Pennsylvania Pipelines map by FracTracker Alliance

Pennsylvania Pipelines and Pollution Events

When people think about oil and gas extraction in Pennsylvania, they think about the tens of thousands of oil and gas wells in the state. It makes sense, because that’s where the process starts. However, while oil and other liquids can be shipped in tanker trucks, all of the producing gas wells in the state – whether they are small conventional wells or the giants of the Marcellus and Utica – must be connected by a network of pipelines.

Moving hydrocarbons from the well to processing facilities to power plants and residential customers all occurs within this giant midstream system, and the cumulative impact that pipelines have on the state is formidable. Let’s take a closer look at where the oil and gas pipelines are located in PA, their safety records, and major data gaps. Additionally, we’ve made available a detailed, interactive map of Pennsylvania pipelines and other important features such as water crossings.

Pipeline routes are everywhere in Pennsylvania

According to the Pipeline and Hazardous Materials Safety Administration (PHMSA), there were 92,407 miles of pipelines carrying natural gas and liquid petroleum products in Pennsylvania in 2017. That distance is equivalent to 151 round trips between Philadelphia and Pittsburgh on the Pennsylvania Turnpike, or more than three trips around the globe at the equator. This figure includes 78,022 miles of distribution lines (which takes gas from public utilities to consumers), 10,168 miles of transmission lines (which move gas between various processing facilities), 3,111 miles of petroleum liquid routes, and 1,105 miles of natural gas gathering lines (which take the gas from wells to midstream processing facilities).

Of note – The last category’s estimate is almost certainly a drastic underestimation. As of June 7th, there were 3,781 unconventional well pads in Pennsylvania, according the Pennsylvania Department of Environmental Protection (DEP), and all of the pads need to be connected to gathering lines. A 2014 report by the Nature Conservancy estimates that 19 acres of land are cleared for each well pad, which would work out to 3.1 miles of gathering lines for a typical 50-foot right-of-way. Multiplied out, 3,781 wells pads would require a total of 11,721 miles of gathering lines – well over PHMSA’s estimate of a 1,105 miles (See Table 1 for estimate comparisons).

Table 1. Varying estimates of gathering lines in Pennsylvania.*

Source

Unconventional Well Pads

Average Gathering Line Length (Miles) Statewide Total Estimated Miles
Nature Conservancy 3,781 3.1 11,721
Bradford County 3,781 3.5 13,234
PHMSA  3,781  0.3 1,105

*Estimates based on Nature Conservancy and Bradford County data are based on calculating the average length of segments, then multiplying by the number of well pads in the state to find the statewide total. The PHMSA estimate was calculated in reverse, by dividing the purported total of gathering lines by the number of well pads to find the average mileage.

Early map of gathering lines in Bradford County, PA by FracTracker (Pennsylvania Pipelines)

Figure 1: Location of gathering lines (2014) and oil and gas wells (2018) in Bradford County, Pennsylvania. Note the pockets of newer wells that are not connected to the older gathering line network.

In 2014, the FracTracker Alliance digitized a published map of gathering lines in Bradford County, allowing us to analyze the data spatially (Figure 2). These efforts yield similar results, with gathering lines averaging 3.5 miles in length. Not counting segments of transmission lines included in the data, such as Stagecoach, Sunoco, and Kinder Morgan’s Tennessee Gas Pipeline, there were 1,003 miles of gas gathering lines just in Bradford County in 2014.

Almost all of this data is based only on unconventional oil and gas activity, and therefore ignores the more than 96,000 conventional oil and gas (O&G) wells active in the state. We do not have a reasonable estimate on the average length of gathering line segments are for this network. It is reasonable to assume that they tend to be shorter, as conventional wells are often closer together than unconventional well pads, but they must still network across vast portions of the state.

Table 2. Estimated length of gathering lines for conventional wells in Pennsylvania by variable average lengths

Average Length (Miles) Conventional Wells Total Miles
0.5 96,143 48,072
1.0 96,143 96,143
1.5 96,143 144,215
2.0 96,143 192,286
2.5 96,143 240,358
3.0 96,143 288,429

If the average gathering line for conventional wells in Pennsylvania is at least 1 mile in length, then the total mileage of gathering lines would exceed all other types of gas and petroleum pipelines in the state. Conversely, for the PHMSA figure of 1,105 miles to be accurate, the average gathering line for all conventional wells and unconventional well pads in Pennsylvania would be 0.011 miles, or only about 58 feet long.

Pipelines are dangerous

As pipelines impact residents in many ways, there are numerous reason why communities should try to understand their impacts – including basic planning, property rights, sediment runoff into streams, to name a few. Perhaps the most significant reason, however, is the potential for harmful incidents to occur, which are more common than anyone would like to think (See Table 3). Some of these incidents are quite serious, too.

Table 3. Nationwide pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 909 92 432 220 16,949 $348,511,528
Gas Transmission / Gathering 1,031 23 94 49 8,557 $1,085,396,867
Hazardous Liquids 3,368 10 24 14 2,467 $2,531,839,207
Grand Total 5,308 125 550 283 27,973 $3,965,747,602

As of the July 13, 2018 download date, the PHMSA report covers 3,116 days.

Incidents Per Day

This means that nationally per day there are 1.7 pipeline incidents, almost 9 people evacuated, and $1,272,704 in damages, including the loss of released hydrocarbons.

On average, there is a fatality every 25 days, an injury every six days, and an explosion every 11 days. The location of those explosions obviously has a lot to do with the casualty count and aggregate property damage.

How do Pennsylvania pipelines hold up? As one might expect from a state with so many pipelines, Pennsylvania’s share of these incidents are significant (See Table 4).

Table 4. Pennsylvania pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 29 8 19 12 778 $6,769,061
Gas Transmission / Gathering 30 0 2 2 292 $51,048,027
Hazardous Liquids 49 0 0 1 48 $9,115,036
Grand Total 108 8 21 15 1,118 $66,932,124

Within Pennsylvania, an incident is reported to PHMSA every 29 days, an injury or fatality can be expected every 107 days, and the daily average of property damage is $21,480.

The issue with under-reported gathering lines notwithstanding, PHMSA lists Pennsylvania with 92,407 miles of combined gas and hazardous liquid pipelines, which is roughly 3.3% of the nationwide total, and there is no reason to believe that PHMSA’s issue with accounting for gathering lines is unique to the Keystone State.

Just 2% of the total number of incidents are in Pennsylvania. In terms of impacts, however, the state has seen more than its fair share – with 6.4% of fatalities, 3.8% of injuries, 5.3% of explosions, and 3.9% of evacuations. Property damage in Pennsylvania accounts for just 1.7% of the national total, making it the only category examined above for which its share of impacts is less than expected, based on total pipeline miles.

Pipeline location data not widely available

Pipeline data is published from a variety of public agencies, although almost none of it is really accessible or accurate.

For example the Department of Homeland Security (DHS) publishes a number of energy-related datasets. While they do not publish gas pipelines, they do have a 2012 dataset of natural gas liquid routes, which is a significant portion of the hazardous liquid inventory. From an analytical point of view, however, this dataset is essentially worthless. Many of these pipelines are so generalized that they don’t make a single bend for multiple counties, and the actual location of the routes can be miles from where the data are represented. Communities cannot use this as a tool to better understand how pipelines interact with places that are important to them, like schools, hospitals, and residential neighborhoods. The dataset is also incomplete – the original Mariner East natural gas pipeline, which has been around for decades, isn’t even included in the dataset.

Screenshot from PHMSA's public pipeline viewer

Figure 2: This text appears to viewers of PHMSA’s public pipeline viewer.

Another data source is PHMSA’s National Pipeline Mapping System Public Viewer. While this source is rich in content, it has several intentional limitations that thwart the ability of the public to accurately analyze the pipeline network and understand potential impacts:

  1. Data can only be accessed one county at a time, which is impractical for long interstate transmission routes,
  2. Data can not be be downloaded, and
  3. The on-screen representation of the routes disappears when users zoom in too far.

Within Pennsylvania, the Department of Environmental Protection (DEP) maintains the Pennsylvania Pipeline Portal, which contains a lot of information about various recent pipeline projects. However, with the sole exception of the Mariner East II project, the agency does not provide any geospatial data for the routes. The reason for this is explained on the Mariner East II page:

These shapefiles are the GIS data layers associated with the permits that have been submitted for the proposed pipeline project. These shapefiles are not required as part of a permit application and are not commonly submitted but were provided to the Department by Sunoco Pipeline, L.P.

The files were accepted by the Department to aid in the review of the application material given the large scale of the project. The shapefiles ease the review by displaying some information contained in the hardcopy of the plans and application in a different format.

The Department of Conservation and Natural Resources (DCNR) does make oil and gas infrastructure data available, including pipelines, where it occurs on state forest land.

Pennsylvania Pipelines Map

Considering the risks posed by pipelines, their proliferation in Pennsylvania, and this critical juncture in their development with an implicit opportunity to document impacts, FracTracker believes it is important now to develop an accurate interactive statewide map of these projects, fortify it with essential data layers, and facilitate citizen reporting of the problems that are occurring.

Other than the Mariner East II route and the state forest data available from DCNR, all of the pipeline routes on our Pennsylvania Pipeline Map, below, have been painstakingly digitized – either from paper maps, PDFs, or other digital media – to make geospatial data that can analyzed by interacting with other datasets. These layers are only as good as their sources, and may not be exact in some cases, but they are orders of magnitude better than data produced by public agencies such as DHS.

Figure 3: FracTracker’s Pennsylvania Pipeline Map. View fulll screen to explore map further, view water crossings, and other details not visible at the statewide map view.

Data Layers on Pennsylvania Pipelines Map

  • Incidents

    PHMSA incidents (7-13-2018). Pipeline incidents that were reported to the Pipeline and Hazardous Material Safety Administration. These reports contain significant information about the incidents, including location coordinates, and are shown on the map with white circles.

    Note that a few of the location coordinates appear to be erroneous, as two reports appear outside of the state boundary.

  • Spills

    Mariner East II – Inadvertent Returns (6-1-2018). This data layer shows inadvertent returns – or spills – related to the construction of the Mariner East II pipeline. This is a combination of two reports, including one where the spills that impacted waterways, and those categorized as upland spills. These are represented on the map by orange dots that vary in size depending on the amount of fluid that spilled. Some of the locations were provided as latitude / longitude coordinates, while others are estimates based on the description. In a few cases, the latitude value was adjusted to intersect the pipeline route. In each case, the adjusted location was in the correct county and municipality.

  • Water Crossings

    Known Stream & Wetland Crossings (2018). This shows the locations where the known pipeline routes intersect with streams and other wetlands on the National Wetland Inventory. These are organized by our four pipeline layers that follow, including FracTracker Vetted Pipelines (1,397 crossings), DCNR Pipelines (184 crossings), PHMSA Gas Pipelines (6,767 crossings), and Bradford County Gathering Lines (867 crossings). These crossings are shown as diamonds that match the colors of the four listed pipeline layers.

  • Vetted Pipelines

    FracTracker Vetted Pipelines (2018). This pipeline layer is an aggregation of pipeline routes that have been digitized in recent years. Much of this digitization was performed by the FracTracker Alliance, and it is an available layer on our mobile app. These are largely newer projects, and contain some routes, such as the Falcon Ethane Pipeline System, that have not been built yet. In some cases, multiple versions of the pipeline routes are printed, and we may not have the final version of the route in all circumstances. FracTracker Vetted Pipelines are represented with a red line.

  • DCNR Pipelines

    DCNR Pipelines (2018). This includes pipeline routes on state forest lands, and is shown as green lines on the map.

  • PHMSA Pipelines

    PHMSA Gas Pipelines (2018). This includes data digitized from the PHMSA Public Pipeline Viewer. This source contains gas and liquid pipelines, but only gas pipelines are included in this analysis. These routes are shown in a bright purplish pink color.

  • Bradford Lines

    Bradford County Gathering Lines (2014). This layer was digitized by the FracTracker Alliance after Bradford County published a printed map of gathering lines within the county in 2014. It is the only county in Pennsylvania that we have gathering line data for, and it is shown on the map as a yellow line.

  • Nearby Waterways

    Streams & Wetlands with 1/2 Mile of Pipelines (2018). This clipped layer of the National Wetlands Inventory is provided for visual reference of the wetlands near known pipeline routes. Due to the large amount of data, this layer is only visible when users zoom in to a scale of 1:500,000, or about the size of a large county.


By Matt Kelso, Manager of Data and Technology

This article is the first in a two-part series on Pennsylvania pipelines. Stay tuned!

Population density map of ME2 pipeline (aka Dragonpipe)

Population density maps: Lessons on where NOT to put a pipeline

By George Alexander, Guest Author

Census maps tell the story

FracTracker Alliance recently created a set of maps showing population variation along the route of the Mariner East 2 Pipeline, which I refer to as the “Dragonpipe.” FracTracker’s maps dramatically reveal a route that runs through many centers of dense population, and seems to avoid relatively nearby areas with far lower population density. The maps are based on US Census 2010 block-level data.

The take-away lesson from these maps is this: Sunoco has put the Dragonpipe in a very bad location.

As an example, here is a map of the pipeline route as it passes through Berks, Chester, and Delaware counties in Pennsylvania:

Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

The dark brown areas in the map above denote the most densely populated locations, displayed as the number of people per square mile. The lighter the color, the lower the population density. The black line is the pipeline route.

In the upper left-hand part of the map, note that the route passes through the suburbs of Reading, in Berks County. Further south in the same map, notice how it passes directly through population centers in Chester and Delaware counties.

Let’s examine this pattern more closely.

Why was this route chosen in the first place?

For Sunoco’s convenience

In many areas, from a standpoint of impacts on local communities, the pipeline route is actually the worst possible track that Sunoco could have chosen; it puts more people at risk than any other path, given the same starting- and endpoints. Why in the world did they choose this route?

The answer is this: for Sunoco’s corporate convenience. The Dragonpipe, for most of its length, runs side-by-side Mariner East 1 (ME1), an existing 80+ year-old pipeline designed to carry gasoline and heating oil to customers in the central and western parts of Pennsylvania. From this standpoint, the location of the old pipeline makes sense; it had to be sited near populated areas. That’s where the customers for gasoline and heating oil were located back in the 1930s.

However, the flip-side of Sunoco’s corporate convenience may also mean unnecessary risks to tens of thousands of Pennsylvania residents. 

The old pipeline connected the centers of population in the 1930s, areas that are now much more populous when they were nearly ninety years ago. In the southeastern part of Pennsylvania, the character of the area has also changed dramatically. When the original pipeline was built, the landscape along ME1’s route through Delaware and Chester counties was predominantly farmland. Today, that area has changed to densely-settled suburbs, with homes, schools, businesses, hospitals, and shopping centers directly adjacent to the pipeline’s right-of-way.

The Exton area provides a prime example of how this transition to suburbia has set the stage for potential disaster along the pipeline route. The following image shows a detailed view of the population density near Exton. As you can see, the pipeline route sticks to high-density areas (shown in dark brown) the entire way, even though lower-density options (shown in orange and yellow) exist nearby.

Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Sunoco — like any corporation — has a moral obligation to conduct its business in a safe manner. This includes choosing a safe route for a pipeline that has inherent dangers and risks. However, Sunoco apparently did not choose to do so. Moreover, by law, Sunoco has an obligation to make human safety paramount. In the settlement Sunoco reached last August with Clean Air Council, Delaware Riverkeeper Network, and Mountain Watershed Association, Sunoco agreed to consider alternative routing for the pipeline in this area. Then, despite their promises, Sunoco simply bypassed that part of the agreement. Rather than explore alternatives to the proposed route, Sunoco dismissed the alternatives as “not practicable” because they did not involve the right-of-way that was already in use for Mariner East 1.

Sunoco seemed to have made their sole priority in considering a pipeline route whether the company has an existing pipeline there already. A better route would reduce by hundreds the number of people who could be killed or injured if there were a leak and explosion.

Pipelines leak

Pipelines can and do leak. Mariner East 1, in its short career as a pipeline carrying NGLs, has already leaked several times. It is just good luck that the leaks were stopped before any product ignited. (See most recent report of ME1 and ME2 issues.) The Atex pipeline, a pipeline of similar size and content that runs down to the Gulf Coast, ruptured and exploded near Follansbee, WV, in just its second year of operation. And there’s no reason to believe such an incident would never happen with the Dragonpipe.

Sunoco has an obligation to do what it can to minimize the injuries, death, and destruction caused by an event like the Follansbee explosion. The Follansbee incident occurred in a forested area. The explosion destroyed several acres of trees, but no-one was killed. The result would have been far different if had the explosion been in a densely populated area.

Just as the maps above show how the Philadelphia suburbs and those of Reading are threatened, other FracTracker maps show the threats to suburbs of Pittsburgh and Harrisburg, below. Click to expand.

A call for change

Indeed, across the state, the Dragonpipe route gets dangerously and notably close to population centers. Such a path may be a convenient and financially beneficial option for Sunoco, but it is an unacceptable risk for Pennsylvania’s citizens to bear.


About the Author: George Alexander publishes the Dragonpipe Diary (www.dragonpipediary.com), covering all aspects the Mariner East pipeline project, including technology, risks, legal issues, economics, and the people and groups involved. He recently retired from a career in journalism and marketing.

An earlier version of this essay was published in Mr. Alexander’s blog, Dragonpipe Diary, on June 29, 2018.

 

LPA Pipeline protest - Crosshairs feature

In the Crosshairs

The Origins & Work of Lebanon Pipeline Awareness, Inc. in Lebanon County, PA
by Michael Schroeder, Lebanon Pipeline Awareness, Inc.
LPA Logo

Nestled in a mostly agricultural region blessed with some of the most fertile, non-irrigated farmland in the world, Lebanon County, Pennsylvania sits square in the crosshairs of a Pipeline Revolution – smack-dab in between the Marcellus Shale fracking zones in northern and western PA and the processing and export facilities of the Eastern seaboard. This Pipeline Revolution began in earnest more than four years ago, in spring 2014, when Williams/Transco announced plans to build a 200-mile, 42-inch diameter, high-pressure (1,480 p.s.i.) underground natural gas pipeline with the Orwellian-sounding name “Atlantic Sunrise” as a shortcut to whisk fracked natural gas to points south – mainly Cove Point just south of Baltimore – for export. See map below for more context.

That’s the north-south axis of the crosshairs. East-west, for starters, is the 8-inch diameter, cast-iron Mariner East pipeline, which has traversed the state since the late 1930s, carrying gasoline from the Philadelphia region to the Pittsburgh area. Also around spring 2014, Mariner East’s owner-operator, Sunoco Logistics, announced its Mariner East expansion project: to stop carrying gasoline, reverse the flow, and start streaming natural gas liquids (NGLs – mainly propane, ethane, and butane) from the fracking zones of western PA to the Marcus Hook export facility outside Philadelphia. Also planned were several new larger-volume pipelines to be laid in the same easement – Mariner East 2 and 2X – along with their corresponding pump stations.

The two major transmission pipeline projects cross on private land atop a forested hill in Lebanon County’s South Londonderry Township – making “in the crosshairs” an apt metaphor for where we stand in relation to the Pipeline Revolution.

In response to Williams/Transco’s announcement in spring 2014, activists in neighboring Lancaster County organized the grassroots citizens’ group Lancaster Against Pipelines. We soon followed suit, holding our first organizing meeting in April in humble surroundings, an artist’s loft in downtown Lebanon. After a democratic vote,we called ourselves Lebanon Against Pipelines and began meeting bi-weekly with a core group of 8-10 people.

LPA Organizing Meeting - Crosshairs

Initial organizing meeting of Lebanon Against Pipelines (soon changed to Lebanon Pipeline Awareness), downtown Lebanon, April 2014

By summer 2014, we adopted what we felt was a more positive and publicly acceptable name in our strongly conservative county, one more in keeping with our core mission of raising public awareness about the immensely destructive power of fracking and pipelines: Lebanon Pipeline Awareness.

Making Plans

Over the next year, a core leadership emerged. With the pro-bono help of a local attorney, we became a 501c(3) non-profit corporation with officers and a board of directors, making it possible to apply for much-needed grants after our meager, mostly self-funded beginnings.

Realizing the importance of strength in numbers, from the outset we reached out to collaborate with other groups. We’ve had many key allies in this fight, especially our sister organization, Concerned Citizens of Lebanon County (CCLC). Focused on Sunoco’s Mariner East projects, CCLC has focused mainly on the judicial system to challenge the absurd notion that this project merits status as a “public utility” – most notably by pursuing civil action against Sunoco for not obtaining the proper permits before building its new pump station in West Cornwall Township.

Bringing About Change

How have we worked to raise public awareness? In most every way we can think of, given our limited resources.

We still lack a website, but we have developed and curated a highly active Facebook presence (with nearly 800 “likes” at present). We’ve designed, printed, and distributed widely an attractive tri-fold brochure and our own eye-catching logo. We’ve set up tables at most every available community event (National Night Out in Campbelltown; Historic Old Annville Day; the Lebanon County Fair; and others). We’ve organized protests and demonstrations, often in tandem with Lancaster Against Pipelines and other allied groups. We have sponsored film screenings, public safety forums, speakers from allied organizations, and informational meetings for local landowners and other concerned citizens.

Public protest by LPA

Public protest with Lancaster Against Pipelines, Annville town square, December 2015

We’ve attended local municipal meetings to encourage local authorities to pass resolutions opposing the pipelines traversing their municipalities – in two cases successfully. We’ve filed dozens of Right-To-Know requests, developing a rich archive of construction violations and disseminating our findings publicly. We’ve brought our concerns to the county commissioners’ meetings, prompting them to write letters of concern to state and federal officials and add an informational “pipelines” tab to their website. We have developed a robust presence in local media outlets – issuing press releases and writing letters to the editor and op-ed pieces, and inviting reporters to the events we sponsor – including local newspapers (like the Lebanon Daily News), regional digital media platforms (like NPR’s StateImpact), local TV and radio stations, and more. We’ve even hosted a few tours for national photographers and reporters.

Working with Others

In our interactions with local governmental authorities, we consistently act respectfully and courteously and try hard not to blindside anyone. Before attending a public meeting, we’ll send a courtesy note to the relevant authority, detailing our concerns and summarizing what we’ll be saying and asking for. When speaking at public meetings, we’re civil, crisp, and respectful – though, when necessary, we have engaged in peaceful acts of public protest (like duct-taping our mouths shut when prevented from speaking at a township meeting because we’re not township residents).

We’ve also met with all of our state representatives, either in individual meetings or during town hall-style meetings with constituents. We’ve expressed our concerns to members of Governor Tom Wolf’s staff, his Pipeline Infrastructure Task Force and other Department of Environmental Protection officials, the Susquehanna River Basin Commission, the Federal Energy Regulatory Commission, and other public bodies.

Innovative Pipeline Monitoring Program

Pipeline monitor badge

Citizen pipeline monitoring badge

More recently, with pipeline construction well underway, we’ve developed a pipeline construction monitoring program, undergoing rigorous training and developing official badges to identify ourselves and our organization. We also register all of our monitors with the county commissioners’ office (to prevent imposters from engaging in nefarious acts in our name). (See badge, right)

And it’s made a difference.

I remember well our first outreach efforts in summer 2014 at events like National Night Out in Campbelltown, where we were met with a fair amount of open hostility. “Why do you oppose American energy independence?” people would ask.  “What about all the jobs the pipelines will bring to local workers?” After four years of respectfully but insistently hammering on these issues, the public tenor has shifted. Very rarely do we encounter outright hostility anymore. The public has grown increasingly receptive to our message – especially now that construction has begun and folks can see that what we’ve predicted is now coming to pass.

Respect and Reciprocity

We’ve worked very hard to cultivate a respectable public persona and reputation, and we’ve largely succeeded. As best as we can tell, the predominant public perception is that Lebanon Pipeline Awareness is run by a group of dedicated and well-informed volunteers with an important message to share. In fact, two of our leaders were singled out last year by the local newspaper for recognition as providing a positive impact for our community. Our core group, which generally meets twice a month, has expanded to include upwards of 15 committed local activists.

We’ve also worked hard to always couple our anti-pipeline message with a positive message about renewable energy – repeatedly emphasizing that wind, solar, geothermal, and other green energies represent an increasingly viable alternative for energy and for jobs.

In It for the Long Haul

So that’s where we in Lebanon Pipeline Awareness stand at the beginning of our fifth year. Because we have every reason to expect this insane pipeline buildout to intensify, we know we’re in it for the long haul. Our goals for the coming year are to expand our membership; build on and extend our alliances even further; intensify our outreach efforts and our pipeline construction monitoring program; and continue to host public meetings for concerned property owners and citizens.

CHISPA Flyer

CHISPA Flyer – Click to enlarge

We also plan to expand our activities to include direct action campaigns like CHISPA – “Challenge in the Streets to Pipelines in PA” – where every Friday afternoon from 4-6 p.m. we’ll be lining five miles of westbound Route 422 from Lebanon to Annville with volunteers bearing provocative protest signs that challenge the thousands of passing motorists to think in fresh ways about issues like climate change, jobs, eminent domain, property rights, renewable energies, and more.

Lebanon Pipeline Awareness is but one of dozens of grassroots citizens’ organizations that have emerged across Pennsylvania over the past decade to resist the Fracking and Pipeline revolutions and insist that we follow “a better path” (the name of an emergent coalition of anti-fracking and anti-pipeline groups from across Pennsylvania). We have lost many battles against our vastly more deep-pocketed and powerful adversaries, but we’ve also made a substantial and positive difference.

Will we win the war? Yes, eventually, as global climate disruption makes increasingly clear that our most pressing need as a species is to leave the remaining stocks of fossil fuels in the ground. In the meantime, win or lose, our efforts continue – and will continue as long as these insane Fracking and Pipeline revolutions continue to imperil humankind and the web of life that sustains us all.


by Michael Schroeder, Vice President, Lebanon Pipeline Awareness, Annville, Pennsylvania

PA Well Pad Violations map

Well Pad Violations in Pennsylvania

Emerging Trends

We are always learning new things at FracTracker. While we have been analyzing and mapping oil and gas (O&G) violations issued by the Department of Environmental Protection (DEP) in Pennsylvania since 2010, we have apparently been under-representing the total amount of issues associated with unconventional drilling in the state.

The reason for the missing violations is that there are inconsistencies with how well pads are classified in the compliance report. Many of these well pads – full of unconventional permits and drilled wells – are indeed categorized as “unconventional” in the DEP compliance data. Others, equally full of unconventional permits and wells, simply leave that field blank.

Therefore, any analysis for unconventional violations is likely to miss some of the incidents that are attributed to the well pad itself, as opposed to any of the wells that are found upon that well pad.

Midas Well Pad unearths issue

While we have heard about missing violation data in the past, I discovered the nature of the issue while researching the Midas Well Pad in Plum Borough, Allegheny County on the DEP resource site eFACTS, noting the presence of multiple violations at the nascent well site. However, when attempting to download the relevant data on the compliance report, the results were missing. I had entered search parameters that made sense to me, limiting results to violations in the proper county and municipality, and including an inspection date range that was broader than what was showing up on eFACTS. I had also limited results to unconventional wells, because while this is Plum’s first unconventional well pad, the back roads are dotted with dozens – if not hundreds – of conventional O&G sites.

The Midas Well Pad, as seem from Coxcomb Hill Rd. in Plum, PA

After that attempt failed, I downloaded the entire state’s worth of data, whether conventional or not, and I was able to find the 31 violations associated with the well pad.

I contacted DEP about this, wondering whether there was some data irregularity that prevented my search in Plum from finding all of the incidents that occurred there. The reply was somewhat helpful, noting that there was no county, municipality, or unconventional value associated with that well pad in the compliance report, explaining why the search result came up negative.

It is worth noting that the separate well pad report does indeed have values for all of these fields for the Midas Well Pad, so there is a lack of consistency on this issue. Even more importantly, it is worth remembering that any compliance report search that limits results using county, municipality, or unconventional variables are likely to result in incomplete results.

The violations at the Midas Well Pad are focused around erosion and sedimentation issues, wetland impacts, failure to follow approved methodology, and failure to fix some of the problems on subsequent site inspections. The compliance report includes a narrative inspection comment, giving the public a glimpse through the inspector’s eyes. Here is one of several such comments at the site:

Follow up inspection related to wetland impact reported on 2/23/18 and 2/24/18. At the time of inspection, the Operator was actively conducting earth disturbance activity associated with the construction of well pad channel 6. The Department gave verbal permission on 2/27/2018 to deviate from the construction sequence and continue with the construction of PCSM wet pond 1. At the time of inspection wet pond 1 was partially constructed. The outlet structure and emergency spillway associated with wet pond 1. At the time of inspection wet pond 1 was holding water, however the slopes were not temporary stabilized. The Operator indicated that additional work was planned for the wet pond and would be temporary stabilized. The Operator indicated a previously unidentified seep located upgradient and outside of the LOD is contributing additional water to wet pond 1. The Department recommended the Operator identify wet weather springs upgradient from wet pond 1. Additionally, the Department recommends the Operator monitor all additional flow and submit a permit modification outlines changes made to the construction sequence and identifies the location of all toe drains to be constructed on site. The Department and Operator agreed to reschedule an onsite meeting to discuss the remediation of the wetland. Th Department recommends the Operator monitor the vegetative growth in the wetland. The Department recommends that the Operator add additional temporary mulch to the disturbed area and continue to perform routine maintenance to the temporary BMPs.

How pervasive is this problem?

The DEP well pad report contains data on 12,600 wells, situated on 3,715 wells pads. On the compliance side, there are 2,689 violations at 390 different sites that contain the words “Well Pad.” 739 of these violations do not have associated Well API Numbers, and are therefore not shown in our Pennsylvania Shale Viewer map. The number of sites with violations per operator is shown below in Figure 1 (click to expand).

Figure 1: Number of well pads appearing on compliance report by operator, through 5/15/2018. Click on the image to see the full-sized version.

There are four things to note about about Figure 1. 

First, this table is not the number of violations on well pads, but merely the count of well pads with violations appearing on the compliance report.

Second, this does not contain any data on wells on those pads that were issued violations – only instances where the well pads themselves were cited are shown.

PA Well Pad Violations: 

View map fullscreen

This map shows oil and gas (O&G) violations in Pennsylvania that are assessed to well pads, as opposed to individual wells. To access the map’s legend and other details, click the double-arrow icon at the top-left corner of the map.

The third thing to note about Figure 1 is that there are instances where the same pad falls into more than one category. Hilcorp Energy, for example, has 10 wells in the unconventional category, 11 wells that are not defined, but only 13 total wells, indicating significant overlap between the categories.

And fourth, there are 31 instances where the phrase “well pad” occurs in the compliance report where the unique Site ID# does not appear on the well pad report. In some cases, the name of the facility indicates that it might be for another facility that is related to the well pad, such as “Southwest System – Well Pad 36 to Bluestone Pipeline.” For other entries, such as “Yarasavage Well Pad”, it remains unclear why the Site ID# does not yield a matching entry from the well pad report.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

 

Upper Appalachian Gas Storage Wells

New map available showing Upper Appalachian gas storage wells

FracTracker has received numerous requests to compile a regional map of natural gas storage wells. In response, we have built the dynamic map below covering storage wells in Pennsylvania, Ohio, and West Virginia:

Upper Appalachian Gas Storage Wells Map

View map fullscreen | How FracTracker maps work 

Using Our Map

The colored areas on the map above  (pink, blue, and yellow) correspond to gas storage wells in one of the three states. When you first view the map in fullscreen mode you will notice that these wells have been “generalized” into one large layer. That feature allows the map to load more quickly in your browser.

Zoom in further to where the generalized layers change to individual points in order to explore the wells more in depth, as shown in the screenshot below:

Screenshot of the Upper Appalachian Gas Storage Wells map, zoomed in


Map Metadata: Upper Appalachian Gas Storage Wells

This map shows gas storage wells in Ohio, Pennsylvania, and West Virginia.  Due to the large amount of data, generalized layers were created to show the location of the storage fields at statewide zoom levels.  To access well data, viewers must zoom in beyond the scale of 1:500,000, or about the size of a large county.  Each state’s data includes slightly different data fields.

Data Layers include:

Name: OH Storage Wells
Date: January 2018
Source: Ohio DNR
Notes: Gas storage wells in Ohio. Storage wells selected from a broader dataset by FracTracker Alliance.

Name: PA Storage Wells
Date:  January 2018
Source:  Pennsylvania DEP
Notes:  Gas storage wells in Pennsylvania. Storage wells selected from a broader dataset by FracTracker Alliance.

Name:  WV Storage Wells
Date:  January 2018
Source:  West Virginia DEP
Notes:  Gas storage wells in West Virginia. Storage wells selected from a broader dataset by FracTracker Alliance.

Name: State Boundaries
Date:  2018
Source:  USDA Geospatial Data Gateway
Notes:  State boundaries of states with gas storage wells on this map.

Shell Pipeline - Not Quite the Good Neighbor

Shell Pipeline: Not Quite the “Good Neighbor”

In August 2016, Shell Pipeline announced plans to develop the Falcon Ethane Pipeline System, a 97-mile pipeline network that will carry more than 107,000 barrels of ethane per day through Pennsylvania, West Virginia, and Ohio, to feed Shell Appalachia’s petrochemical facility currently under construction in Beaver County, PA.

FracTracker has covered the proposed Falcon pipeline extensively in recent months. Our Falcon Public EIA Project explored the project in great detail, revealing the many steps involved in risk assessments and a range of potential impacts to public and environmental health.

This work has helped communities better understand the implications of the Falcon, such as in highlighting how the pipeline threatens drinking water supplies and encroaches on densely populated neighborhoods. Growing public concern has since convinced the DEP to extend public comments on the Falcon until April 15th, as well as to host three public meetings scheduled for early April.

Shell’s response to these events has invariably focused on their intent to build and operate a pipeline that exceeds safety standards, as well as their commitments to being a good neighbor. In this article, we investigate these claims by looking at federal data on safety incidents related to Shell Pipeline.

Contrary to claims, records show that Shell’s safety record is one of the worst in the nation.

The “Good Neighbor” Narrative

Maintaining a reputation as a “good neighbor” is paramount to pipeline companies. Negotiating with landowners, working with regulators, and getting support from implicated communities can hinge on the perception that the pipeline will be built and operated in a responsible manner. This is evident in cases where Shell Pipeline has sold the Falcon in press releases as an example of the company’s commitment to safety in public comments.

Figure 1. Shell flyer

A recent flyer distributed to communities in the path of the Falcon, seen in Figure 1, also emphasizes safety, such as in claims that “Shell Pipeline has a proven track record of operating safely and responsibility and remains committed to engaging with local communities regarding impacts that may arise from its operations.”

Shell reinforced their “good neighbor” policy on several occasions at a recent Shell-sponsored information meeting held in Beaver County, stating that, everywhere they do business, Shell was committed to the reliable delivery of their product. According to project managers speaking at the event, this is achieved through “planning and training with first responders, preventative maintenance for the right-of-way and valves, and through inspections—all in the name of maintaining pipeline integrity.”

Shell Pipeline also recently created an informational website dedicated to the Falcon pipeline to provide details on the project and emphasize its minimal impact. Although, curiously, Shell’s answer to the question “Is the pipeline safe?” is blank.

U.S. Pipeline Incident Data

Every few years FracTracker revisits data on pipeline safety incidents that is maintained by the Pipeline and Hazardous Materials Safety Administration (PHMSA). In our last national analysis we found that there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion.

These numbers were based on U.S. data from 2010-2016 for natural gas transmission and gathering pipelines, natural gas distribution pipelines, and hazardous liquids pipelines. It is also worth noting that incident data are heavily dependent on voluntary reporting. They also do not account for incidents that were only investigated at the state level.

Shell Pipeline has only a few assets related to transmission, gathering, and distribution lines. Almost all of their pipeline miles transport highly-volatile liquids such as crude oil, refined petroleum products, and hazardous liquids such as ethane. Therefore, to get a more accurate picture of how Shell Pipeline’s safety record stacks up to comparable operators, our analysis focuses exclusively on PHMSA’s hazardous liquids pipeline data. We also expanded our analysis to look at incidents dating back to 2002.

Shell’s Incident Record

In total, PHMSA data show that Shell was responsible for 194 pipeline incidents since 2002. These incidents spilled 59,290 barrels of petrochemical products totaling some $183-million in damages. The below map locates where most of these incidents occurred. Unfortunately, 34 incidents have no location data and so are not visible on the map. The map also shows the location of Shell’s many refineries, transport terminals, and off-shore drilling platforms.

Open the map fullscreen to see more details and tools for exploring the data.


View Map Fullscreen | How FracTracker Maps Work

Incidents Relative to Other Operators

PHMSA’s hazardous liquid pipeline data account for more than 350 known pipeline operators. Some operators are fairly small, only maintaining a few miles of pipeline. Others are hard to track subsidiaries of larger companies. However, the big players stand out from the pack — some 20 operators account for more than 60% of all pipeline miles in the U.S., and Shell Pipeline is one of these 20.

Comparing Shell Pipeline to other major operators carrying HVLs, we found that Shell ranks 2nd in the nation in the most incidents-per-mile of maintained pipeline, seen in table 1 below. These numbers are based on the total incidents since 2002 divided by the number of miles maintained by each operator as of 2016 miles. Table 2 breaks Shell’s incidents down by year and number of miles maintained for each of those years.

Table 1: U.S. Pipeline operators ranked by incidents-per-mile

Operator HVL Incidents HVL Pipeline Miles Incidents Per Mile (2016)
Kinder Morgan 387 3,370 0.115
Shell Pipeline 194 3,490 0.056
Chevron 124 2,380 0.051
Sunoco Pipeline 352 6,459 0.049
ExxonMobile 240 5,090 0.048
Colonial Pipeline 244 5,600 0.044
Enbride 258 6,490 0.04
Buckeye Pipeline 231 7,542 0.031
Magellan Pipeline 376 12,928 0.03
Marathan Pipeline 162 5,755 0.029

Table 2: Shell incidents and maintained pipeline miles by year

Year Incidents Pipeline Miles Total Damage Notes
2002 15 no PHMSA data $2,173,704
2003 20 no PHMSA data $3,233,530
2004 25 5,189 $40,344,002 Hurricane Ivan
2005 22 4,830 $62,528,595 Hurricane Katrina & Rita
2006 10 4,967 $11,561,936
2007 5 4,889 $2,217,354
2008 12 5,076 $1,543,288
2009 15 5,063 $11,349,052
2010 9 4,888 $3,401,975
2011 6 4,904 $2,754,750
2012 12 4,503 $17,268,235
2013 4 3,838 $10,058,625
2014 11 3,774 $3,852,006
2015 12 3,630 $4,061,340
2016 6 3,490 $6,875,000
2017 9 no PHMSA data $242,800
2018 1 no PHMSA data $47,000 As of 3/1/18

Cause & Location of Failure

What were the causes of Shell’s pipeline incidents? At Shell’s public informational session, it was said that “in the industry, we know that the biggest issue with pipeline accidents is third party problems – when someone, not us, hits the pipeline.” However, PHMSA data reveal that most of Shell’s incidents issues should have been under the company’s control. For instance, 66% (128) of incidents were due to equipment failure, corrosion, welding failure, structural issues, or incorrect operations (Table 3).

Table 3. Shell Pipeline incidents by cause of failure

Cause Incidents
Equipment Failure 51
Corrosion 37
Natural Forces 35
Incorrect Operation 25
Other 20
Material and/or Weld Failure 15
Excavation Damage 11
Total 194

However, not all of these incidents occurred at one of Shell’s petrochemical facilities. As Table 4 below illustrates, at least 57 incidents occurred somewhere along the pipeline’s right-of-way through public areas or migrated off Shell’s property to impact public spaces. These numbers may be higher as 47 incidents have no mention of the property where incidents occurred.

Table 4. Shell Pipeline incidents by location of failure

Location Incidents
Contained on Operator Property 88
Pipeline Right-of-Way 54
Unknwon 47
Originated on Operator Property, Migrated off Property 3
Contained on Operator-Controlled Right-of-Way 2
Total 194

On several occasions, Shell has claimed that the Falcon will be safely “unseen and out of mind” beneath at least 4ft of ground cover. However, even when this standard is exceeded, PHMSA data revealed that at least a third of Shell’s incidents occurred beneath 4ft or more of soil.

Many of the aboveground incidents occurred at sites like pumping stations and shut-off valves. For instance, a 2016 ethylene spill in Louisiana was caused by lightning striking a pumping station, leading to pump failure and an eventual fire. In numerous incidents, valves failed due to water seeping into systems from frozen pipes, or large rain events overflowing facility sump pumps. Table 5 below breaks these incidents down by the kind of commodity involved in each case.

Table 5. Shell Pipeline incidents by commodity spill volumes

Commodity Barrels
Crude Oil 51,743
Highly Volatile Liquids 6,066
Gas/Diesel/Fuel 1,156
Petroleum Products 325
Total 59,290

Impacts & Costs

None of Shell’s incidents resulted in fatalities, injuries, or major explosions. However, there is evidence of significant environmental and community impacts. Of 150 incidents that included such data, 76 resulted in soil contamination and 38 resulted in water contamination issues. Furthermore, 78 incidents occurred in high consequence areas (HCAs)—locations along the pipeline that were identified during construction as having sensitive environmental habitats, drinking water resources, or densely populated areas.

Table 6 below shows the costs of the 194 incidents. These numbers are somewhat deceiving as the “Public (other)” category includes such things as inspections, environmental cleanup, and disposal of contaminated soil. Thus, the costs incurred by private citizens and public services totaled more than $80-million.

Table 6. Costs of damage from Shell Pipeline incidents

Private Property Emergency Response Environmental Cleanup Public (other) Damage to Operator Total Cost
$266,575 $62,134,861 $11,024,900 $7,308,000 $102,778,856 $183,513,192

A number of significant incidents are worth mention. For instance, in 2013, a Shell pipeline rupture led to as much as 30,000 gallons of crude oil spilling into a waterway near Houston, Texas, that connects to the Gulf of Mexico. Shell’s initial position was that no rupture or spill had occurred, but this was later found not to be the case after investigations by the U.S. Coast Guard. The image at the top of this page depicts Shell’s cleanup efforts in the waterway.

Another incident found that a Shell crude oil pipeline ruptured twice in less than a year in the San Joaquin Valley, CA. Investigations found that the ruptures were due to “fatigue cracks” that led to 60,000 gallons of oil spilling into grasslands, resulting in more than $6 million in environmental damage and emergency response costs. Concerns raised by the State Fire Marshal’s Pipeline Safety Division following the second spill in 2016 forced Shell to replace a 12-mile stretch of the problematic pipeline, as seen in the image above.

Conclusion

These findings suggest that while Shell is obligated to stress safety to sell the Falcon pipeline to the public, people should take Shell’s “good neighbor” narrative with a degree of skepticism. The numbers presented by PHMSA’s pipeline incident data significantly undermine Shell’s claim of having a proven track record as a safe and responsible operator. In fact, Shell ranks near the top of all US operators for incidents per HVL pipeline mile maintained, as well as damage totals.

There are inherent gaps in our analysis based on data inadequacies worth noting. Incidents dealt with at the state level may not make their way into PHMSA’s data, nor would problems that are not voluntary reported by pipeline operators. Issues similar to what the state of Pennsylvania has experienced with Sunoco Pipeline’s Mariner East 2, where horizontal drilling mishaps have contaminated dozens of streams and private drinking water wells, would likely not be reflected in PHMSA’s data unless those incidents resulted in federal interventions.

Based on the available data, however, most of Shell’s pipelines support one of the company’s many refining and storage facilities, primarily located in California and the Gulf states of Texas and Louisiana. Unsurprisingly, these areas are also where we see dense clusters of pipeline incidents attributed to Shell. In addition, many of Shell’s incidents appear to be the result of inadequate maintenance and improper operations, and less so due to factors beyond their control.

As Shell’s footprint in the Appalachian region expands, their safety history suggests we could see the same proliferation of pipeline incidents in this area over time, as well.

NOTE: This article was amended on 4/9/18 to include table 2.

Header image credit: AFP Photo / Joe Raedle

By Kirk Jalbert, FracTracker Alliance

Photo by Pat Sullivan/AP https://www.houstonchronicle.com/news/houston-texas/houston/article/Fracking-research-hits-roadblock-with-Texas-law-6812820.php

California regulators need to protect groundwater from oil and gas waste this time around

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

California’s 2nd Largest Waste Stream

Every year the oil and gas industry in California generates billions of gallons of wastewater, also known as produced water. According to a study by the California Council on Science and Technology, in 2013, more than 3 billion barrels of produced water were extracted along with some 0.2 billion barrels of oil across the state. This wastewater is usually contaminated with a mixture of heavy metals, hydrocarbons, naturally occurring radioactive materials, and high levels of salts. Yet, contaminated wastewater from oil-field operations is exempt from the hazardous waste regulations enforced by the Resource Conservation and Recovery Act (RCRA).

Operators are, therefore, not required to measure or report the chemistry of this wastewater. Even with these unknowns, it is legally re-injected back into groundwater aquifers for disposal. Once an aquifer is contaminated it can be extremely difficult, if not impossible, to clean up again. Particularly in California, where water resources are already stretched thin, underground injection of oil and gas wastewater is a major environmental and economic concern.

Regulatory Deficiency

Under the Underground Injection Control program, wastewater is supposed to be injected only into geologic formations that don’t contain usable groundwater. However, a loophole in the Safe Drinking Water Act allows oil and gas companies to apply for what’s called an aquifer exemption, which allows them to inject wastewater into aquifers that potentially hold high-quality drinking water. To learn more about aquifer exemptions, see FracTracker’s summary, here.

The California department responsible for managing these aquifer exemption permits – the Division of Oil, Gas, and Geothermal Resources (DOGGR) – has for decades failed in its regulatory capacity. In 2015, for example, DOGGR admitted that at least 2,553 wells had been permitted to inject oil and gas waste into non-exempt aquifers – aquifers that could be used for drinking water. Independent audits of DOGGR showed decades of poor record-keeping, lax oversight, and in some cases, outright defiance of the law – showing the cozy relationship between regulators and the oil and gas industry. While 176 wells (those that were injecting into the cleanest drinking water) were initially shut down, most of the rest of the 2,377 permits were allowed to continue injecting into disputed wells through the following two years of the regulatory process.

The injection wells targeted by the Environmental Protection Agency (EPA), including those that were shut down, are shown in the map below (Figure 1).

Figure 1. Map of EPA-targeted Class II Injection Wells


View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

The timeline of all this is just as concerning. The State of California has known about these problems since 2011, when the EPA audited California’s underground injection program and identified substantial deficiencies in its program, including failure to protect some potential underground sources of drinking water, a one-size-fits-all geologic review, and inadequate and under-qualified staffing for carrying out inspections. In 2014, the Governor’s office requested that the California EPA perform an independent review of the program. EPA subsequently made a specific remediation plan and timeline for DOGGR, and in March of 2015 the State finalized a Corrective Action Plan, to be completed by February 2017.

Scientific Review of CA Oil and Gas Activities

Meanwhile, in 2013, the California Senate passed SB-4, which set a framework for regulating hydraulic fracturing in California. Part of the bill required an independent scientific study to be conducted on oil and gas well stimulation, including acid well stimulation and hydraulic fracturing. The California Council on Science and Technology organized and led the study, in collaboration with the Lawrence Berkeley National Laboratories, which combined original technical data analyses and a review of relevant literature, all of which was extensively peer-reviewed. The report argues that both direct and indirect impacts of fracking must be accounted for, and that major deficiencies and inconsistencies in data remained which made research difficult. They also recommended that DOGGR improve and modernize their record keeping to be more transparent.

Figure 2. Depths of groundwater total dissolved solids (a common measure of groundwater quality) in five oil fields in the Los Angeles Basin. Blue and aqua colors represent protected groundwater; the heavy black horizontal line indicates the shallowest hydraulically fractured well in each field. In three of the five wells (Inglewood, Whittier, and Wilmington), fracking and wastewater injection takes place directly adjacent to, or within, protected groundwater.

Figure 2*. Depths of groundwater total dissolved solids (a common measure of groundwater quality) in five oil fields in the Los Angeles Basin. Blue and aqua colors represent protected groundwater; the heavy black horizontal line indicates the shallowest hydraulically fractured well in each field. In three of the five wells (Inglewood, Whittier, and Wilmington), fracking and wastewater injection takes place directly adjacent to, or within, protected groundwater.

A major component of the SB-4 report covered California’s Class II injection program. Researchers analyzed the depths of groundwater aquifers protected by the Safe Drinking Water Act, and found that injection and hydraulic fracturing activity was occurring within the same or neighboring geological zones as protected drinking water (Figure 2*).

*Reproduced from California Council on Science and Technology: An Independent Scientific Assessment of Well Stimulation in California Vol. 3.

More Exemptions to be Granted

Now, EPA is re-granting exemptions again. Six aquifer exemptions have been granted, and more are on the docket to be considered. In this second time around, it is imperative that regulatory agencies be more diligent in their oversight of this permitting process to protect groundwater resources. At the same time, the 2015 California bill SB 83 mandates the appointment of an independent review panel to evaluate the Underground Injection Control Program and to make recommendations on how to improve the effectiveness of the program. This process is currently in the works and a panel has been assembled, and FracTracker Alliance will be working to provide data, maps and analyses for this panel.

Stay tuned for more to come on which aquifers are being exempted, why, and what steps are being taken to protect groundwater in California.


Feature image by Pat Sullivan/AP

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

White Paper (PDF)

Mariner East 2: More Spills & Sinkholes Too?

The Mariner East 2 (ME2) pipeline, currently being built by Sunoco Pipeline (Energy Transfer Partners), is a massive 350-mile long pipeline that, if completed, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.

ME2 has faced numerous challenges from concerned citizens since Sunoco first announced plans for the project in 2014. Fights over taking private property by eminent domain, eyebrow raising permit approvals with known technical deficiencies, as well as nearly a hundred drilling mud spills — inadvertent returns (IRs) — at horizontal directional drilling (HDD) sites have occurred since work began in 2017.

This article and the accompanying map brings us up-to-date on the number, location, and status of ME2’s HDD spills. We also summarize the growing list of violations and settlements related to these events. Finally, we highlight the most recent concerns related to ME2’s construction: sinkholes emerging along the pipeline’s path in karst geological formations.

Map of ME2 Updated HDDs, IRs & Karst

The map below shows an updated visual of ME2’s IRs, as of the DEP’s latest tally on March 1, 2018. Included on this map are HDDs where DEP ordered Sunoco reevaluate construction sites to prevent additional spills. Also identified on this map are locations where Sunoco was ordered to notify landowners in close proximity to certain HDDs prior to additional drilling. Finally, the below map illustrates how sinkholes are not a problem unique to one site of construction but are, in fact, common to many areas along ME2’s route. These topics are discussed in greater depth below.

Open the map full-screen to view additional layers not available in the embedded version below.

View Map Fullscreen | How FracTracker Maps Work

HDDs & Inadvertent Returns – Redux

In July 2017, the PA Environmental Hearing Board granted a two week halt to ME2’s HDD operations. The temporary injunction was in response to petitions from the Clean Air CouncilMountain Watershed Association, and the Delaware Riverkeeper Network following IRs­­ at more than 60 sites that contaminated dozens of private drinking water wells, as well as nearby streams and wetlands. FracTracker first wrote about these issues in this prior article.

HDD IR in Washington County
(image: Observer-Reporter)

Despite these issues, and despite Sunoco being cited for 33 violations, ME2 was allowed to proceed under an August 7th agreement that stated Sunoco must reevaluate their HDD plans to minimize additional spills. These studies were to include re-examining the site’s geology and conducting seismic surveys. Sites for reevaluation were selected based on factors such as proximity water supplies, nearby streams and wetlands, problematic geologic conditions, and if an IR had occurred at that site previously. Of ME2’s 230 HDDs, 64 were ordered for reevaluation — 22 of these were selected due to prior IRs occurring at the site.

The DEP mandated that Sunoco’s reevaluation studies be put out for public comment. A table of which HDD studies are currently out for comment can be found here. DEP’s settlement also required Sunoco to notify landowners in proximity to certain HDDs prior to commencing construction due to elevated risks. Of the 64 HDD sites under review, Sunoco must notify 17 residents within 450ft of an HDD site, and 22 residents within 150ft of other sites. The HDD reevaluation sites are shown on the FracTracker map above. Below is an illustration of one site where Sunoco is required to notify landowners within 450ft.

One issue residents have raised with these notifications is that Sunoco is allowed to offer landowners the option to connect their homes to a water buffalo during drilling as an alternative to using their groundwater well. The catch is that, if their well does become contaminated, they would also waive their right to have Sunoco drill them a new replacement well.

“Egregious Violations”

In January 2018, the DEP again suspended ME2’s construction, this time indefinitely revoking their permits, due to even more IRs. DEP also cited Sunoco for “egregious and willful” permit violations —mainly executing HDDs at sites where they had no permission to do so. The DEP noted of their decision that, “a permit suspension is one of the most significant penalties DEP can levy.”

Nevertheless, Sunoco was again allowed to resume construction on February 8, 2018, after paying a $12.6 million fine. The DEP press release accompanying the decision assured the public that, “Sunoco has demonstrated that it has taken steps to ensure the company will conduct the remaining pipeline construction activities in accordance with the law and permit conditions, and will be allowed to resume.”

A few weeks later, Sunoco ran a full-page advertisement in the Harrisburg Patriot-News, shown above, lauding their safety record. Among other notables, the piece boasts, “State and federal regulators spent more than 100 inspection days during 2017 on the Mariner East project, more inspection days than on any other pipeline in Pennsylvania.” Critics have noted that the inordinate number of inspections are due to the comedy of errors associated with ME2’s construction.

Karst Formations & Sinkholes

Which brings us to the current ME2 debacle. Last week, the PA Public Utility Commission (PUC) ordered a temporary shutdown of Mariner East 1 (ME1), another natural gas liquids pipeline owned by Sunoco/ETP. ME1 was built in the 1930s and its right-of-way is being used for most of ME2’s route across the state. This latest construction setback comes in the wake of numerous sinkholes that emerged beginning in December along Lisa Drive in West Whitehead Township, a suburb of Philadelphia in Chester County.

The most recent of these sinkholes grew into a 20ft-deep, 15ft-wide chasm that exposed portions of ME1 and came within 10ft of a house. It is worth noting that, until only a few days ago, ME1 was an operational 8in pipeline with a potential impact radius (aka “blast zone”) of some 500ft. The PUC ordered that Sunoco must now run a line inspection on ME1 for a mile upstream and a mile downstream from the sinkhole sites along Lisa Drive, seen in the image below. Note the proximity of these sinkholes to Amtrak’s Keystone rail lines (connecting Pittsburgh to Philadelphia), under which ME2 also runs. The Federal Railway Administration only recently learned of the sink holes from a nearby resident.

The Lisa Drive sinkholes are being credited to Sunoco executing an HDD in an area known to have karst geological formations. Sunoco has been ordered by the PUC to conduct more geophysical testing and seismic analyses of the area because of this. Karst is often called the “Swiss cheese” of geology — notorious for caves, sinkholes, and underground rivers. As these geological formations change shape, pipelines can bend and settle over time, ultimately leading to potentially dangerous gas leakages or explosions. For instance, the 2015 Atex-1 pipeline explosion in Follansbee, WV, was ultimately determined by the Pipeline and Hazardous Materials Safety Administration (PHSA) as having been caused by ground settling. That explosion released some 24,000 barrels of ethane, burning more than five acres of surrounding land.

The US Geological Survey (USGS) maintains fairly detailed maps of rock formations for most states, including formations known to have karst. In PA, there are a number of “carbonate” rock families known for karst features and settlement issues: limestone and dolostone, and, to a lesser extent, shale. Meanwhile, the PA Department of Conservation and Natural Resources (DCNR) has maintained a record of karst “features” — sinkholes and surface depressions — documented since 1985. A great explanation of the different types of karst features can be found here.

Underestimating the Risks

What is concerning about the Lisa Drive sinkholes is that Sunoco had supposedly already conducted additional karst geological reviews of the area as part of the August DEP settlement, subsequently ranking a nearby HDD (#PA-CH-0219) as “low risk” for running into karst issues—despite knowing the HDD runs through a karst formation with sinkholes and surface depressions in the area. For the HDD that runs the length of Lisa Drive (#PA-CH-0256), the study rated its risk as “very low.” These two HDDs are shown below, along with the area of ME1 now under structural review.

The likely result of these inaccurate assessments led to two IRs at Lisa Drive, one in October and another in November 0f 2017. DEP’s writeup of these events note that the total volume of drilling muds spilled remains unknown because Sunoco didn’t report the incident. Then, only a month later, sinkholes emerged in the same locations. An image of the November HDD IR is shown below.

It is important to note two additional things of Sunoco’s karst study, an except of which is seen in their map of the West Whiteland area below. First, Lisa Drive is just on the edge of a karst limestone formation. USGS data suggest the location is actually mica schist, but the USGS data is also only a rough estimate of different formations. This underscores why pipeline companies must be required to conduct detailed geotechnical analysis of all HDD sites at the onset of their projects.

The other notable aspect of Sunoco’s study is that it does not fully represent all rock formations known to have karst features. In Sunoco’s map, we see orange shading for limestone, but this does not include dolostone that underlies the many surface depressions and sinkholes surrounding West Whiteland. FracTracker’s map includes these formations for greater accuracy.

Takeaways

Interestingly, as Anya Litvak of the Pittsburgh Post-Gazette observed in her reporting on the Lisa Drive incident, Sunoco’s updated karst assessment ranked the entire route of the ME2 pipeline through the state as “low to very low” risk for potential issues. Furthermore, Sunoco has tried to downplay the Lisa Drive incident, stating that “all areas have been secured,” and that additional incidents are unlikely to occur.

But the overall relationship between Mariner East 2’s IRs, HDD sites, and known karst features tells a very different story than Sunoco’s about the potential risks of ME2. In addition to the concerns about new sinkholes near Lisa Drive, FracTracker found the following in our analysis:

  • 7 sinkholes and 386 surface depressions are within 1,500ft of a ME2 HDD site.
  • Of the 230 HDDs, 87 are located in carbonate rock areas (52 in limestone/dolostone, 35 in shale).
  • Of the 99 IRs, 39 have occurred in carbonate rock areas (23 in limestone/dolostone, 16 in shale).

In other words, nearly half of the IRs caused by ME2 HDDs were located in areas known to have karst formations. Worth noting is that an additional 15 occurred in sandstone formations, also known to cause settlement over time. The remaining IRs are split across nine other formation types.

Considering that the DEP’s current review of Sunoco’s ability to safely execute future HDDs are based on the same karst study that missed the Lisa Drive HDD and ranked nearby HDDs as a “low” risk, one can only assume that additional spills will occur. There are many more HDD sites yet to be drilled, and also not likely studied fully for potential karst risks. As illustrated by the continuing saga of spills, violations, and omissions, it is clear that Sunoco has not maintained a high standard of construction in building ME2 from the onset.

We thank Eric Friedman from the Middletown Coalition for Community Safety for supplying photos of the Lisa Drive site used in this article.

By Kirk Jalbert, FracTracker Alliance

Waiting on Answers - XTO incident image two weeks later

Waiting on Answers Weeks after a Well Explosion in Belmont County Ohio

Mar 7 Update: The well has finally been capped.

On February 15, 2018, officials evacuated residents after XTO Energy’s Schnegg gas well near Captina Creek exploded in the Powhatan Point area of Belmont County, Ohio. More than two weeks later, the well’s subsequent blowout has yet to be capped, and people want to know why. Here is what we know based on various reports, our Ohio oil and gas map, and our own fly-by on March 5th.

March 19th Update: This is footage of the Powhatan Point XTO Well Pad Explosion Footage from Ohio State Highway Patrol’s helicopter camera the day after the incident:


Powhatan Point XTO well pad explosion footage from Ohio State Highway Patrol

Cause of the Explosion

The well pad hosts three wells, one large Utica formation well, and two smaller ones. XTO’s representative stated that the large Utica well was being brought into production when the explosion occurred. The shut-off valves for the other two wells were immediately triggered, but the explosion caused a crane to fall on one of those wells. The representative claims that no gas escaped that well or the unaffected well.

Observers reported hearing a natural gas hiss and rumbling, as well as seeing smoke. The Powhatan Point Fire Chief reported that originally there was no fire, but that one later developed on the well pad. To make matters worse, reports later indicated that responders are/were dealing with emergency flooding on site, as well.

As of today, the Utica well that initially exploded is still releasing raw gas.

Site of the Feb 15th explosion on the XTO pad

Map of drilling operations in southeast Ohio, with the Feb 15, 2018 explosion on XTO Energy’s Schnegg gas well pad marked with a star. View dynamic map

Public Health and Safety

No injuries were reported after the incident. First responders from all over the country are said to have been called in, though the mitigation team is not allowed to work at night for safety reasons.

The evacuation zone is for any non-responders within a 1-mile radius of the site, which is located on Cat’s Run Road near State Route 148. Thirty (30) homes were originally evacuated within the 1-mile zone according to news reports, but recently residents within the outer half-mile of the zone were cleared to return – though some have elected to stay away until the issue is resolved completely. As of March 1, four homes within ½ mile of the well pad remain off limits.

The EPA conducted a number of site assessments right after the incident, including air and water monitoring. See here and here for their initial reports from February 17th and 20th, respectively. (Many thanks to the Ohio Environmental Council for sharing those documents.)

Much of the site’s damaged equipment has been removed. Access roads to the pad have been reinforced. A bridge was recently delivered to be installed over Cats Run Creek, so as to create an additional entrance and exit from the site, speaking to the challenges faced in drilling in rural areas. A portion of the crane that fell on the adjacent wellhead has been removed, and workers are continuing their efforts in removing the rest of the crane.


The above video by Earthworks is optical gas imaging that makes visible what is normally invisible pollution from XTO’s Powhatan Point well disaster. The video was taken on March 3, 2018, almost 3 weeks after the accident that started the uncontrolled release. Learn more about Earthworks’ video and what FLIR videos show.

An early estimate for the rate of raw gas being released from this well is 100 million cubic feet/day – more than the daily rate of the infamous Aliso Canyon natural gas leak in 2015/16. Unfortunately, little public information has been provided about why the well has yet to be capped or how much gas has been released to date.

Bird’s Eye View

On February 26, a two-mile Temporary Flight Restriction (TFR) was enacted around the incident’s location. The TFR was supposed to lapse during the afternoon of March 5, however, due to complications at the site the TFR was extended to the evening of March 8. On March 5, we did a flyover outside of the temporary flight restriction zone, where we managed to capture a photo of the ongoing release through a valley cut. Many thanks to LightHawk and pilot Dave Warner for the lift.

Photo of the XTO Energy well site and its current emissions after the explosion two weeks ago. Many are still waiting on answers as to why the well has yet to be capped.

XTO Energy well site and ongoing emissions after the explosion over two weeks ago. Many are still waiting on answers as to why the well has yet to be capped. Photo by Ted Auch, FracTracker Alliance, March 5, 2018. Aerial support provided by LightHawk

Additional resources

Per the Wheeling Intelligencer – Any local residents who may have been impacted by this incident are encouraged to call XTO’s claims phone number at 855-351-6573 or visit XTO’s community response command center at the Powhatan Point Volunteer Fire Department, located at 104 Mellott St. or call the fire department at 740-312-5058.

Sources: