Responses to the Rash of Oil Train Incidents

By Kyle Ferrar and Samantha Malone

Throughout the U.S. more crude was spilled from rail incidents in 2013 than the prior four decades combined. Recently, in a period of three weeks, there were four* derailments of crude oil trains carrying Bakken and other Canadian crudes resulting in fire and explosions, with multiple cars rupturing and set ablaze.1 One of the most recent incidents occurred on March 5th in Galena, Illinois, just north of Chicago (video below). The fires resulting from crude derailments blaze so hot that emergency responders and firefighters are not able to get close enough to extinguish them.  The only option is to let the fire burn out. This process can take days, during which local communities are subject to impaired air quality if not evacuated.2

*This number was revised 4/19/15.

Here we explore how regulators are responding to this public health risk and the new rules being put in place.

Oil Train Incidents Prior to August 2014


Derailments and accidents that occurred prior to August 1, 2014. Click here to view map fullscreen3

Regulatory Responses

Local Bakken Oil and Oil Train Resolutions

In response to these incidents and concerns, at least 50 cities and counties around the country have enacted or proposed resolutions regarding oil trains and Bakken oil. Some of these resolutions ask for direct action while others simply express concern publicly about the risks that the transportation of volatile crude oil by rail poses within their communities.

Resolutions Passed By Local Jurisdictions in California

While we have not collected all of these repossess, a good sample is shown below by state:

STATE TYPE
California
Berkeley, CA Resolution no. 66516
California State Senate Safety provisions in budget
Davis, CA Resolution
Martinez, CA Resolution No. 106-14
Moorpark, CA Letter
Oakland, CA Resolution no. 85054
Richmond, CA Resolution no. 26-14
Sacramento Area Council of Governments Letter
San Jose, CA Letter
San Luis Obispo, CA Letter
Santa Cruz County, CA Letter
Simi Valley, CA Letter
Illinois
Barrington/Chicago, IL Commission letter to President Obama
New York
Clinton County, NY Proposed taskforce
Hyde Park, NY Resolution no. 9:8 – 2 OF 2014
Newburg, NY Resolution no. 230-2014
New York State NY Governor letter to President Obama
Philipstown, NY Resolution
Rockland County, NY Meeting plus resolution
Oregon
Hood River, OR Resolution 2014-22
Columbia River Gorge Commission, OR/WA Resolution
Pennsylvania
Harrisburg, PA Proposed
Philadelphia, PA Resolution no. 150129-A01
Washington
Aberdeen, WA Resolution no. 2014
Anacortes, WA Resolution no. 1889
Auburn, WA Resolution no. 5050
Bainbridge Island, WA Resolution no. 2014 – 18
Bellingham, WA Resolution no. 2014-03
Chehalis, WA Resolution
Columbia River Gorge Commission, OR/WA Resolution
Edmonds, WA Resolutions no. 1317 & no. 1280
Elma, WA Resolution
Hoquiam, WA Resolution no. 2014-10
Kent, WA Proposed resolution
King County, WA Resolution 2014-0164
Montesano, WA Resolution
Mount Vernon, WA Resolution no. 879
Mukilteo, WA Resolution no. 2014-12
Ocean Shores, WA Resolution no. 727
Olympia, WA Resolution no. M-1812
Port of Olympia, WA Resolution no. 2014-07
Quinault Indian Nation Issued opinion
Seattle, WA Resolution no. 31504
Safe Energy Leadership Alliance SELA letter to DOT and WA Governor
Spokane, WA Resolution
Stevenson, WA Resolution no. 2014-279
Vancouver, WA Policy resolution 5b
Washington State Council of Firefighters Resolution no. 14-33
Washougal, WA Resolution no. 1048
Whatcom County, WA Resolution no. 2014-001

If any of the PDF’s linked to above do not load, refresh your browser.

Thank you to the many groups and individuals who have helped to compile this list above, such as Audubon Washington and Forest Ethics.

If you would like to recommend additions to this oil trains local actions list, please do so using the comment form at the bottom of this page.

Federal and National Responses

In an official request, the federal Department of Transportation ordered rail companies to provide the shipping details only to state emergency response officials. Due to the health and safety implications of crude by rail, groups like Earth Justice say the public has the right to know what is going through their backyards.4 The National Transportation Safety Board (NTSB) and a working group for the state of New York both found numerous deficiencies in the regulation of rail safety. The Working Group found that there are serious risks throughout the state from oil by rail in addition to significant gaps in local emergency response capabilities.5, 6

To reduce the actual intensity of these incidents, federal regulations establishing “vapor-pressure cap” rules go into effect this April. This specific regulation puts a limit on the amount of explosive gas allowed in the tanker cars. Crudes with greater amounts of short chain hydrocarbons are more volatile (lighter) and therefore more explosive. Bakken crude is considered “light” and “sweet” (more volatile short chain hydrocarbons) and therefore is more flammable/explosive than other crudes.7 Oil producers will have to measure the actual vapor pressure of the crude. The current practice is to calculate the vapor pressure using standards that are not specific enough for the lighter Bakken crude. Measuring the vapor pressure of each tank using an established protocol (i.e. regulatory standards) is therefore necessary to ensure an accurate knowledge of vapor pressure.8

The new standards for North Dakota crude will require operators to filter the crude in order to bring the vapor pressure down to 13.7 psi, a level comparable to the 13.5 psi standard for most automobile gasoline. The North Dakota Petroleum Council criticized the regulations, saying the explosive components of the Bakken crude are what give it such high value. NDPC also criticized the standards for temperature and pressure as being unnecessary.9 The recent West Virginia train that derailed and exploded would have violated this rule according to the testing conducted in North Dakota before departure. Crude involved in the Lac-Mégantic disaster was far below this standard, with an estimated vapor pressure of 9.3.10

Canadian Pacific Railway, the second largest rail company in Canada, wants the authority to refuse to haul crude oil and other hazardous materials due to liability concerns. This change would require an overhaul of the Canada Transportation Act that requires railways to haul any and all legal goods in rail cars that meet safety standards. The Board of Directors asked, “‘What kind of exposure do we have and what kind of exposure are we [exposing] the public to by hauling some of these commodities?” The U.S. railway BNSF, owned by Warren Buffet’s Berkshire Hathaway, has also protested against a similar U.S. federal regulation.11

Are the recent regulations enough?

The most destructive incident to-date was the Lac-Mégantic, Quebec derailment that killed 47 people on July 6, 2013. Following the Lac-Mégantic explosion, U.S. regulators issued an emergency directive that trains carrying hazardous materials could no longer be left unattended with the engines running unless they first received approval from the Federal Railroad Administration (FRA). The actual implementation of the rule only requires the railroad operators to prepare a plan for such activity and have it on file. There is no requirement for approval from the FRA.3

Other more substantive regulations are slowly coming into effect; for example, by 2017 the weaker DOT-111 oil tanker cars will be retired and all crude will be transported in safer Model CPC-1232 tank cars. Of note, however, is the fact that all five of these recent incidents have involved the safer, reinforced Model 1232 tank cars. A video of the recent derailment outside of Chicago can be seen below.


Galena, Illinois oil train derails with safer model CP-1232 tank cars that had been retrofitted with protective shields.

Data Transparency and Information

Not much detailed information is known publicly about the amount of crude being shipped by railway, the source of the crude, or which routes will be used, but research by the FracTracker Alliance has identified the expansion of crude shipments in communities throughout New York State. In the City of Buffalo, 33% of residents live within the ½ mile blast zone of a railway with crude oil tanker shipments, for example.12 Additional work by groups such as ours and Oil Change International has identified gaps in oversight that may not be possible for state or federal regulations to address. Because the nature of shipping by rail involves long distances and periods of time with infrequent cargo checks, any type of oil spill that goes immediately unnoticed may make it impossible to issue an effective response. Such is the case of a spill in Washington State, shown in the map below.12

In order to preserve the confidentiality of this information, the BNSF and other rail carriers have claimed trade secret exemptions to keep the information and data from being released to the public. The U.S. Department of Transportation has found the oil shipments by rail to “constitute an imminent hazard” and has required that carriers notify the State Emergency Response Commission (SERC) in each state that it operates trains transporting 1,000,000 gallons (23,809.5 barrels) or more of Bakken crude. This information has not been released to the public due to security concerns, however.13

References

  1. Wikipedia. List of Rail Accidents. (http://en.wikipedia.org/wiki/List_of_rail_accidents_%282010%E2%80%93present%29#2015). Accessed 4/19/15.
  2. Stern, Marcus; Jones, Sebastian. U.S. Crackdown on Oil Trains – Less Than Meets the Eye. 12/8/2014. Inside Climate News. Accessed 3/10/15.
  3. Kelso, Matt. 2014. North American Petroleum Transportation by Rail. FracTracker Alliance. Accessed 3/10/15.
  4. Bizjak, Tony. Tate, Curtis. 10/7/2014. Details about Crude Oil Rail Shipments Shrouded in secrecy. The Sacramento Bee. Accessed 3/10/15.
  5. 1/23/14. Safety Recommendation R-14-1. Accessed 3/5/15.
  6. State of New York. 4/30/14. Transporting Crude Oil in New York State: A Review of Incident Prevention and Response Capacity. Accessed 3/10/15.
  7. Pipeline and Hazardous Materials Safety Administration. 2014. Operation Safe Delivery Update. U.S. Department of Transportation. Accessed 3/12/15.
  8. Pichler, Hannes, and Josef Lutz. 2014. Why Crude Oil Vapor Pressure Should Be Tested Prior to Rail Transport. Advances in Petroleum Exploration and Development2.
  9. Scheyder, Ernest. 12/9/2014. North Dakota to require every barrel of crude oil be filtered. Reuters. Accessed 3/10/15.
  10. Gold, Russel. 3/2/15. Crude on Derailed Train Contained High Levels of Gas. Wall Street Journal. Accessed 3/10/15.
  11. Eric Atkins. 3/4/2015. Canadian Pacific wants to limit shipments of dangerous goods. The Globe and Mail. Accessed 3/12/15.
  12. Kelso, Matt. 1/29/15. Regulatory Gaps for Train Spills?. FracTracker Alliance. Accessed 3/14/15.
  13. S. DOT. 5/7/2014. Emergency Order. Docket No. DOT-OST-2014-0067. Accessed 3/10/15

Population Near Railroads in Allegheny County, PA

By Matt Kelso, Manager of Data and Technology

In a joint project with PennEnvironment earlier this month, we analyzed the number of people who live within a half-mile of active rail lines in Pennsylvania and are therefore potentially at risk of an oil train explosion similar to the recent ones in Lac-Mégantic, Quebec; Lynchburg, Virginia; and Mount Carbon, West Virginia. To take that project one step further, we have taken a closer look at the population near railroads in Allegheny County, the second most populous county in PA with over 1.2 million inhabitants. Of the various figures, we found that Pittsburgh has over 183,000 people that live with half-mile mile of an active rail line.

In Philadelphia, the city’s boundary takes up the entire county of the same name, but in Allegheny County, the municipal boundaries are considerably more fractured. In fact, Pittsburgh is just one of 130 municipalities in Allegheny County; its 305,704 inhabitants represent just 25% of the residents in the county, and 13% of the metropolitan area. For the sake of simplicity, residents from the various cities, boroughs, and townships in the county will often say they are from Pittsburgh when speaking with people from outside the region, although they might actually live in Blawnox, McKees Rocks, or Swissvale, for example.


Estimated population within a half-mile of active rail lines in Allegheny County, PA. Click here to access the legend and other map tools.

Here is a list of the top ten municipalities with the largest estimated population in the at-risk zone:

Municipalities in Allegheny County with the largest estimated population within a half-mile of railroads.

Municipalities in Allegheny County with the largest estimated population within a half-mile of railroads.

Not surprisingly, the most at-risk municipality in Allegheny County is Pittsburgh, with over 183,000 people living within a half-mile of an active rail line. During any given workday, when individuals flock into the city, even more individuals would theoretically be at risk of an oil train disaster. Following Pittsburgh, Baldwin, West Mifflin, and Shaler all share similar numbers at risk, with Baldwin seeing the greatest percentage of its population at risk of the three. While Castle Shannon and Carnegie have lower populations than the other municipalities, a significant proportion of their residents (93-95%) are near rail lines.

What can violations data tell us?

By Samantha Malone, MPH, CPH – Manager of Education, Communications, & Partnerships

The rate of violations by fracking companies has been of significant interest to many groups including our own. But why? What can violations data tell us about oil and gas safety that a news article about a particular incident cannot?

When companies do not follow regulatory standards and protocols – and either self report the issue or are caught – they may be issued a citation of some sort by the state regulatory agency where the violation occurred. While data of this kind is not always readily available, we can gain key insights into the environment of a particular company and the related state agency by reviewing these violations more closely.

The Stories Behind the Data

Violation trends can be indicators of environmental and public health risks, by looking into spills or illegal air emissions. The degree of transparency both within the oil and gas industry, as well as in the state regulatory agency, can be gleaned based on the quality and quantity of data available about company violations. And of course, the degree to which a company complies with our state and federal laws says a lot about their corporate environment and safety protocols.

In Pennsylvania, for example, we have seen a decline in violations per well over time (Figure 1, below). At first glance, this trend appears to be a step in the right direction. There could be several reasons behind this change, however, including but not limited to:

  • Improved compliance among operators – Great!
  • Decreased regulatory inspections – Not so great
  • Decreased regulatory reporting of violations during those inspections – Not so great
  • Changes in what qualifies as a “violation” or how violations data is collected/shared
  • Less self reporting by the companies when something goes wrong – Not so great
  • Larger, more established operators with better safety protocols have bought out smaller, resource-limited companies
  • Improved control technologies or infrastructure (throughputs) – Great!
  • More public pressure to comply with regulations – Great!
VpW PA Over Time

Figure 1. Violations per well drilled in PA 2005-2014. Data source

Two Recent Violations Data Reports

With the insight that can be acquired by analyzing violations (and other types of data), it is not uncommon to see an increase in the organizations and researchers digging into the data.

On January 27th, for example, Environment America released a report detailing the top oil and gas violators in the United States. Among their many findings…

Houston-based Cabot Oil, a prime Halliburton contractor, committed the most total violations with 265 across the study period. Chesapeake Energy was close behind. Pittsburgh-based Atlas was guilty of the most breaches for every well drilled, while Mieka, part of Dallas-based Vadda Energy, was responsible for the most infractions per well operated. Learn more

A report that we wrote last year finally made its way through peer review and was published in the Journal of Environmental Science and Health, Part A on Tuesday last week1. We did not focus specifically on the operators committing violations like Environment America did, but on the state of the data that is or should be available to the public about these operations from state regulatory agencies. Unfortunately, we found that many states often do not release violations data – especially not in a publicly accessible manner. Learn more about this study through an article I wrote for the Sunlight Foundation’s blog or check out the abstract.

A third violations report is due out soon, so keep your eyes peeled! UPDATE: As of April 2, 2015 – The Natural Resources Defense Council report is available.

Endnotes

1. The other publications in the special issue, Facing the Challenges – Research on Shale Gas Extraction, are listed below:

Foreword
John F. Stolz Professor, Duquesne University
Pages: 433-433

Current perspectives on unconventional shale gas extraction in the Appalachian Basin
David J. Lampe & John F. Stolz
Pages: 434-446

Long-term impacts of unconventional drilling operations on human and animal health
Michelle Bamberger & Robert E. Oswald
Pages: 447-459

Human exposure to unconventional natural gas development: A public health demonstration of periodic high exposure to chemical mixtures in ambient air
David R. Brown, Celia Lewis & Beth I. Weinberger
Pages: 460-472

Reported health conditions in animals residing near natural gas wells in southwestern Pennsylvania
I. B. Slizovskiy, L. A. Conti, S. J. Trufan, J. S. Reif, V. T. Lamers, M. H. Stowe, J. Dziura & P. M. Rabinowitz
Pages: 473-481

Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania
Christopher J. Grant, Alexander B. Weimer, Nicole K. Marks, Elliott S. Perow, Jacob M. Oster, Kristen M. Brubaker, Ryan V. Trexler, Caroline M. Solomon, & Regina Lamendella
Pages: 482-500

Data inconsistencies from states with unconventional oil and gas activity
Samantha Malone, Matthew Kelso, Ted Auch, Karen Edelstein, Kyle Ferrar, & Kirk Jalbert
Pages: 501-510

Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products
Leong Ying, Frank O’Connor, & John F. Stolz
Pages: 511-515

Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction
Shyama K. Alawattegama, Tetiana Kondratyuk, Renee Krynock, Matthew Bricker, Jennifer K. Rutter, Daniel J. Bain, & John F. Stolz
Pages: 516-528

Danger Around the Bend

The Threat of Oil Trains in Pennsylvania

A PennEnvironment Report – Read Full Report (PDF)

On the heels of the West Virginia oil train explosion, this new study and interactive map show populations living in the evacuation zone of a potential oil train crash.

PA Oil Train Routes Map


This dynamic map shows the population estimates in Pennsylvania that are within a half-mile of train tracks – the recommended evacuation distance in the event of a crude oil rail car explosion. Zoom in for further detail or view fullscreen.

Danger Around the Bend Summary

The increasingly common practice of transporting Bakken Formation crude oil by rail from North Dakota to points across the nation—including Pennsylvania—poses a significant risk to the health, well-being, and safety of our communities.

This risk is due to a confluence of dangerous factors including, but not limited to:

  1. Bakken Formation crude oil is far more volatile and combustible than typical crude, making it an incredibly dangerous commodity to transport, especially over the nation’s antiquated rail lines.
  2. The routes for these trains often travel through highly populated cities, counties and neighborhoods — as well as near major drinking water sources.
  3. Bakken Formation crude is often shipped in massive amounts — often more than 100 cars, or over 3 million gallons per train.
  4. The nation’s existing laws to protect and inform the public, first responders, and decision makers are woefully inadequate to avert derailments and worst-case accidents from occurring.
Lac-Mégantic derailment. Source: http://en.wikipedia.org/wiki/Lac-M%C3%A9gantic_derailment

Lac-Mégantic derailment, July 2013. Source

In the past few years, production of Bakken crude oil has dramatically increased, resulting in greater quantities of this dangerous fuel being transported through our communities and across the nation every day. This increase has led to more derailments, accidents, and disasters involving oil trains and putting local com- munities at risk. In the past 2 years, there have been major disasters in Casselton, North Dakota; Lynchburg, Virginia; Pickens County, Alabama; and most recently, Mount Carbon, West Virginia. The worst of these was the town of Lac-Mégantic, in Canada’s Quebec Province. This catastrophic oil train accident took place on July 6, 2013, killing 47 people and leveling half the town.

Oil train accidents have not just taken place in other states, they have also happened closer to home. Pennsylvania has had three near misses in the last two years alone — one near Pittsburgh and two in Philadelphia. In all three cases, trains carrying this highly volatile Bakken crude derailed in densely populated areas, and in the derailment outside of Pittsburgh, 10,000 gallons of crude oil spilled. Fortunately these oil train accidents did not lead to explosions or fires.

All of these incidents point to one fact: that unless we take action to curb the growing threat of oil trains, the next time a derailment occurs an unsuspecting community may not be so lucky.

Bakken oil train routes often travel through high-density cities and neighborhoods, increasing the risk of a catastrophic accident for Pennsylvania’s residents. Reviewing GIS data and statewide rail routes from Oak Ridge National Laboratory, research by FracTracker and PennEnvironment show that millions of Pennsylvanians live within the potential evacuation zone (typically a half-mile radius around the train explosion ). Our findings include:

  • Over 3.9 million Pennsylvania residents live within a possible evacuation zone for an oil train accident.
  • These trains travel near homes, schools, and day cares, putting Pennsylvania’s youngest residents at risk. All told, more than 860,000 Pennsylvania children under the age of 18 live within the 1⁄2 mile potential evacuation zone for an oil train accident.
  • Philadelphia County has the highest at-risk population — Almost 710,000 people live within the half-mile evacuation zone. These areas include neighborhoods from the suburbs to Center City.
  • 16 of the 25 zip codes with the most people at risk — the top percentile in the state — are located in the city of Philadelphia.
  • The top five Pennsylvania cities with the most residents at risk are:
    • Philadelphia (709869, residents),
    • Pittsburgh (183,456 residents),
    • Reading (70,012 residents),
    • Scranton (61,004 residents), and
    • Erie (over 51,058 residents).
Read full report

Danger Around The Bend

 

Bakken Crude Oil

How we get it and why we ship it

Bakken crude oil comes from drilling in the Bakken Formation, located in North Dakota. It contains deposits of both oil and natural gas, which can be accessed by hydraulic fracturing, or “fracking.” Until recent technological developments, the oil contained in the formation was too difficult to access to yield large production. But advances in this extraction technology since 2007 have transformed the area into a major oil producer — North Dakota now ranks second in the U.S. for oil production. The vast expansion of wells over the last 4 years (from 470 wells to over 3,300 today) means that there is more oil to transport to the market, both domestically and abroad. This increase is especially concerning considering that the U.S. Department of Transportation stated in early 2014 that Bakken crude oil may be more flammable than traditional crude, therefore making it more dangerous to transport by rail.

For More Information

Regulatory Gaps for Train Spills?

By Matt Kelso, Manager of Data & Technology

On January 26, 2015, the Columbian, a paper in Southwestern Washington state, reported that an oil tanker spilled over 1,600 gallons of Bakken Crude in early November 2014.  The train spill was never cleaned up, because frankly, nobody knows where the spill occurred. This issue highlights weaknesses in the incident reporting protocol for trains, which appears to be less stringent than other modes of transporting crude.

Possible Train Spill Routes


To follow the most likely train route for this incident, start at the yellow flag, then follow the line west. The route forks at Spokane – the northernmost route would be the most efficient. View full screen map

While there is not a good place for an oil spill of this size, some places are worse than others – and some of the locations along this train route are pretty bad.  For example, the train passes through the southern edge of Glacier National Park in Montana, the scenic Columbia River, and the Spokane and Seattle metropolitan areas.

Significant Reporting Delay

The Columbian article mentions that railroads are required to report spills of hazardous materials in Washington State within 30 minutes of spills being noticed. In this case, however, the spill was apparently not noticed until the tanker car in question was no longer in BNSF custody. Therefore, relevant state and federal regulatory agencies were never made aware of the incident.

Both state and federal officials are now investigating, and we will follow up this post with more details when they are made available.

What is fracking fluid?

Where have all the guardrails gone?

Guardrails vs. Trucks

Wetzel County in northwestern West Virginia is remarkable for its steep, knobby hills and long narrow winding valleys – providing residents and visitor alike with beautiful views. Along with these scenic views, however, comes difficult roadways and dangerous traveling.

Two two-lane roads traverse the county from the west, along the Ohio River, to the east. There are very few connecting roads going north-south between these two main highways, and only one of them is semi-paved. This road is called Barker Run Road — treacherous, steep and winding. There is at least a 400-foot change in elevation in about ½ mile at one point, with multiple switchbacks.

Switchbacks have a reputation for swallowing up the long trailer component of the tractor-trailer combos, which now comprise a larger part of the traffic on Barker Run Road. Many of these trucks are heading to the HG Energy drilling sites on the ridges at the top. HG Energy has a significant footprint up there. On the east ridge there are four well pads in place and two additional pads being completed to the east, and two large ones on the ridge to the west of Barker Run Road. All that traffic must use Barker Run Road. Until the recent expansion of natural gas exploration in the area, however, I had never seen a tractor and trailer come up either side of the very steep road.

The first casualty caused by the large, long trailer trucks needed to service these well pads is always the full-time sentinels of our traffic safety – our faithful guard rails that are designed to take a beating before we and our vehicle descend over the hillside sideways or rolling over. A good example of a damaged but still useful guardrail is shown below from February on 2012 – wrinkled but useful. The very sharp turn in the roadway is also obvious here.

Figure 1. Switchback curve on Barker Run Road has seen its share of damage from the increase in truck traffic.

Figure 1. Switchback curve on Barker Run Road has seen its share of damage from the increase in truck traffic.

After leaving Route 7 heading south on Barker Run Road, one encounters a particularly sharp and steep switchback curve as shown in Figure 1. It is this kind of turn that is so sharp that it allows the driver of an overlong truck to be able to look back and check the lug nuts on the rear wheels.

On a few occasions, I have been able to actually witness the attempt of our full-time guards as they try to keep a truck somewhat close to the roadway. The below photo shows that the guardrail was barely able to keep the trailer from going completely over the hillside. The truck was stuck, causing the road to be closed for hours till help could arrive (Figure 2, below).

When that incident was over, the photo below from a few weeks later, on March 16, 2013, shows the final damaged rail (Figure 3). The guardrail and posts were replaced and were largely intact when the rail was pushed over again in May of 2013 by another oversized truck trying to get up the hill and around the turn (Figure 4). Ongoing impacts with the guardrail eventually rendered it useless. Figure 5 below is a photo taken in August of 2013.

Infrastructure Damage & Costs

When the Marcellus shale gas drilling began here in Wetzel County eight years ago, it quickly became apparent that the rapidly expanding Chesapeake Energy drilling footprint in north central Wetzel County was leaving scars in the neighborhood, particularly on the roadways. The most visible damages were the road signs, guardrails, and pavement. These effects resulted in a three-layer, road bonding program implemented by the West Virginia Department of Highways. The stipulation requires that any of the large natural gas drillers or operators must post a $1-million bond to cover them statewide, or a single highway district bond for $250,000. This bonding only applies to secondary roads. The third option is to post a bond for fixed, limited miles along specific roads. Some of the pipeline contractors who might be working in a smaller area will use the latter option. Since the DOH generally knows which companies are using the roads, the department usually knows who to approach to pay for damage. In a few cases the companies have reported the damage to the Highway department, and at other times the truckers’ insurance companies report an accident or insurance claim. .

During a recent conversation with a WV-DOH representative, I was told that he quite frequently gets good cooperation from the gas industry companies in paying for damages. He said this is true even when a number of different companies and dozens of their subcontractors are using the same road.

Usually the guardrails just need to be fixed or replaced and new posts installed. Sometimes it is not critical that it be done immediately. However, at times the repairs should be done now. A good example of when repairs are needed soon is shown below in Figure 7, right. This remnant is the shredded, mangled, twisted remains of the stubborn effort of the steel to stop a truck.

The rail has now been totally sliced open, making it an extraordinary danger to the traveling public. As we enter the winter season with a bit of snow and ice on this steep road above this section, any of my neighbors could slide into this. I am optimistic that it will be replaced soon and have had several conversations with the WV-DOH to speed up the process.

By Bill Hughes, WV Community Liaison, FracTracker Alliance
Read more Field Diary articles.

Updated PA Data and Trends

By Matt Kelso, Manager of Data and Technology

The FracTracker Alliance periodically takes a deeper look into the unconventional oil and gas data in Pennsylvania, in order to provide updates for some frequently requested statistics on the industry. Here we provide updated PA data and trends as of December 4, 2014. Since unconventional drilling began in the Commonwealth permits have been issued to drill 15,573 unconventional wells, according to data from the Pennsylvania DEP. Many – 8,696 (56%) – of those permits have actually been drilled. In terms of violations, there have been 5,983 entries on the statewide Compliance Report for unconventional wells throughout the state, which are attributed to 1,790 distinct wells.

Pennsylvania Shale Viewer Map


Please click here for the full screen version, with additional map tools and controls.

Additional Stats

The number of permits, wells, and violations vary significantly from month to month, but each category is well off of its peak. The largest number of unconventional permits issued in a single month was 402, which was in December 2010, more than twice as many as were issued last month. In that year, there were six months with 300 or more permits issued, whereas there has only been one such month to date in 2014.

PA unconventional O&G activity per month from Jan. 2009 to Nov. 2014.  Source:  PADEP

PA unconventional O&G activity per month from Jan. 2009 to Nov. 2014. Source: PADEP

The 210 wells spudded (drilled) in August 2011 represents the high water mark, and is more than two times the amount of wells drilled last month. In the 28 months between March 2010 and June 2012, the industry failed to spud 100 wells only once, reaching 98 in April 2011. In the first 11 months of 2014, that plateau was missed three times, with a low of 58 spuds in February.

There was a significant spike in violations appearing on the compliance report from December 2009 through August 2011. More than 100 violations were issued in 17 out of 21 months, including 196 in March 2010. The number of violations issued has slowed down considerably since then, with November 2014 being the 34th straight month with fewer than 100 violations. Only 14 violations were issued in June 2014.

Violations per Well (VpW)

Unconventional violations per well by county in PA, showing the 10 counties with the largest number of violations.  Counties with an above average Violations per Well (VpW) score are highlighted in red.

Unconventional violations per well by county in PA, showing the 10 counties with the largest number of violations. Counties with an above average Violations per Well (VpW) score are highlighted in red.

We often ask whether drilling is more problematic in some areas than others. Since the number of wells varies depending upon the location, we must approach this question by looking at the number of violations issued per well drilled (VpW). However, there is an important caveat to consider. Put simply, what is a violation? The Pennsylvania DEP publishes a Compliance Report for unconventional wells, which has 5,983 incidents listed from 2000 through December 4, 2014. However, it used to be common for the DEP to lump several incidents into the same Violation ID number, although this is not the case for more recent infractions. When the DEP counts violations issued, they look at the total number of unique Violation ID numbers that have been issued, not the total number of incidents on the report. Here, we include the more inclusive list of items on the compliance report.

Of the 10 counties with the largest number of violations issued, only 3 counties have a violations per well mark below the statewide average. Notably, each of those three counties are located in Southwestern Pennsylvania. It is unclear from these numbers what is going on in Potter County, but clearly there is a significant problem in that location – with almost three violations issued per well drilled, Potter County has a VpW score 4.3 times the statewide average.

Operator Trends

Before we look at the operators with the most violations, there is an additional caveat to consider: It is relatively common for wells to change hands over their operational lifetimes. This characteristic could be due to one company buying another out, or simply transferring some of their assets. Still, wells changing from one operator to another is a normal aspect of the oil and gas industry. Such a fact matters for this analysis because while violations issued always stick with the responsible party in the DEP data, the name of the operator changes on the Spud Report to the current operator.

Unconventional violations per well by operator in PA, showing the 10 operators with the largest number of violations.  Operators with an above average Violations per Well (VpW) score are highlighted in red.

Unconventional violations per well by operator in PA, showing the 10 operators with the largest number of violations. Operators with an above average Violations per Well (VpW) score are highlighted in red.

Because of how these datasets are maintained, we see that East Resources has 261 violations for zero wells, which is of course an impossibly large ratio. That is because East sold off its stake in the Marcellus to Royal Dutch Shell, which does business as SWEPI in Pennsylvania. SWEPI, by the way, is 13th on the list of violations in its own right, with 154 violations for 675 wells, resulting in a 0.23 VpW. If the legacy violations for the old East wells were included, the result would be a 0.61 ViW score, which is almost three times as high, but still below the statewide average. FracTracker doesn’t do the analysis that way, both because it is unfair to the new operator to charge them with violations that they had nothing to do with, as well as being nearly impossible to keep track of the various transactions that result in wells changing hands over the years.


Cover image by Pete Stern, 2013.

Map of pipelines, platforms, and active oil and gas leases in the Gulf of Mexico

Latest Oil and Gas Incident in the Gulf of Mexico

By Karen Edelstein, NY Program Coordinator

The extent of offshore drilling for oil and gas in the Gulf of Mexico is nothing short of staggering. According to the US National Oceanic and Atmospheric Administration (NOAA), there are more than 3,000 active wells in the federally-regulated waters of the western and central Gulf. Additionally,  there are over 25,000 miles of active oil and gas pipelines crisscrossing the Gulf of Mexico sea floor, and more than 18,000 miles of “out of service” pipeline there. To wit, NOAA’s 2012 State of the Coast website boasts, “If placed end to end, the oil and gas pipelines in the Gulf of Mexico could wrap around the Earth’s equator.”

Oil and Gas Infrastructure in the Gulf of Mexico

With such a level of activity, it is difficult to envision how all of this intricate infrastructure fits together, especially in the event of a disaster. There is a dire need to access and visualize such data as more and more wells are drilled unconventionally – both onshore and off. Below is a map of oil and gas drilling platforms both historical and active, pipelines, and active leases in the Gulf of Mexico.

For a full-screen view of this map, with a legend, click here.

The Worst Environmental Incident in US History

Deepwater Horizon drilling platform explosion (April 2010)

Deepwater Horizon drilling explosion (April 2010)

The April 2010 BP “Deepwater Horizon” blow-out disaster stands out as one of the icons of environmental risks that such intensive oil and gas production can pose to our oceans. The rig was set in over 4,000 feet of water, and close to 6 miles into the sea floor. A blowout occurs when pressurized oil or gas, mud, and water cannot be contained by the well’s blowout preventer. These materials blast through the drill pipe to the surface. There, no longer under pressure, they expand and ignite. Human or mechanical and design errors are at fault the majority of the time. Such was the case with the Macondo Deepwater Horizon disaster, now the worst offshore environmental disaster in US history.

Heavily oiled brown pelicans wait to be cleaned of Gulf spill crude

Heavily oiled brown pelicans wait to be cleaned

In all, more than 200 million gallons of oil flowed into the ocean before the Deepwater Horizon well could be plugged. Eleven workers died, and 17 were injured. The Center for Biological Diversity estimates that 82,000 birds, 6000 sea turtles, and nearly 26,000 marine mammals were impacted as a result of this spill.

Penn State University reported actual animal deaths as 6,104 birds, 609 sea turtles, and 100 marine mammals. More than 1,000 miles of shoreline were fouled. Furthermore, as part of the process of breaking up the spill with chemical dispersants, more than 2 million gallons of toxic chemicals were sprayed into the Gulf. The long-term impacts of these dispersants on marine wildlife have yet to be determined.

Other Oil & Gas Exploration Accidents of Note

Natural gas spills also happen with some frequency in the Gulf, but they are considerably different from oil rig blow-outs. Unlike the persistence of oil in the marine environment, gas leaks are dissolved readily into the sea water, and once on the surface, quickly evaporate. Methane-eating bacteria in the water also help in the process. In July 2013, a rig 55 miles offshore, in 154 feet of water in the Gulf off the Louisiana coast, exploded and caught fire. The blaze went out of control and partially destroyed the rig. There was a thin sheen of hydrocarbons on the ocean surface initially, but it dissipated rapidly. A relief well was drilled, and the leak contained. While the effects on marine life may not be tremendous, the release of this amount of carbon to the seawater and atmosphere is yet another stress to global warming, moving us closer by the day to the tipping point of climate disaster.

Unfortunately, these types of leaks and explosions happen with regularity. A maintenance-related explosion happened in September 2011 in the Gulf, 100 miles off the Louisiana coast. All 13 crew on the platform were forced to jump for safety into the water, where they were later rescued. Fortunately, there were no deaths in this case. In September 2014, however, during maintenance at a Chevron natural gas pipeline off the Louisiana coast, one contractor was killed and two injured in another incident.

And Most Recently…

And just last week, on November 20, 2014, there was another report of yet one more Gulf of Mexico oil platform explosion, 12 miles off the coast. This time, one worker was killed and three injured at an explosion at Fieldwood Energy’s Echo Platform. The employees were cleaning a piece of equipment when the blast occurred.

According to news reports, the Bureau of Safety and Environmental Enforcement related, “The Echo Platform was not in production at the time of the incident,” BSEE said in a statement Thursday. “The facility damage was limited to the explosion area and there was no pollution reported.”

Both the September and November incidents are under investigation.

________

GIS datasets for this post originated from the US Bureau of Ocean Energy Management. Learn more

For information on offshore oil and gas exploration in California and the associated danger and regulations, read the October 20, 2013 Fractracker blog entry Hydraulic Fracturing Offshore Wells on the California Coast, by FracTracker’s California staffer Kyle Ferrar.

Hydraulic fracturing, stimulations, & oil & gas drilling unjustly burden Hispanic & non-white students

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

As my first year in The Bay Area of California comes to a conclusion and the summer once again turns into fall I realize how much more this time of year meant for me living on the east coast. For us lucky ducks living in the Bay Area, fall is perpetual. With the California drought seasons blur together, but back home in Pennsylvania and New York, fall marks a much appreciated relief from 90°F+ days. Regardless of where you live certain fall activities are universal, including hockey, postseason baseball, football, and most importantly for kids – going back to school.

In California alone, almost 6.24 million students from kindergarten to 12th grade are enrolled and attend classes at one of the 10,366 state “campuses.” State-recognized schools range in size from under a dozen students to a maximum 2013/2014 enrollment of 5,229. When so many children are together in one space, they share much more than just the scholarship, social development, and the occasional but inevitable flu virus. They share the same environmental media (air, water, soil) and are therefore exposed to the same environmental contaminants.

To understand who among this vulnerable population is subject to potential health impacts, the FracTracker Alliance has put together a report analyzing the demographic characteristics of schools located near oil and gas extraction activity. An interactive map of the data that was analyzed is shown below, as are the points of the report. The full report can be found here:

 Disproportionate Burdens for Hispanic and Non-White Students in California

and here in Spanish:

Las Estimulaciones por Fracturación Hidráulica y la Perforación Petrolífera Cerca de las Escuelas y dentro de los Distritos Escolares de California son una Carga Desproporcionada para los Estudiantes Hispanos y Estudiantes No Blancos.

Fracked well near elementary school

Sequoia Elementary School located in Shafter, CA.

In the background, less than 1,200 feet from the school is
an oil well (API 403043765) that was hydraulically fractured.

Key Findings of School Analysis:

  • There are 485 active/new oil and gas wells within 1 mile of a school and 177 active/new oil and gas wells within 0.5 miles of a school.
  • There are 352,784 students who attend school within 1 mile of an oil or gas well, and 121,903 student who attend school within 0.5 miles of an oil or gas well.
  • There are 78 stimulated wells drilled within 1 mile of a school and 14 stimulated wells drilled within 0.5 miles of a school.
  • There are 61,612 students who attend school within 1 mile of a stimulated oil or gas well, and 12,362 students who attend school within 0.5 miles of a stimulated oil or gas well.
  • School Districts with greater Hispanic and non-white student enrollment are more likely to contain more oil and gas drilling and stimulation.
  • Schools campuses with greater Hispanic and non-white student enrollment are more likely to be closer to more oil and gas drilling and stimulation.
  • Students attending school within 1 mile of oil and gas wells are predominantly non-white (79.6%), and 60.3% are Hispanic.
  • The top 11 school districts with the highest well counts are located the San Joaquin Valley with 10 districts in Kern County and the other just north of Kern in Fresno County.
  • The two districts with the highest well counts are in Kern County; Taft Union High School District, host to 33,155 oil and gas wells, and Kern Union High School District, host to 19,800 oil and gas wells.
  • Of the schools with the most wells within a 1 mile radius, 8/10 are located in Los Angeles County.

Report Map

The interactive map below allows the user to compare the demographical profiles of school districts with oil and gas drilling and stimulation activity. Non-white enrollment percentages of school districts are displayed in shades of blue. Overlaid with red are the relative counts of stimulated and/or non-stimulated oil and gas wells. The highest counts of wells are hosted in school districts located in the Central (San Joaquin) Valley and along California’s south coast. Geologically, these areas lay above the Monterey Shale – the 50 million year sedimentary basin producing California’s oil reserves.