Re-imagine Beaver County meeting - Photo by Sophie Riedel

Mapping a new vision in PA: Alternatives to petrochemical development

At a Re-Imagine Beaver County gathering in Pennsylvania earlier this month, static maps became dynamic in the hands of those who live in and around the region depicted. Residents of this area in the greater Pittsburgh region gathered to depict a new vision for Beaver County, PA. This county is currently faced with the proposal of a massive Shell-owned petrochemical facility – also called a “cracker” – and further build-out that could render the area a northern version of Louisiana’s “Chemical Corridor.” Participants at this event, from Beaver County and beyond, were encouraged to collectively envision a future based on sustainable development. The picture they created was one that welcomes change – but requires it to be sustainable and for the benefit of the community that makes it happen.

Re-Imagine Beaver County Group Mapping - by Sophie Riedel

Figure 1: Participants study a map of Beaver County. Photo credit: Sophie Riedel.

Re-Imagine Beaver County Participants

Panelists from municipal government, organic agriculture, and leaders and entrepreneurs of sustainable initiatives started off the event, sponsored by the League of Women Voters of Pennsylvania and endorsed by the Beaver County Marcellus Awareness Committee. After an hour, the room of 60 or so participants dove into the lively de- and re-construction of large format maps of the area. They were invited to markup the maps, created by Carnegie Mellon University graduate student of the School of Architecture, Sophie Riedel. Each table worked from a different base map of the same area – centering on the confluence of the Ohio and Beaver rivers, including the already heavily-industrialized riverside and the site of Shell’s proposed petrochemical facility.

Massive shell processing plant under construction in Beaver County PA and across the Ohio River from the town of Beaver. This massive processing plant, near residential areas, schools and hospitals, will be a serious threat to the health of the those living in the region.

Figure 2: The site of the proposed petrochemical facility in Beaver County (on left) and the Ohio River that participants hope to see reinvented as a recreational waterway buttressed by public parks. Photo credit: Garth Lenz, iLCP.

Much more than a thought exercise, the gathering represented a timely response to a growing grassroots effort around the proposed petrochemical inundation. Changes are already underway at the site, and those who live in this region have the right to give input. This right is especially salient when considering the risks associated with the petrochemical industry – including detrimental health impacts on babies before they are even born, asthma exacerbation, and increased cancer rates.

Charting a new vision

The re-invented Beaver County would be one of increased connectivity and mobility, well-equipped to provide for local needs with local means.

Many ideas included on the maps reflected a longing for transportation options independent of personal vehicles – including better, safer, more connected bike trails and walking paths, use of existing rail lines for local travel, and even the inventive suggestion of a water taxi. These inherently lower-impact means of transport coincide with preferences of millennials, according to several of the panelists, who want more walkable, bikeable communities. Ushering in such sustainable suggestions would welcome more young families to an area with an aging population. More than just about moving people, transportation ideas also included ways to get locally grown foods to those who need it, such as the elderly.

sophie-riedel-visioning-map-close-up

Figure 3: Participants modify maps to reflect a new vision. Photo credit: Sophie Riedel.

The value of beauty was a subtheme in many of the ideas to connect and mobilize the population and goods, ideas which often held a dual aim of protecting open space, creating new parks, and offering recreation possibilities. Participants ambitiously reimagined their river, the Ohio, from its current status as a closed-off corridor for industrial usage and waste, to a recreational resource for kayaking and fishing walleye.

Participants marked up the maps to show the resources that help sustain this community, and voiced a strong desire for development that would enable additional self-reliance. These forward-thinking changes included increased agriculture and use of permaculture techniques, and community gardens for growing food near the people who currently lack access. Ideas for powering the region abounded, like harnessing wind power and putting solar panels on every new building.

Participants were firm on local sourcing for another key resource: the labor required for these efforts, they insisted, must come from the local populace. Educational programs designed to channel learners into workers for sustainability might include training to rebuild homes to “greener” standards, and programs aimed at bringing a new generation of farmers to the fields. Perhaps a nod to the world-wide plastic glut that a petrochemical facility would add to, suggestions even included local ways of dealing with waste, like starting a composting program and establishing more recycling centers.

Whose vision?

Who is a part of this vision, both in creating it and living it out? Inevitably, the selection of panelists and the interests of the audience members themselves influenced the vision this group crafted. The question of inclusion and representation found articulation among many participants, and the hosts of the event welcomed suggestions on reaching a broader audience moving forward. Looking around the room, one man asked, “Where are all the young people, and families with kids?” Indeed, only several members of this demographic were present. Though indicative of the racial makeup of Beaver County, the audience appeared to be primarily white, meaning that the racially diverse communities in the region where not represented. Others pointed out that going forward, the audience should also include those residents struggling with un- and underemployment, who have a major stake in whatever vision of Beaver County comes to fruition. Another said he would like to see more elected officials and leaders present. Notably, Potter Township Board of Supervisors Chairperson, Rebecca Matsco, who is a strong advocate for the proposed petrochemical project in her township, was present for the first half of the event.

Local means for meeting local needs

People who welcome petrochemical development in Beaver County might believe that those who voice concerns about the proposed Shell plant aren’t forward-thinking, or simply oppose change. Quite in contrast, participants at Re-Imagine Beaver County went to work reinventing their community with optimism and enthusiasm. They didn’t seem to be resisting change, but instead, wanting to participate in the process of change and to ultimately see benefits to their community. For example, discussion of solar power generated substantial excitement. According to panel speaker Hal Saville, however, the biggest challenge is making it affordable for everyone, which suggests that the estimated $1.6 billion in tax breaks going to Shell for the petrochemical plant could be better allocated.

A key narrative from supporters of the ethane cracker centers on the pressing need for jobs in this area, though some locals have expressed concern about how many of Shell’s promised jobs would go to residents. Whoever gets hired, these jobs come with serious dangers to workers. Participants at this event proposed alternative initiatives – both ambitious and small – for creating jobs within the community, like providing “sprout funds” to encourage new business start-ups, and launching a coordinated effort to rehab aging housing stock. These ideas suggest that the people of this region feel their energy and ingenuity would be best spent making Beaver County a better place to live and work, in contrast to producing disposable petrochemical products for export around the world. The fact that so many participants emphasized local means for meeting their needs in no way downplays the need for good jobs. Rather, it points to the fact that people want jobs that are good for them and for the future of their community.

Moving the vision forward

Where do we go from here? Can the momentum of this event draw in greater representation from the region to have a voice in this process? Will these visions become animated and guide the creation of a new reality? Broader and deeper planning is in order; participants and panelists alike pointed to tools like comprehensive community plans and cleaner, “greener” industrial policies. More than anything, the group articulated a need for more deliberation and participation. As panelist and farm co-owner Don Kretschmann put it, when it comes to change, we need to “think it through before we go ahead and do it.”

The maps themselves, bearing the inspirations scrawled out during the event, have not reached the end of the road. From here, these maps will accompany an upcoming exhibition of the artworks in Petrochemical America, which locals hope to bring to the greater Pittsburgh area in the coming months. League of Women Voters, for their part, continue to move the vision forward, inviting input from all on next steps, with an emphasis on pulling in a broader cross-section of the community.

To voice your vision, and to stay in the loop on future Re-Imagine Beaver County events, contact reimaginelwvpa@gmail.com.


Many thanks to Sophie Riedel for sharing photographs from the event, and to the International League of Conservation Photographers and the Environmental Integrity Project for sharing the aerial photograph of the Shell site from their joint project, “The Human Cost of Energy Production.”

By Leann Leiter, Environmental Health Fellow

 

You Are Here feature image

You Are Here!

Woody Biomass & Waste-To-Energy

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

While solar and wind energy gets much of the attention in renewable energy debates, various states are also leaning more and more on burning biomass and waste to reach renewable energy targets and mandates. As is the case with all sources of energy, these so-called “renewable energy” projects present a unique set of environmental and socioeconomic justice issues, as well as environmental costs and benefits. In an effort to document the geography of these active and proposed future projects, this article offers some analysis and a new map of waste and woody biomass-to-energy infrastructure across the U.S. with the maximum capacities of each facility.

 

Map of U.S. Facilities Generating Energy from Biomass and Waste

View map full screen to see map legend, additional layers, and bookmarks
How FracTracker maps work

Woody Biomass-to-Energy

To illustrate the problems of woody biomass-to-energy projects, one only needs to look at Michigan. Michigan’s growing practice of generating energy from the wood biomass relies on ten facilities that currently produce roughly 209 Megawatts (an average of 21 MW per facility) from 1.86 million tons of wood biomass (an average of 309,167 tons per facility). Based on our initial analysis this is equivalent to 71% of the wood and paper waste produced in Michigan.

Making matters worse, these ten facilities rely disproportionately on clearcutting 60-120 years old late successional northern Michigan hardwood and red pine forests. These parcels are often replanted with red pine and grown in highly managed, homogeneous 20-30 year rotations. Reliance on this type of feedstock stands in sharp contrast to many biomass-to-energy facilities nationally, which tend to utilize woody waste from urban centers. Although, to provide context to their needs, the area of forest required to service Michigan’s 1.86 million-ton demand is roughly 920 mi2. This is 1.65 times the area of Chicago, Milwaukee, Detroit, Cleveland, Buffalo, and Toronto combined.

 

Panorama of the Sunset Trail Road 30 Acre Biomass Clearcut, Kalkaska Conty, Michigan

 

Based on an analysis of 128 U.S. facilities, the typical woody biomass energy facility produces 0.01-0.58 kW, or an average of 0.13 kW per ton of woody biomass. A few examples of facilities in Michigan include Grayling Generating Station, Grayling County (36.2 MW Capacity and 400,000 TPY), Viking Energy of McBain, Missaukee County (17 MW Capacity and 225,000 TPY), and Cadillac Renewable Energy, Wexford County (34 MW Capacity and 400,000 TPY).

 

The relationship between wood processed and energy generated across all U.S. landfill waste-to-energy operations is represented in the figure below (note: data was log transformed to generate this relationship).

 

Waste-To-Energy

Dr. Jim Stewart at the University of the West in Rosemead, California, recently summarized the Greenhouse Gas (GHG) costs of waste landfill energy projects and a recent collaboration between the Sierra Club and International Brotherhood of Teamsters explored the dangers of privatizing waste-to-energy given that two companies, Waste Management and Republic Services/Allied Waste, are now a duopoly controlling all remaining U.S. landfill capacity (an additional Landfill Gas Fact Sheet from Energy Justice can be found here).

Their combined analysis tells us that, by harnessing and combusting landfill methane, the current inventory of ninety-three U.S. waste-to-energy facilities generate 5.3 MW of electricity per facility. Expanded exploitation of existing landfills could bring an additional 500 MW online and alleviate 21.12 million metric tons of CO2 pollution (based on reduction in fugitive methane, a potent greenhouse gas). Looking at this capacity from a different angle, approximately 0.027 MW of electricity is generated per ton of waste processed, or 1.64 MW per acre. If we assume the average American produces 4.4 pounds of waste per day, we have the potential to produce roughly 6.9 million MW of energy from our annual waste outputs, or the equivalent energy demand created by 10.28 million Americans.

 

The relationship between waste processed per day and energy generated across all U.S. landfill waste-to-energy operations is represented in the figure below.

 

Conclusion

Waste burning and woody biomass-to-energy “renewable energy”projects come with their own sets of problems and benefits. FracTracker saw this firsthand when visiting Kalkaska County, Michigan, this past summer. There, the forestry industry has rebounded in response to several wood biomass-to-energy projects. While these projects may provide local economic opportunity, the industry has relied disproportionately on clearcutting, such as is seen in the below photograph of a 30-acre clearcut along Sunset Trail Road:

 

As states diversify their energy sources away from fossil fuels and seek to increase energy efficiency per unit of economic productivity, we will likely see more and more reliance on the above practices as “bridge fuel” energy sources. However, the term “renewable” needs parameterization in order to understand the true costs and benefits of the varying energy sources it presently encompasses. The sustainability of clearcutting practices in rural areas—and the analogous waste-to-energy projects in largely urban areas—deserves further scrutiny by forest health and other environmental experts. This will require additional mapping similar to what is offered in this article, as well as land-use analysis and the quantification of how these energy generation industries enhance or degrade ecosystem services. Of equal importance will be providing a better picture of whether or not these practices actually produce sustainable and well-paid jobs, as well as their water, waste, and land-use footprints relative to fossil fuels unconventional or otherwise.

 

Relevant Data

All US Waste-to-Energy Operations along with waste processed and energy produced (MW)

All US Woody Biomass-to-Energy Operations along with waste processed and energy produced (MW)

Energy-related story maps

Energy-Related Story Maps for Grades 6-10

Over the past half year, FracTracker staffer Karen Edelstein has been working with a New York State middle school teacher, Laurie Van Vleet, to develop a series of interdisciplinary, multimedia story maps addressing energy issues. The project is titled “Energy Decisions: Problem-Based Learning for Enhancing Student Motivation and Critical Thinking in Middle and High School Science.” It uses a combination of interactive maps generated by FracTracker, as well as websites, dynamic graphics, and video clips that challenge students to become both more informed about energy issues and climate change and more critical consumers of science media.

Edelstein and VanVleet have designed energy-related story maps on a range of topics. They are targeted at 6th through 8th grade general science, and also earth science students in the 8th and 10th grades. Story map modules include between 10 and 20 pages in the story map. Each module also includes additional student resources and worksheets for students that help direct their learning routes through the story maps. Topics range from a basic introduction to energy use, fossil fuels, renewable energy options, and climate change.

The modules are keyed to the New York State Intermediate Level Science Standards. VanVleet is partnering with Ithaca College-based Project Look Sharp in the development of materials that support media literacy and critical thinking in the classroom.

Explore each of the energy-related story maps using the links below:

Energy-related story maps

Screenshot from Energy Basics story map – Click to explore the live story map

This unique partnership between FracTracker, Project Look Sharp, and the Ithaca City School District received generous support from IPEI, the Ithaca Public Education Imitative. VanVleet will be piloting the materials this fall at Dewitt and Boynton Middle Schools in Ithaca, NY. After evaluating responses to the materials, they will be promoted throughout the district and beyond.

New York: A Sunshine State!

Photovoltaic solar resources of the US (NREL)

Photovoltaic solar resources of the US (NREL)

It’s difficult to talk about the risks of oil and gas extraction without providing data on energy alternatives in the conversation. Let’s look at New York State, as an example. There, solar power is taking a leadership position in the renewable energy revolution in the United States. Although New York State receives far less sunshine than many states to the west and south, the trends are bright! Currently, New York State ranks seventh in the nation in installed solar capacity, with over 700 MW of power generated by the sun, enough to power 121,000 homes.

Despite common assumptions that solar power only makes sense where the sun shines 360 days a year, we’ve been seeing successful adoption of solar in Europe for years. For example, in Germany, where even the most southern part of the country is further north of the Adirondack Mountains in New York State, close to 7% of all the power used comes from combined residential and commercial scale photovoltaic sources–35.2 TWh in all. Munich, one of the sunniest places in all of Germany, has a lower average solar irradiation rate of 3.1 kWh/m2/day than most cities in New York State; compare it with locations in New York like Rochester (3.7 kWh/m2/day), New York City (4.0 kWh/m2/day), and Albany (3.8 kWh/m2/day). At present, Germany still leads New York State by more than double the electrical output from solar for equivalent areas.

cumulative_capacity

Cumulative Solar Capacity in New York

The cumulative capacity for completed photovoltaic systems in New York State has risen steeply in the past three years, with ground-mounted and roof-top residential capacity outpacing commercial capacity by a wide margin.

Nonetheless, commercial and industrial scale installations in New York account for over 100 MW of power capacity in the state.

Large-Scale Solar Installations Map

This map shows the location of those large-scale solar installations in the US (zoom out to see full extent of US), as of March 2016. Here is our interactive map:

View map full screen | How FracTracker maps work

In the past fifteen years, the increase in small to medium-sized solar installations in New York State has been significant, and growth is projected to continue.  The following animation, based on data from the New York State Energy Research and Development Authority (NYSERDA), shows that increase in capacity (by zip code) since 2000:

solar_animation_cumulative_2000-15

Solar Installations by Zip Code

NYSERDA also provides maps that show distributions of residential, governmental/NGO, and commercial solar energy projects (images shown below). For example, Suffolk County leads the way in the residential arena, with nearly 8200 photovoltaic (PV) systems on roofs and in yards, with an average size of 8.3 kW each.

Erie County has 128 PV systems run by governmental and not-for-profit groups, with an average size of about 27 kW each. Albany County has over 320 commercial installations, with an average size each of about 117 kW.

New York State’s Future Solar Contribution

pricing

Price of Completed Solar Systems 2003-2016

The prices of solar panels is steeply declining, and is coupled with generous tax incentives. The good news, according to the Solar Energy Industries Association (SEIA), is that over the next five years, New York State’s solar capacity is expected to quadruple its current output, adding over 2900 MW of power. This change would elevate New York State from seventh to fourth place in output in the US.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

OES Workshops

Our Energy Solutions

14 workshops in 7 countries on 3 continents

A FracTracker team has just returned from North Carolina where fracking has been given the green light by the state’s government. Time may tell what reserves are contained within the Mesozoic basins but already landmen are knocking on doors and striking deals with willing landowners. Offshore drilling is also under consideration in a state where tourism – fueled in part by renowned beach destinations – is a $20 billion a year industry.

OES Panel in Asheville

OES panel answering questions in Asheville, NC

The visit was for Our Energy Solutions, a project bringing 14 workshops to seven countries on three continents. The aim is to help build a global community of engaged citizens and stakeholders who are informed of the risks of fossil fuels (like oil and natural gas), enlightened about renewable energy opportunities, and inspired to share ideas for a more sustainable planet.  The attendance, interest, and dialogue at the North Carolina workshops were inspiring. People young and old came out to prove there is great concern about these issues. While acknowledging the complexities of energy and climate challenges, they seemed willing to dig-in, reach-out, engage, and act. The audiences owned the “Our” in Our Energy Solutions.  Just weeks earlier, another team from FracTracker and the Ecologic Institute – the lead collaborators in Our Energy Solutions – launched the project with workshops in Florida, hosted by the South Florida Wildlands Association. In North Carolina, our partners were Environment North Carolina and MountainTrue. These regional and statewide groups offer abundant ways to get involved and illuminate a better path forward.

BackPageAlt2_windmillsBoth states are at risk from accelerated and more extreme hydrocarbon extraction, but both also bear significant potential for broad success with renewable energy. While only 0.1% of Florida’s current generating capacity comes from solar, it has some of the strongest incoming solar radiation in the country. North Carolina sports the best conditions for offshore wind energy on the east coast. The Tarheel State ranked 2nd in the nation for new installed solar capacity in 2014, and the same year, over 4,300 North Carolinians worked in the solar power industry. Already, 4,800 Floridians work in the solar industry.

Wellsbycounty-Feature

Well density by county in the U.S.

The volatile economics of oil and gas, the effects of fossil fuel combustion on the planet, and the impairment of human health and the environment caused by extraction necessitate other approaches to meet our energy needs. Our Energy Solutions will strive to showcase brighter possibilities – one workshop at a time. Next stop, Argentina – May 5-12th.

Check out Our Energy Solutions on Facebook and join the conversation!