natural gas development…especially at the scale seen in the modern shale-gas era, can affect a variety of forest resources, uses, and values, such as:

• recreational opportunities,

• the forest’s wild character and scenic beauty, and

• plant and wildlife habitat.”

Despite extensive areas marred by well pads and other fracking infrastructure, the Loyalsock watershed retains resplendent beauty and pastoral character. Natural resources have endured spills, leaks, habitat fragmentation, deforestation, and increases in impervious buildout related to the gas industry. While a global pandemic and cascading company debts have diminished extraction activities, the region remains vulnerable to future attempts to drill more — on both private and public lands.

Indicative of the omnipresent threats, Pennsylvania General Energy Company, LLC (PGE) intends to develop a substantial pipeline corridor across the Loyalsock Valley. According to PA DEP public records, the project includes the construction of the Shawnee Pipeline, with over 15,000 linear feet of an existing eight-inch diameter gas pipeline to be replaced with a 16-inch pipeline. It will be supplemented by the Shawnee Pipeline Phase 2, encompassing an additional 189 linear feet of gas pipeline.

Arranged to accompany the pipelines is a temporary waterline to extend from planned pump stations on both sides of the Loyalsock Creek, to a proposed impoundment site within Loyalsock State Forest.

The company envisions cofferdams and trenches to cross the Loyalsock Creek. Other streams and wetlands will also be traversed, further degrading and endangering these vulnerable resources. Visible scarring from the pipeline cut is a major concern adding to the diminishment of the valley’s lush, green slopes. Methods exist to minimize the visibility of such development, but no one knows if PGE will follow those practices, or if regulators will require this of them. Some believe the project portends more fracking — with ceaseless demands for more water, and endless production of noxious waste and climate-killing emissions.

Only a few miles northeast of the watershed, New Fortress Energy is constructing a 260-acre complex near Wyalusing, Pennsylvania, to convert fracked gas into liquified natural gas, or LNG. The LNG will be dangerously transported by truck and rail to a planned export facility in Gibbstown, New Jersey, to send these private exploits overseas. A local group, Protect Northern PA, has formed to encourage a more sustainable path forward for the area, one that values people and the planet. The New Fortress Energy plant, if completed, would create inertia for extended extraction across the Marcellus Shale. 

But hope abides in the Loyalsock. Hikers flock to enchanted trails, revelers rejoice on graveled shores. The place exudes an invisible elixir called stewardship, rippling through the air, nourishing receptive hearts and minds. Brandished for free, it shares this necessary ethos, seeking more followers. 


Thanks to…

Thank you to all of the inspiring and steadfast environmental stewards who have contributed to the creation of this digital atlas:

  • Dick Martin from PAForestCoalition.org;
  • Barb Jarmoska, Harvey M. Katz, and Ralph Kisberg from Responsible Drilling Alliance; 
  • Ann Pinca from Lebanon Pipeline Awareness; 
  • Paul V. Otruba and Victor Otruba from Environeers; 
  • Justin Grubb, Alex Goatz, and Michael Clark from Running Wild Media; 
  • and Rachel McDevitt from StateImpact
  • Leann Leiter from Earthworks 
  • Lighthawk 
  • Staff at FracTracker Alliance

Project funding provided by The Foundation for Pennsylvania Watersheds

Support this work

Stay in the know

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

INTRODUCTION

“The Iroquois…called Pine Creek ‘Tiadaghton’ meaning either ‘The River of Pines’ or ‘The Lost or Bewildered River’.”[i] The river’s iconic watershed in North Central Pennsylvania spans 979 square miles, spanning parts of Clinton, Lycoming, Potter, and Tioga counties, and an infamous 47-mile gorge through which the Pine Creek flows. At 87 miles in length, it is the largest tributary to the West Branch Susquehanna River.[ii]

In 1964, Congress included Pine Creek as one of 27 rivers under study for inclusion in the National Wild and Scenic River System.[iii]  Four years later, the US Department of the Interior designated twelve miles of the canyon a National Natural Landmark. In 1992, Pine Creek was recognized as a Pennsylvania Scenic River.[iv] These accolades underscore its vibrant beauty, ecological value, and cultural significance.

A rugged landscape carved into the Allegheny Plateau, the watershed contains extensive public lands and the highest concentrations of exceptional value (EV) and high quality (HQ) streams anywhere in Pennsylvania.  It is a prized recreational attraction in the region known as the Pennsylvania Wilds, a destination for nature-based tourism. The area has endured episodes of resource extraction – logging, coal mining, and shallow gas development – but nothing quite the same as the assault from hundreds of new unconventional gas wells and the sprawling pads, pipelines, impoundments, compressor stations, and access roads accompanying such development.

Modern extraction is heavy industry – loud, dusty, and dirty. It is incongruent with the thick forests, sensitive habitats, hushed solitude, and star-drenched skies one expects to experience in many wilderness pursuits. Threats to air, water, and wildlife are manifest. Landscape fragmentation and forest loss are collateral damage. Ecological impacts, while sometimes immediate, are often insidious as they slowly degrade environmental health over time. The Oil and Gas Program of the Pennsylvania Department of Conservation and Natural Resources (DCNR) acknowledged in a 2012 presentation: “…that Marcellus Shale will be a long-term influence on the character of Pennsylvania landscapes.”[v] To what extent remains to be determined.

Writer and conservationist Samuel P. Hayes noted “The Pennsylvania Administrative Code of 1929 identified watershed protection as the primary purpose of the state forests.”[vi] Enduring more than 10 years of fracking history, and with more planned, the Pine Creek watershed is an experiment for this tenent and overdue for the geospatial examination that follows.


According to the NOAA, a watershed is a land area that channels rainfall and snowmelt to creeks, streams, and rivers, and eventually to outflow points such as reservoirs, bays, and the ocean.

Use the time slider below to explore the changes in the Pine Creek watershed from 2008 to 2016

A LEGACY OF EXTRACTION

Humans have left their mark on Pine Creek for thousands of years, but the effects of timber and fossil fuel extraction in the last 220 years are most notable. Historical accounts and agency records provide substantial documentation of these impacts.

TIMBER

In 1799, Pine Creek’s first sawmill was set up near the confluence with Little Pine Creek. By 1810, eleven saw mills were in operation. In the next 30 years, that number rose to 145. Pine Creek earned the moniker of “Lumber Capital of the World,” but by the end of the Civil War, the great pine forests along Pine Creek were depleted due to clearcutting. By the end of the Civil War, the great pine forests along Pine Creek were depleted. Underappreciated for lumber, eastern hemlocks remained, but were eventually felled as well, their bark prized for tanning leather. The advent of logging railroads accelerated the forest’s demise. By the first years of the 20th century, the trees were all but gone, “…branches and stumps littered the mountainsides and sparks from locomotives created fires of holocaustal proportions.”[vii]

Sadly, much of the wildlife was gone too. Bounties, market hunting, and habitat loss had taken a toll. The area’s last timber wolf was killed in 1875. The beaver, otter, fisher, martin, lynx, and wolverine were exterminated by the early 1900s. The remaining solitary panthers lasted until the 1930s, then “faded into oblivion.”[viii]

COAL

While not often thought of as a part of Pennsylvania’s coal country, the Pine Creek Watershed has seen its share of coal mining and related activity. Coal was first discovered along the Babb Creek portion of the watershed in 1782, and mining operations began in earnest in the 1860s. By 1990, the area was so impacted by mine drainage and other pollution that there were no fish found in Babb Creek. Efforts to rehabilitate the stream have made some progress, raising the pH of the stream and restoring fish populations, to the point where Babb Creek was officially removed from the list of impaired streams in 2016.

Within the watershed’s abandoned mine areas, 68 specific sites totaling nearly 500 acres are flagged as “containing public health, safety, and public welfare problems created by past coal mining.” This represents more than 11% of the total mined area. Only five of these 68 sites – all strip mines – have completed the reclamation process.

Table 1. Problematic coal mine areas in the Pine Creek Watershed

SITE TYPEABANDONED RECLAMATION COMPLETETOTAL FACILITIESTOTAL ACRES
Dry Strip Mine31536322.0
Flooded Strip Mine221.7
Spoil Pile1313148.4
Refuse Pile121223.2
Known Subsidence Prone Area220.4
Coal Processing Settling Basin331.5
TOTAL63568497.4

OIL & GAS

The oil and gas industry in Pennsylvania started with the Drake Well near Titusville in 1859, before the onset of the Civil War. In the years since, perhaps as many as 760,000 such wells have been drilled statewide.[ix] While the Pennsylvania Department of Environmental Protection (DEP) is the current state agency with regulatory oversight of the industry, it estimates that there could be as many as 560,000 wells drilled that they have no record of in their database. Given the lack of data for these early wells, it is not possible to know exactly how many wells have been drilled in the Pine Creek Watershed.[x]

Over a century ago, pollution was seen as the price to be paid for a job in timbering or mining.  Some politicians seem to want a return to those bad old days by gutting some of our reasonable regulations that protect our air and water. Here, as in the rest of the Marcellus gas play, our politicians are not protecting our air and water as mandated in Article 1, Section 27 of our State Constitution.

-Dick Martin Coordinator for the Pennsylvania Forest Coalition and board member of Pennsylvania Environmental Defense Foundation, PEDF

A Wealth of Public Lands & Recreational Opportunity

The Pine Creek Watershed is in the heart of the Pennsylvania Wilds, a 12-county region in North Central Pennsylvania focused on nature-based tourism. “Adventure to one of the largest expanses of green between New York City and Chicago,” touts the initiative’s website.[xi]  The area includes over two million acres of public land, and is marketed for its notorious starry skies, quaint towns, large elk herd, and other attractions, like Pine Creek.

The watershed and its trails and public lands contribute substantially to the PA Wilds estate and offerings, including:

  • 1,666 stream miles (187.6 miles Exceptional Value and 1,011.5 miles High Quality)
  • Eight state parks, spanning 4,713 acres (7.36 sq. miles)
  • Four state forests, covering 264,771 acres (414 sq. miles)
  • Eight natural areas
  • Three wild areas
  • Seven state game lands, totaling 51,474 acres (80.42 sq. miles)
  • And 31 trails, traversing 789 miles

These largely remote and rugged spaces are relished for their idyllic and pristine qualities. Modern extraction brings discordant traffic, noise, lights, and releases of pollutants into the air and water. Stream waters – ideal for trout, anglers, and paddlers – are siphoned for the fracturing process. Trails are interrupted by pipelines and access roads. The erosion of outdoor experiences is piecemeal and pervasive.

A recent study lends credence to the concern that shale gas development is incongruent with the region’s ecotourism and recreational goals. “The Impacts of Shale Natural Gas Energy Development on Outdoor Recreation: A Statewide Assessment of Pennsylvanians” found that “only a small population of Pennsylvania outdoor recreationists were impacted by [shale natural gas energy development (SGD)] related activities. In the regions of Pennsylvania where SGD was most prominent (e.g., North Central and Southwest), outdoor recreation impacts were considerably higher.”[xii]



Weak rules favor the gas companies and allow them to waste resources, pollute our air, and destroy our climate. Continued exploitation of our public lands diminishes the value of this common good.

Leann Leiter, OH/PA Field Advocate, Earthworks

Read more about Leann’s view on fracking in Pine Creek and using FLIR photography to expose polluting emissions. Go to this post on Earthworks’ blog.

Fracking Comes to Pine Creek

Natural resource extraction in the Pine Creek Watershed did not stop with timber, coal, and traditional oil and gas. The drilling landscape in Pennsylvania changed dramatically around 2005, as operators began to develop the Marcellus Shale, a carbon-rich black shale that had eluded the industry for decades, because the rock formation was reluctant to release the large quantities of gas trapped within it. Based on successes in other shale formations, the Marcellus began to be drilled with a combination of horizontal drilling and high volume hydraulic fracturing – now using millions of gallons of fluids, instead of tens of thousands – and built upon multi-acre well pads. Operators were successful in releasing the gas, and this type of well, known as “unconventional” drilling, took off in vast swaths of Pennsylvania. Similar techniques were extended to other formations, notably the Utica shale formation.

The map below shows the cumulative footprint of extractive practices in Pine Creek, with the exclusion of timber.

Midstream Infrastructure

In 2018, unconventional wells in the Pine Creek Watershed produced 203 billion cubic feet of gas, which is more than the entire state of West Virginia consumed in 2017, not including electricity generation. To get all of that gas to market requires an extensive network of pipelines, and multi-acre compressor stations are required to push the gas through those pipes.

Pipeline data for the region, largely based on the Pipeline and Hazardous Materials Safety Administration’s (PHMSA) public pipeline viewer map, includes over 85 miles of pipelines in the watershed. However, this data does not include any of the gathering lines that crisscross the watershed, connecting the drilling sites to the midstream network.

Among other concerns, gas pipelines need to be placed in areas where they will not be impacted by tree roots, and so operators clear a 50-foot wide right-of-way, at minimum. This width results in the clearing of more than 6 acres per linear mile of pipe, which would be a total of 515 acres for the known pipeline routes in the region. However, the 50-foot width is a minimum, and some rights-of-way exceeding 300 feet were observed in the watershed, which would require the clearing of more than 36 acres per linear mile. These land clearing impacts are in addition to those required for well pads, access roads, and other infrastructure.

Many of the compressor stations in the Pine Creek Watershed are considered major pollution sources, and therefore require a Title V permit from the US Environmental Protection Agency (EPA). This means that they either produce at least 10 tons per year of any single hazardous air pollutant, or at least 25 tons of any combination of pollutants on the list.

Missing pipeline data is evidenced by FracTracker’s records of many compressor stations that are not along documented pipeline routes. Of the 26 compressors in the watershed that we have records for, only six are within 250 meters of known pipeline routes. Similarly, only 29 of the 594 drilled unconventional wells in the watershed are within the quarter-kilometer radius of known pipeline routes. One way or another, all compressors and well sites have to be connected to pipelines.



Table 2. Oil & Gas Well Status in the Pine Creek Watershed


Oil & Gas Well Status# of Wells
Operator reported not drilled404
Proposed but never materialized111
Active (conventional) 25
Active (unconventional) 529
Other304
TOTAL1,374

The PA DEP has records for 1,374 oil and gas wells within the watershed, although not all of these were actually drilled.  Of these wells, 404 wells have an official status of “operator reported not drilled,” while an additional 111 have a similar status of “proposed but never materialized.” Of the remaining 859 wells, 554 are currently considered active (including 25 conventional and 529 unconventional wells). An active status is given once the well is proposed — even before it is officially permitted by DEP, let alone drilled. The status remains until some other status applies.

Seventy-four wells are considered to be “regulatory inactive” (four conventional, 71 unconventional), meaning that the well has not been in production for at least a year, and must meet several other requirements. The remainder of the wells in the watershed have reached the end of their functional life, of which 168 have been plugged (119 conventional, 49 unconventional). This is done by filling the well bore with concrete, and is considered permanent, although the plugs have been known to fail from time to time. Fifty-seven additional conventional wells are considered abandoned, meaning that they are at the end of their useful life but have not been appropriately plugged, neither by the operator nor DEP. Five additional conventional wells are considered to be orphaned, which is a similar status to abandoned, but these wells are no longer linked to an operator active in the state. Given the lack of recordkeeping in the early part of the industry’s history in PA, the number of plugged, abandoned, and orphaned wells in the Pine Creek Watershed is likely significantly underrepresented.

Conventional drilling activity has essentially ceased in the watershed. A single well categorized as conventional, the Bliss 3H well, has been drilled in 2019. In fact, this well is almost certainly miscategorized. Not only does its well name follow conventions for horizontal unconventional wells, but the DEP’s formation report indicates that it is in fact drilled into the Marcellus Shale.  Prior to Bliss 3H, the two most recent conventional wells were drilled in 2011.

Unconventional drilling is a different story altogether. In terms of the number of wells drilled, the peak within the Pine Creek Watershed was in 2011, with 186 wells drilled. That represented 9.5% of the statewide total that year, and Pine Creek is just one of 35 comparably sized watersheds targeted for unconventional development in Pennsylvania.

More recently, there were 16 wells drilled in the watershed in 2018, and 17 wells through the halfway point of 2019, indicating that the extraction efforts are once again on the upswing.

Table 3. Number of unconventional wells drilled in Pennsylvania and the Pine Creek Watershed

YEARSTATEWIDEPINE CREEK WATERSHEDPCT. TOTAL
20063712.7%
200711310.9%
200833292.7%
2009821263.2%
201015981147.1%
201119561869.5%
20121351856.3%
20131212484.0%
20141369302.2%
2015784111.4%
2016503204.0%
2017810293.6%
2018777162.1%
2019 (YTD)366174.6%
TOTAL119995935.8%

The map below shows a heavily forested section of the watershed that has been significantly damaged by unconventional oil and gas development. Notice the forest fragmentation and land disturbance that has occurred as a result of fracking activities.

Use the time slider below to explore the changes in the Pine Creek watershed from 2008 to 2016

On May 9, 2019, nearly two dozen people descended upon the Pine Creek Watershed for the purpose of chronicling the impacts that the oil and gas industry is currently wreaking on the landscape. The documentation began early in the morning at the William T. Piper Memorial Airport in the town of Lock Haven, located in Clinton County. FracTracker  Alliance organized the blitz with numerous partner organizations, including EarthWorks, Sierra Club, Save Our Streams PA, Responsible Drilling Alliance, Pennsylvania Forest Coalition, Environeers, Pine Creek Headwaters Protection Group, and Lebanon Pipeline Awareness.

The massive watershed was broken up into 10 impact zones, which were mostly determined by concentrations of known sites such as well pads, compressor stations, retention ponds, and pipeline corridors.

Some people brought cameras and specialized equipment to Pine Ceek, such methane sensors and global positioning system devices. Participants were encouraged to try out the FracTracker Mobile App, which was designed to allow users to communicate and share the location of oil and gas concerns. Earthworks brought a FLIR infrared camera, which can capture volatile organic compounds and other pollutants that are typically invisible to the human eye, but that still pose significant risks to health and the environment. Others participants brought specialized knowledge of oil and gas operations from a variety of perspectives, from those who had previously interacted with the industry professionally, to those who have been forced to live in close proximity of these massive structures for more than a decade.

While we knew that it would not be possible to photograph every impact in the watershed, the results of this group effort were tremendous, including hundreds of photos, dozens of app submissions, and numerous infrared videos.  All of these have been curated in the map above. In our exuberance, we documented a number of facilities that wound up not being in the Pine Creek Watershed – still impactful but beyond the scope of this project. In some cases, multiple photos were taken of the same location, and we selected the most representative one or two for each site. Altogether, the map above shows 22 aerial images, 84 app submissions, 46 additional photos, and nine infrared FLIR videos.

FracTracker also collaborated with a pilot from LightHawk, a nonprofit group that connects conservation-minded pilots with groups that can benefit from the rare opportunity to view infrastructure and impacts from the air. Together, LightHawk and FracTracker’s Ted Auch flew in a mostly clockwise loop around the watershed, producing the aerial photography highlighted in this article, and in the map below.

The benefits of being able to see these impacts from the air is incalculable. Not only does it give viewers a sense of the full scope of the impact, but in some cases, it provides access to sites and activities that would otherwise be entirely occluded to the public, such as sites with active drilling or hydraulic fracturing operations, or when the access roads are behind barriers that are posted as no trespassing zones.

It can be difficult to maintain a sense of the massive scale of these operations when looking at aerial images. One thing that can help to maintain this perspective is by focusing on easily identifiable objects, such as nearby trees or large trucks, but it is even more useful to cross-reference these aerial images with those taken at ground level.

Water – A Precious Resource

Drilling unconventional wells requires the use of millions of gallons of water per well, sometimes as high as 100 million gallons. Unconventional drilling operations in Pennsylvania are required to self-report water, sand, and chemical quantities used in the hydraulic fracturing stage of well production to a registry known as FracFocus. Because of this, we have a pretty good idea of water used for this stage of the operation.

This does not account for all of the industry’s water consumption. The amount of water required to maintain and operate pipelines, compressor stations and other processing facilities, and to suppress dust on well pads, access roads, and pipeline rights-of-way is unknown, but likely significant. Much of the water used for oil and gas operations in this watershed is withdrawn from rivers and streams and the groundwater beneath the watershed.

Table 3. Water consumption by well in the Pine Creek Watershed

CATEGORYGALLONSEQUIVALENT PERSONS (ANNUAL USAGE)
Average Single Well6,745,697246
Maximum Single Well13,313,916486
All Wells (2013-2017)850,648,21931,074

There are 60 water-related facilities for oil and gas operations active within the watershed in 2019, including two ground water withdrawal locations, 20 surface water withdrawal locations, and 38 interconnections, mostly retention ponds. This dataset does not include limits on the 22 withdrawal locations, however, one of the surface withdrawal sites was observed with signage permitting the removal of 936,000 gallons per day. If this amount is typical, then the combined facilities in the watershed would have a daily capacity of about 20.6 million gallons, which is about 27 times the daily residential consumption within the watershed.

Predictably, water withdrawals ebb and flow with fluctuations in drilling activity, with peak consumption exceeding 1.2 billion gallons in the three-month period between April and June 2014, and an aggregate total of nearly 20.4 billion gallons between July 2008 and December 2016. It is not known what fraction of these withdrawals occurred in the Pine Creek Watershed.

Violations

Between October 22, 2007, and April 24, 2019, the Pennsylvania DEP issued 949 violations to unconventional oil and gas operations within the Pine Creek Watershed.[xiii] It can be difficult to know precisely what happened in the field based on the notations in the corresponding compliance reports. For example, if an operator failed to comply with the terms of their erosion and sediment control permit, it is unclear whether there was a sediment runoff event that impacted surface waters or not. However, as these rules were put into place to protect Pennsylvania’s waterways, there is no question that the potential for negative water impacts exists. Therefore, erosion and sedimentation violations  are included in this analysis.

Other violations are quite explicit, however. The operator of the Hoffman 2H well in Liberty Township, Tioga County was cited for failing to prevent “gas, oil, brine, completion and servicing fluids, and any other fluids or materials from below the casing seat from entering fresh groundwater,” and failing to “prevent pollution or diminution of fresh groundwater.” A well on the Tract 007 – Pad G well pad was left unplugged. “Upon abandoning a well, the owner or operator failed to plug the well to stop the vertical flow of fluids or gas within the well bore.”

The violation description falls into more than 100 categories for sites within the watershed. We have simplified those as follows:

Table 4. Oil and gas violations in the Pine Creek Watershed

VIOLATIONSCOUNTWATER RELATED
Administrative 61No
Casing / Cement Violation31Yes
Clean Streams Law Violation32Yes
Erosion & Sediment84Yes
Failed to Control / Dispose of Fluids279Yes
Failure to Comply With Permit3No
Failure to Plug Well1Yes
Failure to Prevent Pollution Event23Yes
Failure to Protect Water Supplies8Yes
Failure to Report Pollution Event20Yes
Failure to Restore Site8No
Hazardous Venting1No
Industrial Waste / Pollutional Material Discharge229Yes
Rat Hole Not Filled7Yes
Residual Waste Mismanagement2Yes
Restricted Site Access to Inspector1No
Site Restoration Violation9No
Unmarked Plugged Well1No
Unpermitted Residual Waste Processing73Yes
Unsound Impoundment20Yes
Unspecified Violation48No
Waste Analysis Not Completed1No
Water Obstruction & Encroachment7Yes
TOTAL949

Altogether, 816 out of the 949 violations (86%) issued in the Pine Creek Watershed were likely to have an impact on either surface or ground water in the region. Two sites have more than 50 violations each, including the Phoenix Well Pad, with 116 violations in Duncan Township, Tioga County, and the Bonnell Run Hunting & Fishing Corp Well Pad in Pine Township, Lycoming County, with 94 violations.

Water Complaints

When things go wrong with oil and gas operations, it is often residents in the surrounding areas that are exposed to the impacts. There are limited actions that affected neighbors can take, but one thing that they can do is register a complaint with the appropriate regulatory agency, in this case the Pennsylvania DEP.

A thorough file review was conducted by Public Herald for complaints related to oil and gas operations in PA, yielding 9,442 complaints between 2004 and 2016. While this includes all oil and gas related complaints, Public Herald’s analysis show that the frequency is highly correlated with the unconventional drilling boom that occurred within that time frame, with the number of new wells and complaints both peaking in 2011.

Many of these complaints occurred in the Pine Creek Watershed. It is impossible to know the exact number, as the precise location of the events was redacted in the records provided by DEP.  Most of the records do include the county and in some cases, the municipality. Altogether, there were complaints in 32 municipalities that are either partially or entirely within the watershed, for a total of 185 total complaints.  Of those, 116 of (63%) specifically indicate water impacts, spread out over 25 municipalities throughout the watershed.

Additional complaints with unspecified municipalities were received by DEP in Lycoming County (n=4), Potter County (n=4), and Tioga County (n=3). These counties substantially overlap with the Pine Creek Watershed, but the data is unclear as to whether or not these impacts were noted within the watershed or not.

It is worth remembering that complaints are dependent upon observation from neighbors and other passersby. As Pine Creek is composed of rugged terrain with vast swaths of public land, it is relatively sparsely populated. It is likely that if these drilling sites were placed in more densely populated areas, the number of complaints related to these operations would be even higher.


“It was 2007, and my water well was fine. I mean, I didn’t have any problem with it. I was cooking, drinking, bathing with it and everything else. Well, then after they drilled I thought it was kind of…it didn’t taste like it did before.”[xiv]

– Judy Eckhart

A Waste-Filled Proposition

Since the Pine Creek Watershed has been the site of considerable oil and gas extraction activity, it has also been the site of significant quantities of waste generated by the industry, which is classified as residual waste in Pennsylvania. This category is supposedly for nonhazardous industrial waste, although both liquid and solid waste streams from oil and gas operations pose significant risks to people exposed to them, as well as to the environment. Oil and gas waste is contaminated with a variety of dangerous volatile organic compounds and heavy metals, which are frequently highly radioactive. There are also a large number of chemicals that are injected into the well bore that flow back to the surface, the content of which is often kept secret, even from workers who make use of them onsite.

There were 37 sites in the Pine Creek Watershed that accepted liquid waste between 2011 and 2018. Of these sites, 30 (81%) were well pads, where flowback from drilling may be partially reused. While this reduces the overall volume of waste that ultimately needs to be disposed of, it frequently increases the concentration of hazardous contaminants that are found in the waste stream, which can make its eventual disposal more challenging. Most of the sites that accept waste do reuse that waste. However, the largest quantity of waste are from the remaining seven sites.

Table 5. Disposal of liquid gas waste in the Pine Creek Watershed

CATEGORYBARRELSGALLONSPCT. TOTAL
Reuse at Well Pads2,042,66285,791,80123%
Other Facilities6,701,292281,454,26177%
GRAND TOTAL8,743,954367,246,062100%

One single site – the Hydro Recovery LP Antrim Facility in Pine Township, Lycoming County – accounted for the majority of liquid waste disposed in the watershed, with 6,622,255 barrels (278,134,704 gallons.) has This amounts to 98.8% of all liquid waste that was not reused at other well pads.

Wastewater is also spread on roads in some communities, as a way to suppress dust on dirt roads.  3,001 barrels (126,050 gallons) of liquid waste have been used for road spreading efforts in regions intersecting the watershed in Ulysses Township, Potter County, and across private lots and roads throughout Potter and Tioga counties. Note that these figures include waste generated from conventional wells, which have different legal requirements for disposal than waste from unconventional wells, despite a similar chemical profile.

There are three facilities that have accepted solid oil and gas waste in the watershed, including a small one operated by Environmental Products and Services of Vermont (55 tons), Hydro Recovery LP Antrim Facility (10,415 tons), and Phoenix Resources Landfill (900,094 tons). This includes 200,808 tons in 2018, which is close to the previous peak value of 216,873 tons accepted in 2012.

Figure 1. Tons of solid O&G waste accepted at the Phoenix Resources Landfill


Recap: How has a decade of fracking impacted the Pine Creek Watershed?

  • 1,374 recorded oil and gas wells in the watershed
    • 554 are currently considered active
    • including 25 conventional and 529 unconventional wells
  • 949 violations to unconventional oil and gas operations within the Pine Creek Watershed, 86% of which were likely to have an impact on either surface or ground water
  • 185 complaints in 32 municipalities that are either partially or entirely within the watershed
  • A minimum of 515 acres cleared for the known gas pipeline routes in the region
  • 26 compressor stations in the watershed
  • 850,648,219 gallons of water used to frack wells in the watershed between 2013-2017
  • 60 water-related facilities for oil and gas operations active within the watershed active in 2019, including two ground water withdrawal locations, 20 surface water withdrawal locations, and 38 interconnections (mostly retention ponds)
  • 37 sites in the Pine Creek Watershed that accepted liquid waste between 2011 and 2018

And When It’s Over?

In the last ice age, glaciers came from the finger lakes area into Pine Creek. This made the soil there very deep and rich– in fact, people come from all over to study that soil. The Pine Creek area could be a mecca for sustainable agriculture. There is great soil, excellent water, and plenty of space for wind and solar. Under the right leadership, this region of Pennsylvania could feed people in a time when climate resilience is so urgently needed.

Melissa Troutman, Research & Policy Analyst, Earthworks. Director of “Triple Divide.” Journalist, Public Herald

The Pine Creek region retains a primeval grandeur – an alluring wild spirit of great pride and significance to our state. Natural gas development has – and will further – compromise the natural and experiential qualities of this special place. For the benefit of Pennsylvanians today and tomorrow, extraction must be replaced by cleaner forms of energy and conservation values made preeminent.

Brook Lenker, Executive Director, FracTracker Alliance

The Pine Creek Watershed in Pennsylvania’s Susquehanna River Basin has seen more than its fair share of industrial impacts in the centuries since European contact, from repeated timber clearcutting, to coal extraction, to the development of unconventional oil and gas resources in the 21st century. Despite all of this, Pine Creek remains one of the Commonwealth’s natural gems, a cornerstone of the famed Pennsylvania Wilds.

Many of the impacts to the watershed could be thought of as temporary, in that they would likely stop occurring when the oil and gas developers decide to pack up and leave for good. This includes things like truck traffic, with all of the dust and diesel exhaust that accompanies that, pollution from compressor stations and leaky pipe junctions, and even most surface spills.

And yet in some ways, the ability of the land to sustain this industry becomes substantially impaired, and impacts become much more prolonged. Consider, for example, that prior logging efforts have permanently changed both the flora and fauna of the region. Similarly, while there is no more active coal mining in Pine Creek, almost 500 acres of sites deemed to be problematic remain, and some streams impacted by contaminated runoff and mine drainage have yet to return to their former pristine state, even decades later.  

Unconventional drilling in the watershed will have similarly permanent impacts. While there is a legal threshold for site restoration, these multi-acre drill sites will not resemble the heavily forested landscape that once stood there when they reach the end of their useful life. Access roads and gathering lines that crisscross the landscape must be maintained until all well pads in the area are out of service, and then the aging infrastructure will remain in situ. Contaminated groundwater supplies are likely to take centuries to recover, if it is even possible at all.  

Thousands of feet of rock once separated the unconventional formations from the surface. That distance was a barrier not just to the gas, but also to salty brines, toxic heavy metals, and naturally occurring radioactive materials that are present at those depths. To date, 593 holes have been drilled in the Pine Creek Watershed, creating 593 pathways for all of these materials to move to the surface. The only things keeping them in place are concrete and steel, both of which will inevitably fail over the course of time, particularly in the highly saline environment of an old gas well. 

Even if the industry were to leave today and properly plug all of the wells in the Pine Creek Watershed, impacts from the drilling are likely to remain for many years to come.

[i] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P. 11.

[ii] Wikipedia. Pine Creek (Pennsylvania). https://en.wikipedia.org/wiki/Pine_Creek_(Pennsylvania)

[iii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P. 11.

[iv] DCNR. History of Colton Point State Park, 2019. https://www.dcnr.pa.gov/StateParks/FindAPark/ColtonPointStatePark/Pages/History.aspx

[v]  DCNR, Bureau of Forestry.  Marcellus Shale Management Field Tour, 2012. http://www.paforestcoalition.org/documents/Marcellus_Shale_Management_Field_Tour_5-14-12.pdf

[vi] Hayes, Samuel P. Wars in the Woods: The Rise of Ecological Forestry in America. Pittsburgh, PA. University of Pittsburgh Press, 2006.  (2007). P 120-121.

[vii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P.58-60.

[viii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P.61.

[ix] Pennsylvania Department of Environmental Protection, Oil Gas Locations – Conventional Unconventional, 2019. https://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=1088

[x] Pennsylvania Department of Environmental Protection. Abandoned and Orphan Oil and Gas Wells and the Well Plugging Program, 2018. http://www.depgreenport.state.pa.us/elibrary/PDFProvider.ashx?action=PDFStream&docID=1419023&chksum=&revision=0&docName=ABANDONED+AND+ORPHAN+OIL+AND+GAS+WELLS+AND+THE+WELL+PLUGGING+PROGRAM&nativeExt=pdf&PromptToSave=False&Size=411528&ViewerMode=2&overlay=0

[xi] Pennsylvania Wilds. Homepage, 2019. https://pawilds.com/#modal-2

[xii]  Ferguson et al. The impacts of shale natural gas energy development on outdoor recreation: A statewide assessment of pennsylvanians, September 2019. Journal of Outdoor Recreation and Tourism. Volume 27.

[xiii]Pennsylvania Department of Environmental Protection. Oil and Gas Compliance Report Viewer. 2019. http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/OG_Compliance

[xiv] Joshua Pribanic & Melissa Troutman. Triple Divide, 2013.

All aerial photography by Ted Auch with flight support by LightHawk (May 2019).

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

Project funding provided by:

Pennsylvania Shale Viewer

Pennsylvania

Search
Filter by Category



















Only show results with maps?
Yes
Generic filters


PENNSYLVANIA

Oil & Gas Data



106,224

Unconventional Wells (As of February 2020)



LATEST PENNSYLVANIA ARTICLES


Ohio, West Virginia, Pennsylvania Fracking Story Map

/
FracTracker’s aerial survey of unconventional oil & gas infrastructure and activities in northeast PA to southern OH and central WV

Ohio & Fracking Waste: The Case for Better Waste Management

/
Insights on Ohio’s massive fracking waste gap, Class II injection well activity, and fracking waste related legislation
Pennsylvania conventional wells

Pennsylvania Conventional Well Map Update

/
There are over 100,000 active conventional wells in PA, with more permitted each year. Most are unplugged, posing serious threats to the climate.

Mapping Gathering Lines in Bradford County, Pennsylvania

/
FracTracker mapped gathering lines in Bradford County, PA. Public data on gathering lines are incomplete, leaving us to fill in the gaps.

Birds of Northeastern Pennsylvania Threatened by Fracking Development

/
Information on which bird species in northeastern Pennsylvania are affected by the fracking industry’s expansion.

PA Oil & Gas Activity Over Time


GIF of unconventional wells drilled between May 2002  and March 2017


PA unconventional oil and gas wells drilled over time 2002-17


PENNSYLVANIA Oil & Gas Imagery

FracTracker’s oil & gas imagery collection contains aerial and eye-level photography and video, free for you to use according to our copyright.


D O N A T E   N O W

Lycoming Watershed Digital Atlas

Water at Risk


A Digital Atlas Exploring the Impacts of Natural Gas Development in

the Lycoming Creek Watershed of Pennsylvania

Introduction


Coursing through lush valleys of the Allegheny Plateau, Lycoming Creek flows over 37 miles to its confluence with the West Branch Susquehanna River in Williamsport, Pennsylvania. The 272-square-mile watershed includes idyllic tributaries like Pleasant Stream and Trout Run, names reflecting the intrinsic beauty and bounty of the area. Rock Run in Loyalsock State Forest by some accounts is, “one of the most beautiful streams in all of Pennsylvania.” 

The mightier Pine Creek to the west perhaps carries greater notoriety, as does the enchanting Loyalsock to the east. But make no judgement about Lycoming Creek’s smaller stature. Forest covers 81% of the basin and only one percent is developed, with the rest of the land used for agriculture. Through the heart of this rugged terrain, a picturesque waterway beckons anglers and other revelers of the wilds.   

The Lenape people called the watershed home before European occupation. They knew the creek as Legani-hanne, meaning “sandy or gravelly stream.” The native residents and those who displaced them used it as a means of transportation, whether traveling by canoe or walking the Sheshequin Path that runs north and east along the shores.  

Lumber fueled the regional economy of the 19th century, and Lycoming’s forests fell. By rail and by water, saw logs were sent to Williamsport for milling. Wood-powered wealth gave rise to the city’s “Millionaire’s Row,” but prosperity apexed in the early 20th century. Today, the Williamsport area is home to nearly 30,000 people, down from a peak of around 45,000 in 1950. Comparatively, about 20,000 persons live within the Lycoming Creek watershed. 

These days, Williamsport buzzes with breweries, bookstores, and the vitality of an urban hub. The Little League World Series still comes to town every summer, ushering memories of simpler, quieter times. 

Nearby, the serene creek surges with life, including the Eastern hellbenderNorth America’s largest amphibian. But the same water can turn tempestuous and destructive. Notable floods in 1972, 1996, 2011, and 2016 caused loss of life and property damage. As climate change intensifies, heavy downpours and rapid snowmelt exacerbate flood risks. 

Unconventional drilling brought new threats to the area: congested truck traffic, exorbitant consumptive water use, myriad air pollution sources, extensive land clearing, and ecological disturbance; and, the dangers of spills, leaks, and water contamination. 

This report explores these impacts, underscoring the heavy footprint of extractionand related activitieson public and private lands throughout the Lycoming Creek watershed.

A wealth of public lands & recreational opportunities

The Lycoming Creek watershed provides ample opportunities for nature-based recreation. While there are no state parks in the watershed, a 507-acre (0.8 square miles) portion of the Tioga State Forest occupies the northern boundary of the watershed in Tioga County. Further south lies 45,022 acres (71.1 square miles) of the Loyalsock State Forest. This includes 332 acres (0.52 square miles) of the Devil’s Elbow Natural Area, a site known for its many wetlands—home to carnivorous sundew and pitcher plants—waters that feed the stunning Rock Run. 

The McIntyre Wild Area covers a 7,226 acre (11.3 square mile) expanse of the Loyalsock State Forest, situated entirely in the Lycoming Creek watershed. It includes spectacular waterfalls on streams that feed the aforementioned Rock Run, a tributary known for its vibrant trout population.



Recreational Opportunities in the Lycoming Creek Watershed

View Full Size Map | Updated 3/1/2021 | Data Tutorial




To the west of Lycoming Creek and State Route 14 is Bodine Mountain, another sweeping feature of the Loyalsock State Forest. Bodine Mountain is a north-to-south ridge rising over 1,300 feet above the Lycoming Creek valley.

In addition to state forests, the watershed contains 238 acres of State Game Land 335 at the northern boundary, and 2,430 acres (3.8 square miles) of State Game Land 133, situated southeast of Bodine Mountain. These conserved lands are designated to protect wildlifea goal that seems at odds with current oil and gas leasing practices.



Fishing and enjoying mountain streams


Pennsylvania has two separate designations for streams with excellent water quality: exceptional value (EV) and high quality (HQ). The Department of Environmental Protection (DEP) explains that the quality of HQ streams can be lowered, “if a discharge is the result of necessary social or economic development, the water quality criteria are met, and all existing uses of the stream are protected.” The water quality of EV streams cannot be lowered.  

Sadly, there are no streams in the beautiful Lycoming Creek watershed with an EV designation, however deserving. On the other hand, 412 miles of streams in its drainage are designated as HQ, representing 76% of the watershed’s 542 total stream miles, according to the state’s official designated use inventory. Statewide, 3,838 out of 86,473 miles (4.4%) of inventoried streams are categorized as EV, while 58,748 miles (67.9%) are HQ, making the Lycoming Creek watershed below average for the former, and above average for the latter.

Prior to industrialization, native brook trout populations were widespread in small, forested streams across Pennsylvania. While many streams are now stocked with several species of trout, the combination of pollution and deforestation has decimated the areas where trout—especially native brook trout—thrive in sustainable wild populations. Suitable streams are designated as Class A trout streams, and they are rare, accounting for just 3,037 miles, or 3.5% of streams across the Commonwealth. The Lycoming Creek watershed contains slightly fewer Class A streams than is typical, with 17.5 miles, representing just 3.2% of all streams in the drainage. Nevertheless, it remains an important respite for trout species and the anglers who seek them.

Split estates and the Clarence Moore lands


Hundreds of thousands of acres of Pennsylvania state forest are under lease agreements for fracked gas extraction, diminishing outdoor experiences and posing ongoing environmental threats. In those situations, the state Department of Conservation and Natural Resources (DCNR) clearly controls the surface and the gas that lies beneath. However, in some areas of the state forest, private interests claim mineral ownership, even in gaseous form—a situation called “split estate.” Loyalsock State Forest contains about 25,000 split estate acres, known as the Clarence Moore Lands.

In the Lycoming Creek watershed, most of the Clarence Moore lands lie east of US Highway 15, occupying areas that drain into Rock Run and Pleasant Stream, including some of the area’s few remaining Class A wild trout waters. Another section of the Clarence Moore lands extends west of Highway 15, on Bodine Mountain’s eastern flank. In their current state, the lands provide invaluable ecological services and—coupled with the Loyalsock Creek to the east—comprise critical source waters for two major watersheds.

Gas drilling requires a significant amount of infrastructure, including multiacre well pads, miles of gathering pipelines, retention ponds, waste processing facilities, and compressor and metering stations. Allowing surface disturbance in the Clarence Moore lands could have lasting, devastating consequences.

Nearly a decade ago, the Anadarko Petroleum Corporation approached DCNR with extensive plans for dozens of fracked gas wells and all the disruptive destruction that accompanies them in a large swatch of the Loyalsock State Forest and the Clarence Moore lands. Over the years, the Clarence Moore players have changed significantly. Southwestern Energy scored a stake, while Anadarko sold their interest to Alta Resources, a privately-held company scheduled for purchase by EQT, the nation’s largest fracked gas company. While the operators play their game of musical chairs, the situation remains a serious threat to some of the few remaining portions of the region that haven’t been spoiled with industrial gas drilling.

Ironically, modern horizontal drilling enables access to Clarence Moore’s reserves from miles away—from well pads on private land. There is no need—nor social license—to expunge the forest for future generations for short-lived, selfish gain. Organizations near and far, led by the Responsible Drilling Alliance and Save PA Forests Coalition, have rallied tirelessly to save this land from development, a truly special place deserving permanent protection.




Figure 2. The Clarence Moore Lands are a complicated split estate situation in the Loyalsock State Forest, including parts of the Lycoming, Loyalsock, and Schrader Creek watersheds.


Unique wetland biomes


Countless wetlands feed Lycoming Creek’s headwaters, providing a unique opportunity to observe aquatic flora and fauna beneath the forested canopy of Penn’s Woods. The US Fish and Wildlife Service (USFWS) explains their importance, as well as their precarious state:



“Wetlands provide a multitude of ecological, economic and social benefits. They provide habitat for fish, wildlife and plantsmany of which have a commercial or recreational valuerecharge groundwater, reduce flooding, provide clean drinking water, offer food and fiber, and support cultural and recreational activities. Unfortunately, over half of America’s wetlands have been lost since 1780, and wetland losses continue today. This highlights the urgent need for geospatial information on wetland extent, type, and change.”



The geospatial data referred to above is the National Wetland Inventory (NWI), which seeks to document all the wetlands in the United States, based primarily in aerial imagery. According to NWI data, there are 3,136 acres (4.9 square miles) of wetlands in the Lycoming Creek watershed. However, further field research is necessary to properly identify wetland boundaries, particularly in the case of ephemeral wetlands, for example, where the presence of aquatic plants help determine boundaries. All of this suggests that while there is every reason to believe the USFWS’ claim that over half of the nation’s wetlands have been lost since around the time of the Revolutionary War, it is believed the NWI discounts the total acreage.

A University of Vermont team developed another model for calculating wetlands, based primarily on, “2006-2008 leaf-off LiDAR data, 2005-2008 leaf-off orthoimagery, 2013 high-resolution land-cover data, and moderate-resolution predictive wetlands maps, incorporating topography, hydrological flow potential, and climate data.” This model calculates 6,943 wetlands acres (10.8 square miles) in the Lycoming Creek drainage, more than double the NWI’s estimated acreage.



Trails


Five trails traverse the Lycoming Creek watershed, crossing 152 miles total. This includes nearly 44 miles of the Loyalsock State Forest Cross-Country Ski Trail system south and east of the McIntyre Wild Area, suitable for hiking, biking, equestrian pursuits, and of course, cross-country skiing. The watershed also contains 33 miles of Bicycle PA Route J, which runs along Lycoming Creek from the confluence with the West Branch Susquehanna River on the southern end, all the way to the wetland border that feeds Lycoming Creek and neighboring Towanda Creek to the northeast. The watershed’s most popular trail may be the famous Old Loggers Path, a coveted backpacking route that meanders nearly 23 miles. The Hawkeye Cross-Country Ski Trail—frequented by hikers, bikers, and skiers—loops over seven miles in the northeastern corner of the watershed. Yet another watershed trail is the Lycoming Creek Bikeway, a mostly straight five-mile stretch from Hepburnville to the West Branch Susquehanna River.



Figure 3. Rock Run in Loyalsock State Forest’s McIntyre Wild Area. Photo by Ann Pinca.



Figure 4. A flyfisher casts in Lycoming Creek right beside Sheshequin Campground in Trout Run. Photo by Rebecca Johnson.



Figure 5. This wetland lies just beyond the northeastern boundary of the Lycoming Creek watershed and is similar to those feeding the headwaters of Rock Run near Devil’s Elbow Natural Area in Loyalsock State Forest. Photo by Shannon Smith.

Fracking comes to the Lycoming

The commercial oil and gas industry got its start in Pennsylvania in 1859 with the famous Drake Well, followed by a frenzy of drilling in the central and western portions of the state. The DEP has records of over 185,000 conventional oil and gas wells throughout the Commonwealth, and—because the industry preceded permitting requirements by almost a century—yearly estimates range between 480,000 and 760,000 conventional wells have punctured Pennsylvania’s surface. 

The Lycoming Creek watershed was further east than most of the conventional oil and gas pools, so it has seen very little conventional drilling. Of the 185,000 known well locations, only 25 (0.01%) are within the watershed. Of those, 11 (44%) have a status of “proposed but never materialized,” or “operator reported not drilled.” Eight wells (32%) are plugged, four (16%) have active status, one (four percent) is considered being in a regulatory inactive period, and one (four percent) is on the DEP’s orphan list—awaiting funding to be plugged properly.



Fracking boom


While drillers had long known about the Marcellus Shale, it wasn’t until 2004 that drilling in the formation became a profitable enterprise, through the combination of industrial-scale hydraulic fracturing and horizontal drilling. Soon thereafter, the Lycoming Creek watershed was no longer on the periphery of oil and gas exploration, but part of a densely drilled cluster of new unconventional wells in northeastern Pennsylvania.  



Fracking in the Lycoming Creek Watershed

View Full Size Map | Updated 3/1/2021 | Data Tutorial



The first unconventional well in the Lycoming Creek watershed was permitted by Range Resources at the Bobst Mountain Hunting Club on May 31, 2007, and drilling started less than two months later.

In the years that followed, 592 unconventional wells have been proposed for the watershed, 586 (99%) of which received permits, with 384 (65%) drilled as of June 28, 2021. Some wells had a short life, with 41 (10.6%) already plugged—a figure slightly higher than the statewide average of 8.7%. Fifteen operators have been active in the watershed.

As with the rest of Pennsylvania, the total number of drilled wells peaked in 2012, with 100 wells drilled that year. In the past seven years, the highest annual total was only one-fourth of that, with 25 wells drilled in 2019. However, these trends do not foretell an end to drilling in the region. The reduced number of wells drilled is offset by drilling each well more intensively, using five times as much water per well for hydraulic fracturing. 

Gas production has flooded markets, reducing gas prices and profit margins. At the very start of the Marcellus boom in October 2005, gas prices were $13.42 per million British Thermal Units (BTUs), but have fluctuated between $1.75 and $4.00 per million BTUs in recent years. Many of the 202 wells permitted but not drilled in the watershed are located on existing well pads and can easily be drilled and brought into production as market forces dictate. For these reasons, the area is unlikely to see an end to drilling, pipeline construction, truck convoys—and all the other ancillary activities—any time soon.




Figure 6. Active fracking operation in May 2021 on ARD Operating’s COP Tract 551 A well pad, originally planned by Anadarko E&P in 2014. Photo by Ted Auch.



Figure 7. This video was taken at the same site as Figure 6, capturing ARD Operating’s well pad and the incessant noise it makes during hydraulic fracturing activities. Video footage captured by Brook Lenker.



Figure 8. Permitting, drilling, and plugging summary of unconventional wells in the Lycoming Creek watershed by year. Data through June 28, 2021.


Figure 9. Proposed unconventional wells by current operators in the Lycoming Creek watershed. Data through June 28, 2021.  Note that wells that were proposed but not drilled are still associated with the original operator, which are not always still active in the watershed. 



Figure 10. FracTracker’s partners at LightHawk provided aerial assistance to fly our photographer over the Lycoming Creek watershed. This video offers a glimpse at the oil and gas industry’s expansion in the watershed, juxtaposed with houses, farms, forests, wetlands, and numerous waterways. FracTracker’s Ted Auch captured still images while LightHawk pilot David Hartnichek gathered video footage, captured May 2021.

TimeSlider of Bodine Mountain

On the right, we see imagery from June 2021, with a substantial number of well pads, impoundments, compressors, pipelines, and access roads. Imagery on the left is from June 2014, with significantly less infrastructure. Users can zoom, pan, and choose different dates to explore the impacts of the industry over time.


Violations


In the Lycoming Creek watershed, unconventional wells and the well pads they operate on have been issued 634 violations between 2008 and June 28, 2021. This works out to 1.65 violations per drilled well, considerably above the statewide average of 1.3 violations per well.  

 Most of the violations (545, or 86%) are considered to negatively impact environmental health and safety, with the remaining 89 (14%) assessed for administrative infractions. However, the distinction between the two categories is murky at best. For example, the most common administrative violation is, “pits and tanks not constructed with sufficient capacity to contain pollutional substances,” an infraction documented 18 times in the watershed—presenting obvious hazards to health, safety, and the environment. 

Altogether, there are 66 different violation codes cited within the watershed. The ten most frequent are seen in Figure 11.

For these 634 violations, the DEP has collected fines totaling $2,460,700 from four operators. Range Resources leads the way with $1,461,000 in fines, followed by Seneca Resources with $600,000, East Resources with $380,700, and Chief Oil & Gas with $19,000. For comparison, the average cost of drilling a single well in the Marcellus Shale is $8.3 million, according to 2017 financial data from a major operator in the region. At this rate, while assuming no inflation, the watershed will have to suffer 2,138 violations before the DEP’s penalties equal the cost of drilling and fracking one well.

Clearly, operators are not cowed by receiving violations, nor do they look at the occasional fine as anything more than the cost of doing business. It seems that in practice, the DEP’s regulatory role is chronicling the industry’s misdeeds, instead of protecting the environment and the people who live among the hundreds of wells in the area.



Figure 11. The ten most frequent violations for unconventional wells and well pads in the Lycoming Creek watershed through June 28, 2021.

Fracking’s aquatic impacts


The DEP maintains a statewide list of water resource sites. In the Lycoming Creek watershed, 76 out of 128 (59%) listed water resource facilities are associated with oil and gas activity, including 13 surface water withdrawal sites and 63 interconnections—large impoundments where water is collected and stored for future use. As excessive as these figures are, the state’s water resources data is incomplete. By examining aerial imagery, FracTracker found six impoundments adjacent to oil and gas operations that were not listed in the inventory. The DEP was aware of these facilities and provided data upon request. Multiacre lined impoundments can be identified from such imagery, but the inventory might be missing smaller withdrawal sites occluded from view by the tree canopy.



Lycoming Creek Watershed Water Usage

View Full Size Map | Updated 3/1/2021 | Data Tutorial




Overall, 259 wells reported using between 891,900 and 33,193,599 gallons of water as a base for their fracking chemical cocktail. 


These numbers only represent the water consumed for hydraulic fracturing and don’t include any water used for pipeline hydrostatic testing, dust suppression on dirt and gravel roads, or any other purpose. For example, the voluminous 33,193,599 gallons used to frack Alta Resources’ Mac North B-3H well pad represents only a fraction of its permitted capacity for fracking operations.


Figure 12. A lined impoundment that does not appear on DEP’s Water Resources inventory. Photo by Karen Edelstein.

FracFocus

The unconventional oil and gas industry dominates water extraction, distribution, and use throughout the watershed. The amount of water used per fracked well has increased dramatically over the years, according to data from the industry’s frack fluid registry, FracFocus.  

However, the registry is riddled with some obvious data inaccuracies—perhaps stemming from the fact that the registry is self-reported by the various operators.

For example, there are 272 well reports with latitude and longitude coordinates placing them inside the Lycoming Creek watershed, excluding wells where operators left the water usage field blank. There are some problematic data points with those remaining. 

Five wells reported a negative number of gallons used to stimulate wells, including four from Seneca Resources’ Gamble K well pad—with quantities ranging from -214.7 million to -1.18 billion gallons of water—and one well from EXCO Resources’ Emig Unit well pad that registered -859.0 million gallons. At the other end of the spectrum, eight wells reported water consumption over 100 million gallons, including four from Rockdale Marcellus’ Cochran well pad, two from Seneca Resources’ Gamble K well pad, and two from EXCO Resources’ Emig Unit well pad.  

As water consumption data of these 13 wells is obviously erroneous, they were excluded from the following analysis. 

These withdrawal allowances are truly staggering. 

Based on observations of consumptive use permit signs across the watershed, these water withdrawal limits are typical. Taking the 7.62 billion gallons per well pad average from Figure 15, this equates to about 716 billion gallons of permitted water consumption for the 94 well pads in the watershed that have at least one well with an active, regulatory inactive, or plugged well status. Given the average household consumes about 300 gallons of water per day—and that Pennsylvania has just over 5 million householdsthis volume is nearly equal to the entire residential consumption of the state for 628 days. If this is applied to each of the 125 proposed well pads, that figure rises to about 953 billion gallons, or a little less than the full capacity of Florida’s vast Lake Okeechobee.



Groundwater contamination


Contamination from spills and leaks can affect more than just surface water. In 2014, 75 water wells in Lycoming County—which includes most of the Lycoming Creek watershed—were tested for various contaminants by the United States Geologic Survey (USGS). Six wells with the highest methane concentrations were further analyzed for their ratio of chloride to bromide, with half of that smaller subset showing water chemistry indicative of mixing with oilfield brine. Although the study posited that it could be mixing deep in the aquifer, it did not mention the frenzied drilling in the region at the time of sampling.

Stemming from thousands of complaints across the Marcellus Shale region, there are 378 private water supplies where DEP determined the loss of water quality or quantity was because of oil and gas activities. The public isn’t provided with the exact location of these fouled wells due to privacy concerns of impacted residents, but it is known that 18 incidents occurred in municipalities wholly or partially within the Lycoming Creek watershed. 

According to Pennsylvania’s Act 13—an instrumental law governing various aspects of unconventional drilling in the state—oil and gas operators are presumed responsible for water wells negatively affected within 12 months and 2,500 feet of operations. Of course, the actual spread of a pollution plume depends on the characteristics of the aquifer itself, rather than definitions from Act 13, so it is possible that wells further than 2,500 feet from an incident could be negatively impacted—potentially years after the leak or spill occurred. 

Of the 18 determination letters issued by DEP, one occurred in Fox Township in Sullivan County, six in Liberty Township in Tioga County, and two in Union Township. In Lycoming County, Eldred Township received three, Hepburn Township got one, Jackson Township received two, and McNett Township got two.  

As previously mentioned, DEP also tracks violations of various state oil and gas regulations. The vast majority of incidents in the Lycoming Creek watershed resulted in an impact to surface or groundwater. Of the 634 total citations associated with unconventional wells and well pads: 41 (six percent) related to erosion and sedimentation concerns, which could harm aquatic life; 379 (60%) citations were for spills, leaks, or pollution discharges that degraded surface or groundwater; and 41 (six percent) were for other water issues. The remaining 173 (27%) violations were for various other shortcomings—most issued for improper handling of waste materials. Depending on what happened in the field to merit these violations, many of these incidents may also have had an impact on Pennsylvania’s waters.

Water is a defining characteristic for any watershed. From the expansive wetlands uphill to the brisk trout streams around Rock Run and the McIntyre Wild Area, down to the steep ravines of the Lycoming Creek, water makes this area special. In the rush to accommodate the thirsty and pollutive oil and gas industry, the state has allowed vast portions of the region to be spoiled. 


Figure 13. Water consumption per well in the Lycoming Creek watershed has increased nearly five-fold in less than a decade, from 3,679,467 gallons in 2011 to 17,512,356 gallons in 2020, according to FracFocus data downloaded April 28, 2021.



Figure 14. Water consumption postings for six ARD (Alta Resources Development) well pads. Of the five visible signs, water consumption was permitted at 3 to 4 million gallons per pad, per day, for over five years. Photo by Erica Jackson.



Figure 15. The five visible signs in Figure 14 show that well pads are permitted to withdraw over 38.1 billion gallons of water, or an average of 7.62 billion gallons per well pad.

Waste

When fossil fuel companies portray fracked gas as “clean,” they better hope the public doesn’t notice the enormous stream of liquid and solid waste. In the Lycoming Creek watershed, operators reported 9,064,377 barrels (380.7 million gallons) of liquid waste and 416,248 tons of solid waste were generated in the drainage between January 2011 and April 2021.

As a point of comparison, this volume of liquid waste—from 362 wells in the watershed—is equal to about 577 Olympic-sized swimming pools, or an acre of land covered in toxic waste 1,168 feet deep. In terms of solid waste, disposal of drill cuttings and other substances equals the garbage left behind after 8,672 Kenny Chesney concertslike having about 2.3 concerts every day. This estimation is based on 330 wells reporting solid waste generation in the watershed.



Lycoming Creek Waste

View Full Size Map | Updated 3/1/2021 | Data Tutorial



Problems with oil & gas waste


To compare chemical-laden flowback fluid and radioactive brines to pool water based on volume alone does little to communicate the dangers of liquid waste—just as comparing drill cuttings and filter socks to beer cans and food wrappers is insufficient.

Oil and gas waste is much more harmful to human health and the environment than normal household refuse. 

Flowback fluid includes a portion of the liquid injected into a wellbore during hydraulic fracturing. As presented in the Water section, the volume of water injected into each well averaged over 17.5 million gallons in 2020. The industry’s chemical registry site FracFocus estimates that between one-half percent and two percent of the injected volumes are composed of various chemical additives. To get an accurate estimate of the volumes of these chemicals, it is necessary to add the water volume and the non-water volume together, then calculate the above range. Unfortunately, only 18 out of the 259 wells in the watershed that provide believable water volumes also provide non-water volumes.

Approximately 25% of these chemical additives could cause cancer, according to recent studies—while others may inflict skin or respiratory damage.

What is now the Marcellus Shale formation was an ancient, shallow seabed around 384 million years ago in the Middle Devonian epoch. As this sea dried out, organic content concentrated, which would eventually be the source of hydrocarbon gasses. Other components saturated with this organic matter—including barium, benzene, chloride, radium, thallium, and more. These contaminants resurface with the oil and gas, either dissolved or suspended in fluid waste called brine. Brine will continue to rise to the surface in significant quantities during a well’s operating lifespan.

Drill cuttings comprise most of the solid waste from oil and gas sites in Pennsylvania. As with brine, these cuttings contain concentrations of the same toxic and radioactive chemicals. Whether used onsite or sent to landfills, these cuttings are problematic when precipitation causes contaminants to leach, posing risks to aquifers and surface waters. Traditionally, landfill leachate is taken to water treatment facilities. However, these facilities are ill-equipped to handle oil and gas waste and cannot effectively remove the contaminant load.


What happens to the waste?


In 2019, FracTracker analyzed and mapped the destination of Pennsylvania’s oil and gas waste from 2011 through 2018 in a project with Earthworks. Most waste stays in Pennsylvania and neighboring states, but this still requires thousands of heavy tankers travelling tens or even hundreds of miles to reach their destinations. The industry ships some waste as far as Texas, Utah, and Idaho, despite enormous transportation costs. The project underscored Pennsylvania’s incapacity to deal with this noxious and problematic waste stream.

This waste is handled in various ways, with about 54% reused at other fracking sites, 30% sent to residual waste processing facilities, and ten percent disposed in injection wells. Most of the remaining six percent is sent to surface impoundments—but it is not clear what happens to the waste from there.

For solid waste, 56% goes to landfills, 34% is reused at well pads, and eight percent goes to residual waste processing facilities—with the rest handled by other methods.

There is record of 124 waste facilities in the Lycoming Creek watershed, including 121 well pads, one landfill, one residual waste processing facility, and one temporary storage site, pending future reuse or disposal.

The Clean Earth facility—a landfill and drilling mud processing facility—has taken 157,457 tons of solid oil and gas waste and 315 barrels of liquid waste from 2013 to 2016. Between 2012 and 2013, the facility operated as Clean Streams, LLC, and accepted 10,610 additional tons of solid waste and 513,894 barrels of liquid waste. At the watershed’s northern border in Tioga County is Rockdale Marcellus’ Harer Beneficial Reuse facility. Beech Resources proposed an additional facility in currently forested land across US Highway 15 from the Clean Earth facilities.


Figure 16. Estimated chemical components of fracking fluid for the 18 wells in the Lycoming Creek watershed that provide non-water volumes. The minimum estimate is 965,434 gallons, based on 0.5% chemical concentrations, while the maximum estimate is 3,861,737 gallons, based on two percent concentrations.



Figure 17. Disposition method of liquid waste from unconventional wells in Pennsylvania in 2020, based on DEP waste reports. The total liquid waste volume was 61,832,431 barrels, or about 2.6 billion gallons.



Figure 18. Disposition of solid waste from unconventional wells in Pennsylvania in 2020. Total statewide mass was 1,397,678 tons.


Mountains of waste

As drilling continues in the Lycoming Creek watershed and nearby, enormous waste streams will continue to be a conundrum. Even reused material might contaminate the land, streams, and groundwater, and harm human health. As wells are fracked with ever-increasing volumes of fluid, they will return ever-increasing volumes of waste, requiring more and more resources to process.



To see more footage & photos from this project:





Field Day Description

On a sunny and brisk Thursday in May 2021, a group of 11 FracTracker staff members and volunteers gathered in the Lycoming watershed outside Williamsport to find and document unconventional oil and gas activities and infrastructure.

This field day was in part informed by insights from members of the Responsible Drilling Alliance, a regional organization, and the knowledge and experiences of Peter Petokas, a biology and environmental science professor at Lycoming College who has explored and kept tabs on the area’s hellbender habitats for years.

FracTracker’s Matt Kelso used DEP data to develop maps illustrating various infrastructure, including 384 drilled wells on 96 different pads, nine compressor and metering stations, and 67 water facilities related to oil and gas extractionincluding 12 surface water withdrawal sites and 55 storage reservoirs. He then divided an area of about 272 square miles into five sections, and at least two participants explored each section. 

Using Matt’s maps, FracTracker’s mobile app, cameras, decibel and distance measuring apps, and other tools, the group visited and documented various infrastructure—while observing significant truck traffic and other evidence of the industry’s pervasiveness. As the groups navigated rural back roads and small state highways, many were struck by the juxtaposition of a bucolic landscape of rolling hills, green forests, and peaceful farmland with imposing, pollutive, and sometimes noisy and smelly fracking sites.

Additional fieldwork was conducted with assistance from Earthworks’ staff and their FLIR technology, as well as aerial photography and videography captured by FracTracker’s Ted Auch—with flying assistance from partners at LightHawk.

FracTracker then used the geolocated photos, video, and site-specific descriptionscoupled with variable datasets, research, and other literatureto compile this Story Atlas, an educational tool for concerned residents of the Lycoming Creek watershed, and an insightful resource for others living near fracking activity. 

The mobile app reports from this reconnaissanceand from locations across the U.S.are visible on the FracTracker mobile app, available for download on your iOS or Android device, or by visiting the web app at https://app.fractracker.org/.



Figure 19. The field day volunteers gathered before exploring the Lycoming Creek watershed. Photo by Shannon Smith, FracTracker Alliance.



Figure 20. This FLIR footage was recorded by Earthworks at NFG Midstream Trout Run LLC’s Hagerman gas processing and metering facility in Trout Run, Pennsylvania in June 2021. This recording captures visible air pollution from combustion and fugitive emissions at the facility.

Lycoming Creek Photo Map

View Full Size Map | Updated 3/1/2021 | Data Tutorial


Local insights

Much has changed in the Lycoming watershed since unconventional oil and gas exploration ramped up over the last 15 years—in terms of ecological deterioration, as well as the deterioration of locals’ attitudes toward the industry.

At first welcomed by many as a chance for financial gain through mineral rights leasing, some community members—especially those whose families have lived in the area for generations—watched their land drastically degenerated and their sovereign land rights eclipsed by industrial encroachment they did not foresee.

Between 2011 and 2018, unconventional oil and gas drilling—notably, hydraulic fracturing—transformed sections of forest and farmland into comparatively gritty industrial zones. 

“They were assured that, after the drilling phase was completed, they would hardly know the wells were there. They were also told that they had to decide quickly, and that everyone around them had already leased. A local anti-drilling advocacy group tried to warn them, but many locals distrusted environmentalists.”

As author and professor Colin Jerolmack references in his recent article for The New Republic, some landowners who willingly leased their mineral rights to oil and gas companies now view the industry’s activities with consternation. Incessant noise, traffic congestion, and foul odors have tarnished the once peaceful countryside. Even more disconcerting for property owners, the industry often operates however they please, with little consultation or consent—making some feel that they have lost their decision-making power and agency.

This disaffection potentially makes room for environmentalists to find common ground with those who embraced the industry, couched not in anti-fracking sentiments—and not necessarily in the essential need to mitigate the climate crisis—but in their shared love for the land.

Another big ecological concern in the punctured watershed centers on the fragile Eastern hellbender populations. Five conservation groups filed a lawsuit on July 1, 2021, challenging a 2019 decision to deny the amphibian protection under the Endangered Species Act. 

“The hellbender is an ancient species that deserves better protections,” said Betsy Nicholas, Executive Director of Waterkeepers Chesapeake, one of the groups involved in the lawsuit. “The hellbender reminds us that we all live downstream. As the upstream tributaries are disturbed and polluted, the hellbender disappears. And the same pollution flows downstream to our populated areas, threatening the use and enjoyment of our rivers. We need to pay attention to what happens to the hellbender.”

Once widespread across 15 states, Eastern hellbenders have been eliminated from most of their historic range and continue to face many threats, including low water flow and poor water quality, increasing water pollution, deforestation, residential development, mining—and of course—oil and gas development. 

Peter Petokas has been studying Eastern hellbender populations in the Lycoming watershed for 16 years. He is very concerned for the future of the species in the watershed, which holds one of the richest populations in Pennsylvania, concentrated in one of the few remaining streams with optimal water quality. Even so, a drought in 2020 left the area’s waterways with very low flows, which constrains the hellbender’s habitat and stresses the population. Because they lack protection under endangered species status, agencies may be remiss to implement enhanced regulations on discharges and withdrawals in the basin. Petokas remains hopeful that the pending lawsuit against the US Fish & Wildlife Service will restart an assessment for federal endangered/threatened species protection.

“If there’s ever a spill of anything, it’s the end, it would wipe out one of the best hellbender populations in Pennsylvania,” Petokas said.

Besides concerns about low water levels, the watershed is losing tree cover along streams to invasive insects and erosion. Riparian species like ash, sycamore, and river birches provide shade and keep the water cool enough for hellbenders to thrive. 


Figure 21. A pipeline path cuts through forest in McNett Township, Lycoming County. Photo by Shannon Smith.

What does the future hold?

“An ecological threshold is the tipping point at which incremental changes or disturbances cause drastic or disproportionate results … When you remove land past the ecological threshold, a species no longer has the options to tolerate the disturbance. Beyond this point, the losses become disproportionately large.” [i]

In addition to creating new stressors on aquatic life, natural gas development in the Lycoming Creek watershed—particularly land use changes—affect bird communities. The area contains nesting habitat for many species or is an important stopover during seasonal migrations. Forest interior birds, like the cerulean warbler, are most vulnerable. They need pristine habitat.

A watch list of birds threatened by gas development in northeastern Pennsylvania features several warblers, thrushes, vireos, and woodpeckers. Nearly half of the birds are on a conservation priority list, underscoring that fracking jeopardizes species already at risk. All bird species on the watch list are known to nest in or visit the Lycoming Creek watershed.

The noise, noxious fumes, and land clearing correspondent with fracked gas takes a toll on human communities, too. 

A loud and obtrusive competitor has complicated access to unfettered public forests. This troublesome tenant strains local resourcesand relationships. Rural qualities erode like the overburdened roads.

According to Colin Jerolmack—when writing about this very place in Up to Heaven and Down to Hellone’s decision to lease, “… alienates others’ rights to liberty and property.” [ii] This paradigm, “prevents many community stakeholders from having a say in decisions even though they absorb the externalities.” [iii]

The externalities here and in other gas and oilfields are consequential for the entire global community. “It seems increasingly apparent that to prevent catastrophic global warming, society must decarbonize rapidly,” [iv] says Jerolmack. 

Burning more methane will not get us to that goal. Words of wisdom flow from native sources: 

“At the height of battles over strip mining for coal, back in the 70s, it seemed unimaginable that we would knowingly make the same mistakes again with potential for doing such harm,” says Tim Palmer, former Lycoming County resident and author of Twilight of the Hemlocks and Beeches, “but here we are with another fossil-fuel industry leaving its mark that may last for generations on our land, waters, and communities.”  

“Fight like hell to mitigate the harm … while trying to stop the industry’s spread,” [v] says Ralph Kisberg, an activist from Williamsport. People are making a difference, from afar and closer to home, and Kisberg is optimistic. “I doubt I’ll live to see a clean energy world, but maybe a clean energy U.S. economy…” [vi]

Clean and restorative, like the promise of a cool mountain stream.


Figure 22. Miner’s Run, a stream in the Lycoming Creek watershed. Photo by Tim Palmer.

THANKS TO…



Thank you to all the inspiring and persistent environmental stewards who have contributed to the creation of this digital atlas:


Project funding provided by:


SOURCES

Ohio, West Virginia, Pennsylvania Fracking Story Map

FracTracker’s aerial survey of unconventional oil & gas infrastructure and activities in northeast PA to southern OH and central WV

Ohio & Fracking Waste: The Case for Better Waste Management

Insights on Ohio’s massive fracking waste gap, Class II injection well activity, and fracking waste related legislation

Pennsylvania conventional wells

Pennsylvania Conventional Well Map Update

There are over 100,000 active conventional wells in PA, with more permitted each year. Most are unplugged, posing serious threats to the climate.

Mapping Gathering Lines in Bradford County, Pennsylvania

FracTracker mapped gathering lines in Bradford County, PA. Public data on gathering lines are incomplete, leaving us to fill in the gaps.

Birds of Northeastern Pennsylvania Threatened by Fracking Development

Information on which bird species in northeastern Pennsylvania are affected by the fracking industry’s expansion.

Trends in fracking waste coming to New York State from Pennsylvania

Over the past decade, New York State has seen a steep decline in the quantity of waste products from the fracking industry sent to its landfills for disposal. Explore FracTracker’s 2020 updated data.

Shell’s Falcon Pipeline Under Investigation for Serious Public Safety Threats

 

VIEW MAP & DATA

Breaking News

The Falcon Ethane Pipeline System is at the center of major investigations into possible noncompliance with construction and public safety requirements and failing to report drilling mud spills, according to documents obtained from the Pennsylvania Department of Environmental Protection (PA DEP) by FracTracker Alliance. These investigations, which are yet to be released, also uncovered instances of alleged data falsification in construction reports and Shell Pipeline Company firing employees in retaliation for speaking up about these issues.

3/17/21 Press release: https://www.fractracker.org/falcon-investigation-press-release-fractraccker-alliance/

Key Takeaways

  • Shell’s Falcon Pipeline, which is designed to carry ethane to the Shell ethane cracker in Beaver County, PA for plastic production, has been under investigation by federal and state agencies, since 2019. The construction of the pipeline is nearing completion.
  • Allegations in these investigations include issues with the pipeline’s coating, falsified reports, and retaliation against workers who spoke about issues.
  • Organizations are calling on public agencies to take action to protect public welfare and the environment along the entire pipeline route through Ohio, West Virginia, and Pennsylvania.
  • These investigations reveal yet another example of the life-threatening risks brought on by the onslaught of pipeline construction in the Ohio River Valley in the wake in the fracking boom. They also reveal the failure of public agencies to protect us, as documents reveal the federal agency that oversees pipeline safety did not adequately respond to serious accusations brought to its attention by a whistleblower.
  • These new concerns are coming to light as people across the country are demanding bold action on plastic pollution and the climate crisis through campaigns such as Build Back Fossil Free, Plastic Free President, and Future Beyond Shell. On a local level, residents in the Ohio River Valley continue to shoulder the health burdens of the fracking industry, despite a recent ban on fracking in the eastern part of Pennsylvania, which a growing body of scientific evidence verifies. The Falcon Pipeline, which would transport fracked gas for plastic production, is directly at odds with these demands.

Shell’s attempts to cut corners while constructing this 98-mile pipeline, likely motivated by the increasingly bleak economic prospects of this project, present serious public safety concerns for the thousands of residents along its route in Pennsylvania, West Virginia, and Ohio.

These allegations are serious enough to warrant immediate action. We’re calling on the Pipeline and Hazardous Materials Safety Administration (PHMSA) to thoroughly examine these allegations and suspend construction if not yet completed, or, in the case that construction is complete, operation of the Falcon Pipeline. Furthermore, we call on state environmental regulators to fully investigate construction incidents throughout the entire pipeline route, require Shell Pipeline to complete any necessary remediation, including funding independent drinking water testing, and take enforcement action to hold Shell accountable. Read our letters to these agencies here.

These investigations were featured in a March 17th article by Anya Litvak in the Pittsburgh Post-Gazette.

3/18/21 update:

Additional coverage of this story was published in a Times Online article by Daveen Ray Kurutz, a StateImpact Pennsylvania article by Reid Frazier, and an Observer-Reporter article by Rick Shrum.

Pipeline workers speak out

According to documents obtained through a public records request, a whistleblower contacted PHMSA in 2019 with serious concerns about the Falcon, including that the pipeline may have been constructed with defective corrosion coating. PHMSA is a federal agency that regulates pipeline operation. The whistleblower also shared environmental threats occurring within the DEP’s jurisdiction, prompting the PA DEP and Pennsylvania Attorney General’s Office to get involved.

Many of the issues with the Falcon relate to a construction method used to install pipelines beneath sensitive areas like roads and rivers called horizontal directional drilling (HDD). Shell Pipeline contracted Ellingson Trenchless LLC to complete over 20 HDDs along the Falcon, including crossings beneath drinking water sources such as the Ohio River and its tributaries. FracTracker and DeSmog Blog previously reported on major drilling mud spills Shell caused while constructing HDDs and how public agencies have failed to regulate these incidents.

Falcon Pipeline Horizontal Directional Drilling locations and fluid losses

This map shows the Falcon Pipeline’s HDD crossings and spills of drilling fluid spills that occurred through 3/5/2020. To see the data sources, click on the information icon found in the upper right corner of the map header as well as under the map address bar.

View Map Full Sized | Updated 6/16/20

 

PHMSA’s incomplete investigation

Correspondence between the PA DEP and PHMSA from February 26, 2020 reveal the gravity of the situation. While PHMSA conducted an inquiry into the whistleblower’s complaints in 2019 and concluded there were no deficiencies, PA DEP Secretary Patrick McDonnell wrote that his agency felt it was incomplete and urged PHMSA to conduct a more thorough investigation. Secretary McDonnell noted the PA DEP “has received what appears to be credible information that sections of Shell’s Falcon Pipeline project in western PA, developed for the transportation of ethane liquid, may have been constructed with defective corrosion coating protection,” and that “corroded pipes pose a possible threat of product release, landslide, or even explosions.”

FracTracker submitted a Freedom of Information Act request with PHMSA asking for documents pertaining to this inquiry, and was directed to the agency’s publicly available enforcement action webpage. The page shows that PHMSA opened a case into the Falcon on July 16, 2020, five months after Secretary McDonnell sent the letter. PHMSA sent Shell Pipeline Company a Notice of Amendment citing several inadequacies with the Falcon’s construction, including:

  • inadequate written standards for visual inspection of pipelines;
  • inadequate written standards that address pipeline location as it pertains to proximity to buildings and private dwellings;
  • compliance with written standards addressing what actions should be taken if coating damage is observed during horizontal directional drill pullback; and
  • inadequate welding procedures

Shell responded with its amended procedures on July 27, 2020, and PHMSA closed the case on August 13, 2020.

Of note, PHMSA states it is basing this Notice on an inspection conducted between April 9th and 11th, 2019, when construction on the Falcon had only recently started. PHMSA has con­firmed its in­ves­ti­ga­tion on the Falcon is on­go­ing, however we question the accuracy of self reported data given to PHMSA inspectors should be questioned

The PA DEP also brought the matter to the attention of the US Environmental Protection Agency.

Timeline of events in the Falcon investigation

Public knowledge of these investigations is limited. Here’s what we know right now. Click on the icons or the event descriptions for links to source documents.

Ohio and West Virginia

The Falcon pipeline also crosses through Ohio and briefly, West Virginia. While we do not know how these states are involved in these investigations, our past analyses raise concerns about the Ohio Environmental Protection Agency’s (OEPA) ability to regulate the pipeline’s HDD crossings.

One of the focuses of the Pennsylvania DEP’s investigation is the failure to report drilling fluid spills that occur while constructing a HDD crossing. The PA DEP shut down all HDD operations in November, 2019 and forced Shell to use monitors to calculate spills, as was stated in permit applications.

 

A horizontal directional drilling (HDD) construction site for the Falcon Pipeline in Southview, Washington County, Pennsylvania. You can see where the drilling mud has returned to the surface in the top left of the photo. Photo by Cyberhawk obtained by FracTracker Alliance through a right-to-know request with the Pennsylvania Department of Environmental Protection.

 

 

The Falcon Pipeline’s HDD locations are often close to neighborhoods, like the HOU-02 crossing in Southview, Washington County, Pennsylvania. Photo by Cyberhawk obtained by FracTracker Alliance through a right-to-know request with the Pennsylvania Department of Environmental Protection.

 

To our knowledge, the OEPA did not enforce this procedure, instead relying on workers to manually calculate and report spills. Shell’s failure to accurately self-report raises concerns about the safety of the Falcon’s HDD crossings in Ohio, including the crossing beneath the Ohio River, just upstream of drinking water intakes for Toronto and Steubenville, Ohio.

Public water system wells, intakes, and Drinking Water Source Protection Areas nears the Falcon Pipeline Route

Public water system wells, intakes, and Drinking Water Source Protection Areas nears the Falcon Pipeline Route. Note, the pipeline route may have slightly changed since this map was produced. Source: Ohio EPA

 

The Shell ethane cracker

The Falcon is connected to one of Shell’s most high-profile projects: a $6 billion to $10 billion plastic manufacturing plant, commonly referred to as the Shell ethane cracker, in Beaver County, Pennsylvania. These massive projects represent the oil and gas industry’s far-fetched dream of a new age of manufacturing in the region that would revolve around converting fracked gas into plastic, much of which would be exported overseas.

Many in the Ohio River Valley have raised serious concerns over the public health implications of a petrochemical buildout. The United States’ current petrochemical hub is in the Gulf Coast, including a stretch of Louisiana known colloquially as “Cancer Alley” because of the high risk of cancer from industrial pollution.

Construction of the ethane cracker and the Falcon pipeline have forged forward during the COVID-19 pandemic. In another example of the culture of fear at the worksite, several workers expressed concern that speaking publicly about unsafe working conditions that made social distancing impossible would cost them their jobs. Yet the state has allowed work to continue on at the plant, going so far as to grant Shell the approval to continue work without the waiver most businesses had to obtain. As of December 2020, over 274 Shell workers had contracted the coronavirus.

Weak outlook for Shell’s investment

While the oil and gas industry had initially planned several ethane crackers for the region, all companies except for Shell have pulled out or put their plans on hold, likely due to the industry’s weak financial outlook.

A June 2020 report by the Institute for Energy Economics and Financial Analysis (IEEFA), stated that:

Royal Dutch Shell owes a more complete explanation to shareholders and the people of Pennsylvania of how it is managing risk. Shell remains optimistic regarding the prospects for its Pennsylvania Petrochemical Complex in Beaver County, Penn. The complex, which is expected to open in 2021 or 2022, is part of a larger planned buildout of plastics capacity in the Ohio River Valley and the U.S. IEEFA concludes that the current risk profile indicates the complex will open to market conditions that are more challenging than when the project was planned. The complex is likely to be less profitable than expected and face an extended period of financial distress.

Many of Pennsylvania’s elected officials have gone to great lengths to support this project. The Corbett administration enticed Shell to build this plastic factory in Pennsylvania by offering Shell a tax break for each barrel of fracked gas it buys from companies in the state and converts to plastic (valued at $66 million each year). The state declared the construction site a Keystone Opportunity Zone, giving Shell a 15-year exemption from state and local taxes. In exchange, Shell had to provide at least 2,500 temporary construction jobs and invest $1 billion in the state, giving the company an incredible amount of power to decide where resources are allocated in Pennsylvania.

Would the state have asked Shell for more than 2,500 construction jobs if it knew these jobs could be taken away when workers spoke out against life-threatening conditions? Will the politicians who have hailed oil and gas as the only job creator in the region care when workers are forced to hide their identity when communicating with public agencies?

States fail to regulate the oil and gas industry

The PA DEP appears to have played a key role in calling for this investigation, yet the agency itself was recently at the center of a different investigation led by Pennsylvania Attorney General Josh Shapiro. The resulting Investigating Grand Jury Report revealed systematic failure by the PA DEP and the state’s Department of Health to regulate the unconventional oil and gas industry. One of the failures was that the Department seldom referred environmental crimes to the Attorney General’s Office, which must occur before the Office has the authority to prosecute.

The Office of Attorney General is involved in this investigation, which the PA DEP is referring to as noncriminal.

The Grand Jury Report also cited concerns about “the revolving door” that shuffled PA DEP employees into higher-paying jobs in the oil and gas industry. The report cited examples of PA DEP employees skirting regulations to perform special favors for companies they wished to be hired by. The watchdog research organization Little Sis listed 47 fracking regulators in Pennsylvania that have moved back and forth between the energy industry, including Shell’s Government Relations Advisor, John Hines.

National attention on pipelines and climate

The Falcon Pipeline sits empty as people across the nation are amping up pressure on President Biden to pursue bold action in pursuit of environmental justice and a just transition to clean energy. Following Biden’s cancellation of the Keystone XL pipeline, Indigenous leaders are calling for him to shut down other projects including Enbridge Line 3 and the Dakota Access Pipeline.

Over a hundred groups representing millions of people have signed on to the Build Back Fossil Free campaign, imploring Biden to create new jobs through climate mobilization. Americans are also pushing Biden to be a Plastic Free President and take immediate action to address plastic pollution by suspending and denying permits for new projects like the Shell ethane cracker that convert fracked gas into plastic.

If brought online, the Falcon pipeline and Shell ethane cracker will lock in decades of more fracking, greenhouse gasses, dangerous pollution, and single-use plastic production.

Just as concerning, Shell will need to tighten its parasitic grip on the state’s economic and legislative landscape to keep this plant running. Current economic and political conditions are not favorable for the Shell ethane cracker: financial analysts report that its profits will be significantly less than originally presented. If the plant is brought online, Shell’s lobbyists and public relations firms will be using every tactic to create conditions that support Shell’s bottom line, not the well-being of residents in the Ohio River Valley. Politicians will be encouraged to pass more preemptive laws to block bans on plastic bags and straws to keep up demand for the ethane cracker’s product. Lobbyists will continue pushing for legislation that imposes harsh fines and felony charges on people who protest oil and gas infrastructure, while oil and gas companies continue to fund police foundations. Shell will ensure that Pennsylvania keeps extracting fossil fuels to feed its ethane cracker.

The Falcon pipeline is at odds with global demands to address plastic and climate crises. As these new documents reveal, it also poses immediate threats to residents along its route. While we’re eager for more information from state and federal agencies to understand the details of this investigation, it’s clear that there is no safe way forward with the Falcon Pipeline.

Royal Dutch Shell has been exerting control over people through the extraction of their natural resources ever since it began drilling for oil in Dutch and British colonies in the 19th Century. What will it take to end its reign?

 

References & Where to Learn More

Topics in this Article

Health & Safety | Legislation & Politics | Petrochemicals & Plastics | Pipelines

Support this work

Stay in the know

Mapping intersectionality: Empowering youth addressing plastics

VIEW MAP & DATA

Overview

A new collaboration between FracTracker Alliance and Algalita is aiming to help middle school and high school students understand the connection between plastics and fracking and the wide ranging implications for climate change, environmental injustice, and human health.


Most young people today understand that plastics are problematic. But, there is still often a disconnect between the symptom of plastics in our oceans, and the root causes of the problem. Algalita’s mission is to empower a new generation of critical thinkers to shift the broken and unjust systems that are causing the plastic pollution crisis. Algalita’s strategy is creating educational experiences directly with the movement’s diverse leaders, and this new project with FracTracker is a perfect example. 

Specifically, Algalita and FracTracker have been working together to add new lessons to Algalita’s brand-new online, gamified, action platform: Wayfinder Society. Through this program, students can guide their own exploration of the complexities of the plastics issue, and can take action at their own pace and scale, by completing lessons and action-items (called Waymarks) based on difficulty, topic, and type of impact. 

The first of two FracTracker Waymarks outlines the connection between fracking and plastic production. Students explore a map showing the full plastics production process from fracking pads, to pipelines, to ethane crackers, and packa