By Kim Fraczek (Sane Energy Project), with input and mapping by Karen Edelstein (FracTracker Alliance)
Despite overwhelming concern about the impacts of fossil fuels on climate chaos, pipeline projects are springing up all over the country in an effort find markets for the surplus of fracked gas extracted from the Marcellus region in Pennsylvania. New Yorkers are directly impacted by these problematic supply chains. The energy company, National Grid, is proposing to raise New Yorkers’ monthly bills in order to complete a new, 30-inch high-pressure fracked gas transmission pipeline through Brooklyn, New York. National Grid euphemistically named the 350-psi pipeline the “The Metropolitan Reliability Pipeline Project.” Gas moving through this pipeline is destined for a National Grid Depot on Newtown Creek, which divides Brooklyn from the borough of Queens. National Grid plans to expand liquefied natural gas (LNG) storage and vaporizer operations at the Depot. The Depot expansion will also facilitate trucking transport of gas to and from North Brooklyn to destinations in Long Island and Massachusetts.
For an industry explanation on how vaporizers work, click here.
National Grid Depot is located on the western bank of Newtown Creek. Source: Google Maps
National Grid is asking the New York State Public Service Commission (PSC) to approve:
A charge of $185 million to rate-payers in order to finish the current pipeline phase under construction in Bushwick. Pipeline construction would continue north into East Williamsburg and Greenpoint (other sections of Brooklyn)
$23 million to replace two old vaporizers at National Grid’s Greenpoint LNG facility
$54 million to add two new vaporizers to the Greenpoint LNG facility
$31.5 million over the next 4 years to add “portable LNG capabilities at the Greenpoint site that will allow LNG delivered via truck to on-system injection points.” National Grid is currently seeking a variance from New York City for permission to bring LNG trucks onto city property. Currently, this sort of activity is illegal due to high risk of fires and explosions.
Impacts on the community, resistance to the pipeline
Pipelines also present risks of catching fire and exploding. On average, a 350-psi gas pipeline has an evacuation radius of approximately 1275 feet. FracTracker Alliance created the interactive map, below, using 2010 census data to show population density in the neighborhoods within this blast zone. According to FracTracker, there were 614 reported pipeline incidents in the United States in 2019 alone, resulting in the death of 10 people, injuries to another 35, and about $259 million in damages.
There is widespread community opposition to this pipeline, LNG expansion, and trucking proposal because it will:
Threaten the health and safety of nearly 153,000 people living in the evacuation zone. Concerns include air quality impacts from fugitive methane that could especially impact those with asthma, and functional logistics around safe evacuation in the event of a leak or explosion.
Within the evacuation zone, using federal data, FracTracker determined that there are also:
Opponents of this pipeline project also raise objections that the pipeline will:
Become a stranded asset leaving residents to foot the bill for the pipeline as city and state climate laws are implemented
Contribute carbon monoxide and methane to the atmosphere, thereby accelerating climate change and its impacts on coastal metropolises like New York City
Project Status
National Grid is currently constructing Phase 4 of the pipeline. However, public pressure and concern about COVID-19 safety measures forced them to stop construction on March 27, 2020. After Governor Cuomo issued an executive order to halt all non-essential work, neighbors reported the company was not mandating personal protective equipment (PPE) nor social distancing for its workers.
Additionally, funding to build north of Montrose Avenue in Bushwick through to Greenpoint—neighborhoods in northeastern Brooklyn on the border with Queens that make up the fifth phase of the pipeline construction—is pending a decision by the Public Service Commission. The approval of the fifth phase of the pipeline would allow it to reach the LNG facility at Greenpoint.
Generalized map of Brooklyn neighborhoods. Source: Wikipedia.
The current National Grid rate case proceeding is in its last stage of discovery, testimony, cross-examination, and final briefs from parties to the rate case. The Administrative Law Judges overseeing the proceeding will review all parties’ information, and make a recommendation to the Public Service Commission, a five-person panel appointed by New York State Governor Cuomo to regulate our utilities. This decision will most likely happen at the monthly meeting on June 18, 2020, where they also may make a decision on National Grid’s Long Term Plan proceeding that could determine the future of LNG expansion in North Brooklyn.
What are the broader economic and political concerns for stopping this, and other new pipeline projects?
Sane Energy Project has laid out a clear and cogent set of arguments. These include:
This project is not about “modernizing” our system for heating and cooking. This is about an expansion to charge rate-payers an increase and to grow profits for National Grid’s shareholders.
This is a transmission pipeline, not a gas distribution line. It will not service the affected community where the already trafficked main thoroughfares and already stressed trucking routes for local businesses will be dug up.
Gas pipelines are not safe. According to the United States Pipeline and Hazardous Safety Materials Administration (PHMSA), between 2016 and 2018, an average of 638 pipeline incidents per year resulted in a total of 43 fatalities and 204 injuries . The cost to the public for these incidents over those three years was nearly $2.7 billion. [For more analysis on national pipeline incidents, see FracTracker’s February 2020 article.]
Fracking exacerbates climate change. Methane is a potent greenhouse gas. Over a 20 year period, it contributes 86 to 100 times more atmospheric warming than equivalent amounts of carbon dioxide. Climate change is destroying Earth’s ability to sustain life.
This project holds New York State back on our renewable energy goals. We should be mandating any gas pipelines should be replaced with geothermal energy, along with energy efficiency measures in our buildings.
The industry coined the term “natural” gas to create the sense that it is clean, but the extraction, transport and burning of this gas creates air pollution, disturbs ecosystems, contaminates drinking water sources,and disproportionately affects lower income communities and communities of color.
A report authored by Suzanne Mattei, former DEC Region 2 Chief, notes National Grid does not have gas supply constraints–the situation where consumer demand exceeds the supply. Mattei contends that this is a manufactured crisis to maintain business-as-usual, keep us hooked on fossil fuels, and charge rate-payers for construction well after the lifespan of this pipeline. This makes local constituents pay for the company’s stranded assets. National Grid themselves report that they are able to handle yearly peak demand through existing supplemental gas sources. What’s more, the EIA expects for natural gas demand to remain flat over the course of the next decade, refuting National Grid’s claim that their massive pipeline project is necessary to respond to the few hours of peak demand experienced each year.
This is actually a substantial project, which avoided more stringent permitting and discussion by breaking the work into five separate projections, a process known as “segmentation”. The North Brooklyn Pipeline project is disguised as a local upgrade by segmentation, while in reality, it is a much larger project leading to an LNG (Liquefied Natural Gas) depot, CNG (Compressed Natural Gas) and other fracking infrastructure facilities in Greenpoint.
National Grid is requesting almost 185 million ratepayer dollars over the next three years to complete the project.
What’s next?
As gas prices continue to drop and renewable energy technologies are more accessible and wide-spread, the whole equation that relies on a fossil fuel-based economy becomes more desperate and unsustainable. Many communities are also saying “no” to new pipelines in their communities, so industry is looking to ship fracked gas over land by truck. Another method for disposing of surplus gas is to compress it into LNG (liquefied natural gas) and ship it to international markets by boat.
For more updates on the North Brooklyn Pipeline, check Sane Energy Project’s website. If you live in the New York/Metropolitan area and want to get involved in this fight, there are numerous ways in which you can work with Sane Energy. Click here for details.
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/05/North-Brooklyn-Pipeline-demographics_1.jpg9142242Guest Authorhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngGuest Author2020-05-18 09:00:212021-04-15 14:16:48New Yorkers mount resistance against North Brooklyn Pipeline
California is once again a fracked state. The moratorium on well stimulations (hydraulic fracturing and acidizing) that lasted since June 26, 2019 has now come to an end. As of April 3rd, 2020, California’s oil and gas regulatory body, California Geological Energy Management Division (CalGEM), approved 24 new permits to frack new wells. The wells were permitted to the operator Aera Energy. Well types to be fracked include 22 oil and gas production wells and 2 water flood wells; 18 of which are in the South Belridge Field and 6 North Belridge Field. Locations of the wells are shown in the map in Figure 1, and are mapped with the rest of 2020’s approved well drilling and rework permits in Consumer Watchdog’s updated release on NewsomWellWatch.com. Please read our press release with Consumer Watchdog here!
Figure 1. Map of New Fracking Permits in California
Fortunately, these 24 approved well stimulation permits are not located in close proximity to communities that would be directly impacted by the negative contributions to air quality and potential groundwater quality degradation that result from drilling and stimulating oil and gas wells. Regardless of where oil and gas wells and stimulations are permitted in relation to Frontline Communities, these wells will still degrade the regional air quality of the San Joaquin Valley. The San Joaquin Valley has the worst air quality in the country. According to the U.S. EPA, oil and gas production is a main contributor of volatile organic compounds (VOC’s) and NOX in the Valley. In addition to VOC’s being carcinogens, these pollutants are precursors to the ozone and smog that cause health impacts such as asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and negative birth outcomes.
Geology and Spills
Additionally, the dolomite formations where these 24 stimulations were permitted have also experienced the same type of oil seeps and spills (known as surface expressions) as the Cymric Field just to the south. Readers may remember the operator Chevron spilling 1.3 million gallons of oil and wastewater in an uncontrollable seep resulting from high pressure injection wells.
Whereas Governor Newsom may have put a halt to unpermitted high-pressure injections, regulators have just approved permits for 24 new fracking operations, a.k.a well stimulations. The irony here is that risks inherent in the fracking process in California include the same risks associated withhigh pressure steam injection operations. Both techniques elevate the downhole pressure of a well to the point that the formation “source” rock is fractured. These techniques increase the likelihood of downhole communication with other surrounding wells, both active and plugged. Downhole communication events between wells, in this case known as “frack hits” are a major cause of well casing failures and blowouts, which in turn are the primary cause of surface expressions. Simply put, high pressure injections in over-developed oil fields result in spills, and in this case, these 24 permitted stimulations are within 1,500’ of over 7,000 existing wells, a distance specifically identified by CalGEM as a high-risk zone for downhole communication between wells.
Regulation
So how did these wells get approved? Here’s the story, as told by CalGEM:
In November, CalGEM requested a third-party scientific review of pending well stimulation permit applications to ensure the state’s technical standards for public health, safety and environmental protection are met prior to approval of each permit. To ensure the proposed permits comply with California law, including the state’s technical standards to protect public health, safety, and environmental protection, the Department of Conservation asked experts at the Lawrence Livermore National Laboratory (LLNL) to assess CalGEM’s permit review process. LLNL also evaluated the completeness of operators’ application materials and CalGEM’s engineering and geologic analyses.
The independent scientific review is one of Governor Newsom’s initiatives to ensure oil and gas regulations protect public health, safety, and environmental protection. This review, which assesses the completeness of each proposed hydraulic fracturing permit, is taking place as an interim measure while a broader audit is completed of CalGEM’s permitting process for well stimulation. That audit is being completed by the Department of Finance Office of Audits and Evaluation (OSAE) and will be completed and shared publicly later this year. LLNL experts are continuing evaluation on a permit-by-permit basis and conducting a rigorous technical review to verify geological claims made by well operators in the application process. Permit by permit review will continue until the Department of Finance Audit is complete later this year.
LLNL’s scientific review of the permit applications and process found that the permitting process met statutory and regulatory requirements. LLNL found, however, that CalGEM could improve its evaluation of the technical models used in the permit approval process. As a result, CalGEM now requires all operators to provide an Axial Dimensional Stimulation Area (ADSA) Narrative Report for each oilfield and fracture interval which must be validated by LLNL and conform to the new CalGEM permitting process. This will improve CalGEM’s ability to independently validate applicants’ fracture modeling.
While this sounds like a methodological approach to the permitting process, it is still flawed in several ways. First and foremost, there is still no process for community input, let alone community decision-making. Community stakeholders are not engaged at in point in this process. Furthermore the contribution of oil and gas extraction operations to the degradation of environmental quality is already well established. In the case of these 24 fracking permits, they will contribute to the further degradation of regional air quality and continue the legacy of groundwater contamination within the sacrifice zone surrounding the Belridge fields.
Fracking in the Age of Pandemics
While we are critical of Governor Newsom’s climate-changing oil extraction policies, FracTracker would like to recognize the leadership Governor Newsom has shown instituting responsible policies to keep Californians as safe as possible and protected from the threat of COVID-19. While there can still be more done to provide relief for the most financially vulnerable, such as instituting a rent moratorium for those that do not own their own homes, California leads as an example for the public health interventions that need to be instituted nation-wide. The Governors inclusion of undocumented citizens in the state’s economic stimulus program is a first step, and FracTracker Alliance fully supports increasing the amount to at least match the $1,200 provided to the rest of Californians.
Conclusion
Regardless, the threat of COVID-19 cannot be addressed in a vacuum. Threats of infection are magnified for Frontline Communities. Living near oil and gas operations exposes communities to a cocktail of volatile organic compounds that suppress the immune system, increasing the risk of contracting viral lung infections. Frontline Communities are therefore particularly vulnerable to the threat of COVID-19. California and Governor Newsom need to consider the public health implications of permitting new fracking and new oil and gas wells, particularly those permits within 2,500’ of hospitals, schools, and other sensitive sites, above all during an existing pandemic.
By Kyle Ferrar, MPH, Western Program Coordinator, FracTracker Alliance
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/04/Map-of-New-2020-Fracking-Permits-in-California.jpg7201500Kyle Ferrar, MPHhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngKyle Ferrar, MPH2020-05-07 12:48:132021-04-15 14:16:49California, Back in Frack
In the 2018 The Sky’s Limit report by Oil Change International (OCI),4 FracTracker’s analysis showed that 8,493 active or newly permitted oil and gas wells were located within a 2,500’ buffer of sensitive sites including occupied dwellings, schools, hospitals, and playgrounds. At the time, it was estimated that over 850,000 Californians lived within the setback distance of at least one of these oil and gas wells.
An assessment of the number of California citizens living proximal to active oil and gas production wells was also conducted for the CCST State Bill 4 Report on Well Stimulation in 2016.5 The analysis calculated the number of California residents living within 2,500’ of an active (producing) oil and gas well, and based estimates of demographic percentages on 2015 ACS data at the census block level. The report found that:
859,699 individuals in California live within 2,500’ of an active oil and gas well
Of this, a total of 385,067 are “Non-white” (45%)
Of this, a total of 341,231 are “Hispanic” (40%) *[as defined by the U.S. Census Bureau]
Population counts within the setbacks were calculated for smaller census designated areas including counties and census tracts. The results of the calculations are presented in Table 1 and the analysis is shown in the maps in Figure 1 and Figure 2 below.
Data for the City of Los Angeles was also aggregated. Results showed:
215,624 individuals in the City of Los Angeles live within 2,500’ of an active oil and gas well
Of this, a total of 114,593 are “Non-white” (53%)
Of this, a total of 119,563 are “Hispanic” (55%) *[as defined by the U.S. Census Bureau]
Table 1. Population Counts by County. The table presents the counts of individuals living within 2,500’ of an active oil and gas well, aggregated by county. The top 12 counties with the highest population counts are shown. “Impacted Population” is the count of individuals estimated to live within 2,500’ of an oil and gas well. The “% Non-white” and “% Hispanic” columns report the estimated percentage of the impacted population of said demographic.
County
Total Pop.
Impacted Pop.
Impacted % Non-white
Impacted % Hispanic
Los Angeles
9,818,605
541,818
0.54
0.46
Orange
3,010,232
202,450
0.25
0.19
Kern
839,631
71,506
0.34
0.43
Santa Barbara
423,895
8,821
0.44
0.71
Ventura
823,318
8,555
0.37
0.59
San Bernardino
2,035,210
6,900
0.42
0.59
Riverside
2,189,641
5,835
0.46
0.33
Fresno
930,450
2,477
0.34
0.50
San Joaquin
685,306
2,451
0.55
0.42
Solano
413,344
2,430
0.15
0.15
Colusa
21,419
1,920
0.39
0.70
Contra Costa
1,049,025
1,174
0.35
0.30
Figure 1. Map of impacted census tracts for a 2,500’ setback in California. The map shows areas of California that would be impacted by a 2,500’ setback from active oil and gas wells in California.
Figure 2. Map of impacted census tracts for a 2,500’ setback in Los Angeles. The map shows areas of California that would be impacted by a 2,500’ setback from active oil and gas wells in Los Angeles.
From the analysis we find that the majority of California citizens living near active production wells are located in Los Angeles County. This amounts to 61% of the total count of individuals within 2,500’ in the full state. Additionally, the well sample population is limited to only wells that are reported with an “active” status. Including wells identified as idle or support wells such as Class II injection or EOR wells would increase both the total numbers and the demographical percentages because of the high population density in Los Angeles.
Well Counts – Updated Data
Using California Geologic Energy Management Division (CALGEM) data published March 1, 2020, we find that there are 105,808 wells reported as Active/Idle/New in California. There are 16,690 are located within 2,500′ of a sensitive receptor (15.77%). Of the 74,775 active wells in the state, 9,835 fall within the 2,500’ setback distance.6
There are 6,558 idle wells that fall within the 2500’ setback distance, of nearly 30,000 idle wells in the state. Putting these idle wells back online would be blocked if they required reworks to ramp up production. For the most part operators do not intend for most idle wells to come back online. Rather they are just avoiding the costs of plugging.
Of the 3,783 permitted wells not yet in production, or “new wells,” 298 are located within the 2,500’ buffer zone (235 in Kern County).
In Los Angeles, Rule 1148.2 requires operators to notify the South Coast Air Quality Management District of activities at well sites, including permit approvals for stimulations and reworks. Of the 1,361 reports made to the air district since the beginning of 2018 through April 1, 2019; 634 (47%) were for wells that would be impacted by the setback distance; 412 reports were for something other than “well maintenance” of which 348 were for gravel packing, 4 for matrix acidizing, and 65 were for well drilling.
We also analyzed data reported to DOGGR under the well stimulation requirements of SB4. From 1/1/2016 to 4/1/19 there were 576 well stimulation treatment permits granted under the SB4 regulations. Only 1 hydraulic fracturing event, permitted in Goleta, would have been impacted by a 2,500’ setback.
Production
Also part of the OCI The Sky’s Limit report,4 we approximated the amount of oil produced from wells within 2,500’ of sensitive receptors. Using the API numbers of wells identified as being within the buffer area, we pulled production data for each well from the Division of Oil, Gas, and Geothermal Resources (DOGGR) database. The results are based on 2016 production data, the latest complete data available at the time of the analysis. The data indicated that 12% of statewide production came from wells within the buffer zone in 2016. Looking at the production data for a full 6 year period (2010 – 2016), production from wells within the buffer zone was 10% on average statewide. Limiting the analysis to only Kern County, the result was actually smaller. About 5% of countywide production in 2016 (6.1 million barrels) was found to come from wells in the buffer zone.
Low Income Communities
FracTracker conducted an analysis in Kern County for the California Environmental Justice Alliance’s 2018 Environmental Justice Agency Assessment.7 We assessed the proportions of wells near sensitive receptors that are located in low-income communities (at or below 80% of the Kern County Average Median Income). We found that 5,229 active/idle/new oil and gas wells were within 2,500’ from sensitive receptors in low-income communities, including 3,700 active, 1,346 idle, and 183 newly permitted “new” oil and gas wells. The maps in Figures 3 and 4 below show these areas of Kern County and specifically Bakersfield, California.
FracTracker’s analysis of low income communities in Kern County showed the following:
There are 16,690 active oil and gas production wells located in census blocks with median household incomes of less than 80% of Kern’s area median income (AMI).
Therefore about 25% (16,690 out of 67,327 total) of Kern’s oil and gas wells are located within low-income communities.
Of these 16,690 wells, 5,364 of them are located within the 2,500′ setback distance from sensitive receptor sites such as schools and hospitals (32%), versus 13.1% for the rest of the state.
Figure 3. Map of Kern County census tracts with wells impacted by a 2,500’ setback, with median income brackets.
Figure 4. Map of Kern County census tracts with wells impacted by a 2,500’ setback, with median income brackets.
Schools and Environmental Justice
FracTracker conducted an environmental justice analysis to investigate student demographics in schools near oil and gas drilling in California.8 The school enrollment data is from 2013 and the oil and gas wells data is from June 2014. For the analysis we used multiple distances, including 0.5 miles (about 2,500’). Based on the statistical comparisons in the report, we made the following conclusions:
Students attending school near at least one active oil and gas well are 10.5% more likely to be Hispanic.
Students attending school near at least one active oil and gas well are 6.7% more likely to be a minority.
There are 61,612 students who attend school within 1 mile of a stimulated oil or gas well, and 12,362 students who attend school within 0.5 miles of a stimulated oil or gas well.
School districts with greater Hispanic and non-white student enrollment are more likely to house wells that have been hydraulically fractured.
Schools campuses with greater Hispanic and non-white student enrollment are more likely to be closer to more oil and gas wells and wells that have been hydraulically fractured.
Students attending school within 1 mile of oil and gas wells are predominantly non-white (79.6%), and 60.3% are Hispanic.
The top 11 school districts with the highest well counts are located the San Joaquin Valley with 10 districts in Kern County and the other just north of Kern in Fresno County.
The two districts with the highest well counts are in Kern County: Taft Union High School District, host to 33,155 oil and gas wells; and Kern Union High School District, host to 19,800 oil and gas wells.
Of the schools with the most wells within a 1 mile radius, 8/10 are located in Los Angeles County.
There are 485 active/new oil and gas wells within 1 mile of a school and 177 active/new oil and gas wells within 0.5 miles of a school. This does not include idle wells.
There are 352,784 students who attend school within 1 mile of an oil or gas well, and 121,903 student who attend school within 0.5 miles of an oil or gas well. This does not include idle wells
Permits
In collaboration with Consumer Watchdog,9 we counted permit applications that were approved in 2018 during Governor Brown’s administration, as well as in 2019 and 2020 under Governor Newsom. The analysis included permits for drilling new wells, well reworks, deepening wells and well sidetracks. Almost 10% of permits issued during the first two months of 2020 have been issued within 2,500’ of sensitive receptors including homes, hospitals, schools, daycares, and nursing facilities. This is slightly lower than the average for all approved permits in 2019 (12.2%). In 2018, Governor Brown approved 4,369 permits, of which 518 permits (about 12%) were granted within the proposed 2,500’ setback.
Conclusion
FracTracker Alliance’s body of work in California provides a summary of the population demographics of communities most impacted by oil and gas extraction. It is clear that communities of color in Los Angeles and Kern County make up the majority of Frontline Communities. New oil and gas wells are not permitted in equitable locations and setbacks from currently active oil and gas extraction sites are an environmental justice necessity. Putting a ban on new permits and shutting down existing wells located within 2,500’ of sensitive receptors such as schools, hospitals, and homes would have a very small impact on overall production of oil in California. It is clear that the public health and environmental equity benefits of a 2,500’ setback far outweigh any and all drawbacks. We hope that the resources summarized in this article provide a useful source of condensed information for those that feel similarly.
References
Hays J, Shonkoff SBC. 2016. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009-2015. PLOS ONE 11(4): e0154164. https://doi.org/10.1371/journal.pone.0154164Ferrar, K.
Air pollution from Pennsylvania shale gas compressor stations is a significant, worsening public health concern.
By Cynthia Walter, Ph.D.
Dr. Walter is a retired biology professor who has worked on shale gas industry pollution since 2009 through Westmoreland Marcellus Citizens Group, Protect PT and other groups. Contact: walter.atherton@gmail.com
Executive Summary
Compressor Stations (CS) in the gas industry are sources of serious air pollutants known to harm humans and the environment. CS are permanent facilities required to transport gases from wells to major pipelines and along pipelines. Additional operations and equipment located at CS also emit toxins. In the last 20 years, CS abundance and sizes have dramatically increased in shale gas extraction areas across the US. This report will focus on CS in and near Southwestern Pennsylvania. Numbers of CS there have risen more than tenfold in the last decade in response to well completions and pipelines after the local fracking boom began in 2005. For example, Westmoreland County, Pennsylvania, had two CS before 2005 and now has 50 CS corresponding with about 341 active shale gas wells. In Pennsylvania, state regulations allow CS to be as close as 750 feet from homes, schools, and businesses. Emission monitoring relevant to public health exposure is limited or absent.
Current Pennsylvania policies allow rapid CS expansion. Also, regulations do not address public health risks due to several major flaws. First, permits allow annual totals of emitted toxins using models that assume constant releases, but substantial emissions from CS occur in peaks that expose citizens to concentrations may impair health, ranging from asthma to cancer. Second, permits do not address the fact that CS simultaneously release many serious air toxins including benzene and formaldehyde, and particulates that carry toxins into lungs. This allowance of multiple toxin release does not reflect the well-established science that public health risks multiply when people are exposed to several toxins at once. Third, permit reviews rarely consider nearby known air pollution sources contributing to aggregate air toxin exposures that occur in bursts and continually. Fourth, permits do not require operators to provide public access to real-time reports of air pollutants released by CS and ambient air quality near CS.
Poor air quality causes harm directly, e.g. respiratory distress, and indirectly, e.g., through increased vulnerability to respiratory viruses. The annual cost of damages from air pollution from CS was estimated at $4 million-$24 million in Pennsylvania based on emissions from CS in 2011. These damages include harm to human and livestock health and losses of crops and timber. After 2011, CS and gas infrastructures continue to expand, with increasing air pollution and damages, especially in shale gas areas. These costs must be compared to the benefits of using alternative energy sources. For example, in a neighboring state, New York, shifting to renewable energy will save tens of billions of dollars annually in air pollution costs, prevent thousands of premature deaths each year, and trigger substantial job creation, based on peer-reviewed research using US government data.
Recommendations
Constant air monitoring must occur at current compressor stations and nearby sites important to the public, such as schools. The peak concentrations and totals for substances relevant to public health must be recorded and made available to the public in real time.
Air pollution from compressor stations must become an important part of measuring and modeling pollution exposures from all components of the shale gas industry.
Permits for new compressor stations must be revised to better protect the public in ways including, but not limited to the following:
Location, e.g., increased general setback limits and expanded limits for sensitive sites such as schools, senior care facilities and hospitals
Emission limits for criteria air pollutants and hazardous air pollutants including Radon, especially limits for peak concentrations and annual totals
Monitoring air quality within the station, at the fence-line and in key sites nearby, such as schools, using information from air movement models to select locations and heights.
Limits for CS size based on aggregate pollution from other local air pollution sources.
Costs of harm from CS and other shale gas activities must be compared to alternatives.
CS emissions contribute major air pollutants to the total pollution from unconventional gas development (UCGD), but their role in regional air quality problems has not always been noted. In 2009, when UCGD operations were only a few years in this region and many CS had not yet been built, CS emissions were estimated to be a small component. Now, in 2020, gas transport requirements have increased, leading to many more and larger CS. The amounts of CS emissions have increased accordingly, based on estimates by Carnegie Mellon University atmospheric researcher, Robinson (Figure 1). Part of the reason that CS are such a major pollution source is that they run constantly, in contrast to machinery for well development and trucking that fluctuate with the market for new wells.
Figure 1. Relative contribution of compressor stations and other components of shale gas industry to Nitrous Oxides (NOx) and Volatile Organic Compounds (VOC). Source: Clean Air Council- adapted from webinar by Alan Robinson.
Air pollutants in CS emissions vary substantially in chemistry and concentrations due to differences in equipment (Table 1). Emissions in CS can come from several types of sources described below.
Engines: Compression engines powered with methane release nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs) and hazardous air pollutants (HAP). Diesel engines release those pollutants as well as sulfur dioxide (SO2) and substantial particulate matter. In addition, diesel storage on site is a hazard. Electric engines produce less pollutants, but they are much less common than fossil fuel engines in southwestern Pennsylvania. CS operators can vary the use of engines at a station, and therefore, emissions vary during partial or full shutdowns and start-up periods.
Blowdowns: Toxic emissions dramatically increase during blowdowns, a procedure that is scheduled or used as needed to release the build-up of gases. Blowdown frequency and emissions vary with the rate of gas transport and the chemistry of transported gases. The full extent of emissions from any CS, therefore, is not known. Blowdowns can release a wide range of substances, and when flaring is used to burn off gases, the combustion creates new substances and additional particulates. Blowdowns are the most likely source of peaks in emissions at continuously operated CS. For example, Brown et al. (2015) used PA DEP measures of a CS in Washington County, Pennsylvania, alongside likely blowdown frequencies and weather models to predict peak emission frequency. They estimated nearby residents would experience over 118 peak emissions per year.
Non-compression Procedures: CS facilities are often the location for equipment that separate gases, remove water and other fluids, and run pipeline testing operations called pigging. These activities can be constant or intermittent and release a wide range of substances which may or may not be included in estimates for a permit. In addition, some of the processing releases gases which are flared at the facility, thus releasing a range of combustion by-products and particulate pollution. For example, the Shamrock CS operated by Dominion Transfer Inc. includes equipment for dehydration, glycol processing and pigging. The Janus facility operated by EQT includes dehydration and flaring. Permitted emissions for those facilities are listed in Table 1.
Storage Tank Emissions: CS often include storage tanks that hold substances known to release fumes. For example, the Shamrock CS was permitted to have an above ground storage tank of 3000 gallons for drip gas and a 1000-gallon tank for used oil, both of which release volatile organic compounds. The EQT Janus CS has two 8,820-gallon tanks. Gas releases from such tanks could be controlled and recorded by the operator or they could be unrecorded leaks.
Fugitive emissions: Gas leaks, called fugitive emissions, occur readily from many components in CS facilities; such problems will increase as equipment ages. A study of CS stations in Texas is an example.
“In the Fort Worth, TX area, researchers evaluated compressor station emissions from eight sites, focusing in part on fugitive emissions. A total of 2,126 fugitive emission points were identified in the four month field study of 8 compressor stations: 192 of the emission points were valves; 644 were connectors (including flanges, threaded unions, tees, plugs, caps and open-ended lines where the plug or cap was missing); and 1,290 were classified as Other Equipment. The Other category consists of all remaining components such as tank thief hatches, pneumatic valve controllers, instrumentation, regulators, gauges, and vents. 1,330 emission points were detected with an IR camera (i.e. high-level emissions) and 796 emission points were detected by Method 21 screening (i.e. low-level emissions). Pneumatic Valve Controllers were the most frequent emission sources encountered at well pads and compressor stations.”
Eastern Research Group (2011).
Table 1. Examples of air pollutants allowed for release by compressor stations. Air pollutants (pounds/year) are estimates provided by the companies for permits in West Virginia and Pennsylvania in recent years. Total compressor engine horsepower (hp) is noted. Sources: Janus and Tonkin CS Permits at WV DEP website. Shamrock CS permit. Buffalo CS, Washington, Co PA – PENNSYLVANIA BULLETIN, VOL. 45, NO. 16 APRIL 18, 2015.
Pollutant
Term
Janus (WV)
22,000 hp
Tonkin (WV)
4390 hp
Shamrock* (PA)
4140 bhp
Buffalo ** (PA) 20,000 hp + 5,000 bhp
Nitrogen Oxides
NOx
254,400
248,000
170,000
155,800
Volatile Organic Compounds
VOC
191,200
30,000
66,000
77,000
Carbon Monoxide
CO
118,200
80,000
154,000
144,400
Sulfur Dioxide
SO2
1,400
400
10,000
5,400
Hazardous Air Pollutants-Total
HAP
48,200
3,280
19,400
30,000
Formaldehyde
1,080
12,800
12,200
Benzene
540
Ethylbenzene
60
Toluene
140
Xylene
200
Hexane
500
Acetaldehyde
600
Acrolein
160
Total Particulate Matter
(PM-2.5, PM-10-separate or combined)
PM
18,200
11,000
32,000
PM-10 32,000
PM-2.5 32,000
TOTAL TOXINS
631,600
372,680
417,400
444,600
Carbon Dioxide Equivalents
CO2-e
29,298,000
27,200,000
367,000,000
214,514,000
Health Effects of Compressor Station Emissions
Several toxic chemicals are released by individual CS in amounts that range from a few thousand pounds to a quarter of a million pounds per year (Tables 1 & 2) as described below.
Nitrous Oxides (NOx) are often the largest total amount of emissions from fossil fuel machinery. In CS, these oxides are formed when a fossil fuel such as methane or diesel is combusted to produce the energy to compress and propel gases. NOx contribute to acid rain. Excess acids in rain lower the pH of waters, in some cases to levels that dissolve toxic metals in drinking water supplies. NOx also trigger the formation of ozone, a substance well known to impair lungs.
Ozone forms when oxygen reacts with nitrous oxides, carbon monoxide, and a wide range of volatile organic compounds. Ozone exposure can trigger asthma and heart attacks in sensitive individuals, and for healthy people, ozone causes breathing problems in the short term and eventual scarring of lungs and impaired function.
Volatile Organic Compounds (VOCs) are gaseous compounds containing carbon, such as benzene and formaldehyde. In air pollution regulation, the EPA lists many compounds as VOC, but excludes carbon dioxide, carbon monoxide, methane and butane. Many VOC’s are toxic in themselves (Tables 2, 3 and 4). Also, several VOC’s react to form ozone. https://www.epa.gov/air-emissions-inventories/what-definition-voc
Carbon Monoxide (CO) is another product of fossil fuel combustion and another contributor to ozone formation. CO is directly toxic because it prevents oxygen from binding to the blood.
Sulfur Dioxide (SO2) adds to lung irritation. It also contributes to acid rain, lowering the pH of water and increasing the ability of toxic metals to dissolve in water supplies.
Hazardous Air Pollutants (HAP) include highly toxic substances such as formaldehyde and benzene, which are known carcinogens, as well as the other substances known to be emitted from CS (Tables 3 & 4). The EPA lists 187 substances as HAP, which include many VOC’s as well as some non-organic chemicals such as arsenic and radionuclides including Radon. (https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications)
Particulate Matter (PM) usually refers to particles in small size classes. Most state or federal regulations address measures of particles less than 10 microns (PM-10) and some monitoring systems separate out particles less than 2.5 microns (PM-2.5). Particles in either of those size ranges are not visible, but highly damaging because they travel deep into the lungs where they irritate tissues and impair breathing. Also, these tiny particles carry toxins from air into the blood passing through the lungs. This blood transports substances directly to the brain where toxins can quickly impair the nervous system and subsequently impact other organs. (https://www.epa.gov/pm-pollution/particulate-matter-pm-basics)
Health impacts from many of the substances released by CS are well-known in medical research. For example, many of the VOC and HAP compounds permitted for release by state agencies are known carcinogens (Table 3). Many of these substances also impact the nervous system as shown in the organic compounds measured in CS in PA and listed in Table 4. Also, a study of 18 CS in New York by Russo and Carpenter (2017) found that all 18 CS released substances with known impacts on the nervous system and total annual emissions were over five million pounds, among the highest of all types of emissions (Table 5). Russo and Carpenter also found high annual emissions of over five million pounds for substances known to be associated with each of the following other health problems: digestive problems, circulatory disorders, and congenital malformations.
Congenital defects were significantly more common for mothers living in a 10-mile radius of denser shale gas development in Colorado compared to reference populations (MacKenzie et al. 2014). Currie et al. (2017) examined over a million birth records in Pennsylvania and found statistically significant increased frequencies of low birth weight and negative health scores for infants born to mothers within 3 km of unconventional gas wells compared to matching populations more distant from shale gas developments. Such developments include a wide range of gas infrastructure including CS and also high truck traffic and fracking. One plausible mechanism for harm to developing babies is exposure to VOCs such as benzene, toluene and xylene associated with CS and well operations. These VOC’s are classified by the Agency for Toxic Substances and Disease Registry as known to cross the placental barrier and cause harm to the fetus including birth deformities.
In sum, CS are a significant source of air pollutants with direct and indirect impacts on health. One indirect impact especially important during the COVID-19 pandemic in 2020, is the increased incidence and severity of respiratory viral infections in populations living in areas with poor air quality. Ciencewicki, and Jaspers (2007) write, “a number of studies indicate associations between exposure to air pollutants and increased risk for respiratory virus infections.”
Table. 2. Health effects of air pollutants permitted for release by compressor stations.
Pollutant
Health Effects
Particulate Matter
Impairs lungs and transfers toxins into body when microscopic particles carry chemicals deep into lungs and release into bloodstream.
Nitrogen Oxides
Forms ozone that impairs lung function which can trigger asthma and heart attacks and scars lungs in the long term.
Forms acid rain that dissolves toxic metals into water supplies.
Volatile Organic Compounds
Includes a wide variety of gaseous organic compounds, some of which cause cancer. Many VOC react to form ozone that impairs lungs as noted above.
Carbon Monoxide
Blocks ability of blood to carry oxygen.
Also forms ozone that impairs lungs as noted above.
Sulfur Dioxide
Irritates lungs, triggering respiratory and heart distress.
Forms acid rain that dissolves toxic metals into water supplies.
Hazardous Air Pollutants
Category of various toxic compounds many of which impact the nervous system. Includes formaldehyde, benzene and several other carcinogens.
Total Toxins
Sum of emissions of all toxins. Exposure to multiple toxins exacerbates harm directly through impairment of lungs and circulatory system and indirectly through injury to detoxification mechanisms, such as liver function.
Carbon Dioxide Equivalents
A measure of the combined effects of greenhouse gases such as CO2 and Methane expressed in a standard unit equivalent to the heat trapping effect of CO2. Greenhouse gases trap heat and worsen climate change and related harm to health when increased air temperatures directly cause stress directly and indirectly accelerate ozone formation.
Table 3. Gas industry list of carcinogenicity rating for Hazardous Air Pollutants (HAPs) released by compressor stations in a factsheet prepared by EQT for Janus compressor, WV. 2015 Source: DEP.
Substance
Type
Known/Suspected Carcinogen
Classification
Acetaldehyde
VOC
Yes
B2-Probable Human Carcinogen
Acrolein
VOC
No
Inadequate Data
Benzene
VOC
Yes
Category A – Known Human Carcinogen
Ethyl-benzene
VOC
No
Category D Not Classifiable
Biphenyl
VOC
Yes
Suggested Evidence of Carcinogenic Potential
1,3 Butadiene
VOC
Yes
B2-Probable Human Carcinogen
Formaldehyde
VOC
Yes
B1- Probable Human Carcinogen
n-Hexane
VOC
No
Inadequate Data
Naphthalene
VOC
Yes
C- Possible human Carcinogen
Toluene
VOC
No
Inadequate Data
2,3,4-Trimethlypentane
VOC
No
Inadequate Data
Xylenes
VOC
No
Inadequate Data
Table 4. Center for Disease Control list of health effects for volatile organic carbons measured by PA DEP near compressor station. Source: CDC.
Substance
Exposure Symptoms
Target Organs
Ethylbenzene
Irritation to eyes and nose; nausea, headache; neuropath; numb extremities, muscle weakness; dermatitis; dizziness
Eyes, skin, respiratory system, central nervous system, peripheral nervous system
n-Butane
Drowsiness
Central nervous system
n-Hexane
Irritation to eyes, skin & respiratory system; headache, dizziness; nausea
Eyes, skin, respiratory system, central nervous system
2-Methyl Butane
n/a
n/a
Iso-butane
Drowsiness, narcosis, asphyxia
Central nervous system
Table 5. Amounts of pollutants known to be associated with health impacts in a review of 18 New York compressor stations. Emissions were grouped and tallied based on their impacts on disorders classified by ICD codes as defined by the International Statistical Classification of Diseases and Related Health Problems (ICD), a medical classification list by the World Health Organization. Source: Copy of Table 3.17b, Russo and Carpenter 2017.
ICD-10
Facilities
Chemicals
Pounds
#
Description
‘08
‘11
‘14
Tot
‘08
‘11
‘14
Tot
2008
2011
2014
Total
1
Q00-Q89
Congenital malformations and deformations
18
18
17
18
57
54
54
57
4,393,806
6,607,676
5,900,691
16,902,175
1.1
Q00-Q07
Nervous system
18
18
17
18
16
16
16
16
4,068,877
5,882,704
5,258,344
15,209,926
1.2
Q10-Q18
Eye, ear, face and neck
15
15
12
15
4
4
4
4
5,825
19,569
11,475
36,869
1.3
Q20-Q28
Circulatory system
18
18
17
18
10
10
10
10
4,269,779
6,336,905
5,651,896
16,258,581
1.4
Q30-Q34
Respiratory system
14
8
7
14
4
4
4
4
150
107
113
372
1.5
Q35-Q45
Digestive system
18
18
17
18
17
17
17
17
4,386,043
6,586,345
5,884,324
16,856,713
1.6
Q50-Q56
Genital organs
6
7
8
8
2
2
2
2
1,399
4,373
2,612
8,385
1.7
Q60-Q64
Urinary system
18
17
16
18
9
9
9
9
119,382
254,922
237,359
611,663
1.8
Q65-Q79
Musculoskeletal system
18
18
16
18
19
19
19
19
122,314
262,300
243,932
628,547
1.9
Q80-Q89
Other
18
18
17
18
55
52
52
55
2,124,445
3,614,575
3,413,375
9,152,395
2
Q90-Q99
Chromosomal abnormalities, nec
18
18
16
18
30
31
31
32
120,669
256,739
239,709
617,118
Q00-Q99
Total
18
18
17
18
57
56
56
59
4,393,806
6,607,676
5,900,691
16,902,175
Regional Air Toxins and Cancer Risk in Southwestern Pennsylvania
Cancer risks from HAPs have been elevated for many years in several areas of Southwestern PA, as noted in a map from 2005 (Figure 2), when most air pollution was from urban traffic and single sources such as coke works and unconventional gas development (UCGD) had just begun in the region. The cancer risk pattern changed by 2014 (Figure 3). The specific numbers of excess cancer risk predicted for each location cannot be compared between the two maps because each map was produced using different sources of information and models. The pattern, however, can be compared and shows that elevated cancer risk is now more widespread across Southwestern PA and no longer primarily in Allegheny County.
Cancer risk maps are constructed by the EPA office of National Air Toxics Assessment (NATA) using models of reported air toxics and their relationship to cancer as a risk factor, as defined by NATA: “A risk level of “N”-in-1 million implies that up to “N” people out of one million equally exposed people would contract cancer if exposed continuously (24 hours per day) to the specific concentration over 70 years (an assumed lifetime). This would be in addition to cancer cases that would normally occur in one million unexposed people.” (https://www.epa.gov/national-air-toxics-assessment/nata-glossary-terms) In the current context, the NATA models are useful to compare the relative differences in air quality from a public health perspective, assuming the data on air pollutants is complete.
Another, very different statistic regarding cancer is the rate of cancer, also called the incidence. This number is based on actual reported cases and applies to cancers that occur due to all causes. The cancer rate, therefore, is a much higher number than a risk factor. For example, according to the US Center for Disease Control, the annual rate of new cases of cancer in PA in 2016, the most recent year reported, was 482.5 per 100,000 people. Compared to other states, PA is among the ten states with the highest cancer incidence. In the US, one in four people die from cancer, placing it second to heart disease as a leading cause of death. (https://gis.cdc.gov/Cancer/USCS/DataViz.html). Compared to other nations, the US has the fifth highest cancer rate, with 352 new cases each year per 100,000 people. (https://www.wcrf.org/dietandcancer/cancer-trends/data-cancer-frequency-country)
Compressor station emissions contribute to air pollutants known to be associated with cancer. For example, in a review of emissions for 18 CS in New York, Russo and Carpenter (2017) found that most or all CS released substances associated with a wide range of cancers (Table 6). Up to 56 such chemicals were emitted in amounts that totaled over 1 million pounds each year.
Maps of cancer risk are likely to be under-reporting risk levels in both the amount rates of risk and also the locations. Cancer risks from serious air pollutants cannot be properly mapped for several reasons. First, reports on concentrations of HAP in emissions are limited. HAP emissions are in accounts required only from large facilities, and thus, smaller operations, such as many CS, are likely be ignored. Second, general air quality monitoring stations are limited in location and do not measure HAP. For example, the PA DEP maintains 47 air quality stations dispersed among over 60 counties (http://www.dep.state.pa.us/dep/deputate/airwaste/aq/aqm/pollt.html). Most stations report hourly measures of Ozone and PM-2.5, and only a handful also monitor one or more other substances such as CO, NOx, SO ₂ or H2S. One county in Southwestern PA has additional air quality stations. Allegheny has a county health department that maintains 17 stations to report real-time air quality based on Ozone, SO2 or PM-2.5 (https://alleghenycounty.us/Health-Department/Programs/Air-Quality/Air-Quality.aspx).
In sum, cancer risk estimates from air pollution fall short in the following ways:
Estimates of air quality do not reflect the reality of air pollution from CS as well as many other new sources such as increased truck traffic associated with shale gas development.
Tallies of annual emissions do not represent the actual exposures of individuals to pulses of toxins.
Models of air pollution and cancer are not sufficiently based on real world studies of impacts from multiple toxins in short and long-term exposures.
Figure 2. Cancer risk map in Southwestern Pennsylvania in 2005 from the National Air Toxics Assessment program in the EPA. Total Lifetime Cancer Risk from Hazardous Air Pollutants (HAP) per million. Colors indicate yellow for 28-78, gold for 79-95, light orange for 99-148, orange for 149-271, bright orange for 272-517, and red for 518-744 excess cancer risk per million. (https://www.epa.gov/national-air-toxics-assessment)
Figure 3. Cancer risk map in Southwestern Pennsylvania in 2014 from the National Air Toxics Assessment in the EPA. Facilities are locations where air quality information was available for modeling. Total Risk of cancer as a baseline was assumed to be 1 per 1,000,000. Estimates of risk predict known air pollution sources alone will cause 1-24 excess cancers per million in Light Pink areas, 25-49 excess cancers per million in Gray areas, and 50-74 excess cancers per million in Blue areas. Source: EPA.
Table 6. Amounts of pollutants known to be associated with cancer in a review of 18 New York compressor stations. Emissions were grouped and tallied based on their impacts on disorders classified by ICD codes as defined by the International Statistical Classification of Diseases and Related Health Problems (ICD), a medical classification list by the World Health Organization. Source: Copy of Table 3b, Russo and Carpenter 2017.
ICD-10
Facilities
Chemicals
Pounds
#
Code
Description
‘08
‘11
‘14
Tot
‘08
‘11
‘14
Tot
2008
2011
2014
Total
1
C00-C97
Malignant neoplasms
18
18
17
18
53
54
54
56
744,394
1,679,621
1,583,745
4,007,761
2
C00-C14
Lip, oral cavity and pharynx
18
18
16
18
12
14
14
14
118,992
254,897
238,943
612,833
3
C15-C26
Digestive organs
18
18
16
18
37
38
38
38
121,690
258,670
241,866
622,227
4
C30-C39
Respiratory system and intrathoracic organs
18
18
17
18
36
37
37
38
740,798
1,673,574
1,579,882
3,994,254
5
C40-C41
Bone and articular cartilage
18
18
17
18
33
34
34
35
694,106
1,551,399
1,492,704
3,738,210
6
C43-C44
Skin
16
15
13
16
12
12
12
14
2,362
5,008
4,029
11,400
7
C45-C49
Connective and soft tissue
17
17
15
17
17
17
17
17
1,929
5,074
4,639
11,643
8
C50-C58
Breast and female genital organs
18
18
16
18
23
25
25
25
361,015
823,303
663,237
1,847,556
9
C60-C63
Male genital organs
18
17
16
18
12
13
13
13
111,217
233,176
224,147
568,541
10
C64-C68
Urinary organs
18
18
16
18
24
24
24
25
119,062
255,474
238,596
613,133
11
C69-C72
Eye, brain and central nervous system
18
18
16
18
20
20
20
20
121,282
258,655
241,954
621,892
12
C73-C75
Endocrine glands and related structures
18
17
16
18
10
10
10
10
112,911
235,120
225,269
573,300
13
C76-C80
Secondary and ill-defined
17
16
14
17
6
6
6
6
2,054
5,690
5,771
13,516
14
C81-C96
Malignant neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic and related tissue
18
18
16
18
31
31
31
31
364,338
833,140
671,245
1,868,724
15
C97
Malignant neoplasms of independent (primary) multiple sites
0
0
0
0
0
0
0
0
0
0
0
0
16
D00-D09
In situ neoplasms
16
15
13
16
3
3
3
3
3,313
7,557
6,606
17,477
17
D10-D36
Benign neoplasms
17
17
14
17
27
27
27
27
12,499
35,013
23,068
70,580
18
D37-D48
Neoplasms of uncertain or unknown behavior
18
18
16
18
39
40
40
41
121,277
257,142
240,115
618,535
Measurements of Compressor Station Emissions
Studies of real-world concentrations of air pollutants from CS emissions are lacking, but some reports exist. Of these, a few records are in peer-reviewed studies, and cited in reviews such as Saunders et al. 2018. A few published reports are described below. They all show the high variation over time for CS emissions and the occurrence of peak concentrations.
Macey et al. (2014) observed ambient air near CS contained toxins at concentrations that impair health. They collected grab samples of air from industrial sites including CS in Arkansas and Pennsylvania and analyzed them for toxins using EPA approved methods. Most of the CS studied in Arkansas (Table 6) and Pennsylvania (Table 7) released formaldehyde at amounts associated with a cancer risk from exposure to this substance of 1/10,000 which is equivalent to 100 times higher risk than the widely accepted baseline risk of 1 per million. This means the amounts of formaldehyde found near CS substantially increased the risk of cancer using well-established federal analyses (https://www.atsdr.cdc.gov/hac/phamanual/appf.html). Some toxins Macey et al. recorded are less well studied than formaldehyde and benzene. For example, 1,3-butadiene is classified by the EPA as a known human carcinogen, but a calculation of cancer risk for this substance is lacking. Air samples in the Macey study were collected close to the CS (e.g., 30-42m) and at greater distances (e.g., 254-460m). Those distant samples were well beyond the 750-foot set-back rule for Pennsylvania. At all these distances, air movement modeling predicts that toxins released from a source such as a CS are likely to travel downwind within the air mass under most weather conditions, thus exposing residents near and further from CS. Many people, therefore, in homes, schools and businesses that are downwind of CS are likely to experience serious air toxins at concentrations that harm their health.
Air toxins were also measured by the Pennsylvania Department of Environmental Protection in 2010 in a variety of unconventional gas extraction facilities including one CS in Washington County, PA. Brown et al. (2015) reported these data, showing the concentrations that citizens could experience near a compressor station varied greater than tenfold within a day and among consecutive days (Table 8). The length of time for peak concentrations was unknown, but Brown et al. used a model of weather including wind patterns to estimate citizens are likely to experience 118 peak concentrations per year.
Goetz et al. (2015) sampled air in Marcellus shale regions of Pennsylvania for short periods (1-2.5 hrs.) at distances 480-1100 meters from eight CS, four with relatively small capacity (5,000-9,000 hp) and four with moderate capacity (14,000-17,000 hp). They found that each CS had a different pattern of relatively higher concentrations of some pollutants, such as NOX versus other pollutants, e.g., CO. Also, totals of all pollutants did not correlate with compressor engine capacity, probably because the CS they sampled include a mix of engines using fossil fuels and electric power. Goetz et al. concluded with recommendations for more comprehensive and longer-term monitoring to better understand air pollution from CS and all components in shale gas development.
Radionuclides in CS emissions are almost never measured, even though Marcellus shales are well known for containing elevated amounts of radiologic substances such as uranium, radium and radon. The only published report of testing for radionucleotides in CS emissions in PA was a test of a single CS emission for one period of time. In a review of radiation in shale gas industry components, the Pennsylvania Department of Environmental Protection (PA DEP) measured radon (Rn) in ambient air at one CS by deploying sample bags in four cardinal directions at the fence line at a height of 5 feet for 62 days. They reported Rn concentrations of 0.1-0.8 pCi/L, values they stated were within the range of outdoor air in the US. (https://www.dep.pa.gov/Business/Energy/OilandGasPrograms/OilandGasMgmt/Oil-and-Gas-Related-Topics/Pages/Radiation-Protection.aspx) Given the high variation of amounts of emissions from CS and variable chemistry in sources of gases released from combustion, blowdowns and leaks, frequent testing for radionucleotides should be standard in monitoring CS emissions.
Methane is the substance tracked most often in emissions from CS and other gas industry facilities because of its central role in operations, requirements to avoid explosive concentrations, and readily available measurement technology, in comparison to other substances emitted from CS. Although methane emissions from CS are not always correlated with amounts of other, more toxic emissions, patterns observed in plumes of methane from CS are likely to reflect elevated concentrations of other harmful substances from CS.
Nathan et al (2015) sampled methane emissions from one CS in the Barnett shale region using a sensor carried on a model aircraft. The open-path, laser sensor produced measures with a precision of 0.1 ppmv over short intervals, allowing researchers to see emission variation in time and space as the aircraft changed position. Based on 22 flights within a week period, they observed a substantial range in methane released from 0.3 – 73 g CH4 per second. These values calculate to 0.02 – 6.3 metric tons of methane per day, a range that matches that estimated by Goetz of 0.5 – 9 metric tons per day. In addition, Nathan et al. found high variability in concentrations at different heights, as the emission plumes shifted in response to wind velocity, direction and topography. They recommend caution in interpretations of ground-based emission monitors and called for more monitoring of air movements and emissions at different elevations.
Payne et al. 2017 confirmed these ideas when they mapped plumes of methane in CS in New York and Pennsylvania using a sensor capable of recording methane in parts per million (ppm) every 0.25 – 5 seconds. The sensor was located on a mobile unit that marked GPS location. They found high variability in the shape and extent of plumes. For example, one of most extensive plumes was recorded near Dimock, Pennsylvania in a locale with CS as the only major source of methane. Researchers recorded the highest concentrations of methane in the study, 22 ppm, at 500 m from the CS, with a second peak of 0.6 ppm noted over 1 km from the CS and elevated methane as far as 3 km from the site (Figure 4). Wind direction did not always predict the shape of the plume, but data collection was restricted by the path of the sensor and the transport vehicle (Figure 8). Most importantly, they found that …“during atmospheric temperature inversions, when near-ground mixing of the atmosphere is limited or does not occur, residents and properties located within 1 mile of a compressor station can be exposed to rogue methane from these point sources.” These residents are likely to also experience excess toxins from CS as well, especially under such weather conditions.
Exposure to peak concentrations of air pollutants have dramatic effects on health for several reasons. First, lungs carry toxins into the blood within seconds, and the blood quickly transfers compounds to the brain and other vital organs. Many of the substances released by compressor stations impact the central nervous system as seen in Table 3, and these toxins are released simultaneously. Citizens, therefore inhaling a plume of emissions will have impacts from the total of these compounds. The health impacts for these combined toxins are unknown, and especially of concern during pregnancy and child development. Exposure studies in animals and humans test individual substances and the Center for Disease Control and NIOSH use these to develop exposure guidelines for a healthy adult in a work-place. In contrast, residents near compressor stations will include citizens of all ages with various health conditions. For example, the American Lung Association determined that over 50% of the 360,000 residents of Westmoreland County are at greater risk for health impairment due to air pollution because they have one or more of these conditions: asthma, diabetes, heart disease, respiratory illness, advanced age (https://www.lung.org/our-initiatives/healthy-air/sota/key-findings/people-at-risk.html).
In sum, the research on CS emissions of methane, air pollutants such as NOx, and hazardous air pollutants such as formaldehyde and benzene, all indicate exposures to CS emissions pose a threat to public health, but the emissions have not yet been fully quantified and modeled. Documenting CS contributions to harmful ambient air quality is feasible, however. The published studies from as far back as 2011 indicate that instrumentation to record substances and weather are readily available. Activities within a station such as compressor function, blowdowns, venting and flaring are all recorded by operators, but such reports are not released to researchers or the public. The science of models that predict public health risks in response to air pollution exposure are highly developed. In sum, operators of CS have the technology to measure emissions and ambient air quality and scientists have the models, but lack of industry data prevents the public from knowing impacts from CS.
Table 6. Air toxins found in grab samples near Arkansas compressor stations including concentrations, the Agency for Toxic Substances and Disease Registry (ASTDR), Minimum Risk Level (MRL) exceedance, and the Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) cancer risk. Source: Copy of Table 4 from Macey et al. 2014.
State/ID
County
Nearest infrastructure
Chemical
Concentration (μg/m3)
ATSDR MRLs
exceeded
EPA IRIS cancer risk exceeded
AR-3136-003
Faulkner
355 m from compressor
Formaldehyde
36
C
1/10,000
AR-3136-001
Cleburne
42 m from compressor
Formaldehyde
34
C
1/10,000
AR-3561
Cleburne
30 m from compressor
Formaldehyde
27
C
1/10,000
AR-3562
Faulkner
355 m from compressor
Formaldehyde
28
C
1/10,000
AR-4331
Faulkner
42 m from compressor
Formaldehyde
23
C
1/10,000
AR-4333
Faulkner
237 m from compressor
Formaldehyde
44
C, I
1/10,000
AR-4724
Van Buren
42 m from compressor
1,3-butadiene
8.5
n/a
1/10,000
AR-4924
Faulkner
254 m from compressor
Formaldehyde
48
C, I
1/10,000
C = chronic; I = intermediate.
Table 7. Air toxins found in grab samples near Pennsylvania compressor stations including concentrations, the Agency for Toxic Substances and Disease Registry (ASTDR), Minimum Risk Level (MRL) exceedance, and the Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) cancer risk. Source: Copy of Table 5 from Macey et al. 2014
State
ID
County
Nearest infrastructure
Chemical
Concentration (μg/m3)
ATSDR MRLs
exceeded
EPA IRIS cancer risk exceeded
PA-4083-003
Susquehanna
420 m from compressor
Formaldehyde
8.3
1/10,000
PA-4083-004
Susquehanna
370 m from compressor
Formaldehyde
7.6
1/100,000
PA-4136
Washington
270 m from PIG launcha
Benzene
5.7
1/100,000
PA-4259-002
Susquehanna
790 m from compressor
Formaldehyde
61
C, I, A
1/10,000
PA-4259-003
Susquehanna
420 m from compressor
Formaldehyde
59
C, I, A
1/10,000
PA-4259-004
Susquehanna
230 m from compressor
Formaldehyde
32
C
1/10,000
PA-4259-005
Susquehanna
460 m from compressor
Formaldehyde
34
C
1/10,000
C = chronic; A = acute; I = intermediate.
aLaunching station for pipeline cleaning or inspection tool.
Table 8. Variation in air pollutants measured in ug/cubic meter by PA DEP during two sampling times per day for three consecutive days near a compressor station in Southwest PA. Source: Copied from Table 1. Brown et al. 2015 based on data from Southwestern Pennsylvania Short Term Marcellus Ambient Air Sampling Report, Pennsylvania Department of Environmental Protection, Nov. 2010.
May 18
May 19
May 20
Chemical
Morning
Evening
Morning
Evening
Morning
Evening
3-day Average
Ethylbenzene
No detect
No detect
964
2015
10,553
27,088
13,540
n-Butane
385
490
326
696
12,925
915
5,246
n-Hexane
No detect
536
832
11,502
33,607
No detect
15,492
2-Methyl Butane
No detect
230
251
5137
14,271
No detect
6,630
Iso-butane
397
90
No detect
1481
3,817
425
2070
Figure 4. Methane emission plumes from compressor stations near Dimock, Pennsylvania (left) and Springvale, Pennsylvania (right). Source: Copied from Payne et al. 2017.
Compressor Station Locations
Prior to 2008, compressor stations were infrequent with one or a few per county broadly distributed across PA as part of gas transport from locations outside of PA (Figure 5). These pipelines were mainly an issue for public health in the case of explosions. Major transmission pipelines use pressures up to 1500 psi. Leaks, therefore, release large amounts of gas much of which is not noticed because it lacks the mercaptan odorant added to household methane. For example, the 30-inch Spectra gas pipeline that exploded in 2016 in Westmoreland County caused a hole 12 feet deep and1500 square feet in area and burned 40 acres. The PA DEP claimed to have measured air quality, but they did not arrive until long after the plume from the fire traveled downwind. This pipeline was transporting gas from one of the largest gas storage facilities in the country, the Sunoco Gas Depot in Delmont, Pennsylvania to New Jersey as part of over 9,000 miles of pipelines in the Texas Eastern system from the Gulf Coast to the Northeast. That section of pipeline was built in 1981 and had recently been increased in pressure, probably using older or newer compressors in nearby locations. Faulty joints between pipeline sections were blamed for the catastrophic release of gas. (Phillips, S. 2016. State Impact, NPR). Immediately after the explosion, while gas continued to pour out of the pipeline, emergency workers needed at least one hour to locate shut-off locations. In general, pipeline shut-offs are sited at compressors stations or at intervals along a pipeline.
CS abundance in counties with shale gas extraction increased over tenfold in the decade after 2005 when the gas industry obtained exemptions to the Clean Water Act and began unconventional gas extraction in Pennsylvania (Figure 6). Permit applications for new wells, pipelines and CS continue throughout southwest Pennsylvania. In PA, the Oil and Gas law states the following: “ In order to allow for the reasonable development of oil and gas resources, a local ordinance … Shall authorize natural gas compressor stations as a permitted use in agricultural and industrial zoning districts and as a conditional use in all other zoning districts, if the natural gas compressor building meets the following standards:….(i) is located 750 feet or more from the nearest existing building or 200 feet from the nearest lot line, whichever is greater, unless waived by the owner of the building or adjoining lot;” (Pennsylvania Statutes Title 58 Pa.C.S.A. Oil and Gas §3304). CS and many aspects of the shale gas industry are controlled by this state law.
Each stage of gas extraction involves emissions that can be close or far from the well pad. Most emissions involve diesel engines. Diesel engines are well-known to produce substantial amounts of VOC’s, NOx and particulate pollution (PM-2.5, PM-10). Well pad construction requires intense activity by diesel trucks and earth moving equipment. Well drilling uses diesel engines. From 3 – 5 million gallons of water are used for each fracking event and up to 300 truck visits are needed to transport water for the many wells that are not close to water supplies from piped sources. Trucks are used to transport the 1 – 2 million gallons of produced water that emerges from the well for disposal in injection wells likely to be distant from most wells. Additional waste is carried long distances as well, including drill cuttings and sludge. For example, shale gas industry waste was handled for years in Max Environmental, one of the largest industrial waste sites in the eastern US located in Yukon, Westmoreland County since the 1960’s. Within one mile of Yukon is Reserved Environmental, a waste facility with operations focused since 2008 on processing sludge from fracking into solid cakes to be trucked to other landfills. In sum, all stages of shale gas industry contribute to many poorly documented sources of air pollution likely to be near CS.
The density of CS in some areas such as southwest Pennsylvania impacts the local and regional air quality. For example, Westmoreland County has 50 CS and 341 shale gas wells (https://www.fractracker.org) and some neighboring counties have even more shale gas emission sources. People in Westmoreland County receive pollutants from shale gas activities in their immediate vicinity and additional air pollutants from CS and other industries in neighboring counties. Wind patterns shown in Figure 7 indicate Westmoreland County is frequently downwind from Washington County, a county with a very high density of shale gas operations, and Eastern Allegheny County where large industries such as coke works release substantial amounts of air pollutants.
Figure 5. Compressor Stations prior to 2008 and in around 2013. Source: Copied from article by James Hilton in Pittsburgh Post-Gazette.
Figure 6. Compressor Stations in Pennsylvania mapped in 2019. Source: FracTracker Alliance. 2000.
Figure 7. Wind patterns at small airports around Pennsylvania 1991-2005 showing predominant direction of wind and velocity in knots (Orange 0 – 4, Yellow 4 – 7, Turquoise 7 – 11, Medium Blue 11 – 17, Dark Blue 17 – 21). Source: The Pennsylvania State Climatologist.
Costs of Compressor Stations and Air Pollution
As permanent, constant sources of air and noise pollution and safety risks, CS add significant costs to communities. Poor air quality alone is well-established as an economic drain for a region due to many factors including increased health care, lower property values, a declining tax base, and difficulty in attracting new businesses or housing development. Litovitz et al. (2013) estimated that, compared to other activities of shale gas extraction, CS made up the majority of the annual emissions of important air toxins in 2011, and therefore a majority of the damages from air pollution, totaling 4 – 24 million dollars of the 7 – 32 million dollars of the aggregate air pollution damages from gas operations (Table 9).
Litovitz and others recognize that the costs of damages from the gas industry air pollution in 2011 may appear smaller than the state-wide impacts from other industries, such as coal burning power plants and coke production, but that appearance deserves a second look. First, shale gas extraction activities are concentrated in a few regions of Pennsylvania, and local air quality is most relevant to public health and local economics such as property values. Second, emissions from gas extraction in 2011 was only in its early stages in Pennsylvania and shale gas operations will expand greatly unless regulations change, while coal-fired power plants are declining due to the advanced age of most facilities. For example, in Westmoreland County, PA alone there are over 50 CS in 2020, the number currently in the entire state of New York, where unconventional gas development was suspended due, in large part, to concerns for public health. Costs from one aspect of an energy sector can be viewed in the context of economic and other benefits of alternative energy efforts. For example, Jacobson et al. (2013) estimated that shifting to clean, renewable energy in NY state would prevent 4000 premature deaths each year and save $33 billion/year through air pollution reductions that impact health care, crop production and other costs. Jacobson et al. used government data in their models regarding health benefits and also identified substantial job growth during and after the transition away from fossil fuels toward renewable energy. Pennsylvania has the potential to attain similar benefits in air quality, public health, savings and job growth gained from a shift to clean, renewable energy in place of fossil fuels.
Table 9. a) Emissions from shale gas industry in 2011 throughout Pennsylvania in metric tons per year. b) Costs of damages due to air pollution from shale gas extraction in 2011 throughout Pennsylvania. Copied from Tables 5 and 6 in Litovitz et al. 2013.
a)
Activities
VOC
NOx
PM2.5
PM10
SOx
(1) Transport
31–54
550–1000
16–30
17–30
0.82–1.4
(2) Well drilling and hydraulic fracturing
260–290
6600–8100
150–220
150–220
6.6–190
(3) Production
71–1800
810–1000
15–78
15–78
4.8–6.2
(4) Compressor stations
2200–8900
9300–18 000
280–1100
280–1100
0–340
Totalᵃ
2500–11 000
17 000–28 000
460–1400
460–1400
12–540
ᵃ These totals are reported to two significant figures, as are all intermediate emissions values in this document. The activity emissions may not exactly sum to the totals.
b)
Activities
Timeframe
Total regional damage for 2011 ($2011)
Average per well or per MMCF damage ($2011)
(1) Transport
Development
$320 000–$810 000
$180–$460 per well
(2) Well drilling, fracturing
Development
$2 200 000–$4 700 0
$1 200-$2 700 per well
(3) Production
Ongoing
$290 000–$2 700 0
$0.27-$2.60 per MMCF
(4) Compressor stations
Ongoing
$4 400 000–$24 000 000
$4.20-$23.00 per MMCF
(1)-(4) Aggregated
Both
$7 200 000–$32 000 000
NA
Major Studies Cited in Text:
Brown, David, Celia Lewis, Beth I. Weinberger and Heather Bonaparte. 2014. Understanding air exposure from natural gas drilling put air standards to the test. Reviews in Environmental Health. https://doi.org/10.1515/reveh-2014-0002
Brown, David, Celia Lewis and Beth I. Weinberger. 2015. Human exposure to unconventional natural gas development; a public health demonstration of high exposure to chemical mixtures in ambient air. Journal of Environmental Science and Health (Part A) 50: 460-472.
Ciencewicki, J. and I. Jaspers 2007. Air Pollution and Respiratory Viral Infection. Inhalation Toxicology 19:1135–1146, DOI: https://doi.org/10.1080/08958370701665434
Currie, J, M Greenstone and K Meckel. 2017. Hydraulic fracturing and infant health: New evidence from Pennsylvania. Science Advances 2017;3:e1603021
Goetz, J.D. E. Floerchinger, E., C. Fortner, J. Wormhoudt, P. Massoli, W. Berk Knighton, S.C. Herndon, C.E. Kolb, E. Knipping, S. L. Shaw, and P. F. DeCarlo. 2015. Atmospheric Emission Characterization of Marcellus Shale Natural Gas Development Sites. Environ. Sci. Technol. 49, 7012−7020. DOI: https://doi.org/10.1021/acs.est.5b00452
Jacobson, MZ, RW Howarth, MA Delucchi, ST Scobie, JH Barth, M Dvorak, M Klevze, H. Hatkhuda, B. Mirand, NA Chowdhury, R Jones, L Plano, AR Ingraffea. 2013. Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight. Energy Policy 57: 585-601.
Litovitz, A., A. Curtright, S. Abramzon, N. Burger and C. Samaras. 2013. Estimation of regional air-quality damages from Marcellus Shale natural gas extraction in Pennsylvania. Environ. Res. Lett. 8; 014017 (8pp) doi:10.1088/1748-9326/8/1/014017. https://iopscience.iop.org/article/10.1088/1748-9326/8/1/014017/meta
Macey, G.P., Breech, R., Chernaik, M. (2014) Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study. Environ Health 13, 82 (2014). https://doi.org/10.1186/1476-069X-13-82
McKenzie, LM, G Ruisin, RZ Witter, DA Savitz, LS Newman, JL Adgate. 2014. Birth Outcomes and Maternal Residential Proximity to Natural Gas Development in Rural Colorado. Environmental Health Perspectives Vol 22. http://dx.doi.org/10.1289/ehp.1306722.
Payne, RA, P Wicker, ZL Hildenbrand, DD Carlton, and KA Schug. 2017. Characterization of methane plumes downwind of natural gas compressor stations in Pennsylvania and New York. Science of The Total Environment 580:1214-1221
Russo, PN and DO Carpenter 2017. Health Effects Associated with Stack Chemical Emissions from NYS Natural Gas Compressor Stations: 2008-2014 Institute for Health and the Environment, A Pan American Health Organization / World Health Organization Collaborating Centre in Environmental Health, University at Albany, 5 University Place, Rensselaer New York. Https://www.albany.edu/about/assets/Complete_report.pdf
Saunders, P.J., D. McCoy. R. Goldstein. A. T. Saunders and A. Munroe. 2018. A review of the public health impacts of unconventional natural gas development Environ Geochem Health 40:1–57. https://doi.org/10.1007/s10653-016-9898-x
Appendix
Compressor Stations in Westmoreland Co. PA in Dec 2019, based on information from FracTracker Alliance, Pennsylvania Department of Environmental Protection Air Quality Report, and the Department of Homeland Security.
ID #
Facility #
Name/Operator
Municipality
Latitude
Longitude
Status
627743
645570
CNX GAS CO/HICKMAN COMP STA
Bell Twp
40.5174
-79.5498
Active
693305
696606
PEOPLES TWP/RUBRIGHT COMP STA
Bell Twp
40.5278
-79.5561
Active
626482
644726
CNX GAS CO/BELL POINT COMP STA
Bell Twp
40.5413
-79.5338
Active
na
na
NORTH OAKFORD
Delmont
40.4018
-79.5597
Active
714057
713241
RW GATHERING LLC/ECKER BERGMAN RD COMP STA
Derry Twp
40.3533
-79.3028
Active
760724
752063
RE GAS DEV/ORGOVAN COMP STA
Derry Twp
40.3857
-79.4019
Active
736807
732436
RW GATHERING LLC/SALEM COMP STA
Derry Twp
40.3908
-79.3361
Active
714057
713241
RW GATHERING LLC/ECKER BERGMAN RD COMP STA
Derry Twp
40.3533
-79.3028
Active
774714
766854
EQT GATHERING LLC/DERRY COMP STA
Derry Twp
40.4511
-79.3161
Active
na
na
Layman Compressor, Range Resources Appalachia, LLC
East Huntingdon
40.1113
-79.6345
Unknown
na
na
Key Rock Energy/LLC
East Huntingdon
40.1228
-79.6489
Unknown
662759
673466
Kriebel Minerals Inc./Sony Compressor Station (Inactive)
East Huntingdon
40.181
-79.5882
Unknown
662781
673477
Lynn Compressor, Kriebel Minerals Inc.
East Huntingdon
40.1798
-79.5557
Unknown
636316
660570
Range Resources Appalachia/ Layman Compressor Station
East Huntingdon
40.1086
-79.6359
Unknown
na
na
Keyrock Energy LLC/ Hribal Compresor Station, East Huntingdon, Pa. (active)
East Huntingdon
40.1353
-7905653
Unknown
761545
752755
KeyRock Energy LLC/ Hribal Compressor Station (Active)
East Huntingdon
40.1333
-79.55
Unknown
649767
663499
Range Resources Appalachia/Schwartz Comp. Station
East Huntingdon
40.0879
-79.601
Unknown
652968
665874
TEXAS KEYSTONE/FAIRFIELD TWP COMP STA
Fairfield Twp
40.3363
-79.1786
Active
557780
572987
EQUITRANS LP/W FAIRFIELD COMP STA
Fairfield Twp
40.3333
-79.1167
Active
675937
683303
DIVERSIFIED OIL & GAS LLC/MURPHY COMP SITE
Fairfield Twp
40.3362
-79.1122
Active
812881
806928
TEXAS KEYSTONE INC/ MURPHY COMP STA
Fairfield Twp
40.3543
-79.1123
Active
na
na
SOUTH OAKFORD/Dominion
Greensburg
40.365
-79.5585
Unknown
na
na
OAKFORD
Greensburg
40.3848
-79.5489
Active
na
na
DELMONT
Geensburg
40.382
-79.5554
Active
496667
626720
Silvis Compressor Station, Exco Resources Pa. Inc
Hempfield
40.2022
-79.5526
Unknown
na
na
Dominion Trans Inc., Lincoln Heights
Hempfield Township
40.3004
-79.6193
Active
812660
806731
CNX Gas Co. LLC
Hempfield Township
40.2957
-79.6277
Active
812661
806732
CNX Gas Co. LLC/ Jackson Compressor Station, Status: Active
Hempfield Township
40.2931
-79.6119
Unknown
601521
626775
PEOPLES NATURAL GAS CO/ARNOLD COMP STA
Lower Burrell City
40.3623
-79.4316
Active
812883
806930
TEXAS KEYSTONE INC/LOYALHANNA
Loyalhanna Twp
40.4514
-79.4727
Inactive
na
na
J.B. TONKIN
Murrysville Boro
40.4629
-79.6402
Active
815083
809310
HUNTLEY & HUNTLEY INC/BOARST COMP STA
Murrysville Boro
40.4686
-79.6417
Inactive
735725
731655
MTN GATHERING LLC/10078 MAINLINE COMP STA
Murrysville Boro
40.4708
-79.65
Active
241708
276314
Dominion Trans Inc/Jeannette
Penn Township
40.3317
-79.5935
inactive
na
701239
DOMINION ENERGY TRANS INC/ROCK SPRINGS COMP STA
Salem Twp
40.4052
-79.5546
Unknown
na
na
OAKFORD
Salem Twp
40.4052
-79.5546
Unknown
465965
495182
EQT GATHERING/SLEEPY HOLLOW COMP STA
Salem Twp
40.3634
-79.5426
Inactive
465965
495182
EQT GATHERING/SLEEPY HOLLOW COMP STA
Salem Twp
40.3634
-79.5426
Inactive
483173
512126
COLUMBIA GAS TRANS CORP/DELMONT COMP STA
Salem Twp
40.3871
-79.5638
Active
707759
708010
LAUREL MTN MIDSTREAM OPR LLC/SALEM COMP STA
Salem Twp
40.3782
-79.4929
Active
459024
488214
CNX Gas Co./ Jacobs Creek Compressor Station,
South Huntingdon Twp
40.1172
-79.6681
Unknown
634559
650802
Rex Energy I LLC/Launtz
Unity Twp
40.3325
-79.4295
Unknown
na
668776
Keyrock Energy LLC/ Unity Compressor Station
Unity Twp
40.2251
-79.5109
Unknown
na
na
Nelson/RE Gas Dev LLC
UnityTwp
40.3378
-79.4348
Unknown
657366
66932
People’s Natural Gas/ Latrobe Compressor Station
Unity Twp
40.3075
-79.4369
Inactive
812662
806733
CNX Gas Co. LLC, Troy Compressor Station
Unity Twp
na
na
Unknown
657366
564168
Dominion Peoples (Inactive)
Unity Twp
40.3073
-79.4371
Inactive
815196
809457
HUNTLEY & HUNTLEY INC/WASHINGTON STATION
Washington Twp
40.4967
-79.6206
Active
605562
629821
PEOPLES NATURAL GAS/MERWIN COMP STA
Washington Twp
40.5083
-79.6203
Active
815203
809466
HUNTLEY & HUNTLEY INC/TARPAY STA
Washington Twp
40.5222
-79.6186
Active
na
na
Mamont (CNX GAS CO/MAMONT COMP STA)
Washington Twp
40.5046
-79.5862
Unkown
741197
735870
CONE MIDSTREAM PARTNERS LP/MAMONT COMP STA
Washington Twp
40.5067
-79.5644
Active
Feature image of a compressor station within Loyalsock State Forest, PA. Photo by Brook Lenker, FracTracker Alliance, June 2016.
We’ve recently updated the New York State Oil and Gas Well Viewer with data up to 2020. The map and data below show that conventional gas drilling in New York State has decreased significantly since the first decade of 2000, but drilling for oil in western New York has increased in the past few years. In part thanks to the fracking ban in New York State, less than 1% of the wells in New York State have been drilled unconventionally.
These data are compiled by the New York State Department of Environmental Conservation on their Downloadable Well Data site, and mapped by FracTracker. Well data can either be accessed as a zipped file, or viewed on a well-by-well scale through a searchable database.
Summary
Currently, there are more active gas wells in New York State than all other types combined. Fewer than 1% of the wells in the New York State database have been drilled directionally or horizontally. And only a fraction of those were gas wells. Since 2014, high-volume hydraulic fracturing has been banned, due to health and environmental concerns.
Western New York State was once a very active region for oil drilling, but today, only 21% of all oil wells are still active. Additional well types include brine solution mines. Many of these mines, once a large enough cavern has been dissolved, are later converted into storage mines for gas.
Well type, as of 24 January 2020
Status = Active
Status = Other (includes plugged and abandoned, unlisted/unknown, converted, voided/expired permit, etc.)
Gas well
6,721 (58% of all active wells)
4,214 (13% of “other” categories)
Oil well
3,581 (31% of all active wells)
13,217 (40% of “other” categories)
Storage well
840 (7% of all active wells)
146 (<1% of “other” categories)
Monitoring well
165 (1% of all active wells)
311 (1% of “other” categories)
Brine well
138 (1% of all active wells)
593 (2% of “other” categories)
Other (145 geothermal, 7724 category not listed)
85 (1% of all active wells)
7,784 (23% of “other” categories)
Disposal well
36 (<1% of all active wells)
4,186 (13% of “other” categories)
Dry hole
4 (<1% of all active wells)
2,786 (8% of “other” categories)
Total
11,570
33,237
Patterns in Well Drilling
Well drilling in New York State was at a high point between the mid-1960s and the early 1990s. After another peak in activity in the first decade of the 21st century with conventional gas drilling, activity has dropped off sharply.
Figure 1. Oil and gas wells in New York State per year, 1990-2020. Data from NYS DEC.
A Potential Uptick in the Past Few Years
While gas drilling in New York State has tapered off dramatically, drilling for oil in Cattaraugus County in western New York has increased significantly since 2017.
Figure 2. Oil wells drilled in Cattaraugus County, New York, 2018-19. Data from NYS DEC.
Nearly every one of the 169 new wells drilled in New York State during 2019 was an oil well within 5 miles of St. Bonaventure in Cattaraugus County. We’ll be following up shortly with a more in-depth analysis of the issues and risks associated with this oil “boom” in the upper reaches of the Allegheny River of New York State.
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/03/New-York-State-Oil-Gas-Well-Viewer-2020.jpg12081966Karen Edelsteinhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngKaren Edelstein2020-03-11 12:07:052021-04-15 14:16:54New York State Oil & Gas Wells – 2020 Update
FracTracker Alliance has released a new national map, filled with energy and petrochemical data. Explore the map, continue reading to learn more, and see how your state measures up!
This map has been updated since this blog post was originally published, and therefore statistics and figures below may no longer correspond with the map
The items on the map (followed by facility count in parenthesis) include:
For oil and gas wells, view FracTracker’s state maps.
Transportation & Storage
Natural gas compressor stations (1,367) – Facilities built along a pipeline route that pressurize natural gas to keep it flowing through the pipeline.
Crude oil rail terminals (94) – Rail terminals that load and unload crude oil (liquid hydrocarbons that have yet to be processed into higher-value petroleum products).
Liquefied natural gas import/export terminals (8) – Facilities that can a) liquefy natural gas so it can be exported as LNG (liquefied natural gas) and/or b) re-gasify LNG so it can be used as natural gas. Natural gas is transported in a liquid state because it takes up less space as a liquid than as a gas.
Natural Gas Underground Storage (486) – Locations where natural gas is stored underground in aquifers, depleted gas fields, and salt formations.
Petroleum Product Terminals (1,484) – Terminals with a storage capacity of 50,000 barrels or more and/or the ability to receive volumes from tanker, barge, or pipeline. Petroleum products include products “produced from the processing of crude oil and other liquids at petroleum refineries, from extraction of liquid hydrocarbons at natural gas processing plants, and from production of finished petroleum products at blending facilities.”
Petroleum Ports (242) – A port that can import and/or export 200,000 or more short tons of petroleum products a year.
Natural gas import/export pipeline facility (54) – A facility where natural gas crosses the border of the continental United States.
Pipelines
Crude oil pipelines – major crude oil pipelines, including interstate truck lines and selected intrastate lines, but not including gathering lines.
Natural gas liquid pipelines – Also referred to as hydrocarbon gas liquid pipelines, they carry the heavier components of the natural gas stream which are liquid under intense pressure and extreme cold, but gas in normal conditions.
Natural gas pipelines– Interstate and intrastate natural gas pipelines. Due to the immensity of this pipeline network and lack of available data, this pipeline layer in particular varies in degree of accuracy.
Petroleum Product Pipelines – Major petroleum product pipelines.
Recent Pipeline Projects – Pipeline projects that have been announced since 2017. This includes projects in various stages, including under construction, complete, planned or canceled. Click on the pipeline for the status.
Processing & Downstream
Natural Gas Processing Plants (478) – Plants that separate impurities and components of the natural gas stream.
Chemical plants (36) – Includes two types of chemical plants – petrochemical production and ammonia manufacturing – that report to EPA’s Greenhouse Gas Reporting Program.
Ethylene Crackers (30) – Also referred to as ethane crackers, these petrochemical complexes that converts ethane (a natural gas liquid) into ethylene. Ethylene is used to make products like polyethylene plastic.
Petroleum Refineries (135) – A plant that processes crude oil into products like petroleum naphtha, diesel fuel, and gasoline.
Power Plants (9,414) – Electric generating plants with a capacity of at least one megawatt, sorted by energy source.
Wind Turbines (63,003) – Zoom in on wind power plants to see this legend item appear.
Natural Resources
Shale Plays (45) – Tight oil and gas shale plays, which are formations where oil and gas can be extracted.
Major Rivers
Solar Energy Potential – Potential solar energy generation, in kilowatt-hours per square meter per day – averaged annually.
This map is by no means exhaustive, but is exhausting. It takes a lot of infrastructure to meet the energy demands from industries, transportation, residents, and businesses – and the vast majority of these facilities are powered by fossil fuels. What can we learn about the state of our national energy ecosystem from visualizing this infrastructure? And with increasing urgency to decarbonize within the next one to three decades, how close are we to completely reengineering the way we make energy?
Key Takeaways
Natural gas accounts for 44% of electricity generation in the United States – more than any other source. Despite that, the cost per megawatt hour of electricity for renewable energy power plants is now cheaper than that of natural gas power plants.
The state generating the largest amount of solar energy is California, while wind energy is Texas. The state with the greatest relative solar energy is not technically a state – it’s D.C., where 18% of electricity generation is from solar, closely followed by Nevada at 17%. Iowa leads the country in relative wind energy production, at 45%.
The state generating the most amount of energy from both natural gas and coal is Texas. Relatively, West Virginia has the greatest reliance on coal for electricity (85%), and Rhode Island has the greatest percentage of natural gas (92%).
With 28% of total U.S. energy consumption for transportation, many of the refineries, crude oil and petroleum product pipelines, and terminals on this map are dedicated towards gasoline, diesel, and other fuel production.
Petrochemical production, which is expected to account for over a third of global oil demand growth by 2030, takes the form of chemical plants, ethylene crackers, and natural gas liquid pipelines on this map, largely concentrated in the Gulf Coast.
Electricity generation
The “power plant” legend item on this map contains facilities with an electric generating capacity of at least one megawatt, and includes independent power producers, electric utilities, commercial plants, and industrial plants. What does this data reveal?
In terms of the raw number of power plants – solar plants tops the list, with 2,916 facilities, followed by natural gas at 1,747.
In terms of megawatts of electricity generated, the picture is much different – with natural gas supplying the highest percentage of electricity (44%), much more than the second place source, which is coal at 21%, and far more than solar, which generates only 3% (Figure 1).
Figure 1. Electricity generation by source in the United States, 2019. Data from EIA.
This difference speaks to the decentralized nature of the solar industry, with more facilities producing less energy. At a glance, this may seem less efficient and more costly than the natural gas alternative, which has fewer plants producing more energy. But in reality, each of these natural gas plants depend on thousands of fracked wells – and they’re anything but efficient.
The cost per megawatt hour of electricity for a renewable energy power plants is now cheaper than that of fracked gas power plants. A report by the Rocky Mountain Institute, found “even as clean energy costs continue to fall, utilities and other investors have announced plans for over $70 billion in new gas-fired power plant construction through 2025. RMI research finds that 90% of this proposed capacity is more costly than equivalent [clean energy portfolios, which consist of wind, solar, and energy storage technologies] and, if those plants are built anyway, they would be uneconomic to continue operating in 2035.”
The economics side with renewables – but with solar, wind, geothermal comprising only 12% of the energy pie, and hydropower at 7%, do renewables have the capacity to meet the nation’s energy needs? Yes! Even the Energy Information Administration, a notorious skeptic of renewable energy’s potential, forecasted renewables would beat out natural gas in terms of electricity generation by 2050 in their 2020 Annual Energy Outlook.
This prediction doesn’t take into account any future legislation limiting fossil fuel infrastructure. A ban on fracking or policies under a Green New Deal could push renewables into the lead much sooner than 2050.
In a void of national leadership on the transition to cleaner energy, a few states have bolstered their renewable portfolio.
Figure 2. Electricity generation state-wide by source, 2019. Data from EIA.
One final factor to consider – the pie pieces on these state charts aren’t weighted equally, with some states’ capacity to generate electricity far greater than others. The top five electricity producers are Texas, California, Florida, Pennsylvania, and Illinois.
Transportation
In 2018, approximately 28% of total U.S. energy consumption was for transportation. To understand the scale of infrastructure that serves this sector, it’s helpful to click on the petroleum refineries, crude oil rail terminals, and crude oil pipelines on the map.
Transportation Fuel Infrastructure. Data from EIA.
The majority of gasoline we use in our cars in the US is produced domestically. Crude oil from wells goes to refineries to be processed into products like diesel fuel and gasoline. Gasoline is taken by pipelines, tanker, rail, or barge to storage terminals (add the “petroleum product terminal” and “petroleum product pipelines” legend items), and then by truck to be further processed and delivered to gas stations.
China leads the world in this movement. In 2018, just over half of the world’s electric vehicles sales occurred in China. Analysts predict that the country’s oil demand will peak in the next five years thanks to battery-powered vehicles and high-speed rail.
In the United States, the percentage of electric vehicles on the road is small but growing quickly. Tax credits and incentives will be important for encouraging this transition. Almost half of the country’s electric vehicle sales are in California, where incentives are added to the federal tax credit. California also has a “Zero Emission Vehicle” program, requiring electric vehicles to comprise a certain percentage of sales.
We can’t ignore where electric vehicles are sourcing their power – and for that we must go back up to the electricity generation section. If you’re charging your car in a state powered mainly by fossil fuels (as many are), then the electricity is still tied to fossil fuels.
Petrochemicals
Many of the oil and gas infrastructure on the map doesn’t go towards energy at all, but rather aids in manufacturing petrochemicals – the basis of products like plastic, fertilizer, solvents, detergents, and resins.
Natural gas processing plants separate components of the natural gas stream to extract natural gas liquids like ethane and propane – which are transported through the natural gas liquid pipelines. These natural gas liquids are key building blocks of the petrochemical industry.
Ethane crackers process natural gas liquids into polyethylene – the most common type of plastic.
The chemical plants on this map include petrochemical production plants and ammonia manufacturing. Ammonia, which is used in fertilizer production, is one of the top synthetic chemicals produced in the world, and most of it comes from steam reforming natural gas.
As we discuss ways to decarbonize the country, petrochemicals must be a major focus of our efforts. That’s because petrochemicals are expected to account for over a third of global oil demand growth by 2030 and nearly half of demand growth by 2050 – thanks largely to an increase in plastic production. The International Energy Agency calls petrochemicals a “blind spot” in the global energy debate.
Petrochemical development off the coast of Texas, November 2019. Photo by Ted Auch, aerial support provided by LightHawk.
Investing in plastic manufacturing is the fossil fuel industry’s strategy to remain relevant in a renewable energy world. As such, we can’t break up with fossil fuels without also giving up our reliance on plastic. Legislation like the Break Free From Plastic Pollution Act get to the heart of this issue, by pausing construction of new ethane crackers, ensuring the power of local governments to enact plastic bans, and phasing out certain single-use products.
“The greatest industrial challenge the world has ever faced”
Mapped out, this web of fossil fuel infrastructure seems like a permanent grid locking us into a carbon-intensive future. But even more overwhelming than the ubiquity of fossil fuels in the US is how quickly this infrastructure has all been built. Everything on this map was constructed since Industrial Revolution, and the vast majority in the last century (Figure 3) – an inch on the mile-long timeline of human civilization.
Figure 3. Global Fossil Fuel Consumption. Data from Vaclav Smil (2017)
In fact, over half of the carbon from burning fossil fuels has been released in the last 30 years. As David Wallace Wells writes in The Uninhabitable Earth, “we have done as much damage to the fate of the planet and its ability to sustain human life and civilization since Al Gore published his first book on climate than in all the centuries—all the millennia—that came before.”
What will this map look like in the next 30 years?
A recent report on the global economics of the oil industry states, “To phase out petroleum products (and fossil fuels in general), the entire global industrial ecosystem will need to be reengineered, retooled and fundamentally rebuilt…This will be perhaps the greatest industrial challenge the world has ever faced historically.”
Is it possible to build a decentralized energy grid, generated by a diverse array of renewable, local, natural resources and backed up by battery power? Could all communities have the opportunity to control their energy through member-owned cooperatives instead of profit-thirsty corporations? Could microgrids improve the resiliency of our system in the face of increasingly intense natural disasters and ensure power in remote regions? Could hydrogen provide power for energy-intensive industries like steel and iron production? Could high speed rail, electric vehicles, a robust public transportation network and bike-able cities negate the need for gasoline and diesel? Could traditional methods of farming reduce our dependency on oil and gas-based fertilizers? Could zero waste cities stop our reliance on single-use plastic?
Of course! Technology evolves at lightning speed. Thirty years ago we didn’t know what fracking was and we didn’t have smart phones. The greater challenge lies in breaking the fossil fuel industry’s hold on our political system and convincing our leaders that human health and the environment shouldn’t be externalized costs of economic growth.
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/02/National-map-feature-3.png400900Erica Jacksonhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngErica Jackson2020-02-28 17:35:142022-05-02 15:21:42National Energy and Petrochemical Map
Chevron and other oil and gas companies in western Kern County have drilled so many oil and gas wells that they have essentially turned this area of California into a block of Swiss cheese. As a result, several of the most over-developed oil fields (in the world!) are suffering from gushing oil seeps known as surface expressions. Since May of 2019, one surface expression alone has spilled over 1.3 million gallons of oil and wastewater in the Cymric Field in southwestern California. Thirteen known surface expressions have been reported actively flowing in the Cymric field in 2019, one for over 15 years (GS5).
Regulators and Governor Newsom’s administration have attempted to address the issue but their response is not enough. Chevron was fined $2.7 million and Governor Newsom personally told Chevron to stop this spill, the location of which is shown below on the map in Figure 1. Oil and gas companies have also been ordered to lower their maximum injection pressures on new wells, limiting a technique called high pressure steam injection. Yet the state has continued to permit new cyclic steam and steam injection wells, the main cause of the surface expressions, including many in the same fields as the active surface expressions. Furthermore, data on new permit applications shows that Chevron and other operators intend to continue expanding their already bloated well counts. These new wells will increase the flow of oil to the surface via the over-abundance of existing older wells that serve as man-made pathways for toxic fluids.
Although Governor Newsom has made positive steps by halting new permits for higher pressure injections, the moratorium’s focus on injection pressure does not address all of the root causes of this epidemic of surface expressions, including over-development of these oil fields. Reducing the maximum injection pressures without also addressing the growing number of injection wells does nothing to reduce the pathways oil uses to travel to the surface. The Governor can reduce the active expressions and limit the risk for future expressions by halting permits for all new oil and gas wells, banning the existing use of steam injection, and forcing oil companies to plug and properly abandon older wells before they fail.
Figure 1. Map of 2018-2019 Cymric Oil Field Surface Expressions. The map includes the locations of surface expressions as well as the locations of new injections wells permitted in 2019 and current applications submitted since November 19, 2019.
Background
Steam injection is used more commonly in California than hydraulic fracturing, due to the nature of California’s abundant geological activity. Steam injection wells include wells devoted solely to injection and others, called cyclic steam wells, that alternate between injection of steam and production of oil and gas. It requires an extreme amount of energy to accomplish this, so they are considered energy intensive. These operations are known collectively as enhanced oil recovery (EOR) wells.
Steam injection wells increase the volume of oil produced when compared to conventional methods. They do this by injecting steam and water into the low-quality heavy crude produced in California in order to decrease the viscosity and push it towards the bottom holes of the production wells. The steam also pushes oil in other directions unintentionally, such as to the surface where it can spill out becoming a surface expression.
Some of the most notable negative impacts caused by EOR wells in California include greenhouse gas contributions, air and water contamination, and risks to workers.
Environmental Impacts
In addition to the creation of greenhouse gases from burning the fossil fuels extracted from California oil fields, oil and gas operators cause surface expressions and emit methane and other greenhouse gases as they leak out of the ground. The leaking natural gas is full of toxic and carcinogenic volatile organic compounds that degrade the local and regional air quality and exacerbate climate change. The majority of these expressions have not been documented by regulators and the emissions are not considered. The expressions also push oil and wastewater upwards through groundwater, leaving it contaminated. When the oil gets to the surface, it destroys terrestrial habitat for native plants and endangered species such as the long nosed leopard lizard. The seeps are also a major hazard to migratory birds that confuse the pooling oil for water sources.
A construction supervisor for Chevron named David Taylor was killed by such an event in the Midway-Sunset oil field near Bakersfield, CA. According to the LA Times, Chevron had been trying to control the pressure at the well-site. The company had stopped injections near the well, but neighboring operators continued injections into the pool. As a result, migration pathways along old wells allowed formation fluids to saturate the Earth just under the well-site. Tragically, Taylor fell into a 10-foot diameter crater of 190° fluid and hydrogen sulfide.
High Pressure Steaming
The practice of high pressure steam injection is incredibly similar to hydraulic fracturing, but unfortunately is not regulated under the current rules established by State Bill 4 (SB4). The technique is used to stimulate increased production from “unconventional” target formations such as the Monterey Shale. Steam is injected at high pressures, fracturing shale and other sedimentary rocks. High pressure steam injection both opens new pathways in the source rock and decreases the viscosity of heavy crude, allowing crude to flow more easily to the borehole of the well.
In 2016, the oil and gas industry was able to introduce an exemption in the regulations to allow for the stimulation of wells without an SB4 permit, as long as it was using steam, even when the injection pressure was greater than the fracture gradient of the target formation. For the last three years the practice existed in a legal grey area without any oversight. Then, in July of 2019, Governor Newsom’s administration adopted new underground injection control regulations, which explicitly allowed steam injection at pressures above the fracture gradient of the formation (1724.10.3. Maximum Allowable Surface Injection Pressure). That means operators were essentially “fracking”, but using steam to fracture the targeted shale formation instead of water (hydraulic). With the formal approval of the practice, operators ramped up operations resulting in numerous new surface expressions forming and the flow rates of existing surface expressions increasing.
Governor Newsom’s Response
On November 19, 2019, California Governor Gavin Newsom released a press statement outlining the work his administration is planning to address issues with oil and gas drilling such as surface expressions. Along with two other strategies, the Governor called for an immediate end to high pressure cyclic steaming. This new ban was meant to stop the existing surface expressions in oil fields, and prevent any new ones. Unfortunately, the activities of Chevron and the other operators in these fields are likely to prevent the Governor’s intervention from having the intended impact. These operators are planning to drill many new injection wells in close proximity to the surface expressions, in effect increasing the flow of current surface expressions and increasing the risk of more in the future. From the time of the press release to the end of 2019, oil and gas operators applied for permits authorizing 184 new steam injection wells. The majority of these permits are in the same fields as the surface expressions.
Injection Pressure
The oil and gas industry has blamed the surface expressions entirely on the geology of the oil fields in the southwestern region of Kern, specifically on the brittle diatomite crust that lies above many of Central California’s oil formations. The thing is, diatomite is common throughout the Monterey Shale. In fact, the entire Monterey formation of the Santa Barbara-Ventura coast generally consists of an upper siliceous member (diatomaceous) (Stanford, 2013; Issacs 1981). The risk is not unique to just the Cymric, McKittrick and Midway-Sunset Fields, yet these three fields, along with the Lost Hills field to the north, have the highest counts of reported surface expressions, as shown in the map below in Figure 2.
Figure 2. Map of California well density and surface expressions. The map visualizes California Department of Conservation (CA DOC) data summing surface expressions by oil field. Locations of new injections permit applications submitted since November 19, 2019 are also shown, summed by section.
These fields also have the highest concentration of wells in the state. Surface expressions in the oil fields of western Kern County provide a warning for the rest of the state. Over-development of an oil field is a major contributor to the potential for surface expressions. In the case of the Cymric field, there are simply too many wells drilled in a limited area. This is the reason Chevron shut down injection wells within 1,000’ of the surface expression, but even then the seep did not stop.
The map in Figure 2 shows that the Cymric field has the highest density of active and abandoned oil and gas wells in the state, providing plenty of man-made pathways to the surface. Our analysis shows that there are at least 319 reported wells drilled within 1,000’ of the 1Y surface expression. Another 154 wells are drilled within 1,000’ of the GS5 expression that has been actively flowing since 2003, including 11 active steam injection wells.
Wells in the Cymric field have been drilled in such numbers and in such close proximity that downhole communication between the wells is unavoidable. “Downhole communication” occurs when wells drilled in close proximity leak oil, natural gas and other formation materials between boreholes. This is a dangerous situation, for public health and worker safety. Downhole communication with unknown and known abandoned wells with brittle casings or active wells with poorly engineered casing that shear could even “blow sky high.”
To understand the spatial distribution of oil and gas wells in California, FracTracker used GIS to conduct a hot spot analysis. The parameters included all oil and gas wells in the state of California using California Department of Conservation (CA DOC) data (updated 1/4/20). Results of the analysis are shown in the map in Figure 2. Areas where the analysis showed statistically significant clusters of wells in high density are shown in purple, from low levels of statistical significance to high. Of note, the region with the highest level of statistically significant well density is located along the western side of Kern County. It is in the very same localized area as the eight surface expressions in the Cymric field, and includes the Cymric, McKittrick, and north end of the Midway-Sunset fields.
Field
New Steam Well Permit Count
Midway-Sunset
427
Cymric
197
Belridge, South
150
Kern River
125
McKittrick
105
Coalinga
88
Poso Creek
71
San Ardo
69
Kern Front
43
Lost Hills
20
Arroyo Grande
15
Cat Canyon
10
Edison
5
Orcutt
4
Placerita
1
Grand Total
1130
Table 1. Count of new steam well permits approved in 2019, by field. Data taken from CA DOC Weekly Summary of Permits Data (ftp://ftp.consrv.ca.gov/pub/oil/).
Operator
New Steam Well Permit Count
Aera Energy LLC
381
Chevron U.S.A Inc.
360
Berry Petroleum Company, LLC
276
Sentinel Peak Resources California LLC
112
E & B Natural Resources Management Corporation
65
Seneca Resources Management Corporation
61
California Resources Production Corporation
46
Vaquero Energy, Inc.
10
Crimson Resource Management Corp.
5
Naftex Operating Company
5
Kern River Holdings, Inc.
4
Santa Maria Energy, LLC
4
Grand Total
1329
Table 2. Count of new steam well permits approved in 2019, by operator. Data taken from CA DOC Weekly Summary of Permits Data (ftp://ftp.consrv.ca.gov/pub/oil/).
State’s Response
On November 19, 2019, California Governor Gavin Newsom released a press statement outlining his administration’s plan to address several issues with oil and gas drilling. Among them, the Governor called for an immediate moratorium on issuing new permits for “high pressure cyclic steaming.” This new moratorium was meant curb the rise of surface expressions. Unfortunately the activities of Chevron and the other operators in these fields are likely to undermine the Governor’s action. These operators are planning to drill many new injection wells in close proximity to the surface expressions, in effect increasing the flow of current surface expressions and increasing the risk of more in the future. From the time of the press release to the end of 2019, oil and gas operators applied for permits authorizing 184 new steam injection wells. The majority of these permits are in the same fields as the surface expressions. While the newly implemented moratorium will prevent future permits, permits issued prior to November 19, 2019 remain valid and will continue injecting at high pressure.
The regulatory agency, formerly DOGGR and now CalGEM, has already approved 1,330 new steam injection wells during Governor Newsom’s first year in office; 874 in the Cymric, McKrittrick, and Midway-Sunset fields alone where there are already over 9,300 operating. For summaries of new steam well permits approved in 2019 by field and operator, see Table 1 and 2 below. Even though Chevron stated that they ceased operations within 1,000 feet of the surface expressions (see map in Figure 1), 17 new steam injection wells have been permitted within 1,000 feet in 2019 alone. After the death of David Taylor in 2015, regulators established an 800’ safety buffer zone from that expression, but that safety measure has been ignored for more recent spills. Today, 27 steam injection wells continue to operate and three new permits are being considered within 800’ of the largest 2019 spill. Regulators are now considering permits for an additional 83 new steam injection wells in the same sections of the Cymric oil field closest to these recent surface expressions.
Conclusions and Recommendations
The state’s current solution for reducing surface expressions – a moratorium on high pressure steam injection – is not enough. Chevron and regulators say that it is unclear what exactly is causing the surface expressions, but the data speaks for itself. Too many wells have been drilled in too close proximity. Lowering the injection pressures of individual injection wells alone will not improve the situation if more injection wells are approved into the same formation. Governor Newsom can begin the remediation by stopping the state from permitting new oil and gas wells, banning existing steam injection, and properly plugging and abandoning the leaking wells in these fields. If this is not a priority, California will undoubtedly experience more of these situations, where the density of wells leads to dangerous conditions and increased emissions in more fields, such as the Ventura, Oxnard, and Kern River. It is clear that in addition to high injection pressures, these impacts are the result of over-development via lackadaisical permit reviews and irresponsible environmental policy.
By Kyle Ferrar, MPH, Western Program Coordinator, FracTracker Alliance
Feature Photo by Irfan Khan/LA Times via AP, Pool.
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/01/California-Governor-Gavin-Newsom--scaled.jpg6661500Kyle Ferrar, MPHhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngKyle Ferrar, MPH2020-02-24 10:09:182021-04-15 14:55:29Governor Newsom Must Do More to Address the Cause of Oil Spill Surface Expressions
FracTracker Alliance and Consumer Watchdog worked together to produce a map of all oil and gas permits issued in 2019, under Governor Newsom’s watch. Our previous collaborative reports revealed conflicts of interest within the oil and gas regulatory agency, and showed that the rate of permitting new fracking operations and all oil and gas well permits had doubled for the first six months of 2019, as compared to 2018 – Governor Jerry Brown’s last year in office. We have once again updated the data, with supporting maps and visuals to show the state of drilling in the State of California.
“The numbers give fresh urgency on the need to order a 2,500-foot health barrier between oil industry operations and people living as close as just yards away,” Consumer Watchdog and FracTracker Alliance wrote in a letter to Governor Newsom. “Action on this and a start to phasing out oil and gas production in the state simply cannot wait for the results of more time-consuming studies.”
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/02/Screen-Shot-2020-02-21-at-2.22.05-PM.png6741500Kyle Ferrar, MPHhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngKyle Ferrar, MPH2020-02-22 13:29:222021-04-15 14:55:30Oil & Gas Well Permits Issued By Newsom Administration Rival Those Issued Under Gov. Jerry Brown
For the past decade, petroleum operators in the United States have been busy pumping record amounts of oil and gas from the ground. But has the pace been too frenzied? Since the vast majority of the oil and gas is not used in situ, the industry must transport these hydrocarbon products to other locations. The principal way of achieving this is through pipelines, a process which has resulted in thousands of incidents, causing hundreds of injuries and fatalities, thousands of evacuations, and billions of dollars’ worth of damage.
The United States has an estimated 3 million miles of hazardous liquid, gas distribution, and gathering and transmission pipelines in operation, and more are being built every day. Not only have the pipelines themselves become so ubiquitous that most people never give them a second thought, the incidents themselves have become so familiar to us that even severe ones struggle to gain any attention outside of the local media area.
In 2019, there were 614 reported pipeline incidents in the United States, resulting in the death of 10 people, injuries to another 35, and about $259 million in damages. As mentioned below, some of these totals are likely to creep upward as additional reports are filed. In terms of statistical fluctuations, 2019 was slightly better than normal, but of course statistics only tell a part of the story. Friends and family of the ten people that died last year would find no comfort knowing that there were fewer such casualties than 2017, for example. Similarly, it would be useless to comfort a family that lost their home by reminding them that someone lost an even bigger and more expensive home the year before.
Keeping in mind the human impact, let’s take a look at the data.
Pipeline Incident Summary
These incidents are broken into three separate reports:
Hazardous Liquids (including crude oil, refined petroleum products, and natural gas liquids).
Gas Distribution (lines that take gas to residents and other consumers), and
Gas Transmission & Gathering (collectively bringing gas from well sites to processing facilities and distant markets)
Table 1: Summary of pipeline incidents from 1/1/2010 through 12/31/2019
Report
Incidents
Fatalities
Injuries
Evacuees
Damages ($)
Fires
Explosions
Hazardous Liquids Lines
3,978
10
26
2,482
2,812,391,218
130
15
Gas Transmission & Gathering Lines
1,226
25
108
12,984
1,315,162,976
133
57
Gas Distribution
1,094
105
522
20,526
1,229,189,997
659
257
Totals
6,298
140
656
35,992
5,356,744,191
922
329
But is increasing the capacity of the pipes a good idea? As FracTracker has shown in the past, pipeline incidents occur at a rate of about 1.7 incidents per day. This holds true with updated data, showing 6,298 incidents from January 1, 2010 through December 17, 2019, which was the latest report filed when the data was downloaded in early February 2020.
Pipeline Usage in the United States
In 2018, roughly three million miles of natural gas pipelines transported almost 28 trillion cubic feet (Tcf) of gas, which is roughly 13 times the volume of Mount Everest. For liquids, pipeline data is available showing shipments of from one region of the country (known as a PAD District) to another, which shows that 1.27 billion barrels of crude oil were shipped through almost 81,000 miles of pipelines in 2018, and 3.39 billion barrels through nearly 214,000 miles of pipes when counting natural gas liquids and refined petroleum products.
Note that these figures are less than 2018 estimates based on 70% of liquid petroleum products being moved by pipeline. This discrepancy could be accounted for by the dramatic increase in production in recent years, or perhaps by intra-PAD shipments not listed in the data above. For example, petroleum produced in the Permian Basin in western Texas and eastern New Mexico may travel nearly 500 miles by pipeline en route to export terminals on the Gulf coast, while remaining in the same PAD District. If the 70% estimate holds true, then roughly 2.8 billion barrels (117 billion gallons) of crude would be shipped by pipeline, more than twice as much as the 1.27 billion barrel figure shown above.
The drilling boom in the United States was quickly followed by a boom in pipeline construction. Total mileage for liquid pipelines – known as hazardous liquid lines – increased by 20% from 2010 to 2018. For those aware of thousands of miles of recent gas pipeline projects, it is confusing to hear that the data from the Pipeline and Hazardous Materials Safety Administration (PHMSA) are mixed for natural gas. It does show a 2.4% increase in total miles for gas distribution mainlines to 1.3 million miles, and a 2.0% increase over the same time in distribution service lines, which run from the mainlines to the consumer. However, the total mileage for transmission lines – which are large diameter pipes that move gas long distances – actually contracted 2.1% to just under 302,000 miles. Total mileage for gathering lines fell even more, by 8.4% to just under 18,000 miles. However, since PHMSA estimates only 5% of gathering lines report to the agency, this last figure is probably not a valid estimate.
If this data is accurate, it means that the thousands of miles of transmission and gathering lines built in recent years were more than offset by decommissioned routes. However, given the record production levels mentioned above, it is almost certain that total capacity of the system has gone up, which can be accomplished through a combination of increased pressure and diameter of the pipe.
Hazardous Liquids
Incident Impact Summary - Table 2
Table. 2. Hazardous Liquid Pipeline Incident Impact Summary. Data from PHMSA.
Year
Incidents
Fatalities
Injuries
Evacuees
Damages ($)
Fires
Explosions
2010
350
1
3
686
1,075,193,990
8
1
2011
344
0
1
201
273,526,547
9
2
2012
366
3
4
235
145,477,426
10
2
2013
401
1
6
858
278,525,540
15
2
2014
455
0
0
34
140,211,610
20
4
2015
460
1
0
138
256,251,180
16
1
2016
420
3
9
104
212,944,094
17
2
2017
415
1
1
58
163,118,772
7
0
2018
405
0
2
165
152,573,682
15
1
2019
362
0
0
3
114,568,377
13
0
Grand Total
3978
10
26
2482
2,812,391,218
130
15
Age of Pipelines - Histogram
Figure 1. Hazardous Liquid Line Incidents from Jan. 2010 – Jan. 2020, Arranged by Year of Pipe Installation. Data from PHMSA.
Cause of Incidents - Pie Chart
Figure 2. Cause of Hazardous Liquid Line Incidents 2010-2019. Data from PHMSA.
The most important statistics when considering pipeline incidents are those representing bodily harm – injuries and fatalities. In those respects, at least, 2019 was a good year for hazardous liquid pipelines, with no reported injuries or fatalities. Most of the other metrics were below average as well, including 362 total incidents, three evacuees, $115 million in damages, and zero explosions. The 13 reported fires represents a typical year. However, we should keep in mind that the results may not be complete for 2019. The data was downloaded on February 3, 2020, but represented the January 2020 update of the dataset. Additionally, there is often a gap between the incident date and the reporting date, which is sometimes measured in months.
One thing that really sticks out about hazardous liquid pipelines is that the pipelines that fail the most often are the newest. Of the hazardous liquid incidents since 2010, 906 occurred in pipelines that were installed within the decade. By means of comparison, the same amount of incidents occurred in the same period for pipes installed in the 40 years between 1970 and 2009. Of course, the largest category is “Unspecified,” where the install year of the pipeline was left blank in 1,459 of the 3,978 total incidents (37%).
The causes of the incidents are dominated by equipment failure, where the 1,811 incidents accounted for 46% of the total. The next highest total was corrosion failure with 798 incidents, or 20% of the total. Six of the incidents in the “Other Outside Force Damage” are attributed to intentional damage, representing 0.15% of the total.
Gas Transmission & Gathering
Incident Impact Summary - Table 3
Table. 3. Gas Transmission and Gathering Pipeline Incident Impact Summary. Data from PHMSA.
Year
Incidents
Fatalities
Injuries
Evacuees
Damages ($)
Fires
Explosions
2010
116
10
61
373
596,151,925
19
7
2011
128
0
1
874
125,497,792
14
6
2012
116
0
7
904
58,798,676
15
7
2013
112
0
2
3,103
53,022,396
11
4
2014
142
1
1
1,482
61,533,154
15
6
2015
149
6
16
565
61,498,753
10
6
2016
97
3
3
944
107,524,564
8
4
2017
126
3
3
202
85,665,233
17
7
2018
118
1
7
4,088
77,753,611
17
6
2019
122
1
7
449
87,716,872
7
4
Grand Total
1,226
25
108
12,984
1,315,162,976
133
57
Age of Pipelines - Histogram
Fig. 3. Gas Transmission and Gathering Pipeline Incidents from Jan. 2010 – Jan. 2020, Arranged by Year of Pipe Installation. Data from PHMSA.
Cause of Incidents - Pie Chart
Fig. 4. Cause of Gas Transmission and Gathering Line Incidents from 2010 – 2019. Data from PHMSA.
One person died and seven were injured from gas transmission and gathering line accidents that were reported to PHMSA in 2019, which were both below average for this dataset. The total number of incidents was typical, while the 499 evacuees, $88 million in property damage, seven fires, and four explosions were all below normal. Note that only a small fraction of the nation’s gathering lines are required to report incident data to PHMSA, so this data should not be seen as comprehensive. And as with the hazardous liquid incidents, it is likely that not all incidents occurring during the year have had reports filed in time for this analysis.
The distribution of the age of pipes that failed within the past decade is different from the hazardous liquid pipelines. Pipes installed in the 1950s, 1960s, and 1970s were the most likely to fail, although failures in routes built this century represent a secondary peak. The number of incidents where the age of pipe data field was not completed remains high at 135 incidents, but the data gap is not as outrageous as it is for hazardous liquid lines.
Once again, equipment failure is the most common cause of transmission and gathering line accidents, with 390 incidents accounting for 32% of the total. Corrosion failure was the second most common reason, with 239 incidents accounting for an additional 19%. One incident was attributed to intentional damage, accounting for 0.08% of the total.
Gas Distribution
Incident Impact Summary - Table 4
Year
Incidents
Fatalities
Injuries
Evacuees
Damages ($)
Fires
Explosions
2010
120
11
44
2,080
21,155,972
82
29
2011
116
13
53
4,417
27,105,022
73
32
2012
88
9
46
746
25,556,562
61
22
2013
104
8
36
1,606
37,363,960
59
20
2014
106
18
93
2,037
72,885,067
61
30
2015
101
4
32
948
32,176,608
65
24
2016
115
10
75
2,510
56,900,068
71
28
2017
104
16
34
1,960
72,226,380
57
17
2018
110
7
81
2,561
827,647,610
64
31
2019
130
9
28
1,661
56,172,748
66
24
Grand Total
1,094
105
522
20,526
1,229,189,997
659
257
Table 4. Gas Distribution Pipeline Incident Impact Summary. Data from PHMSA.
Age of Pipelines - Histogram
Figure 5. Gas Distribution Line Incidents from jan. 2010 – Jan. 2020, Arranged by Year of Pipe Installation. Data from PHMSA.
Cause of Incidents - Pie Chart
Figure 6. Cause of Gas Distribution Line Incidents: 2010 – 2019. Data from PHMSA.
The nine fatalities and 28 injuries reported for gas distribution lines in 2019 were obviously tragic, but these totals are both below what would be expected in a typical year. The 130 incidents and 66 fires were both above average totals, while the 1,661 evacuees, $56 million in property damage, and 24 explosions were all below average. As with the other reports, these totals are subject to change as additional reports are filed.
The distribution for the age of pipes that failed during the past decade is more like a normal (or bell curve) distribution than the other two datasets, with the most incidents occurring in pipeline routes laid in the 1990s. Much like the hazardous liquids dataset, however, the largest category is “Unspecified”, where the age of the pipe was not entered into the data for one reason or another. These 222 incidents account for 20% of the total, and if we had this data, the distribution could be significantly different.
The causes of distribution line incidents are attributed very differently than either the hazardous liquids or transmission and gathering line datasets. The leading cause is “Other Outside Force Damage,” with 355 incidents accounting for 32% of the total, followed by 330 “Excavation Damage” incidents accounting for an additional 30%. This difference could well be explained because this type of line tends to occur in highly populated areas. The largest subtype for the outside force damage category is damage by motor vehicles not involved in excavation, with 160 incidents, followed by fires or explosions which the operator claims did not originate with the pipeline, with 78 incidents. Intentional damage remains rare – although still way too high – with 15 incidents, or 1.4% of the overall total.
Data Notes
PHMSA incident data is ultimately self-reported by the various operators. Because the vast majority of gathering lines do not report to the agency, this dataset should not be seen as comprehensive for incidents in that category.
There were eleven issues with faulty location data that we were able to correct for this map. There are likely to be more, as only the ones with coordinates rendering outside of the United States were identified. Some of these had mixed up latitude and longitude values, or omitted the negative value for longitude, placing the points in Kyrgyzstan, the Himalayas, and Mongolia. One record had no coordinates at all, but included a detailed description of the location, which was then found on Google Maps. Two wells that rendered in Canada were on the correct longitude for the county that they belonged in, but had faulty latitude values. One of these was reduced by exactly 20° of latitude, while the other was reduced by exactly 7° of latitude, and were then located in the proper county. Other than the adjustments for these eleven incidents, all location data reflects the data available on the PHMSA .
Additional Leaks
The data above reflects 6,298 incidents over the course of a decade, with a few more incidents likely to trickle in during the next few updates of the reports by PHMSA. And while these discrete incidents account for the majority of human impacts in terms of life and well-being, it is worth noting that these 1.7 incidents per day are not the only problems that occur along millions of miles of pipelines in this country.
William Limpert has analyzed information about pipeline leakage in gas transmission lines, which found that 0.35% of the volume of gas was lost in transmission, one tenth of which was vented or flared intentionally, for example in compressor station blowdown events. This means that 0.315% of the gas is released unintentionally.
These numbers sound tiny, but due to the enormous volume of gas transported in pipes, they really add up quickly. For example, the Atlantic Coast Pipeline, Mr. Limpert’s primary focus, is scheduled to transmit 1.5 billion cubic feet (Bcf) of natural gas per day. At a typical rate of failure, we could expect leakage of 4.725 million cubic feet (MMcf) per day, or 1.725 billion cubic feet over the course of a year. That’s enough gas to provide to all Pennsylvania residential consumers for about 13 days in August, and this is just from one pipeline.
As mentioned above, the entire pipeline network moved about 28 Tcf in 2018. The estimated amount leaked at 0.315% is 88.2 Bcf. What would residential consumers pay for that volume of gas? Even with the current low prices due to the gas glut, the average residual price was $9.43 per Mcf in November 2019, the most recent data available. That means that residential consumers would pay roughly $832 million for an equivalent amount of gas.
Still More Leaks
There are also countless leaks that occur during the construction of the pipelines themselves. When pipelines are built, they have numerous obstacles to navigate during their construction. Among the most challenging are linear obstacles, such as roads and streams. A method that the industry regularly uses to avoid having to trench through these features is horizontal directional drilling (HDD).
While HDDs are meant to minimize impacts, they very frequently result in an incident known as an “inadvertent return,” when volumes of drilling mud return to the surface through a series of underground voids, frequently karst geology or abandoned mines. The leaking borehole under the road or stream then leaks drilling mud – sometimes thousands of gallons of it – which can then affect aquatic stream life. Additionally, these areas represent voids in the matrix that is intended to keep the pipeline stable and may represent future opportunities for catastrophic failure.
These features are so prevalent in some parts of the country that pipeline operators seem to be unable to avoid them, and regulators seem unwilling to press the issue in a proactive fashion. For example, Energy Transfers’ Mariner East II pipeline is currently being built to move natural gas liquids from Appalachia to its industrial complex and export terminal at Marcus Hook, Pennsylvania. During construction, there have been hundreds of inadvertent returns, both to the soil and waters of the Commonwealth. The presence of karst and abandoned mines along the route were well known ahead of time to the operator designing and implementing the HDDs, as well as the regulators who approved their use.
The many issues along the Mariner East II route, when combined with a massive pipeline explosion in Beaver County led to Pennsylvania’s decision to temporarily block all permit actions by the operator statewide. That hold is now lifted, leading residents along the route worried about a new batch of inadvertent returns, related sinkholes, and other follies as the project is completed. Construction activities for the parallel Mariner East 2X pipeline are already underway.
While residents along the Mariner East pipeline system have seen more than their fair share of impacts from the construction, these impacts are not at all rare on unusual. What is unusual, however, is for regulators to provide data highlighting these types of errors. In Pennsylvania, enough people requesting data on a variety of problematic pipelines has prompted the Department of Environmental Protection to create a Pennsylvania Pipeline Portal page. This only includes information on recent major pipeline projects and is not comprehensive in terms of content, but it is a major step in the right direction in terms of data transparency.
Can We Do Better?
Statistics can never capture the full force of tragedies. Most of us are aware of this point intellectually, and yet when we are confronted with such numbers, it seems that we are obliged to process them in one form or another. Perhaps the most common way is to compartmentalize it, where we might acknowledge the data and misfortune that they represent, but the file it away in the messy cabinet of our mind, clearing the slate of active thought for the next bit of information. Many of us never stop to question whether we can do better.
So, can we do better with pipelines? Perhaps so. If there are structural hazards such as abandoned mines or karst, perhaps regulators could demand that the operator route around them. If there are residents nearby, communities should demand that the pipeline get rerouted as well. Of course, these reroutes will just push the impacts elsewhere, but hopefully to an area where people won’t be affected by them, if such a place exists. Certainly, there could be better standards for construction and identification, so that there are fewer accidents involving pipelines. Or better yet, we could transition to renewable fuels for an ever-increasing share of our energy needs, making dirty and dangerous pipelines a relic of the past.
The one thing that we can no longer afford to do is continue to stick our fingers in our ears and dismiss the entire issue of pipeline safety as manageable or the cost of doing business.
By Matt Kelso, Manager of Data and Technology, FracTracker Alliance
Feature image at top of page shows San Bruno, California, following the 2010 pipeline explosion
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/02/San-Bruno-Aftermath-feature-image.png400900Matt Kelso, BAhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngMatt Kelso, BA2020-02-21 16:13:542021-04-15 14:55:30Pipelines Continue to Catch Fire and Explode
Map: Ohio Quarterly Utica Oil and Gas Production along with Quarterly Wastewater Disposal
Well Volumes
A little under a year ago, FracTracker released a map and associated analysis, “A Disturbing Tale of Diminishing Returns in Ohio,” with respect to Utica oil and gas production, highlighting the increasing volume of waste injected in wastewater disposal wells, and trends in lateral length in fracked wells from 2010 to 2018. In this article, I’ll provide an update on Ohio’s Utica oil and gas production in 2018 and 2019, the demands on freshwater, and waste disposal. After looking at the data, I recommend that we holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste in order to minimize negative externalities.
Recently, I’ve been inspired by the works of Colin Woodward[1] and Marvin Harris, who outline the struggle between liberty and the common good. They relate this to the role that commodities and increasing resource intensity play in maintaining or enhancing living standards. This quote from Harris’s “Cannibals and Kings” struck me as the 122 words that most effectively illustrate the impacts of the fracking boom that started more than a decade ago in Central Appalachia:
“Regardless of its immediate cause, intensification is always counterproductive. In the absence of technological change, it leads inevitably to the depletion of the environment and the lowering of the efficiency of production since the increased effort sooner or later must be applied to more remote, less reliable, and less bountiful animals, plants, soils, minerals, and sources of energy. Declining efficiency in turn leads to low living standards – precisely the opposite of the desired result. But this process does not simply end with everybody getting less food, shelter, and other necessities in return for more work. As living standards decline, successful cultures invent new and more efficient means of production which sooner or later again lead to the depletion of the natural environment.” From Chapter 1, page 5 of Marvin Harris’ “Cannibals and Kings: The Origins of Cultures, 1977
In reflecting on Harris’s quote as it pertains to fracking, I thought it was high time I updated several of our most critical data sets. The maps and data I present here speak to intensification and the fact that the industry is increasingly leaning on cheap water withdrawals, landscape impacts, and waste disposal methods to avoid addressing their increasingly gluttonous ways. To this point, the relationship between intensification and resource utilization is not just the purview of activists, academics, and journalists anymore; industry collaborators like IHS Markit admitting as much in their latest analysis pointing to the fact that oil and gas operators “will have to drill substantially more wells just to maintain current production levels and even more to grow production”. Insert Red Queen Hypothesis analogy here!
Oil and Gas Production in Ohio
The four updated data sets presented here are: 1) oil, gas, and wastewater production, 2) surface and groundwater withdrawal rates for the fracking industry, 3) freshwater usage by individual Ohio fracked wells, and 3) wastewater disposal well (also referred to as Class II injection wells) rates.
Below are the most important developments from these data updates as it pertains to intensification and what we can expect to see in the future, with or without the ethane cracker plants being trumpeted throughout Appalachia.
From a production standpoint, total oil production has increased by 30%, while natural gas production has increased by 50% year over year between the last time we updated this data and Q2-2019 (Table 1).
According to the data we’ve compiled, the rate of growth for wastewater production has exceeded oil and is nearly equal to natural gas at 48% from 2017 to 2018. On average the 2,398 fracked wells we have compiled data for are producing 27% more wastewater per well now than they did at the end of 2017.
————–2017————–
————–2019————–
Oil (million barrels)
Gas (million Mcf)
Brine (million barrels)
Oil (million barrels)
Gas (million Mcf)
Brine (million barrels)
Max
0.51
12.92
0.23
0.62
17.57
0.32
Total
83.14
5,768.47
76.01
108.15
8,679.12
112.28
Mean
0.40
2.79
0.37
0.45
3.62
0.47
Table 1. Summary statistics for 2,398 fracked wells in Ohio from a production perspective from 2017 to Q2 2019.
Figure 1. Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.
The increasing amount of resources and number of wells necessary to achieve marginal increases in oil and gas production is a critical factor to considered when assessing industry viability and other long-term implications. As an example, in Ohio’s Utica Shale, we see that total production is increasing, but as IHS Markit admits, this is only possibly by increasing the total number of producing wells at a faster rate. As is evidenced in Figure 1, somewhere around the Winter of 2017-2018, the production rate per well began to flatline and since then it has begun to decrease.
Water demands for oil and gas production in Ohio
Since last we updated the industry’s water withdrawal rates, the Ohio Department of Natural Resources (ODNR) has begun to report groundwater rates in addition to surface water. The former now account for nine sites in seven counties, but amount to a fraction of reported withdrawals to date (around 00.01% per year in 2017 and 2018). The more disturbing developments with respect to intensification are:
1) Since we last updated this data, 59 new withdrawal sites have come online. There are currently 569 sites in total in ODNR’s database. This amounts to a nearly 12% increase in the total number of sites since 2017. With this additional inventory, the average withdrawal rate across all sites has increased by 13% (Table 2).
2) Since 2010, the demand for freshwater to be used in fracking has increased by 15.6% or 693 million gallons per year (Figure 2).
3) We expect to see an inflection point when water production will increase to accommodate the petrochemical buildout with cracker plants in Dilles Bottom, OH; Beaver County, PA; and elsewhere. In 2018 alone, the oil and gas industry pulled 4.69 billion gallons of water from the Ohio River Valley. Since 2010, the industry has permanently removed 22.96 billion gallons of freshwater from the Ohio River Valley. It would take the entire population of Ohio five years to use the 2018 rate in their homes.[2]
As we and others have mentioned in the past, this trend is largely due to the bargain basement price at which we sell water to the oil and gas sector throughout Appalachia.[3] To increase their nominal production returns, companies construct longer laterals with orders of magnitude more water, sand, and chemicals. At this rate, the fracking industry’s freshwater demand will have doubled to around 8.8-.9.5 billion gallons per year by around 2023. Figure 3 demonstrates that average fracked lateral length continues to increase to the tune of +15.7-21.2% (+1,564-2,107 feet) per quarter per lateral. This trend alone is more than 2.5 times the rate of growth in oil production and roughly 24% greater than the rate of growth in natural gas production (See Table 1).
4. The verdict is even more concerning than it was a couple years ago with respect to water demand increasing by 30% per quarter per well or an average of 4.73 million gallons (Figure 4). The last time we did this analysis >1.5 years ago demand was rising by 25% per quarter or 3.84 million gallons. At that point I wouldn’t have guessed that this exponential rate of water demand would have increased but that is exactly what has happened. Very immediate conversations must start taking place in Columbus and at the region’s primary distributor of freshwater, The Muskingum Watershed Conservancy District (MWCD), as to why this is happening and how to push back against the unsustainable trend.
2017
2018
Sites
510
569
Maximum (billion gallons)
1.059
1.661
Sum (billion gallons)
18.267
22.957
Mean (billion gallons)
0.358
0.404
Table 2. Summary of fracking water demands throughout Ohio in 2017 when we last updated this data as well as how those rates changed in 2018.
Figure 2. Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (million gallons per year).
Figure 3. Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (feet).
Figure 4. Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (million gallons).
Waste Disposal
When it comes to fracking wastewater disposal, the picture is equally disturbing. Average disposal rates across Ohio’s 220+ wastewater disposal wells increased by 12.1% between Q3-2018 and Q3-2019 (Table 3). Interestingly, this change nearly identically mirrors the change in water withdrawals during the same period. What goes down– freshwater – eventually comes back up.
Across all of Ohio’s wastewater disposal wells, total volumes increased by nearly 22% between 2018 and the second half of 2019. However, the more disturbing trend is the increasing focus on the top 20 most active wastewater disposal wells, which saw an annual increase of 17-18%. These wells account for nearly 50% of all waste and the concern here is that many of the pending wastewater disposal well permits are located on these sites, within close proximity, and/or are proposed by the same operators that operate the top 20.
When we plot cumulative and average disposal rates per well, we see a continued exponential increase. If we look back at the last time, we conducted this analysis, the only positive we see in the data is that at that time, average rates of disposal per well were set to double by the Fall of 2020. However, that trend has tapered off slightly — rates are now set to double by 2022.
Each wastewater disposal well is seeing demand for its services increase by 2.42 to 2.94 million gallons of wastewater per quarter (Figure 5). Put another way, Ohio’s wastewater disposal wells are rapidly approaching their capacity, if they haven’t already. Hence why the oil and gas industry has been frantically submitting proposals for additional waste disposal wells. If these wells materialize, it means that Ohio will continue to be relied on as the primary waste receptacle for the fracking industry throughout Appalachia.
Variable
——————-All Wells——————-
——————-Top 20——————-
To Q3-2018
To Q3-2019
% Change
To Q3-2018
To Q3-2019
% Change
Number of Wells
223
243
+9.0
——-
——-
——-
Max (MMbbl)
1.12
1.20
+7.1
——-
——-
——-
Sum (MMbbl)
203.19
247.05
+21.6
101.43
119.31
+17.6
Average (MMbbl)
0.91
1.02
+12.1
5.07
5.97
+17.8
Table 3. Summary Statistics for Ohio’s Wastewater Disposal Wells (millions of barrels (MMbbl)).
Figure 5. Average Fracking Waste Disposal across all of Ohio’s Wastewater Disposal Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (million barrels).
Using the Pennsylvania natural gas data merged with the Ohio wastewater data, we were able to put a finer point on how much wastewater would be produced with a 100,000 barrel ethane cracker like the one PTT Global Chemical has proposed for Dilles Bottom, Ohio. The following are our best estimate calculations assuming 1 barrel of condensate is 20-40% ethane. These calculations required that we take some liberties with the merge of the ratio of gas to wastewater in Ohio with the ratio of gas to condensate in Pennsylvania:
For 2,064 producing Ohio fracked wells, the ratio of gas to wastewater is 64.76 thousand cubic feet (Mcf) of gas produced per barrel of wastewater.
Assuming 40% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 320.08 Mcf of gas per barrel of ethane condensate. For 100,000 barrels of ethane needed per cracker per day, that would result in 494,285 barrels (20.76 million gallons) of brine per day.
Assuming 20% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 640.15 Mcf per barrel of ethane condensate = For 100,000 barrels of ethane needed per cracker per day that would result in 988,571 barrels/41.52 million gallons of wastewater per day.
But wait, here is the real stunner:
The 40% assumption result is 3.81 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 5.37 times the daily rates of brine taken in by the top 20 wells (Note: the top 20 wastewater disposal wells account for 71% of all wastewater waste taken in by all of the state’s disposal wells).
The 20% assumption result is 7.62 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 10.74 times the daily rates of wastewater taken in by the top 20 wells.
Therefore, we estimate the fracked wells supplying the proposed PTTGC ethane cracker will generate between 20.76 million and 41.52 million gallons of wastewater per day. That is 3.8 to 7.6 times the amount of wastewater currently received by Ohio’s wastewater disposal wells.
What does this means in terms of truck traffic? We can assume that at least 80% of the trucks that transport wastewater are the short/baby bottle trucks which haul 110 barrels per trip. This means that our wastewater estimates would require between 4,493 and 8,987 truck trips per day, respectively. The pressures this amount of traffic will put on Appalachian roads and communities will be hard to measure and given the current state of state and federal politics and/or oversight it will be even harder to measure the impact inevitable spills and accidents will have on the region’s waterways.
Conclusion
There is no reason to believe these trends will not persist and become more intractable as the industry increasingly leans on cheap waste disposal and water as a crutch. The fracking industry will continue to present shareholders with the illusion of a robust business model, even in the face of rapid resource depletion and precipitous production declines on a per well basis.
I am going to go out on a limb and guess that unless we more holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste, there will be no other supply-side signal that we could send that would cause the oil and gas industry to change its ways. Until we reach that point, we will continue to compile data sets like the ones described above and included in the map below, because as Supreme Court Justice Louis Brandeis once said, “Sunlight is the best disinfectant!”
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance with invaluable data compilation assistance from Gary Allison
[1] Colin Woodward’s “American Character: A history of the epic struggle between individual liberty and the common good” is a must read on the topic of resource utilization and expropriation.
[3] In Ohio the major purveyor of water for the fracking industry is the Muskingum Watershed Conservancy District (MCWD) and as we’ve pointed out in the past they sell water for roughly $4.50 to $6.50 per thousand gallons. Meanwhile across The Ohio River the average price of water for fracking industry in West Virginia in the nine primary counties where fracking occurs is roughly $8.38 per thousand gallons.
Data Downloads
Quarterly oil, gas, brine, and days in production for 2,390+ Unconventional Utica/Point Pleasant Wells in Ohio from 2010 to Q2-2019