The majority of FracTracker’s posts are generally considered articles. These may include analysis around data, embedded maps, summaries of partner collaborations, highlights of a publication or project, guest posts, etc.

destroyed home following pipeline explosion in San Bruno, CA

Pipelines Continue to Catch Fire and Explode

For the past decade, petroleum operators in the United States have been busy pumping record amounts of oil and gas from the ground. But has the pace been too frenzied? Since the vast majority of the oil and gas is not used in situ, the industry must transport these hydrocarbon products to other locations. The principal way of achieving this is through pipelines, a process which has resulted in thousands of incidents, causing hundreds of injuries and fatalities, thousands of evacuations, and billions of dollars’ worth of damage.

The United States has an estimated 3 million miles of hazardous liquid, gas distribution, and gathering and transmission pipelines in operation, and more are being built every day. Not only have the pipelines themselves become so ubiquitous that most people never give them a second thought, the incidents themselves have become so familiar to us that even severe ones struggle to gain any attention outside of the local media area.

In 2019, there were 614 reported pipeline incidents in the United States, resulting in the death of 10 people, injuries to another 35, and about $259 million in damages. As mentioned below, some of these totals are likely to creep upward as additional reports are filed. In terms of statistical fluctuations, 2019 was slightly better than normal, but of course statistics only tell a part of the story. Friends and family of the ten people that died last year would find no comfort knowing that there were fewer such casualties than 2017, for example. Similarly, it would be useless to comfort a family that lost their home by reminding them that someone lost an even bigger and more expensive home the year before.

Keeping in mind the human impact, let’s take a look at the data.

Pipeline Incident Summary

These incidents are broken into three separate reports:

  1. Hazardous Liquids (including crude oil, refined petroleum products, and natural gas liquids).
  2. Gas Distribution (lines that take gas to residents and other consumers), and
  3. Gas Transmission & Gathering (collectively bringing gas from well sites to processing facilities and distant markets)

View map fullscreen | How FracTracker maps work

Table 1: Summary of pipeline incidents from 1/1/2010 through 12/31/2019

Report Incidents Fatalities Injuries Evacuees Damages ($) Fires Explosions
Hazardous Liquids Lines 3,978 10 26 2,482 2,812,391,218 130 15
Gas Transmission & Gathering Lines 1,226 25 108 12,984 1,315,162,976 133 57
Gas Distribution 1,094 105 522 20,526 1,229,189,997 659 257
Totals 6,298 140 656 35,992 5,356,744,191 922 329

But is increasing the capacity of the pipes a good idea? As FracTracker has shown in the past, pipeline incidents occur at a rate of about 1.7 incidents per day. This holds true with updated data, showing 6,298 incidents from January 1, 2010 through December 17, 2019, which was the latest report filed when the data was downloaded in early February 2020.

Pipeline Usage in the United States

In 2018, roughly three million miles of natural gas pipelines transported almost 28 trillion cubic feet (Tcf) of gas, which is roughly 13 times the volume of Mount Everest. For liquids, pipeline data is available showing shipments of from one region of the country (known as a PAD District) to another, which shows that 1.27 billion barrels of crude oil were shipped through almost 81,000 miles of pipelines in 2018, and 3.39 billion barrels through nearly 214,000 miles of pipes when counting natural gas liquids and refined petroleum products.

Note that these figures are less than 2018 estimates based on 70% of liquid petroleum products being moved by pipeline. This discrepancy could be accounted for by the dramatic increase in production in recent years, or perhaps by intra-PAD shipments not listed in the data above. For example, petroleum produced in the Permian Basin in western Texas and eastern New Mexico may travel nearly 500 miles by pipeline en route to export terminals on the Gulf coast, while remaining in the same PAD District. If the 70% estimate holds true, then roughly 2.8 billion barrels (117 billion gallons) of crude would be shipped by pipeline, more than twice as much as the 1.27 billion barrel figure shown above.

The drilling boom in the United States was quickly followed by a boom in pipeline construction. Total mileage for liquid pipelines – known as hazardous liquid lines – increased by 20% from 2010 to 2018. For those aware of thousands of miles of recent gas pipeline projects, it is confusing to hear that the data from the Pipeline and Hazardous Materials Safety Administration (PHMSA) are mixed for natural gas. It does show a 2.4% increase in total miles for gas distribution mainlines to 1.3 million miles, and a 2.0% increase over the same time in distribution service lines, which run from the mainlines to the consumer. However, the total mileage for transmission lines – which are large diameter pipes that move gas long distances – actually contracted 2.1% to just under 302,000 miles. Total mileage for gathering lines fell even more, by 8.4% to just under 18,000 miles. However, since PHMSA estimates only 5% of gathering lines report to the agency, this last figure is probably not a valid estimate.

If this data is accurate, it means that the thousands of miles of transmission and gathering lines built in recent years were more than offset by decommissioned routes. However, given the record production levels mentioned above, it is almost certain that total capacity of the system has gone up, which can be accomplished through a combination of increased pressure and diameter of the pipe.

Hazardous Liquids

Table. 2. Hazardous Liquid Pipeline Incident Impact Summary. Data from PHMSA.
Year Incidents Fatalities Injuries Evacuees Damages ($) Fires Explosions
2010 350 1 3 686 1,075,193,990 8 1
2011 344 0 1 201 273,526,547 9 2
2012 366 3 4 235 145,477,426 10 2
2013 401 1 6 858 278,525,540 15 2
2014 455 0 0 34 140,211,610 20 4
2015 460 1 0 138 256,251,180 16 1
2016 420 3 9 104 212,944,094 17 2
2017 415 1 1 58 163,118,772 7 0
2018 405 0 2 165 152,573,682 15 1
2019 362 0 0 3 114,568,377 13 0
Grand Total 3978 10 26 2482 2,812,391,218 130 15

The most important statistics when considering pipeline incidents are those representing bodily harm – injuries and fatalities. In those respects, at least, 2019 was a good year for hazardous liquid pipelines, with no reported injuries or fatalities. Most of the other metrics were below average as well, including 362 total incidents, three evacuees, $115 million in damages, and zero explosions. The 13 reported fires represents a typical year. However, we should keep in mind that the results may not be complete for 2019. The data was downloaded on February 3, 2020, but represented the January 2020 update of the dataset. Additionally, there is often a gap between the incident date and the reporting date, which is sometimes measured in months.

One thing that really sticks out about hazardous liquid pipelines is that the pipelines that fail the most often are the newest. Of the hazardous liquid incidents since 2010, 906 occurred in pipelines that were installed within the decade. By means of comparison, the same amount of incidents occurred in the same period for pipes installed in the 40 years between 1970 and 2009. Of course, the largest category is “Unspecified,” where the install year of the pipeline was left blank in 1,459 of the 3,978 total incidents (37%).

The causes of the incidents are dominated by equipment failure, where the 1,811 incidents accounted for 46% of the total. The next highest total was corrosion failure with 798 incidents, or 20% of the total. Six of the incidents in the “Other Outside Force Damage” are attributed to intentional damage, representing 0.15% of the total.

Gas Transmission & Gathering

Table. 3. Gas Transmission and Gathering Pipeline Incident Impact Summary. Data from PHMSA.
Year Incidents Fatalities Injuries Evacuees Damages ($) Fires Explosions
2010 116 10 61 373 596,151,925 19 7
2011 128 0 1 874 125,497,792 14 6
2012 116 0 7 904 58,798,676 15 7
2013 112 0 2 3,103 53,022,396 11 4
2014 142 1 1 1,482 61,533,154 15 6
2015 149 6 16 565 61,498,753 10 6
2016 97 3 3 944 107,524,564 8 4
2017 126 3 3 202 85,665,233 17 7
2018 118 1 7 4,088 77,753,611 17 6
2019 122 1 7 449 87,716,872 7 4
Grand Total 1,226 25 108 12,984 1,315,162,976 133 57

One person died and seven were injured from gas transmission and gathering line accidents that were reported to PHMSA in 2019, which were both below average for this dataset. The total number of incidents was typical, while the 499 evacuees, $88 million in property damage, seven fires, and four explosions were all below normal. Note that only a small fraction of the nation’s gathering lines are required to report incident data to PHMSA, so this data should not be seen as comprehensive. And as with the hazardous liquid incidents, it is likely that not all incidents occurring during the year have had reports filed in time for this analysis.

The distribution of the age of pipes that failed within the past decade is different from the hazardous liquid pipelines. Pipes installed in the 1950s, 1960s, and 1970s were the most likely to fail, although failures in routes built this century represent a secondary peak. The number of incidents where the age of pipe data field was not completed remains high at 135 incidents, but the data gap is not as outrageous as it is for hazardous liquid lines.

Once again, equipment failure is the most common cause of transmission and gathering line accidents, with 390 incidents accounting for 32% of the total. Corrosion failure was the second most common reason, with 239 incidents accounting for an additional 19%. One incident was attributed to intentional damage, accounting for 0.08% of the total.

Gas Distribution

Year Incidents Fatalities Injuries Evacuees Damages ($) Fires Explosions
2010 120 11 44 2,080 21,155,972 82 29
2011 116 13 53 4,417 27,105,022 73 32
2012 88 9 46 746 25,556,562 61 22
2013 104 8 36 1,606 37,363,960 59 20
2014 106 18 93 2,037 72,885,067 61 30
2015 101 4 32 948 32,176,608 65 24
2016 115 10 75 2,510 56,900,068 71 28
2017 104 16 34 1,960 72,226,380 57 17
2018 110 7 81 2,561 827,647,610 64 31
2019 130 9 28 1,661 56,172,748 66 24
Grand Total 1,094 105 522 20,526 1,229,189,997 659 257
Table 4. Gas Distribution Pipeline Incident Impact Summary. Data from PHMSA.

The nine fatalities and 28 injuries reported for gas distribution lines in 2019 were obviously tragic, but these totals are both below what would be expected in a typical year. The 130 incidents and 66 fires were both above average totals, while the 1,661 evacuees, $56 million in property damage, and 24 explosions were all below average. As with the other reports, these totals are subject to change as additional reports are filed.

The distribution for the age of pipes that failed during the past decade is more like a normal (or bell curve) distribution than the other two datasets, with the most incidents occurring in pipeline routes laid in the 1990s. Much like the hazardous liquids dataset, however, the largest category is “Unspecified”, where the age of the pipe was not entered into the data for one reason or another. These 222 incidents account for 20% of the total, and if we had this data, the distribution could be significantly different.

The causes of distribution line incidents are attributed very differently than either the hazardous liquids or transmission and gathering line datasets. The leading cause is “Other Outside Force Damage,” with 355 incidents accounting for 32% of the total, followed by 330 “Excavation Damage” incidents accounting for an additional 30%. This difference could well be explained because this type of line tends to occur in highly populated areas. The largest subtype for the outside force damage category is damage by motor vehicles not involved in excavation, with 160 incidents, followed by fires or explosions which the operator claims did not originate with the pipeline, with 78 incidents. Intentional damage remains rare – although still way too high – with 15 incidents, or 1.4% of the overall total.

Data Notes

PHMSA incident data is ultimately self-reported by the various operators. Because the vast majority of gathering lines do not report to the agency, this dataset should not be seen as comprehensive for incidents in that category.

There were eleven issues with faulty location data that we were able to correct for this map. There are likely to be more, as only the ones with coordinates rendering outside of the United States were identified. Some of these had mixed up latitude and longitude values, or omitted the negative value for longitude, placing the points in Kyrgyzstan, the Himalayas, and Mongolia. One record had no coordinates at all, but included a detailed description of the location, which was then found on Google Maps. Two wells that rendered in Canada were on the correct longitude for the county that they belonged in, but had faulty latitude values. One of these was reduced by exactly 20° of latitude, while the other was reduced by exactly 7° of latitude, and were then located in the proper county. Other than the adjustments for these eleven incidents, all location data reflects the data available on the PHMSA .

Additional Leaks

The data above reflects 6,298 incidents over the course of a decade, with a few more incidents likely to trickle in during the next few updates of the reports by PHMSA. And while these discrete incidents account for the majority of human impacts in terms of life and well-being, it is worth noting that these 1.7 incidents per day are not the only problems that occur along millions of miles of pipelines in this country.

William Limpert has analyzed information about pipeline leakage in gas transmission lines, which found that 0.35% of the volume of gas was lost in transmission, one tenth of which was vented or flared intentionally, for example in compressor station blowdown events. This means that 0.315% of the gas is released unintentionally.

These numbers sound tiny, but due to the enormous volume of gas transported in pipes, they really add up quickly. For example, the Atlantic Coast Pipeline, Mr. Limpert’s primary focus, is scheduled to transmit 1.5 billion cubic feet (Bcf) of natural gas per day. At a typical rate of failure, we could expect leakage of 4.725 million cubic feet (MMcf) per day, or 1.725 billion cubic feet over the course of a year. That’s enough gas to provide to all Pennsylvania residential consumers for about 13 days in August, and this is just from one pipeline.

As mentioned above, the entire pipeline network moved about 28 Tcf in 2018. The estimated amount leaked at 0.315% is 88.2 Bcf. What would residential consumers pay for that volume of gas? Even with the current low prices due to the gas glut, the average residual price was $9.43 per Mcf in November 2019, the most recent data available. That means that residential consumers would pay roughly $832 million for an equivalent amount of gas.

Still More Leaks

There are also countless leaks that occur during the construction of the pipelines themselves. When pipelines are built, they have numerous obstacles to navigate during their construction. Among the most challenging are linear obstacles, such as roads and streams. A method that the industry regularly uses to avoid having to trench through these features is horizontal directional drilling (HDD).

While HDDs are meant to minimize impacts, they very frequently result in an incident known as an “inadvertent return,” when volumes of drilling mud return to the surface through a series of underground voids, frequently karst geology or abandoned mines. The leaking borehole under the road or stream then leaks drilling mud – sometimes thousands of gallons of it – which can then affect aquatic stream life. Additionally, these areas represent voids in the matrix that is intended to keep the pipeline stable and may represent future opportunities for catastrophic failure.

These features are so prevalent in some parts of the country that pipeline operators seem to be unable to avoid them, and regulators seem unwilling to press the issue in a proactive fashion. For example, Energy Transfers’ Mariner East II pipeline is currently being built to move natural gas liquids from Appalachia to its industrial complex and export terminal at Marcus Hook, Pennsylvania. During construction, there have been hundreds of inadvertent returns, both to the soil and waters of the Commonwealth. The presence of karst and abandoned mines along the route were well known ahead of time to the operator designing and implementing the HDDs, as well as the regulators who approved their use.

The many issues along the Mariner East II route, when combined with a massive pipeline explosion in Beaver County led to Pennsylvania’s decision to temporarily block all permit actions by the operator statewide. That hold is now lifted, leading residents along the route worried about a new batch of inadvertent returns, related sinkholes, and other follies as the project is completed. Construction activities for the parallel Mariner East 2X pipeline are already underway.

While residents along the Mariner East pipeline system have seen more than their fair share of impacts from the construction, these impacts are not at all rare on unusual. What is unusual, however, is for regulators to provide data highlighting these types of errors. In Pennsylvania, enough people requesting data on a variety of problematic pipelines has prompted the Department of Environmental Protection to create a Pennsylvania Pipeline Portal page. This only includes information on recent major pipeline projects and is not comprehensive in terms of content, but it is a major step in the right direction in terms of data transparency.

Can We Do Better?

Statistics can never capture the full force of tragedies. Most of us are aware of this point intellectually, and yet when we are confronted with such numbers, it seems that we are obliged to process them in one form or another. Perhaps the most common way is to compartmentalize it, where we might acknowledge the data and misfortune that they represent, but the file it away in the messy cabinet of our mind, clearing the slate of active thought for the next bit of information. Many of us never stop to question whether we can do better.

So, can we do better with pipelines? Perhaps so. If there are structural hazards such as abandoned mines or karst, perhaps regulators could demand that the operator route around them. If there are residents nearby, communities should demand that the pipeline get rerouted as well. Of course, these reroutes will just push the impacts elsewhere, but hopefully to an area where people won’t be affected by them, if such a place exists. Certainly, there could be better standards for construction and identification, so that there are fewer accidents involving pipelines. Or better yet, we could transition to renewable fuels for an ever-increasing share of our energy needs, making dirty and dangerous pipelines a relic of the past.

The one thing that we can no longer afford to do is continue to stick our fingers in our ears and dismiss the entire issue of pipeline safety as manageable or the cost of doing business.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Feature image at top of page shows San Bruno, California, following the 2010 pipeline explosion

Support this work

DONATE

Stay in the know

 

Overhead view of injection well

The Hidden Inefficiencies and Environmental Costs of Fracking in Ohio

Ohio continues to increase fracked gas production, facilitated by access to freshwater and lax radioactive waste disposal requirements.

View map fullscreen | How FracTracker maps work

Map: Ohio Quarterly Utica Oil and Gas Production along with Quarterly Wastewater Disposal

Well Volumes

A little under a year ago, FracTracker released a map and associated analysis, “A Disturbing Tale of Diminishing Returns in Ohio,” with respect to Utica oil and gas production, highlighting the increasing volume of waste injected in wastewater disposal wells, and trends in lateral length in fracked wells from 2010 to 2018. In this article, I’ll provide an update on Ohio’s Utica oil and gas production in 2018 and 2019, the demands on freshwater, and waste disposal. After looking at the data, I recommend that we holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste in order to minimize negative externalities.

Recently, I’ve been inspired by the works of Colin Woodward[1] and Marvin Harris, who outline the struggle between liberty and the common good. They relate this to the role that commodities and increasing resource intensity play in maintaining or enhancing living standards. This quote from Harris’s “Cannibals and Kings” struck me as the 122 words that most effectively illustrate the impacts of the fracking boom that started more than a decade ago in Central Appalachia:

“Regardless of its immediate cause, intensification is always counterproductive. In the absence of technological change, it leads inevitably to the depletion of the environment and the lowering of the efficiency of production since the increased effort sooner or later must be applied to more remote, less reliable, and less bountiful animals, plants, soils, minerals, and sources of energy. Declining efficiency in turn leads to low living standards – precisely the opposite of the desired result. But this process does not simply end with everybody getting less food, shelter, and other necessities in return for more work. As living standards decline, successful cultures invent new and more efficient means of production which sooner or later again lead to the depletion of the natural environment.” From Chapter 1, page 5 of Marvin Harris’ “Cannibals and Kings: The Origins of Cultures, 1977

In reflecting on Harris’s quote as it pertains to fracking, I thought it was high time I updated several of our most critical data sets. The maps and data I present here speak to intensification and the fact that the industry is increasingly leaning on cheap water withdrawals, landscape impacts, and waste disposal methods to avoid addressing their increasingly gluttonous ways. To this point, the relationship between intensification and resource utilization is not just the purview of activists, academics, and journalists anymore; industry collaborators like IHS Markit admitting as much in their latest analysis pointing to the fact that oil and gas operators “will have to drill substantially more wells just to maintain current production levels and even more to grow production”. Insert Red Queen Hypothesis analogy here!

Oil and Gas Production in Ohio

The four updated data sets presented here are: 1) oil, gas, and wastewater production, 2) surface and groundwater withdrawal rates for the fracking industry, 3) freshwater usage by individual Ohio fracked wells, and 3) wastewater disposal well (also referred to as Class II injection wells) rates.

Below are the most important developments from these data updates as it pertains to intensification and what we can expect to see in the future, with or without the ethane cracker plants being trumpeted throughout Appalachia.

From a production standpoint, total oil production has increased by 30%, while natural gas production has increased by 50% year over year between the last time we updated this data and Q2-2019 (Table 1).

According to the data we’ve compiled, the rate of growth for wastewater production has exceeded oil and is nearly equal to natural gas at 48% from 2017 to 2018.  On average the 2,398 fracked wells we have compiled data for are producing 27% more wastewater per well now than they did at the end of 2017.

————–2017————– ————–2019————–
Oil (million barrels) Gas (million Mcf) Brine (million barrels) Oil (million barrels) Gas (million Mcf) Brine (million barrels)
Max 0.51 12.92 0.23 0.62 17.57 0.32
Total 83.14 5,768.47 76.01 108.15 8,679.12 112.28
Mean 0.40 2.79 0.37 0.45 3.62 0.47

Table 1. Summary statistics for 2,398  fracked wells in Ohio from a production perspective from 2017 to Q2 2019.

 

Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.

Figure 1. Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.

The increasing amount of resources and number of wells necessary to achieve marginal increases in oil and gas production is a critical factor to considered when assessing industry viability and other long-term implications. As an example, in Ohio’s Utica Shale, we see that total production is increasing, but as IHS Markit admits, this is only possibly by increasing the total number of producing wells at a faster rate. As is evidenced in Figure 1, somewhere around the Winter of 2017-2018, the production rate per well began to flatline and since then it has begun to decrease.

Water demands for oil and gas production in Ohio

Since last we updated the industry’s water withdrawal rates, the Ohio Department of Natural Resources (ODNR) has begun to report groundwater rates in addition to surface water. The former now account for nine sites in seven counties, but amount to a fraction of reported withdrawals to date (around 00.01% per year in 2017 and 2018). The more disturbing developments with respect to intensification are:

1) Since we last updated this data, 59 new withdrawal sites have come online. There are currently 569 sites in total in ODNR’s database. This amounts to a nearly 12% increase in the total number of sites since 2017. With this additional inventory, the average withdrawal rate across all sites has increased by 13% (Table 2).

2) Since 2010, the demand for freshwater to be used in fracking has increased by 15.6% or 693 million gallons per year (Figure 2).

3) We expect to see an inflection point when water production will increase to accommodate the petrochemical buildout with cracker plants in Dilles Bottom, OH; Beaver County, PA; and elsewhere. In 2018 alone, the oil and gas industry pulled 4.69 billion gallons of water from the Ohio River Valley. Since 2010, the industry has permanently removed 22.96 billion gallons of freshwater from the Ohio River Valley. It would take the entire population of Ohio five years to use the 2018 rate in their homes.[2]

As we and others have mentioned in the past, this trend is largely due to the bargain basement price at which we sell water to the oil and gas sector throughout Appalachia.[3] To increase their nominal production returns, companies construct longer laterals with orders of magnitude more water, sand, and chemicals.  At this rate, the fracking industry’s freshwater demand will have doubled to around 8.8-.9.5 billion gallons per year by around 2023.  Figure 3 demonstrates that average fracked lateral length continues to increase to the tune of +15.7-21.2% (+1,564-2,107 feet) per quarter per lateral. This trend alone is more than 2.5 times the rate of growth in oil production and roughly 24% greater than the rate of growth in natural gas production (See Table 1).

4. The verdict is even more concerning than it was a couple years ago with respect to water demand increasing by 30% per quarter per well or an average of 4.73 million gallons (Figure 4). The last time we did this analysis >1.5 years ago demand was rising by 25% per quarter or 3.84 million gallons. At that point I wouldn’t have guessed that this exponential rate of water demand would have increased but that is exactly what has happened. Very immediate conversations must start taking place in Columbus and at the region’s primary distributor of freshwater, The Muskingum Watershed Conservancy District (MWCD), as to why this is happening and how to push back against the unsustainable trend.

2017 2018
Sites 510 569
Maximum (billion gallons) 1.059 1.661
Sum (billion gallons) 18.267 22.957
Mean (billion gallons) 0.358 0.404

Table 2. Summary of fracking water demands throughout Ohio in 2017 when we last updated this data as well as how those rates changed in 2018.

Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (Million Gallons Per Year).

Figure 2. Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (million gallons per year).

Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (Feet).

Figure 3. Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (feet).

Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (Million Gallons).

Figure 4. Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (million gallons).

 

Waste Disposal

When it comes to fracking wastewater disposal, the picture is equally disturbing. Average disposal rates across Ohio’s 220+ wastewater disposal wells increased by 12.1% between Q3-2018 and Q3-2019 (Table 3). Interestingly, this change nearly identically mirrors the change in water withdrawals during the same period. What goes down– freshwater – eventually comes back up.

Across all of Ohio’s wastewater disposal wells, total volumes increased by nearly 22% between 2018 and the second half of 2019. However, the more disturbing trend is the increasing focus on the top 20 most active wastewater disposal wells, which saw  an annual increase of 17-18%. These wells account for nearly 50% of all waste and the concern here is that many of the pending wastewater disposal well permits are located on these sites, within close proximity, and/or are proposed by the same operators that operate the top 20.

When we plot cumulative and average disposal rates per well, we see a continued exponential increase. If we look back at the last time, we conducted this analysis, the only positive we see in the data is that at that time, average rates of disposal per well were set to double by the Fall of 2020. However, that trend has tapered off slightly — rates are now set to double by 2022.

Each wastewater disposal well is seeing demand for its services increase by 2.42 to 2.94 million gallons of wastewater per quarter (Figure 5). Put another way, Ohio’s wastewater disposal wells are rapidly approaching their capacity, if they haven’t already.  Hence why the oil and gas industry has been frantically submitting proposals for additional waste disposal wells. If these wells materialize, it means that Ohio will continue to be relied on as the primary waste receptacle for the fracking industry throughout Appalachia.

Variable ——————-All Wells——————- ——————-Top 20——————-
To Q3-2018 To Q3-2019 % Change To Q3-2018 To Q3-2019 % Change
Number of Wells 223 243 +9.0 ——- ——- ——-
Max (MMbbl) 1.12 1.20 +7.1 ——- ——- ——-
Sum (MMbbl) 203.19 247.05 +21.6 101.43 119.31 +17.6
Average (MMbbl) 0.91 1.02 +12.1 5.07 5.97 +17.8

Table 3. Summary Statistics for Ohio’s Wastewater Disposal Wells (millions of barrels (MMbbl)).

Average Fracking Waste Disposal across all of Ohio’s Class II Injection Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (Million Barrels).

Figure 5. Average Fracking Waste Disposal across all of Ohio’s Wastewater Disposal Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (million barrels).

Using the Pennsylvania natural gas data merged with the Ohio wastewater data, we were able to put a finer point on how much wastewater would be produced with a 100,000 barrel ethane cracker like the one PTT Global Chemical has proposed for Dilles Bottom, Ohio. The following are our best estimate calculations assuming 1 barrel of condensate is 20-40% ethane. These calculations required that we take some liberties with the merge of the ratio of gas to wastewater in Ohio with the ratio of gas to condensate in Pennsylvania:

  1. For 2,064 producing Ohio fracked wells, the ratio of gas to wastewater is 64.76 thousand cubic feet (Mcf) of gas produced per barrel of wastewater.
  2. Assuming 40% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 320.08 Mcf of gas per barrel of ethane condensate. For 100,000 barrels of ethane needed per cracker per day, that would result in 494,285 barrels (20.76 million gallons) of brine per day.
  3. Assuming 20% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 640.15 Mcf per barrel of ethane condensate = For 100,000 barrels of ethane needed per cracker per day that would result in 988,571 barrels/41.52 million gallons of wastewater per day.

But wait, here is the real stunner:

  1. The 40% assumption result is 3.81 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 5.37 times the daily rates of brine taken in by the top 20 wells (Note: the top 20 wastewater disposal wells account for 71% of all wastewater  waste taken in by all of the state’s disposal wells).
  2. The 20% assumption result is 7.62 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 10.74 times the daily rates of wastewater taken in by the top 20 wells.

Therefore, we estimate the fracked wells supplying the proposed PTTGC ethane cracker will generate between 20.76 million and 41.52 million gallons of wastewater per day. That is 3.8 to 7.6 times the amount of wastewater currently received by Ohio’s wastewater disposal wells.

What does this means in terms of truck traffic? We can assume that  at least 80% of the trucks that transport wastewater are the short/baby bottle trucks which haul 110 barrels per trip. This means that our wastewater estimates would require between 4,493 and 8,987 truck trips per day, respectively. The pressures this amount of traffic will put on Appalachian roads and communities will be hard to measure and given the current state of state and federal politics and/or oversight it will be even harder to measure the impact inevitable spills and accidents will have on the region’s waterways.

Conclusion

There is no reason to believe these trends will not persist and become more intractable as the industry increasingly leans on cheap waste disposal and water as a crutch. The fracking industry will continue to present shareholders with the illusion of a robust business model, even in the face of rapid resource depletion and precipitous production declines on a per well basis.

I am going to go out on a limb and guess that unless we more holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste, there will be no other supply-side signal that we could send that would cause the oil and gas industry to change its ways. Until we reach that point, we will continue to compile data sets like the ones described above and included in the map below, because as Supreme Court Justice Louis Brandeis once said, “Sunlight is the best disinfectant!”

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance with invaluable data compilation assistance from Gary Allison

[1] Colin Woodward’s “American Character: A history of the epic struggle between individual liberty and the common good” is a must read on the topic of resource utilization and expropriation.

[2] https://pubs.er.usgs.gov/publication/cir1441

[3] In Ohio the major purveyor of water for the fracking industry is the Muskingum Watershed Conservancy District (MCWD) and as we’ve pointed out in the past they sell water for roughly $4.50 to $6.50 per thousand gallons. Meanwhile across The Ohio River the average price of water for fracking industry in West Virginia in the nine primary counties where fracking occurs is roughly $8.38 per thousand gallons.

Data Downloads

Quarterly oil, gas, brine, and days in production for 2,390+ Unconventional Utica/Point Pleasant Wells in Ohio from 2010 to Q2-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/Production_To_Q2_2019_WithExcel.zip

Ohio Hydraulic Fracturing Freshwater and Groundwater Withdrawals from 2010 to 2018

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_WaterWithdrawals_2010_2018_WithExcel.zip

Lateral length (Feet) for 3,200+ Fracked Utica/Point Pleasant Wells in Ohio up to and including wells permitted in December, 2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/01/OH_Utica_December_2019_StatePlane_Laterals.zip

Freshwater Use for 2,700+ Unconventional Wells in Ohio from Q3-2011 to Q3-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_FracFocus_December_2019_WithExcel.zip

Quarterly Volume Disposal (Barrels) for 220+ Ohio Class II Salt Water Disposal Wells from 2010 to Q4-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_ClassII_Loc_Vols_10_Q4_2019_WithExcel.zi

Support this work

DONATE

Stay in the know

Fracking in Pennsylvania: Not Worth It

Despite the ever-increasing heaps of violations and drilling waste, Pennsylvania’s fracked wells continue to produce an excess supply of gas, driving prices down. To cut their losses, the oil and gas industry is turning towards increased exports and petrochemical production. Continuing to expand fracking in Pennsylvania will only increase risks to the public and to the climate, all for what may amount to another boom and bust cycle that is largely unprofitable to investors.

Let’s take a look at gas production, waste, newly drilled wells, and violations in Pennsylvania in the past year to understand just how precarious the fracking industry is.

Production

Fracked hydrocarbon production continues to rise in Pennsylvania, resulting in an increase in waste production, violations, greenhouse gas emissions, and public health concerns. There are three types of hydrocarbons produced from wells in Pennsylvania: gas, condensate, and oil. Gas is composed mostly of methane, the most basic of the hydrocarbons, but in some parts of Pennsylvania, there can be significant quantities of ethane, propane, and other so-called “natural gas liquids” (NGLs) mixed in. Each of these NGLs are actually gaseous at atmospheric conditions, but operators try to separate these with a combination of pressure and low temperatures, converting them to a liquid phase. Some of these NGLs can be separated on-site, and this is typically referred to as condensate. Fracked wells in Pennsylvania also produce a relatively tiny amount of oil.

View map fullscreen | How FracTracker maps work

For those of you wondering why we are looking at the November, 2018 through October, 2019 time frame, this is simply a reflection of the available data. In this 12-month period, 9,858 fracked Pennsylvania wells, classified as “unconventional,” reported producing 6.68 trillion cubic feet of gas (Tcf), 4.89 million barrels of condensate, and just over 70,000 barrels of oil.

By means of comparison, Pennsylvania consumed about 1.46 Tcf of gas across all sectors in 2018, of which just 253 billion cubic feet (Bcf) was used in the homes of Pennsylvania’s 12.8 million residents. In fact, the amount of gas produced in Pennsylvania exceeds residential consumption in the entire United States by almost 1.7 Tcf. However, less than 17% of all gas consumed in Pennsylvania is for residential use, with nearly 28% being used for industrial purposes (including petrochemical development), and more than 35% used to generate electricity.

Fracked Gas Production and Consumption in Pennsylvania from 2013 through 2018

Figure 1. Fracked gas production compared to all fracked gas consumption and residential gas consumption in Pennsylvania from 2013 through 2018. Data from ref. Energy Information Administration.

 

While gas production has expansive hotspots in the northeastern and southwestern portions of the state, the liquid production comes from a much more limited geography. Eighty percent of all condensate production came from Washington County, while 87% of all fracked oil came from wells in Mercer County.

Because the definition of condensate has been somewhat controversial in the past (while the oil export ban was still in effect), I asked the Department of Environmental Protection (DEP) for the definition, and was told that if hydrocarbons come out of the well as a liquid, they should be reported as oil. If they are gaseous but condense to a liquid at standard temperature and pressure (60 degrees Fahrenheit and pressure 14.7 PSIA) on-site, then it is to be reported as condensate. Any NGLs that remain gaseous but are removed from the gas supply further downstream are reported as gas in this report. For this reason, it is not really possible to use the production report to find specific amounts of NGLs produced in the state, but it certainly exceeds condensate production by an appreciable margin.

The one-year volume withdrawal of gas from unconventional wells in Pennsylvania is equal to the volume of 3.2 Mount Everests

The volume of gas withdrawn from fracked wells in Pennsylvania in just one year is equal to the volume of 3.2 Mount Everests!

 

Waste

Hydrocarbons aren’t the only thing that come out of the ground when operators drill and frack wells in Pennsylvania. Drillers also report a staggering amount of waste products, including more than 65 million barrels (2.7 billion gallons) of liquid waste and 1.2 million tons of solid waste in the 12-month period.

Waste facilities have significant issues such as inducing earthquakes, toxic leachate, and radioactive sediments in streambeds.

Waste Type Liquid Waste (Barrels) Solid Waste (Tons)
Basic Sediment 63
Brine Co-Product 247
Drill Cuttings 1,094,208
Drilling Fluid Waste 1,439,338 11,378
Filter Socks 143
Other Oil & Gas Wastes 2,236,750 6,387
Produced Fluid 61,376,465 41,165
Servicing Fluid 17,196 3,250
Soil Contaminated by Oil & Gas Related Spills 25,505
Spent Lubricant Waste 1,104
Synthetic Liner Materials 21,051
Unused Fracturing Fluid Waste 7,077 1,593
Waste Water Treatment Sludge 35,151
Grand Total 65,078,240 1,239,831

Figure 2. Oil and gas waste generated by fracked wells as reported by drillers from November 1, 2018 through October 31, 2019. Data from ref: PA DEP.

Some of the waste is probably best described as sludge, and several of the categories allow for reporting in barrels or tons. Almost all of the waste was in the well bore at one time or another, although there are some site-related materials that need to be disposed of, including filter socks which separate liquid and solid waste, soils contaminated by spills, spent lubricant, liners, and unused frack fluid waste.

Where does all of this waste go? We worked with Earthworks earlier this year to take a deep dive into the data, focusing on these facilities that receive waste from Pennsylvania’s oil and gas wells. While the majority of the waste is dealt with in-state, a significant quantity crosses state lines to landfills and injection wells in neighboring states, and sometimes as far away as Idaho.

Please see the report, Pennsylvania Oil & Gas Waste for more details.

 

Drilled Wells

Oil and gas operators have started the drilling process for 616 fracking wells in 2019, which appear on the Pennsylvania DEP spud report. This is less than one third of the 2011 peak of 1,956 fracked wells, and 2019 is the fifth consecutive year with fewer than 1,000 wells drilled. This has the effect of making industry projections relying on 1,500 or more drilled wells per year seem rather dubious.

 

Fracked Unconventional Wells Drilled per Year in Pennsylvania from 2005 through 2019

Figure 3. Unconventional (fracked) wells drilled from 2005 through December 23, 2019, showing totals by regional office. Data from ref: PA DEP.

 

Oil and gas wells in Pennsylvania fall under the jurisdiction of three different regional offices. By looking at Figure 2, it becomes apparent that the North Central Regional Office (blue line) was a huge driver of the 2009 to 2014 drilling boom, before falling back to a similar drilling rate of the Southwest Regional Office.

The slowdown in drilling for gas in recent years is related to the lack of demand for the product. In turn, this drives prices down, a phenomenon that industry refers to as a “price glut.” The situation it is forcing major players in the regions such as Range Resources to reduce their holdings in Appalachia, and some, such as Chevron, are pulling out entirely.

Violations

Disturbingly, 2019 was the fifth straight year that the number of violations issued by DEP will exceed the total number of wells drilled.

Unconventional fracked wells drilled and violations issued from 2005 through 2019

Figure 4. Unconventional (fracked) drilled wells and issued violations from 2005 through December 2019. Data from ref: DEP.

 

Violations related to unconventional drilling are a bit unwieldy to summarize. The 13,833 incidents reported in Pennsylvania fall into 359 different categories, representing the specific regulations in which the drilling operator fell short of expectations. The industry likes to dismiss many of these as being administrative matters, and indeed, the DEP does categorize the violations as either “Administrative” or “Environmental, Health & Safety”. However, 9,998 (72%) of the violations through December 3, 2019, are in the latter category, and even some of the ones that are categorized as administrative seem like they ought to be in environmental, health, and safety. For example, let’s look at the 15 most frequent infractions:

Violation Code Incidents Category
SWMA301 – Failure to properly store, transport, process or dispose of a residual waste. 767 Environmental Health & Safety
CSL 402(b) – POTENTIAL POLLUTION – Conducting an activity regulated by a permit issued pursuant to Section 402 of The Clean Streams Law to prevent the potential of pollution to waters of the Commonwealth without a permit or contrary to a permit issued under that authority by the Department. 613 Environmental Health & Safety
102.4 – Failure to minimize accelerated erosion, implement E&S plan, maintain E&S controls. Failure to stabilize site until total site restoration under OGA Sec 206(c)(d) 595 Environmental Health & Safety
SWMA 301 – MANAGEMENT OF RESIDUAL WASTE – Person operated a residual waste processing or disposal facility without obtaining a permit for such facility from DEP. Person stored, transported, processed, or disposed of residual waste inconsistent with or unauthorized by the rules and regulations of DEP. 540 Environmental Health & Safety
601.101 – O&G Act 223-General. Used only when a specific O&G Act code cannot be used 469 Administrative
402CSL – Failure to adopt pollution prevention measures required or prescribed by DEP by handling materials that create a danger of pollution. 362 Environmental Health & Safety
78.54* – Failure to properly control or dispose of industrial or residual waste to prevent pollution of the waters of the Commonwealth. 339 Environmental Health & Safety
401 CSL – Discharge of pollutional material to waters of Commonwealth. 299 Environmental Health & Safety
102.4(b)1 – EROSION AND SEDIMENT CONTROL REQUIREMENTS – Person conducting earth disturbance activity failed to implement and maintain E & S BMPs to minimize the potential for accelerated erosion and sedimentation. 285 Environmental Health & Safety
102.5(m)4 – PERMIT REQUIREMENTS – GENERAL PERMITS – Person failed to comply with the terms and conditions of the E & S Control General Permit. 283 Environmental Health & Safety
78.56(1) – Pit and tanks not constructed with sufficient capacity to contain pollutional substances. 256 Administrative
78a53 – EROSION AND SEDIMENT CONTROL AND STORMWATER MANAGEMENT – Person proposing or conducting earth disturbance activities associated with oil and gas operations failed to comply with 25 Pa. Code § 102. 247 Environmental Health & Safety
102.11(a)1 – GENERAL REQUIREMENTS – BMP AND DESIGN STANDARDS – Person failed to design, implement and maintain E & S BMPs to minimize the potential for accelerated erosion and sedimentation to protect, maintain, reclaim and restore water quality and existing and designated uses. 235 Environmental Health & Safety
CSL 401 – PROHIBITION AGAINST OTHER POLLUTIONS – Discharged substance of any kind or character resulting in pollution of Waters of the Commonwealth. 235 Environmental Health & Safety
OGA3216(C) – WELL SITE RESTORATIONS – PITS, DRILLING SUPPLIES AND EQUIPMENT – Failure to fill all pits used to contain produced fluids or industrial wastes and remove unnecessary drilling supplies/equipment not needed for production within 9 months from completion of drilling of well. 206 Environmental Health & Safety

Figure 5. Top 15 most frequently cited violations for unconventional drilling operations in Pennsylvania through December 3, 2019. Data from ref: DEP.

Of the 15 most common categories, only two are considered administrative violations. One of these is a general code, where we don’t know what happened to warrant the infraction without reading the written narrative that accompanies the data, and is therefore impossible to categorize. The only other administrative violation in the top 15 categories reads, “78.56(1) – Pit and tanks not constructed with sufficient capacity to contain pollutional substances,” which certainly sounds like it would have some real-world implications beyond administrative concerns.

Check out our Pennsylvania Shale Viewer map to see if there are violations at wells near you.

Bloated With Gas, Fraught With Trouble

To address the excess supply of gas, companies have tried to export the gas and liquids to other markets through pipelines. Those efforts have been fraught with trouble as well. Residents are reluctant to put up with an endless barrage of new pipelines, yielding their land and putting their safety at risk for an industry that can’t seem to move the product safely. The Revolution pipeline explosion hasn’t helped that perception, nor have all of the sinkholes and hundreds of leaky “inadvertent returns” along the path of the Mariner East pipeline system. In a sense, the industry’s best case scenario is to call these failures incompetence, because otherwise they would be forced to admit that the 2.5 million miles of hydrocarbon pipelines in the United States are inherently risky, prone to failure any time and any place.

In addition to increasing the transportation and export of natural gas to new markets, private companies and elected officials are collaborating to attract foreign investors to fund a massive petrochemical expansion in the Ohio River Valley. The planned petrochemical plants intend to capitalize on the cheap feedstock of natural gas.

Pennsylvania’s high content of NGLs is a selling point by the industry, because they have an added value when compared to gas. While all of these hydrocarbons can burn and produce energy in a similar manner, operators are required to remove most of them to get the energy content of the gas into an acceptable range for gas transmission lines. Because of this, enormous facilities have to be built to separate these NGLs, while even larger facilities are constructed to consume it all. Shell’s Pennsylvania Petrochemicals Complex ethane cracker being built in Beaver County, PA is scheduled to make 1.6 million metric tons of polyethylene per year, mostly for plastics.

This comes at a time when communities around the country and the world are enacting new regulations to rein in plastic pollution, which our descendants are going to finding on the beach for thousands of years, even if everyone on the planet were to stop using single-use plastics today. Of course, none of these bans or taxes are currently permitted in Pennsylvania, but adding 1.6 million metric tons per year to our current supply is unnecessary, and indeed, it is only the beginning for the region. A similar facility, known as the PTT Global Chemical cracker appears to be moving forward in Eastern Ohio, and ExxonMobil appears to be thinking about building one in the region as well. Industry analysts think the region produces enough NGLs to support five of these ethane crackers.

Despite all of these problems, the oil and gas industry still plans to fill the Ohio River Valley with new petrochemical plants, gas processing plants, and storage facilities in the hopes that someday, somebody may want what they’ve taken from the ground.

Here’s hoping that 2020 is a safer and healthier year than 2019 was. But there is no need to leave it up to chance. Together, we have the power to change things, if we all demand that our voices are heard. As a start, consider contacting your elected officials to let them know that renewing Pennsylvania’s blocking of municipal bans and taxes on plastic bags is unacceptable.

By Matt Kelso, Manager of Data & Technology, FracTracker Alliance

 

Support this work

DONATE

Stay in the know

Fracking Threatens Ohio’s Captina Creek Watershed

FracTracker’s Great Lakes Program Coordinator Ted Auch explores the risks and damages brought on by fracking in Ohio’s Captina Creek Watershed

 

Scroll down or click here to view the story map full screen

The Captina Creek Watershed straddles the counties of Belmont and Monroe in Southeastern Ohio and feeds into the Ohio River. It is the highest quality watershed in all of Ohio and a great examples of what the Ohio River Valley’s tributaries once looked, smelled, and sounded like. Sadly, today it is caught in the cross-hairs of the oil and gas industry by way of drilling, massive amounts of water demands, pipeline construction, and fracking waste production, transport, and disposal. The images and footage presented in the story map below are testament to the risks and damage inherent to fracking in the Captina Creek watershed and to this industry at large. Data included herein includes gas gathering and interstate transmission pipelines like the Rover, NEXUS, and Utopia (Figure 1), along with Class II wastewater injection wells, compressor stations, unconventional laterals, and freshwater withdrawal sites and volumes.

Ohio Rover NEXUS Pipelines map

The image at the top of the page captures my motivation for taking a deeper dive into this watershed. Having spent 13+ years living in Vermont and hiking throughout The Green and Adirondack Mountains, I fell in love with the two most prominent tree species in this photo: Yellow Birch (Betula alleghaniensis) and Northern Hemlock (Tsuga candadensis). This feeling of being at home was reason enough to be thankful for Captina Creek in my eyes. Seeing this region under pressure from the oil and gas industry really hit me in my botanical soul. We remain positive with regards to the area’s future, but protective action against fracking in the Captina Creek Watershed is needed immediately!

Fracking in the Captina Creek Watershed: A Story Map

Go to the story map fullscreen for a better viewing experience

Support this work

DONATE

Stay in the know

Fracking Drilling rig in Washington County, Pennsylvania

Allegheny County Air Quality Monitoring Project

A recent study out of Carnegie Mellon University estimated that for every three job years created by fracking in the Marcellus Shale, one year of life is lost for a resident due to increased pollution exposure. As fracking continues to expand around the perimeter of Allegheny County, Pennsylvania — one of the top ten most polluted regions in the U.S. — we’re called to question how this industry is impacting the area’s already poor air quality. To answer this question, Southwest Pennsylvania Environmental Health Project (EHP), and FracTracker Alliance conducted a study on air quality around sites impacted by fracking development.

Over the course of this past year, we set up air monitors in seven communities in or near Allegheny County with current or proposed oil and gas infrastructure, with the goal of gathering baseline data and identifying possible public health concerns. 

The sites in question are mapped and described below.  Click on the arrow to scroll through maps of the different sites.

 

Study Areas:
  • North Braddock: Merrion Oil and Gas has proposed a fracking well on the property of the Edgar Thomson Steel Works, near where North Braddock, East Pittsburgh, and North Versailles meet.
  • Plum Borough: Penneco has proposed to build a wastewater disposal well in Plum Borough. We placed three monitors at homes in areas where the air is likely to be impacted by construction and truck traffic should the wastewater disposal well be installed. 
  • Economy Borough (Beaver County): We monitored around PennEnergy Resource’s B50 well pad, which recently began construction. Of particular concern to residents is the increase in truck traffic along a narrow road in a residential neighborhood that will be used to access the well pad.
  • Frazer Township: Monitoring took place around the Gulick, Schiller, and Bakerstown well pads. During their monitoring period, there was reported fracking activity on one well, and drilling activity on another.
  • Elizabeth Township: Monitoring occurred around three EQT and Olympus Energy fracked well pads listed as active; fracking reportedly occurred on one well pad during the monitoring period.
  • Indiana Township: Monitoring followed the construction of the Miller Jr. fracked well pad.
  • Stowe Township: Monitoring occurred in Stowe Township, where McKees Rocks Industrial Enterprise (MRIE) is located, and in adjacent McKees Rocks. This facility processes and transports frac sand, which operators use to frack a well by injecting it at extremely high pressures underground.

View a map of the study areas | How FracTracker maps work

 

 

Allegheny’s air – from bad to worse

In recent years, the air quality in the Pittsburgh metropolitan area, which had been improving since 2005, began to worsen. According to the 2019 State of the Air report, levels of ozone and particle pollution increased over 2015-2017 (Figure 1).

PM2.5 graph

Figure 1. Levels of 24-hour PM2.5 in Allegheny County, from the American Lung Association’s 2019 State of the Air Report

This fact echoes a nationwide trend. Another study out of Carnegie Mellon University found that after several years of improvement, air pollution in the United States worsened in 2017 and 2018. The study cited several possible explanations, including increased natural gas production, more wildfires, and a rollback on Clean Air Act regulations by the EPA.

While Allegheny County’s air pollution is largely attributable to steel, coal, and chemical plants, in the last decade, the oil and gas industry has brought many new sources of pollution to the area. 

As of December, 2019, operators have drilled 163 fracking wells in the county (Table 1) and constructed nine compressor stations. Additional pollution caused by the oil and gas industry is attributable to the thousands of truck trips required to frack a well. 

Table 1. Fracked wells in Allegheny County by municipality

Data from the Pennsylvania Department of Environmental Protection (PA DEP), which defines gas wells as unconventional (fracked) or conventional.

The fracking process releases emissions that can affect human health at every stage of its lifespan. Research has linked fracking to immediate health symptoms, such as burning eyes, sore throat, and headaches. Ongoing research has identified the potential for long term health impacts, such as cardiovascular disease and adverse birth outcomes. 

Air pollution from the oil and gas industry does not impact everyone equally. An individual’s response to exposure varies depending on factors such as age and health conditions. 

There is also a great deal of variation amongst wells and compressor stations when it comes to emissions. As such, the best way to understand someone’s exposure is to monitor the places they frequent, such as the home, school, or workplace.

Types of Pollutants

The process of drilling and fracking a well releases a variety of pollutants, including particulate matter, volatile organic compounds (VOCs), and nitrous oxides (NOx). Table 2, below, shows reported emissions from gas wells in Allegheny County for 2017. 

Table 2. Reported emissions from Allegheny County gas wells in 2017, from the PA DEP
POLLUTANT Emission Amount (Tons)
2,2,4-Trimethylpentane 0.00093
Benzene 0.10466
Carbon Dioxide 22982.68774
CO 66.20016
Ethyl Benzene 0.00053
Formaldehyde 0.02366
Methane 714.90485
n-Hexane 0.16083
Nitrous Oxide 0.2332
NOX 270.81382
PM10 8.87066
PM2.5 8.74341
SOX 0.23478
Toluene 0.04636
VOC 21.68682
Xylenes (Isomers And Mixture) 0.03487

Our study looked at particulate matter (PM) – a mix of solid particles and liquids found in the air, like dust, soot, and smoke. Specifically, the study focused on PM2.5, which are particles less than 2.5 microns in diameter (Figure 2). PM forms during construction activities, combustion processes such as those in diesel engines, and from industrial sites and facilities. 

Fracking and its associated processes release hazardous chemicals into the air, which then attach to PM2.5. Additionally, combustion engines of trucks and machinery used to construct well sites and drill wells release diesel emissions, including PM2.5. Compressor stations and flaring are additional sources. 

PM2.5 is small enough to enter our lungs and bloodstream and therefore poses a great risk to human health. Their health impacts include reduced lung function and cardiovascular disease, as well as short term effects such as sinus irritation.

Diagram of particulate matter relevant to air pollution

Figure 2. Particulate matter diagram, from the US EPA

Methods & Parameters for Analyzing Air Quality

Over the course of 2019, we placed 3-4 air monitors at participants’ households in each community for roughly a one-month period. Many of our participants were members of or identified by grassroots community groups, including North Braddock Residents for Our Future, Allegheny County Clean Air Now, Protect Elizabeth Township, and Protect PT

The monitors were placed at varying distances and directions from the facility in question, not exceeding 1.5 miles from the facility in question. We used Speck monitors indoors and Purple Air monitors outdoors; both types measured the concentration of particulate matter over roughly one month. 

The EPA’s guideline for exposure to PM2.5 is 35 μg/m3 averaged over 24 hours. However, averaging exposure over 24 hours can obscure peaks- relatively short time spans of elevated PM2.5 concentrations. While it is normal for peaks to occur occasionally, high, long, or frequent peaks in pollution can affect people’s health, particularly with acute impacts such as asthma attacks. 

Results

The graphs below show our results. On each graph, you’ll see three to five lines, one for each outdoor monitor. Lines that follow similar trends show data that is likely an accurate representation of air quality in the community. Lines that stray from the pack may represent a unique situation that only that house is experiencing.

In addition to graphing the results, EHP used the following parameters to analyze the data:

      1. Frequency of peaks 
      2. Duration of peaks
      3. Time between peak exposures 
      4. Baseline (level of particles generally found outside when peaks are not occurring)
      5. Total sum (or quantity) of peak exposure

These five parameters were compared to EHP’s data gathered from roughly 400 sites in Ohio, West Virginia, New York, and Pennsylvania. This database compiles air quality data from locations that have no infrastructure present as well as nearby sites such as well pads, compressor stations, frac-sand terminals, processing facilities, etc. 

In the table below, numbers in green indicate values that are better than EHP’s averages, while red values show values that are worse than the average of EHP’s dataset. Black numbers show values that are average. 

 

Table 3. EHP/FracTracker sites of air quality investigation in Allegheny County

Table of Allegheny County Air Quality Study Results

*The proposed well is near the intersection of East Pittsburgh, North Braddock, and North Versailles

**Monitors were also placed in neighboring McKees Rocks

~In homes where baseline levels of PM2.5 are low, such as in Frazer and Economy, peaks are more easily registered in our analysis, but they typically have a smaller magnitude compared to homes that have high baselines.

Discussion

Communities with proposed sites

In North Braddock and Plum Borough, the outdoor air monitors collected data around sites of future and/or proposed activity. This baseline monitoring helps us understand what the air is like before oil and gas activity and is essential for understanding the future impact of oil and gas development in a community. 

In these neighborhoods, we found worse than average values for total accumulation of PM2.5. This may be due to other patterns of PM2.5 movement in the area related to weather and surrounding sources of pollution. North Braddock is an urban environment, and therefore has pollution from traffic and buildings. Another source is the Edgar Thomson Steel Works, one of the county’s top polluters. While Plum Borough is more rural, it also contains an active fracking well pad and is near a coal-fired power plant and a gas power plant.

If constructed, the proposed fracking well and the proposed wastewater disposal well will add additional pollution from construction, truck traffic, and in North Braddock’s case, emissions from the well itself. This may pose a significant health risk, especially in vulnerable populations like children and those with preexisting health conditions.

Communities with constructed well pads

Emissions vary across the timeline of drilling and fracking a well. Figure 2 below shows reported emissions of PM2.5 and VOCs from different components of a fracking operation. PM2.5 emissions are highest during drilling (when the well bore is formed) and completion (when the well is fracked by injecting high volumes of water, sand, and chemicals at tremendous pressure). For a step by step outline of the fracking process, check out FracTracker’s fracking operation virtual tour.

Gas Well Emissions by Source

Figure 2. 2017 emissions from Allegheny County gas wells at different stages in the fracking process, reported to the PA DEP

Our monitoring in Economy Borough, where construction on PennEnergy Resources’ B50 well pad had just begun, showed air quality that is better than EHP’s averages. However, if the wells on the well pad are drilled and fracked, EHP hopes to provide monitors again to track changes in air quality. In addition to emissions from the fracking well, which is close to the Chestnut Ridge housing development, residents are concerned about truck traffic along Amsler Ridge Road.

In Indiana, while residents reported truck traffic to the site, the wells were not fracked during the monitoring period. The measurements were average or slightly above the average EHP typically sees near homes. Looking at these results, peak duration was flagged, and the total sum of particulate matter was slightly elevated compared to our average suggesting that the long durations may ignite a health response in sensitive individuals. Other sources that could be contributing to pollution include the PA Turnpike and the Redland Brick manufacturer.

In Frazer, there was reported fracking activity on one well and drilling activity on another; these time periods were only slightly elevated on the hourly average charts. Monitors were left at two households in Frazer because there was an indication that fracking would start soon. 

In Elizabeth Township, air quality measurements were generally better compared to the rest of EHP’s data, but there were clear peaks that all monitors registered which generated a similar, if not potentially higher, amounts of accumulated PM2.5.

Frac sand facility

Finally, monitors around MRIE, the frac sand processing facility in Stowe Township, showed air quality that may pose a health risk. The peaks in these neighborhoods generated a higher amount of accumulated PM2.5 and lasted longer compared to the rest of our data. In addition to pollution from MRIE and its associated trucks and trains, the neighborhood has many sources of pollution, including highways and industrial facilities on Neville Island. 

Limitations

This study is limited in that PM2.5 was the only pollutant that the Purple Air and Speck monitors captured. To understand the complete burden of air pollution residents are exposed to, other pollutants such as VOCs, must be monitored

Additionally, monitoring occurred over a short time period. Further investigations will need to monitor air quality throughout different stages of development and during different seasons in order to provide meaningful comparisons of changes in air quality that could be correlated with oil and gas development. EHP will continue to monitor around certain active sites to watch for changes in the data. 

Get Involved

If you’re concerned about health or environmental impacts from a well in your neighborhood, make sure to document the issue by taking notes, photos, and videos, and file a complaint with the state’s Department of Environmental Protection. To report an environmental health concern, reach out to the Department of Health by phone at 1-877 PA Health (1-877-724-32584) or email (RA-DHENVHEALTH@pa.gov). If you’re an employer or worker and have health or safety concerns, reach out to your area’s OSHA office or call 1-800-321-OSHA (6742).

While cleaning up the air in your community is difficult, there are steps you can take to protect the air in your home. With the average American spending 90% of their time indoors, the air inside can greatly impact your health. For this project, we also set up air monitors in residents’ homes so participants could better understand these risks. Visit EHP’s resources under the section “What You Can Do” to learn more about protecting your indoor air quality.  To learn more about how fracking is impacting residents in southwest Pennsylvania, explore the Environmental Health Channel

Finally, help us crowdsource new data on the impacts and status of oil and gas development in your community by reporting what you see, hear, smell, and question on the FracTracker mobile app (also available from your computer!). Those living near oil and gas infrastructure are the best source of knowledge when it comes to understanding the impacts of this industry. With your help, we want to make sure all of these impacts are being documented to inform decision makers and residents about the risks of fracking.

Many thanks to the Southwest Environmental Health Project for including us as collaborators on this study.

By Erica Jackson, Community Outreach and Communications Specialist

Support this work

DONATE

Stay in the know

Freiburg Recycling

The Circular Economy: What it means for Fracking and Plastic

California is Frack Free, for the Moment

How State Regulations Hold Us back and What Other Countries are doing about Fracking

By Isabelle Weber, FracTracker Alliance Spring 2019 Intern 

Feature photo of oil and gas drilling in North Dakota, and is by by Nick Lund, NPCA, 2014

 

Although there are some federal regulations in place to protect the environment indirectly from fracking in the United States, the regulations that try to keep fracking in check are largely implemented at the state governing level. This has led to a patchwork of regulations that differ in strictness from state to state. This leads to the concern that there will be a race to the bottom where states lower the strictness of their regulations in order to draw in more fracking. While it might be tempting to welcome an industry that often creates a temporary economic spike, the costs of mitigating the environmental damage from fracking far out-weighs the profit gained. Germany, Scotland, and France are examples of countries that have taken more appropriate regulatory measures to protect their populations from the risks involved in unconventional oil and gas development.

The Shortfalls of State by State Regulations

For a detailed overview of how fracking regulation differs between states, check out the Resources for the Future report, The State of State Shale Gas Regulation, which analyzes 25 regulatory elements and how they differ between states. Two of their maps that attest to this vast difference in regulation are the “Fracturing Fluid Disclosure Requirements” map as well as the “Venting Regulations” map.

The “Fracturing Fluid Disclosure Requirements” map shows regulatory differences between states regarding whether or not the chemical mixture used to break up rock formations must be made known to the public. “Disclosure” means that the chemical mixture is made known to the public and “No Regulation” means that there is nothing that obligates companies to share this information, which usually implies this information is not available.

Fig 1. Map of fracking fluid disclosure requirements by state, from Resources for the Future’s report, “The State of State Shale Gas Regulation.” Original data from US Energy Information Administration.

 

Note from the editor: There are several exemptions that allow states to limit the scope of reporting chemicals used in underground fluid injection for fracking. For example, all states that require chemical disclosure are entitled to exemptions for chemicals that are considered trade secrets.  

Concealing the identity of chemicals increases the risk of harm from chemical exposure for people and the environment. Emergency first responders are especially at risk, as they may have to act quickly to put out a fracking-induced fire without knowing the safety measures necessary to avoid exposure to dangerous chemicals. The population at large is at risk of exposure though several pathways such as leaks, spills, and air emissions. Partnership for Policy Integrity, along with data analysis by FracTracker, investigated the implications of keeping the identity of certain fracking chemicals secret in two states, Ohio and Pennsylvania. These reports point to evidence that exposure to concealed fracking chemicals could have serious health effects including blood toxicity, developmental toxicity, liver toxicity and neurotoxicity.

 

The second map, “Venting Regulations,” shows which states have regulations that limit or ban venting and which do not. Venting is the direct release of methane from the well site into the atmosphere. Methane has 30 times the green-house gas effect as carbon dioxide. Given methane’s severe impact on the environment, no venting whatsoever should be allowed at well sites.

Fig 2. Map of fracking venting regulations by state, from Resources for the Future’s report, “The State of State Shale Gas Regulation.” Original data from US Energy Information Administration.

Having overarching federal regulatory infrastructure to regulate fracking would help to avoid risks such as toxic chemical exposure and accelerated climate change. Although leaving regulation development to states allows for more specialized laws, there are certain aspects of environmental protection that apply to every area in the United States and are necessary as standard protection against the effects of fracking.

How do other countries regulate fracking?

Stronger federal regulation of fracking has worked well in the past and can be seen in several other countries.

Germany

In 2017, Germany passed new legislation that largely banned unconventional hydraulic fracking. The ban on unconventional fracking excludes four experimental wells per state that will be commissioned by the German government to an independent expert commission to identify knowledge gaps and risks with regards to fracking. Conventional fracking also received tighter regulations including a ban on fracking near drinking water sources. In 2021, the ban will be reevaluated, taking into account research results, public perception, long term damage to residents and the environment, and technological advances. This is a perfect example of how a country can use overarching federal regulation to make informed decisions about industry action.

Scotland

In 2015, Scotland placed a moratorium into effect that halted all fracking in the country. Since 2017, the government has held that the moratorium will stand indefinitely as an effective ban on fracking in the country, but the country is still working on the legislature that will officially ban fracking. Meanwhile, the Scottish government conducted one of the most far-reaching investigations into unconventional oil and gas development, which included a four-month public consultation period. This public consultation garnered 65,000 responses, 65% of which were from former coal mining communities targeted by the fracking industry. Of those responses, 99% of responses opposed fracking.

The Scottish people should be applauded for holding their federal government accountable in fulfilling its responsibility to protect its people and its environment against the effects of fracking.

France

In December 2017, France passed a law that bans exploration and production of all oil and natural gas by the year 2040. This applies to mainland France as well as all French territories. Although France has limited natural gas resources, it is hoped that the ban will be contagious and spread to other countries. This is a prime example of a country making a decision to protect their environment through regulation.

Although France’s banning of fracking was largely symbolic and may not result in a considerable reduction of greenhouse gases related to natural gas exploration, the country is sending a message to the world that we need to facilitate the end of the fossil fuel era and a move toward renewables.

Back to the US, the world’s leading producer of natural gas

Federal regulation on fracking should be holding the oil and gas industry in check by requiring states to meet basic measures to protect people and the environment. States could then develop more stringent regulations as they see fit. It is important that we come to a national consensus on the environmental and health hazards of fracking, and consequently, to adopt appropriate federal regulations.


By Isabelle Weber, FracTracker Alliance Spring 2019 Intern

Support this work

DONATE

Stay in the know

Want Not, Waste Not? Fossil Fuel Extraction’s Waste Disposal Challenges

Pennsylvania’s fracking industry is producing record amounts of toxic waste — where does it all go?

Drilling for methane and other fossil fuels is an energy-intensive process with many associated environmental costs. In addition to the gas that is produced through high volume hydraulic fracturing (“unconventional drilling,” or “fracking”), the process generates a great deal of waste at the drill site. These waste products may include several dozen tons of drill cutting at every well that is directionally drilled, in addition to liner materials, contaminated soil, fracking fluid, and other substances that must be removed from the site.

In 2018, Pennsylvania’s oil and gas industry (including both unconventional and conventional wells) produced over 2.9 billion gallons (nearly 69 million barrels) of liquid waste, and 1,442,465 tons of solid waste. In this article, we take a look at where this waste (and its toxic components) end up and how waste values have changed in recent years. We also explore how New York State, despite its reputation for being anti-fracking, isn’t exempt from the toxic legacy of this industry.

Waste that comes back to haunt us

According to a study by Physicians, Scientists and Engineers, over 80% of all waste from oil and gas drilling stays within the state of Pennsylvania. But once drilling wastes are sent to landfills, is that the end of them? Absolutely not!

Drilling waste also gets into the environment through secondary means. According to a recent report by investigative journalists at Public Herald, on average, 800,000 tons of fracking waste from Pennsylvania is sent to Pennsylvania landfills. When this waste is sent to landfills, radioactivity and other chemicals can percolate through the landfill, and are collected as leachate, which is then shipped to treatment plants.

Public Herald documented how fourteen sewage treatment plants in Pennsylvania have been permitted by Pennsylvania’s Department of Environmental Protection (PA DEP) to process and discharge radioactive wastes into more than a dozen Pennsylvania waterways.

Public Herald’s article includes an in-depth analysis of the issue. Their work is supported by a map of the discharge sites, created by FracTracker.

Trends over time

Pennsylvania Department of Environmental Protection maintains a rich database of oil and gas waste and production records associated with their Oil and Gas Reporting Website. The changes in waste disposal from Pennsylvania’s unconventional drilling reveal a number of interesting stories.

Let’s look first at overall unconventional drilling waste.

According to data from the federal Energy Information Administration, gas production in Pennsylvania began a steep increase around 2010, with the implementation of high volume hydraulic fracturing in the Marcellus Shale (see Figure 1). The long lateral drilling techniques allowed industry to exploit exponentially more of the tight shale via single well than was ever before possible with conventional, vertical drilling.

Figure 1. Data summary from FracTracker.org, based on EIA data.

The more recently an individual well is drilled, the more robust the production. We see an overall increase in gas production over time in Pennsylvania over the past decade. Paradoxically, the actual number of new wells drilled each year in the past 4-5 years are less than half of the number drilled in 2011 (see Figure 2).

Figure 2: Data summary from FracTracker.org, based on PA DEP data

Why is this? The longer laterals —some approaching 3 miles or more—associated with new wells allow for more gas to be extracted per site.

With this uptick in gas production values from the Marcellus and Utica Formations come more waste products, including copious amounts drilling waste, “produced water,” and other byproducts of intensive industrial operations across PA’s Northern Tier and southwestern counties.

Comparing apples and oranges?

When we look at the available gas production data compared with data on waste products from the extraction process, some trends emerge. First of all, it’s readily apparent that waste production does not track directly with gas production in a way one would expect.

Recall that dry gas production has increased annually since 2006 (see Figure 1). However, the reported waste quantities from industry have not followed that same trend.

In the following charts, we’ve split out waste from unconventional drilling by solid waste in tons (Figure 3) and liquid waste, in barrels (Figure 4).

Figure 3: Annual tonnage of solid waste from the unconventional oil and gas industry, organized by the state it is disposed in. Data source: PA DEP, processed by FracTracker Alliance

Figure 4: Annual volume of liquid waste from the unconventional oil and gas development, organized by state it is disposed in. One barrel is equivalent to 42 gallons. Data source: PA DEP, processed by FracTracker Alliance

Note the striking difference in disposal information for solid waste, compared with liquid waste, coming from Pennsylvania.

“Disposal Location Unknown”

Until just the last year, often more than 50% of the known liquid waste generated in PA was disposed of at unknown locations. The PA DEP waste report lists waste quantity and method for these unknown sites, depending on the year: “Reuse without processing at a permitted facility,” “Reuse for hydraulic fracturing,” “Reuse for diagnostic purposes,” “Reuse for drilling or recovery,” “Reuse for enhanced recovery,” and exclusively in more recent years (2014-2016), “Reuse other than road-spreading.”

In 2011, of the 20.5 million barrels of liquid waste generated from unconventional drilling, about 56% was allegedly reused on other drilling sites. However, over 9 million barrels—or 44% of all liquid waste—were not identified with a final destination or disposal method. Identified liquid waste disposal locations included “Centralized treatment plant for recycle,” which received about a third of the non-solid waste products.

In 2012, the quantity of the unaccounted-for fracking fluid waste dropped to about 40%. By 2013, the percentage of unaccounted waste coming from fracking fluid dropped to just over 21%, with nearly 75% coming from produced fluid, which is briny, but containing fewer “proprietary”—typically undisclosed—chemicals.

By 2017, accounting had tightened up further. PA DEP data show that 99% of all waste delivered to undisclosed locations was produced fluid shipped to locations outside of Pennsylvania. By 2018, all waste disposal was fully accounted for, according to DEP’s records.

In looking more closely at the data, we see that:

  1. Prior to 2018, well drillers did not consistently report the locations at which produced water was disposed of or reused. Between 2012 and 2016, a greater volume of unconventional liquid waste went unaccounted for than was listed for disposal in all other locations, combined.
  2. In Ohio, injection wells, where liquid waste is injected into underground porous rock formations, accounted for the majority of the increase in waste accepted there: 2.9 million barrels in 2017, and 5.7 million barrels in 2018 (a jump of 97%).
  3. West Virginia’s acceptance of liquid waste increased  significantly in 2018 over 2017 levels, a jump of over a million barrels, up from only 55,000. This was almost entirely due to unreported reuse at well pads.
  4. In 2018, reporting, in general, appears to be more thorough than it was in previous years. For example, in 2017, nearly 692,000 barrels of waste were reused at well pads outside PA, but those locations were not disclosed. Almost 7000 more barrels were also disposed of at unknown locations. In 2018, there were no such ambiguities.

A closer look at Pennsylvania’s fracking waste shipped to New York State

Despite a reputation for being resistant to the fracking industry, for most of this decade, the state of New York has been accepting considerable amounts of fracking waste from Pennsylvania. The greatest percentage shipped to New York State is in the form of drilling waste solids that go to a variety of landfills throughout Central and Western New York.

Looking closely at the bar charts above, it’s easy to notice that the biggest recipients of Pennsylvania’s unconventional liquid drilling waste are Pennsylvania itself, Ohio, as well as a significant quantity of unaccounted-for barrels between 2011 and 2016 (“Disposal location unknown”). The data for disposal of solid waste in New York tells a different story, however. In this case, Pennsylvania, Ohio, and New York State all play a role. We’ll take a look specifically at the story of New York, and illustrate the data in the interactive map that follows.

In this map, source locations in Pennsylvania are symbolized with the same color marker as the facility in New York that received the waste from the originating well pad. In the “Full Screen” view, use the “Layers” drop down menu to turn on and off data from separate years.

View map full screenHow FracTracker maps work

Solid waste transported to New York State

From the early days of unconventional drilling in Pennsylvania, New York State’s landfills provided convenient disposal sites due to their proximity to the unconventional drilling occurring in Pennsylvania’s Northern tier of counties. Pennsylvania and Ohio took the majority of solid wastes from unconventional drilling waste from Pennsylvania. New York State, particularly between 2011-2015, was impacted far more heavily than all other states, combined (Figure 5, below).

Figure 5: Known disposal locations (excluding PA and OH) of Pennsylvania’s solid waste. Data source: PA DEP, processed by FracTracker Alliance

Here’s the breakdown of locations in New York to where waste was sent. Solid waste disposal into New York’s landfills also dropped by half, following the state’s ban on unconventional drilling in 2014. Most of the waste after 2012 went to the Chemung County Landfill in Lowman, New York, 10 miles southeast of Elmira.

Figure 6: Solid waste from unconventional drilling, sent to facilities in NYS. Data source: PA DEP, processed by FracTracker Alliance

Is waste immobilized once it’s landfilled?

The fate of New York State’s landfill leachate that originates from unconventional drilling waste is a core concern, since landfill waste is not inert. If drilling waste contains radioactivity, fracking chemicals, and heavy metals that percolate through the landfill, and the resulting leachate is sent to municipal wastewater treatment plants, will traditional water treatment methods remove those wastes? If not, what will be the impact on public and environmental health in the water body that receives the “treated” wastewater? In Pennsylvania, for example, a case is currently under investigation relating to pollution discharges into the Monongahela River near Pittsburgh. “That water was contaminated with diesel fuels, it’s alleged, carcinogens and other pollutants,” said Rich Bower, Fayette County District Attorney.

Currently, a controversial expansion of the Hakes Landfill in Painted Post, New York is in the news. Sierra Club and others were concerned about oversight of radium and radon in the landfill’s leachate and air emissions, presumably stemming from years of receiving drill cuttings. The leachate from the landfill is sent to the Bath Wastewater Treatment plant, which is not equipped to remove radioactivity. “Treated” wastewater from the plant is then discharged into the Cohocton River, a tributary of the Chesapeake Bay. In April 2019, these environmental groups filed a law suit against Hakes C&D Landfill and the Town of Campbell, New York, in an effort to block the expansion.

Similar levels of radioactivity in leachate have also been noted in leachate produced at the Chemung County Landfill, according to Gary McCaslin, President of People for a Healthy Environment, Inc.

In recent years, much of the solid unconventional waste arriving in New York State has gone to the Chemung County Landfill (see Figure 6, above). Over the course of several years, this site requested permission to expand significantly from 180,000 tons per year to 417,000 tons per year. However, by 2016, the expansion was deemed unnecessary, and according, the plans were put on hold, in part “…because of a decline in the amount of waste being generated due to a slower economy and more recycling than when the expansion was first planned years ago.” The data in Figure 5 above also parallel this story, with unconventional drilling waste disposed in New York State dropping from over 200,000 tons in 2011 to just over 20,000 tons in 2018.

Liquid waste transported to New York State

The story about liquid unconventional drilling waste exported from Pennsylvania to states other than Ohio is not completely clear (see Figure 7, below). Note that the data indicate more than a 2000% increase in waste liquids going from Pennsylvania to West Virginia after 2017. While it has not been officially documented, FracTracker has been anecdotally informed that a great deal of waste was already going to West Virginia, but that the record-keeping prior to 2018 was simply not strongly enforced.

Figure 7: Known disposal locations (excluding Pennsylvania and Ohio) of Pennsylvania’s liquid waste. Data source: PA DEP, processed by FracTracker Alliance

Beginning in the very early years of the Pennsylvania unconventional fracking boom, a variety of landfills in New York State have also accepted liquid wastes originating in Pennsylvania, including produced water and flowback fluids (see Figure 8, below).

Figure 8: Liquid waste from unconventional drilling, sent to facilities in New York State. Data source: PA DEP, processed by FracTracker Alliance

In addition, while this information doesn’t even appear in the PA DEP records (which are publicly available back to 2010), numerous wastewater treatment plants did accept some quantity, despite being fully unequipped to process the highly saline waste before it was discharged back into the environment.

One such facility was the wastewater treatment plant in Cayuga Heights, Tompkins County, which accepted more than 3 million gallons in 2008. Another was the wastewater treatment plant in Auburn, Cayuga County, where the practice of accepting drilling wastewater was initially banned in July 2011, but the decision was reversed in March 2012 to accept vertical drilling waste, despite strong public dissent. Another wastewater treatment plant in Watertown, Jefferson County, accepted 35,000 gallons in 2009.

Fortunately, most New York State wastewater treatment plant operators were wise enough to not even consider adding a brew of unknown and/or proprietary chemicals to their wastewater treatment stream. Numerous municipalities and several counties banned fracking waste, and once the ban on fracking in New York State was instituted in 2014, nearly all importation of liquid unconventional drilling waste into the state ceased.

Nevertheless, conventional, or vertical well drilling also generates briny produced water, which the New York State Department of Environmental Conservation (DEC) permits communities in New York to accept for ice and dust control on largely rural roads. These so-called “beneficial use determinations” (BUDs) of liquid drilling waste have changed significantly over the past several years. During the height of the Marcellus drilling in around 2011, all sorts of liquid waste was permitted into New York State (see FracTracker’s map of affected areas) and was spread on roads. As a result, the chemicals—many of them proprietary, of unknown constituents, or radioactive—were indirectly discharged into surface waters via roadspreading.

Overall, in the years after the ban in 2014 on high volume hydraulic fracturing was implemented, restrictions on Marcellus waste coming into New York have strengthened. Very little liquid waste entered New York’s landfills after 2013, and what did come in was sent to a holding facility owned by Environmental Services of Vermont. This facility is located outside Syracuse, New York.

New York State says “no” to this toxic legacy

Fortunately, not long after these issues of fracking fluid disposal at wastewater treatment facilities in New York State came to light, the practice was terminated on a local level. The 2014 ban on fracking in New York State officially prevented the disposal of Marcellus fluids in municipal wastewater treatment facilities and required extra permits if it were to be road-spread.

In New York State, the State Senate—after 8 years of deadlock—in early May 2019, passed key legislation that would close a loophole that had previously allowed dangerous oil and gas waste to bypass hazardous waste regulation. Read the press release from Senator Rachel May’s office here. However, despite strong support from both the Senate, and the Assembly, as well as many key environmental groups, the Legislature adjourned for the 2019 session without bringing the law to a final vote. Said Elizabeth Moran, of the New York Public Interest Research Group (NYPIRG), “I want to believe it was primarily a question of timing… Sadly, a dangerous practice is now going to continue for at least another year.”

 

See Earthworks’ recent three part in-depth reporting on national, New York, and Pennsylvania oil and gas waste, with mapping support by FracTracker Alliance.

All part of the big picture

As long as hydrocarbon extraction continues, the issues of waste disposal—in addition to carbon increases in the atmosphere from combustion and leakage—will result in impacts on human and environmental health. Communities downstream and downwind will bear the brunt of landfill expansions, water contamination, and air pollution. Impacts of climate chaos will be felt globally, with the greatest impacts at low latitudes and in the Arctic.

Transitioning to net-zero carbon emissions cannot be a gradual endeavor. Science has shown that in order to stay under the 1.5 °C warming targets, it must happen now, and it requires the governmental buy-in to the Paris Climate Agreement by every economic power in the world.

No exceptions. Life on our planet requires it.

We have, at most, 12 years to make a difference for generations to come.

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

Support this work

DONATE

Stay in the know

Fair Shake Environmental Legal Services

Guest Blog by Josh Eisenfeld, Director of Marketing with Fair Shake Environmental Legal Services

 

Fair Shake Environmental Legal Services looks maps the origin of their intake calls and reflects on their geographic distribution as it relates to areas with heavy environmental burdens.

 

Over the last five years, Fair Shake Environmental Legal Services has worked in Ohio and Pennsylvania to promote environmental justice by providing legal services at income-based rates. Our service area has a long history of extraction, from timbering, conventional drilling for oil, multiple forms of mining, and unconventional drilling for natural gas. Because of our proximity to these resources, we also have a long history of industrial manufacturing, which can be evidenced by the many oil refineries, steel production facilities, power plants, cement factories, factory farms, and chemical production facilities. Fair Shake offers counsel and representation in environmental law with accessible, sliding scale fees, and we receive a continuous stream of phone calls from those on the front lines. We were curious to see if our intake calls correlated with geographic areas with heavy environmental burdens in order to allocate our limited resources to those regions most efficiently.

With the help of Ted Auch from FracTracker Alliance we collected zip codes from nearly 600 of intake calls received by Fair Shake and placed them on the map below.

 

View map fullscreen | How FracTracker maps work

In general, our intakes in Pennsylvania mirror the Marcellus Shale formation. Over the last decade and a half, technical advancements in drilling have transformed the Marcellus Shale formation from a nonproducing region to the largest producing natural gas formation by volume in the world. Entering 2005, only 13 “unconventional” wells had been drilled in the Marcellus Shale region of Pennsylvania, where today there are roughly 12,000 wells according to FracTracker’s PA Shale Viewer Map. Reduced regulations for unconventional drilling and infrastructure have facilitated this rush for production, resulting in an influx of compressor stations, gathering lines, pump stations, processing plants, wastewater impoundments, wastewater treatment facilities, wastewater injection wells, and more.

We believe that this map indicates that these 12,000 wells place a significant burden on residents living within this region. Speaking broadly, reduced regulation has left loopholes in major environmental laws that have to get justice when their rights have been violated and, even more concerning, when harm has occurred.

One of the most prominent manifestations of this burden is the contamination of private drinking water sources near drilling and wastewater sites. Our region’s history of extraction and industrial enterprise and the pollution associated with these industries makes it extremely difficult to prove, in court, that drilling activity is the sole cause of damage to private wells. The fact is that our groundwater (and therefore private drinking wells) has been contaminated over and over again. Polluters use this to their advantage, leaning on the uncertainty of what caused the contaminants in question to get there. Simply put, water contamination is not a question of whether contaminants exist (they do) it’s a question of how can you prove that it was a given industry when there are many other possible culprits.

One thing we do know is that the number of reports for well contamination has increased in conjunction with the increase in drilling activity. The graph below, created by FracTracker and The Public Herald, shows the correlation of wells drilled, complaints to the Department of Environmental Protection, and complaints specifically about water.

 

 

Upon closer examination of the intake map, we saw a higher density of cases in more populated areas of Allegheny County, which actually has very little fracking activity (less than 170 drilled wells). But Allegheny is also one of the most polluted counties in America. The American Lung Association gave the county all F’s on its air quality and ranked it as 7th worst air quality in the nation according to the association’s state of the air. Allegheny County is also home to two of the most polluted rivers in our country: the Monongahela and the Ohio. Over a century of industrial activity and coal mining have impaired the water but most recently sewer overflows from the city of Pittsburgh have sent dangerous levels of raw sewage into the surrounding waterways.

The population density combined with the very poor air and water quality could be the explanation for the anomaly. Furthermore, Allegheny County is also where our Pittsburgh office is located, which is perhaps the reason that we see so many cases in this region and not in other regions of high population density such as Philadelphia, Harrisburg, or Scranton.

When we started this project, we thought we would discover a correlation between intakes and regions with the heaviest environmental burdens. This could allow us to allocate our limited resources to those regions most efficiently. Unfortunately, the problem is not so simple.

As evidenced by the intake map, resource extraction in Ohio and Pennsylvania is spread over a very large area. That is troubling because the bigger the problem geographically the harder it becomes to deal with. We need to devote far more resources to protecting individuals who face spills, emissions, erosion, impacts to wetland, etc. By speaking more openly about how pervasive these environmental risks are, and how that risk plays into the bigger picture of the climate emergency, we hope we can incite folks to give their time, effort, and resources to defending their health and environment.


By Josh Eisenfeld, Marketing Director at Fair Shake Environmental Legal Services

Support this work

DONATE

Stay in the know