The majority of FracTracker’s posts are generally considered articles. These may include analysis around data, embedded maps, summaries of partner collaborations, highlights of a publication or project, guest posts, etc.

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

7 Sand Mining Communities, 3 States, 5 Months – Part 2

Ludington State Park, Sargent Sand’s Mine, and US Silica and Sylvania Minerals
By Ted Auch, Great Lakes Program Coordinator

When it comes to high-volume hydraulic fracturing (HVHF), frac sand mining may be the most neglected aspect of the industry’s footprint. (HVHF demand on a per-well basis is increasing by 8% per year.)

To help fill this gap I decided to head out on the road to visit, photograph, and listen to the residents of this country’s primary frac sand communities. This multimedia perspective is part of our ongoing effort to map and quantify the effects of silica sand mining on communities, agriculture, wildlife, ecosystem services, and watersheds more broadly. Below is my follow up attempt to give The FracTracker Alliance community a sense of what residents are hearing, seeing, and saying about the silica sand mining industry writ large, through a tour of 7 sand mining communities – part 2. Read part 1.

Monroe County, MI

Monroe County, Michigan is approximately 22 miles south on I-75 from downtown Detroit with similar demographic differences to the Chicago-LaSalle County, IL comparison we made during the first part of this series. South Rockwood lies along the Northeastern edge of Monroe County and the Monroe-Wayne County border, and is consequently at the intersection of Detroit’s sprawl and rural Michigan.

Monroe County and nearly all of South Rockwood is underlain by one of the purest sandstone formations in North America. The Sylvanian Sandstone formation lies beneath 20% of Monroe County stretching from the aforementioned Wayne County border south-southwest to Lucas County, OH (Fig. 1). It is this formation that mining stalwarts such as US Silica and the appropriately named Sylvanian Minerals are mining for frac sands. Not only is the silica pure, but it is also extremely close to the surface. The region, conveniently, is situated at the crossroads of numerous rail lines capable of transporting the sand to shale plays in the east and North Dakota alike.

US Silica and Sylvanian Minerals are neighbors at the corner of Ready and Armstrong Roads in South Rockwood, with the former adjacent to I-75’s southbound lanes (Fig. 2). As of fall 2011, Sylvanian Minerals hadn’t even broken ground on its initial stab at mining frac sands. Presently the two firms have altered nearly 650 acres, or 40% of the community, with the potential to mine an additional 494 acres. These plans suggest that these two companies could collectively alter 72% of the community’s topography.

This domination of the landscape and commerce concerns many South Rockwood citizens including Sylvanian’s immediate neighbor Doug Wood, who has been the industry’s primary citizen watchdog over the last couple years (photo below).

Mr. Wood was generous enough to let us climb to the top of his barn to snap some photos of the mine. Mr. Wood witnessed the foundation of his home become compromised by the numerous blasting events down in Sylvanian’s mine, and only recently found out that the collective activity at the mines is going to force exit 26 off I-75 to be rerouted to Ready Road, converting this sleepy road into the primary entrance/exit for mine-related traffic. In addition, with the approval of Michigan’s Governor Rick Snyder, US Silica’s Telegraph Road Mine proposal has Mr. Wood and his neighbors worried about the safety of their families, the air pollution they inhale from the dust and potentially airborne silica, and the truck traffic related noise, which will all undoubtedly influence their health and quality of life.

The primary take-home message from this stop on my tour was that we have only seen the tip of the iceberg with respect to the potential of frac sand mining to literally and figuratively alter communities. Other affected areas such as South Rockwood could learn quite a bit from the likes of LaSalle County, IL residents Anna Mattes, Tom Skomski, and Ashley Williams.

On to the dunes of Western Michigan and Ludington State Park!

Ludington State Park and Sargent Sand’s Mine

After several days in Grand Rapids, I traveled to Ludington State Park in Michigan (see Fig 4 below), along with documentarian/drone pilot Tom Gunnels and Kent County Water Conservation’s Stephanie Mabie. Our destination was the camp of Linda and Ron Daul, the residents spearheading an effort to make Sargent Sand more accountable and transparent in its mining operations. There camp is also located within and adjacent to one of the most sensitive ecosystems in North America.

This is a documentary produced by Tom Gunnels and his Hive•Mind team that incorporated interviews and drone footage from our Ludington/Sargent Sand mine tour August, 2015.

Ms. Daul was kind enough to organize a tour of the mine, Ludington State Park, and northern hardwood forest for us, as well as journalist Aaron Selbig, who produced a piece on the tour for Interlochen Public Radio. The scenery sans the sand mining infrastructure, noise, and related truck traffic was beautiful in this little corner of Michigan roughly half way between Grand Rapids and Traverse City.

Great Lakes sand dunes

Michigan’s unique and threatened dune ecosystems – and associated Jack Pine (Pinus banksiana) “plains” or “barrens” ecosystem1 – comprise of 116 square miles of coastline along Lake Michigan. Unfortunately, they are simultaneously deprived of the fire regimes they require to regenerate, and are targets for the production of frac sands with Ludington State Park being the primary example. This makes the feasibility of reclaiming original plant communities dubious at best. (There have been mixed results associated with reclamation efforts, for example, at the former Rosy Mound Standard Sand Corporation’s mine 80 miles due south in Grand Haven, see Fig. 5.)

The largest obstacle to reclamation of sand mines along Lake Michigan is the inability of practitioners to document and replicate the many “microenvironments,” which as Peterson and Dersch pointed out:

…are the small environments created by differences in temperature, moisture, and light intensity within the sand dune ecosystem. Examination of these small environments is essential to a clear understanding of the ‘whole’ ecosystem. The diversity of organisms in sand dune areas is made possible by the variety of habitats found in relatively small areas. Any alteration of the dune which homogenizes the ecosystem will allow less diversity of plants and animals.

The Great Lakes dune complex requires perennial vegetation, wind, and sand for continued formation and stabilization with a complex – and specifically adapted – mosaic of lichens, fungi, mosses, grasses, wildflowers, shrubs, and trees arranged in a complicated and multi-layered manner across much of Western Michigan’s lakeshore. As Michigan’s DNR put it:

Without sand dune plants, the integrity and preservation of a stable dune complex cannot exist.

In combination with the Michigan Supreme Court’s constant fiddling of the intent and letter of mineral extraction law, namely the “very serious consequences” clause in House Bill 4746 (2011), you have the makings of a scenario that could eliminate upwards of 16 square miles of Michigan’s critical dunes in the coming years or 9-14% of the entire complex.2

Examples of this unique situation and the threats from Sargent Sand’s expansion include this dune, which is among the largest in Ludington State Park’s 2,820 acres. The Ludington Dunes are also home to the threatened Pitcher’s Thistle (Cirsium pitcheri) with the LSP encompassing one of the world’s two largest populations of this species according to Michigan’s Department of Natural Resources. Interestingly, the US Fish & Wildlife Service does not explicitly or implicitly list sand mining as one of their reasons why the species is threatened.

In addition to Pitcher’s Thistle, systems – like those found along the western edge of Michigan – are home to more than 15 endemic, or nearly so, plant species such as:

  • Wormwood (Artemisia campestris, aka the source of Absinthe),
  • The early colonizer sea-rocket (Cakile edentula),
  • Clustered Broom-Rape (Orobanche fasciculata),
  • Harebell (Cakile edentula, at the edge of Sargent Sand’s Ludington mine), and
  • Hoary Puccoon (Lithospermum canescens), and the species most responsible for dune stabilization Marram Grass (Ammophila sp.).

Additionally, these dunes are critical to the life-cycles of more than 10 different species of birds, reptiles, and herbivores including the Eastern Hog-nosed Snake, Eastern Box Turtle, American Goldfinch, and everybody’s favorite, the White-Tailed Deer.

Table 1. Number of Threatened, Endangered, and Rare Plant Species within Western Michigan’s Dune Complex

Criteria # of Species within Michigan’s Dune Complex
Michigan Threatened Species List 72
Michigan Endangered Species List 7
Michigan Rare Species List 3
Extinct 4
US Endangered Species List 1
US Threatened Species List 11

Modified from State of Michigan Department of Natural Resources, Geological Survey Division, 1979.

Finally, it is of importance to mention the final stage of dune succession are the beech-maple forests, which take an estimated 1,000 years to be achieved according to Jerry Olson (1958). With that said let’s take a look at some of the pictures and testimonial I gathered during my trip to The Great Lake(s) State…

The Photos

A. Sylvanian Minerals and US Silica, South Rockwood, Monroe County, MI from Doug Wood’s barn

The Sylvanian Minerals and US Silica Mine Complex, South Rockwood, Monroe County, MI. 7 Sand Mining Communities, 3 States, 5 Months - Part 2

Location where below photos were taken, showing the Sylvanian Minerals and US Silica Mine Complex, South Rockwood, Monroe County, MI

B. Ludington State Park and Sargent Sand’s Silica Sand Mine, Ludington, Mason County, MI

Ecosystems and Native Plants of Ludington State Park, Mason County, MI (16 images, 11 species)

Sargent Sand and Ludington State Park photography Point-Of-View and Tom Gunnel's Drone Flight Path

Sargent Sand and Ludington State Park photography point-of-view and Tom Gunnel’s drone flight path

Ecosystems (8 images, 3 ecosystems within or adjacent to the mine)

C. Eastern Mine Point-Of-View

Active mine operations and reclaimed parcels (8 images)

D. Ludington State Park Point-Of-View

Overburden stockpile, haul roads, and grain separator (7 images)

E. Drone Screenshots Courtesy of documentarian Tom Gunnels at Hive•Mind

Testimonials

Doug and Dawn Wood, South Rockwood, MI

The cards are definitely stacked against you when there is a silica quarry right next door to your dream home/property. We toiled for years to green it up with trees and grass, a labor of love for our “place in the country”. I mean, what’s not to love about semi-truck traffic, air pollution, house tremors not to mention plummeting property values! Since South Rockwood village annexed the quarry in 2010, placing a quarry wall literally 300 feet from my home, we deal with noise of crushers, loaders, drilling for blasting, and blasting. All the while we are left to wonder what kind of garbage we are inhaling since there seems to be NO REGULATIONS, AIR MONITORING OR DUST CONTROL MEASURES AT ANY TIME!! And if that isn’t enough, the village wants to relocate the freeway ramps to our road for the quarry’s trucking convenience.

Al (Chip) Henning, Ludington, MI

Sargent Sand Company has owned this site since the 1920s. The Big Sable Dune Complex is roughly twice the size of Sleeping Bear Dunes National Lakeshore, and includes the Nordhouse Federal Wilderness. If Sargent completes their mining as projected over the next 30-40 years, the Ludington Dunes (about 40% of the Complex) will be 60-70% destroyed/mined/removed, sent primarily to Pennsylvania for hydraulic fracturing in the Marcellus Shale formation. Sargent has removed 10-15% of the Ludington Dunes, to date, and faces permit renewal in January 2016. My family owns several properties which abut Ludington State Park, whose lands surround the Sargent property narrowly on three sides. Our property lies 1200 feet from the Sargent operations at closest approach; aside from the unsustainable removal of the sands, the noise from Sargent’s 24-7-365 operations is frequently intolerable.

Linda Bergles Daul, Ludington, MI

Fracking sand is mined from ancient geological sand deposits, extremely rare across the globe.   In Michigan, the Sargent Sand – Ludington (State Park) Site, on the west coastline of Lake Michigan, enjoys a controversial, grandfathered permit to mine irreplaceable sand in critical dunes for horizontal fracking application. When the Sargent Sand mine is operating, the peaceful retreat of Hamlin Lake might as well be a downtown Chicago construction site, sharing heavy truck traffic, air pollution and mine numbing noise with our Pure Michigan visitors. The beauty and majesty of Ludington State Park has enriched my life. The critical dunes are one of Michigan and LSP’s most spectacular natural features – they also are one of our most fragile! The dunes are a phenomenon unique to the State of Michigan and yet we allow permitted critical sand dune mining right next to LSP. Sargent sand expansion towards LSP resulting in the removal of 200 year-old stabilizing trees, dredging to create artificial lakes, disregard for wildlife and the critical dune ecosystem, should be addressed within LSP master plans. I would like to see a world-class, university associated educational program established at Ludington State Park, addressing dune ecosystems. The LSP master plan should deliberately study the impact of Sargent Sand Mining operation and propose a broader vision that will consolidate the park in a way that preserves its beauty for future generations. [Furthermore] The State of Michigan Sec. 35302 The legislature finds that: (a) The critical dune areas of this state are a unique, irreplaceable, economic, scientific, geological, scenic, botanical, educational, agricultural, and ecological benefits to the people of this state and to people from other states and countries who visit this resource. EXCEPT if the activity is involved in sand dune mining as defined in part 637.

Julia Chambers, President of A Few Friends for the Environment of the World (AFFEW), Ludington, MI

Sargent Sands sand mining has been viewed as mainly negative in the Ludington-Mason County community. This company was “dormant” until hydraulic fracturing became somewhat popular.   Most citizens and visitors do not like to see the dunes removed in this area so close to the Ludington State Park.   Destruction of critical dune area and possible endangered plants are the main concerns. Other impacts to this community include the immense noise created by the mining for families with homes by the mine and all the trucks going through town to the freight trains. Another issue is the wear on the roads. Also mentioned to me was the time spent waiting at the train crossings because of the sand being transported to other areas via trains. I really haven’t heard any positive comments. My guess would be that the mining creates jobs for the truckers, train workers, and of course the employees of the company. As far as in the future there are rumors that Sargent Sands will continue to mine and then make the area a destination place with condos around the lake they created. This is turn will bring more traffic to the dunes, not a sustainable idea!

Glenn Walquist, DVM, Country Veterinary Clinic, Ludington, MI

I really do “get it” in understanding that jobs are critically important for our State. Mouths are fed, bills are paid, colleges are attended. But the damage to Ludington left in Sargent Sands’ wake when it is done here someday will be permanent scars from the removal of Sand Dunes so rare and so beautiful, that I’m certain that we will all regret what we allowed to happen while on “our watch”. I believe that Ludington’s precious Sand Dunes are not really “ours”…to destroy or allow to be taken. They are timeless natural resources that we have simply been granted stewardship over by our own forefathers and mothers. Allow our children and great grandchildren the privilege of seeing and enjoying what we ourselves have been lucky enough to have seen and touched. “As a native Michigander and 13 year resident of Ludington, I can confidently tell anybody willing to listen that Sargent Sands is (at this very moment) irreversibly destroying one of Michigan’s last remaining precious and timeless natural resources. We… OWE IT to generations that follow us, the right to marvel at and enjoy what is one of this Country’s uniquely beautiful natural treasures… Ludington’s sand dunes. I ignorantly believed, at first, when Sargent Sands began mining sand again here that it would be something akin to raking one’s yard of leaves. When I had an opportunity to hike their mining operation’s perimeter, I witnessed what looks like strip-mining devastation. It’s saddens me that I was complicit (when I myself purchased some sand for my backyard from Sargent’s) but I am more frightened that our own DEQ (who should have known better) would have ever approved such disfiguring and permanent alteration to something so rarely seen in nature. I myself have marveled…at something that I believe only a few places on Earth possess…sand dunes so unique, so beautiful and so rarely seen (and…FREE to hike and to look at !) along a freshwater lake that happens to be what is increasingly being recognized as our Country’s lifeblood. In the Winter here when it snows, I often wonder how many people in other countries can even imagine what snow blowing in sand dunes looks like…the beautiful swirling mixture of sandy snow wrapping around dune grasses that stretch as far as the eyes can see –but now being trucked away. I ask our State, especially in light of Flint’s man made devastation, PLEASE do not allow this to continue when Sargent Sands’ permit expires in December of 2016. This sand mining destruction cannot be undone.

Additional Readings

Buckler, W.R., 1978. Dune Type Inventory and Barrier Dune Classification Study of Michigan’s Lake Michigan Shore, in: Resources, M.D.o.N. (Ed.). Michigan Department of Natural Resources, Lansing, MI.

Carlisle, N., 1960. Michigan’s Marching Dunes. Coronet 48, 159.

Cowles, H.C., 1899. The Ecological Relationship of the Vegetation on the Sand Dunes of Lake Michigan. Botanical Gazette 27, 95-117, 167-202, 281-308, 361-391.

Cressey, G.B., 1928. The Indian sand Dunes and Shore Lines of the Lake Michigan Basin, The Geographic Society of Chicago Bulletin. The University of Chicago Press, Chicago, IL.

Daniel, G., 1977. Dune Country A Guide For Hikers and Naturalists. The Shallow Press Inc., Chicago, IL.

Dorr, J.A., Eschman, D.F., 1970. The Geology of Michigan. University of Michigan Press, Ann Arbor, MI.

Kelley, R.W., 1962. Sand Dunes, A Geologic Sketch, in: Conservation, M.D.o. (Ed.). Michigan Department of Natural Resources, Lansing, MI.

Koske, R.E., Sutton, J.C., Sheppard, B.R., Ecology of Endogone in Lake Huron Sand Dunes. Canadian Journal of Botany 53, 87-93.

Odum, E.P., 1971. Fundamentals of Ecology. W.B. Sanders Company, Philadelphia, PA.

Olson, J.S., 1958. Rates of succession and soil changes on Southern Lake Michigan sand dunes. Botanical Gazette 119, 125-170.

Peterson, J.M., Dersch, E., 1981. A Guide To Sand Dune and Coastal Ecosystem Functional Relationships, in: Service, M.C.E. (Ed.). Michigan Cooperative Extension Service, Lansing, MI.

Ranwell, D.S., 1972. Ecology of Salt Marshes and Sand Dunes. Chapman and Hall, London, UK.

Reinking, R.L., Gephart, D.G., 1978. Pattern of Revegetation of a Shoreline Dune Area, Allegan County, Michigan. The Michigan Academician 11.

Thompson, P.W., 1967. Vegetation and Common Plants of Sleeping Bear. Cranbrook Institute of Science, Bloomfield Hills, MI.

Footnotes for 7 Sand Mining Communities, 3 States, 5 Months – Part 2

  1. Michigan’s DNR describes this ecosystem as having “always contained few large trees and little or no old growth. A forest where soils are dry and the vegetation sparse, it is called a barrens. A forest periodically swept by raging fires, only to spring back, fresh and revitalized. A forest which is amazingly productive and biologically diverse, providing homes for numerous plants and animals, many of them [endemic]. Today [we are]…seeking to extract its resources, enjoy its beauty, explore its secrets, and preserve its life. The jack pine forests can exist, only if we care.”
  2. As Michigan State researchers pointed out the Michigan coastal dune ecosystem exists in small fragments along the Atlantic Coastal Plain but nowhere else in the world

Flooded well and toppled oil storage tanks in Weld County, Colorado 2013. Rick Wilking/Reuters

Oil and Gas Flood Contamination Risk Incalculable on CO Front Range

By Sierra Shamer, Visiting Scholar, FracTracker Alliance

Historic 2013 flooding in the Colorado Front Range damaged homes, bridges, roads, and other infrastructure — including hundreds of oil and gas facilities. Companies shut down wells and scrambled to contain spills in their attempts to prevent extensive water contamination. Colorado has since adopted new regulations that require oil and gas companies to identify and secure all infrastructures located within floodplains. However, FEMA’s Flood Hazard maps, which the state uses to calculate flood risk, are largely incomplete, leaving only the industry accountable for reporting facilities that may be at risk in future flooding events. This article highlights the unknown flood contamination risk threatening the Front Range by oil and gas, and the featured map identifies known floodplain infrastructure.

Front Range Realities

CO Front Range counties re: flood contamination risk

Counties of the Colorado Front Range

The Colorado Front Range is the most populated region of the state, covering 17 counties and 7 cities including Boulder, Denver, and Colorado Springs. This region has experienced devastating flash flooding events throughout history, most notably the Big Thompson flood of 1976, which dumped 12-14 inches of rain along the Front Range in only 4-6 hours. The 2013 Colorado Front Range Flood brought almost 15 inches to the region, 9 of which falling within a period of 24 hours. A state of emergency was declared in the region and recovery projects continue to this day.

The Front Range region is not only one of the most populated in Colorado, it is also home to 40% of Colorado’s oil and gas wells. Oil and gas development occurs so rapidly that data reports on pending permits, active permits, and well locations are updated daily by the Colorado Oil and Gas Conservation Commission (COGCC). The damage to oil and gas facilities due to the 2013 floods prompted the COGCC to adopt Rule 603.h, requiring companies to identify proposed and current infrastructure within the floodplain and to create flood mitigation and response plans. On April 1st of this year, all companies with existing infrastructure must comply with Rule 603.h. With over 109,000 wells in the state, an incomplete FEMA database, and only 22 field inspectors, the COGCC has limited capacity to ensure these reports identify all infrastructure within the floodplain.

FEMA Floodplain Gaps

The Federal Emergency Management Agency (FEMA) maintains a national map of the 100-year floodplain for insurance determinations that are in the process of being digitized. These maps show the extent of flooding expected from rain events with a 1% chance of occurring in any given year. They are determined by a combination of topography, satellite imagery, and maps from local jurisdictions. However, in many portions of the western US, these mapped areas are incomplete, including large regions of Colorado. FEMA maps are also the primary floodplain data source used by industry and the by the COGCC. The map below shows the oil and gas infrastructure that is located within the known digital 100-year floodplain as of early February 2016. This map underrepresents the actual number of facilities within the floodplains due to incomplete FEMA data, but provides a clear visual of a widespread problem.

Known Floodplain Infrastructure Map

View full screen map | How to work with our maps | Download map data

Although FEMA is routinely working to update their dataset, large regions with widespread extraction remain digitally unmapped. While there is accessible floodplain info for the companies to use to determine their status and for the COGCC to verify what the industry reports, the incomplete digitized FEMA data means there is no accessible or efficient way for the COGCC to know if there is infrastructure within a floodplain that hasn’t been reported. This means that more is at risk here than we can calculate. Weld County, a Front Range county and recipient of severe flooding in 2013, starkly exemplifies this reality. In the aftermath of the 2013 flood, Weld County became a disaster zone when 1,900 oil and gas wells were shut down, submerged completely by the rushing water, as thousands of gallons of oil drained out. Until January 2016, Weld County lacked digitally mapped floodplains, and currently only 16% of the river and stream network is available.

The table below lists the percentages of oil and gas infrastructure that exist in Weld County alone that can be calculated using this limited dataset. As of February of this year, 3,475 wells of 35,009 are within the known floodplain in Weld County. Of greater concern, 74% of pending permits statewide are in Weld County – 5% of those in the known floodplain – indicating either an underestimation of flood risk, a blatant disregard of it, or both.

table_v2

Flooding in the Future

According to the CO Climate Change Vulnerability Study, the state expects a 2.5–5 degree Fahrenheit annual temperature increase by 2050. While this increase is likely to cause earlier spring runoff, more rain at lower elevations, and higher evaporation rates, it is unclear if annual precipitation will increase or decrease with rising temperatures. This uncertainty makes it difficult to know if increased flood risk is in the future. Current flood risk, however, is a known threat. The CO Department of Public Safety’s Flood Hazard Mitigation Plan calculates, based on historical events, that Colorado experiences a flood disaster once every five years. This means that each year, there is a 20% chance a major flood will occur. With incomplete data, limited oversight, and uncertain future trends, oil and gas flood contamination risk is incalculable – and on the Front Range, the majority of Colorado’s population, extractive industry, and environment are in danger.

Dealing with the Unknown

The unknown risks of climate change and known risks of historical flood trends emphasize that identifying oil and gas infrastructure in floodplains must be a high priority for the COGCC. These realities also put into question whether or not future infrastructures should be permitted within floodplains at all. In April, floodplain infrastructure will be identified by the industry and when these data are made available, a more accurate analysis of risk will me made.

Feature photo shows a flooded well and toppled oil storage tanks in Weld County, Colorado 2013 – by Rick Wilking/Reuters.

Photo courtesy of Brian van der Brug | LA Times

More Oil Field Wastewater Pits Found in California!

Who’s in charge here?
By Kyle Ferrar, Western Program Coordinator

FracTracker Alliance recently worked with Clean Water Action to map an update to last year’s report* on the use of unlined, above ground oil and gas waste disposal pits, also known as sumps.

The new report identifies additional oil field wastewater pits and details how California regulators continue to allow these facilities to degrade groundwater, surface waters, and air quality. Other oil and gas production states do not permit or allow these type of operations due to the many documented cases of water contamination. A report published in 2011 identified unlined pits and other surface spills as the largest threat to groundwater quality. The sites are ultimately sacrifice zones, where the contamination from produced water and drilling mud solid wastes leaves a lasting fingerprint.

Central Coast & New Central Valley Pit Data

Ca Central Coast oil field wastewater pits

Figure 1. Central Coast wastewater pits

New data has been released by the Central Coast Regional Water Quality Control Board, identifying the locations of 44 active wastewater facilities and 5 inactive facilities in the California counties of Monterey, Santa Barbara, and San Luis Obispo. The number of pits at each facility is not disclosed, but satellite imagery shows multiple pits at some facilities. The locations of the majority of central coast pits are shown in the map in Figure 1, to the right.

In the web map below (Figure 2), the most updated data shows the number of pits at “active” facilities (those currently operating), shown in red and green, and inactive pits, shown in yellow and orange. The number of pits at each facility in the central valley are shown by the size of the graduated circles. Pit count data for the central coast facilities was not reported, therefore all facilities are shown with a small marker.

Figure 2. Interactive map of California oil field wastewater pits

View Map Fullscreen | How Our Maps Work | Download Map Data (Zip File)

Exploring the new central coast data shows that the operators with the most facilities include Greka Oil & Gas Inc. (14), E & B Natural Resources (10), ERG Operating Company, LLC (6), and Chevron (5). As shown in the table below, the majority of central coast pits are located in Santa Barbara County.

Table 1. Summaries by County

Site Counts by Activity and County
Facility Counts Pit Counts
County Active Inactive Active Inactive
Santa Barbara 35 2 Unknown Unknown
Monterey 9 0 Unknown 0
San Luis Obispo 0 3 0 Unknown
Kern 161 191 673 347
Fresno 8 5 31 14
Tulare 6 1 28 1
Kings 5 0 14 0
San Benito 0 4 0 5
Grand Total 224 206 746 367

Wastewater Pit Regulations

Way back in 1988, the U.S. EPA recognized that the federal regulations governing disposal practices of wastewater are inadequate to protect public health, but has yet to take action (NRDC 2015). There is little chance the U.S. EPA will enact regulations focused on pits. In certain cases, if wastewaters spill or are discharged to surface waters the operations will fall under the jurisdiction of the Clean Water Act and will require a National Pollutant Discharge Elimination System (NPDES) permit. Since the objective of the pit is to contain the wastewater to keep it away from surface waters, pits and the wastewater facilities in California that manage them do not require federal oversight. For now the responsibility to protect health and environment has been left to the states.

Most states have responded and have strict regulations for wastewater management. For the few states that allow unlined pits, the main use is storage of wastewater rather than as an dedicated method of disposal. The majority of high production states have banned or ended the use of unlined pits, including Texas, North Dakota, Pennsylvania, Ohio, and New Mexico, Texas (Heberger & Donnelly 2015). An effective liner will prevent percolation of wastewaters into groundwater. The goal of California oil field wastewater pits is quite the opposite.

For California, percolation is the goal and a viable disposal option.

Therefore other regulations that require monitoring of liquid levels in the pits are moot. In fact there is no evidence of regulation requiring spill reporting in California whatsoever (Kuwayama et al. 2015).

Numerous other extraction states throughout the country have phased out the use of open pits entirely, including those with liners due to the common occurrence of liner failures. The list includes those new players in the shale boom using hydraulic fracturing techniques such as North Dakota, Ohio, Pennsylvania, Wyoming, and Colorado. Rather than using the pits as storage, these states’ regulatory agencies favor instead the protections of closed systems of liquid storage. Wastewaters are stored in large tanks, often the same tanks used to store the fresh water used in the hydraulic fracturing process.

Because hydraulic fracturing in California uses much less water, it should be much easier to manage the flowback fluids and other wastewaters. According to the CCST report, 60% of the produced water from hydraulic fracturing operations was disposed to these unlined pits. Regardless of extraction technique, oil extraction in California produces 15 times the amount of wastewater. In total, an estimated 40% of all produced water was discharged to unlined “percolation” pits. As the 3rd largest oil producing state in the country, this equates to a massive waste stream of about 130 billion gallons/year (Grinberg 2014).

Regulatory Action

The facilities’ permits identify waste discharge requirements (WDRs) that allow for the discharge of oil field wastewater to the “ground surface, into natural drainage channels, or into unlined surface impoundments.” Using the Race Track Hill and Fee 34 Facilities as an example, the WDRS place criteria limits on total dissolved solids (TDS), chlorides, and boron. If you disregard all the other toxic constituents not monitored, the allowable concentration limits set for these three wastewater constituents would be reasonable for a discharge permit on the east coast, where a receiving body of water could provide the volume necessary for dilution. When the wastewater is applied directly to the ground or into a pit, the evaporative loss of water results in elevated concentrations of these contaminants.

Even with these very lax regulations, a number of facilities are in violation of the few restrictions required in their permits. Cease and desist orders have been several operators, most notably to Valley Water Management’s Race Track Hill and Fee 34 Facilities. According to the Regional Water Board documents, the Fee 34 disregarded salinity limitations and other regulations. As a result the Regional Water Board found soil and groundwater contamination that “threatens or creates a condition of pollution in surface and groundwater, and may result in the degradation of water quality.” Reports show that 6 domestic supply and 12 agricultural supply wells are located within 1 mile of the Fee 34 facility. At the Race Track Hill Facility the wastewater is continuously sprayed over several acre fields in a small watershed of the Cottonwood Creek. During a rain, the salt and boron loadings that have accumulated in the soil over the past 60 years of spraying can create increased salt and boron loading in the Kern River and groundwater. This would be a violation of the Clean Water Act (CVRWQCB 2015).

As shown in Table 2, below, the majority of facilities are currently operating without a permit whatsoever (61.2%). Of the 72 facilities that bothered to get permits, 32 (44.4%) received the permit prior to 1975, before the Tulare Basin Plan was implemented to preserve water quality. Of the 183 active facilities in the Central Valley, only 15 facilities have received Cease and Desist (11% of permitted) or Cleanup and Abatement Orders (6% of unpermitted). Only 3 of the 41 active Central Coast facilities operate with a permit (7.3%).

These types of WDR permits that allow pollutants to concentrate in the soil and the groundwater and degrade air quality. Chemicals that pose a public health risk are not being monitored. But at this point, these facilities are not only sites of legacy contamination, but growing threats to groundwater security. Operators say that closing the pits will mean certain doom for oil extraction in California, and recent letters from operators make pleas to DOGGR, that their very livelihood depends on using the pits as dumping grounds. The pits are the cheapest and least regulated mode of disposal.

Table 2. Facility Status Summaries

Facility Status
Activity Permitted Permitted; Cease & Desist Order Unpermitted Unpermitted; Cleanup & Abatement Order Grand Total
Active 75 9 137 6 227
Inactive 20 2 184 3 209
Grand Total 92 11 321 9 433

New Mexico Case Study

Much like the groundwater impacts documented by California’s Central Valley Regional Water Quality Control Board, other states have been forced to deal with this issue. The difference is that other states have actually shut down the polluting facilities. In California, cease and desist orders have been met with criticism and pleas by operators, stating that the very livelihood of the oil and gas industry in California depends on wastewater disposal in pits. The same was said in other states such as New Mexico when these crude and antiquated practices were ended. Figure 3 below shows the locations of wastewater pits in New Mexico and the areas where groundwater was contaminated as a result of the pits.
The New Mexico oil and gas industry predicted in August 2008 that fewer drillers would sink wells in New Mexico, at least in part because of the new pit rule. Pro-industry (oil and gas) state representatives were concerned that new drilling techniques coupled with the pit rules could lead to an industry exodus from New Mexico, hoping that the Governor “would step in to help protect an important state revenue source.” But the state’s average rig count from June — when the pit rule took effect — through December 2008 was 7% higher than it was over the same period in the previous year. Development of oil and gas reserves is independent of such regulation. Read the FracTracker coverage of groundwater contamination in New Mexico, here!

Figure 3. Legacy map of cases where pits contaminated groundwater in New Mexico

View Map Fullscreen | How Our Maps Work

References & Resources

* In case you missed it, the 2014 report on wastewater pits can be found here (Grinberg, A. 2014). FracTracker’s previous coverage of the issue can be found here.

** Feature image of Central Valley oil field wastewater pits courtesy of Brian van der Brug | LA Times

  1. Grindberg, A. 2016. UPDATE ON OIL AND GAS WASTEWATER DISPOSAL IN CALIFORNIA: California Still Allowing Illegal Oil Industry Wastewater Dumping Clean Water Action. Accessed 2/15/16.
  2. Grinberg, A. 2014. In the Pits, Oil and Gas Wastewater Disposal into Open Unlined Pits and the Threat to California’s Water and Air. Clean Water Action. Accessed 12/5/14.
  3. NRDC. 2015. Groups File Notice of Intent to Sue EPA Over Dangerous Drilling and Fracking Waste. NRDC. Accessed 10/1/15.
  4. Heberger, M. Donnelly, K. 2015. Oil, Food, and Water: Challenges and Opportunities for California Agriculture. Pacific Institute. Accessed 2/1/16.
  5. Kuwayama et al. 2015. Pits versus Tanks: Risks and Mitigation Options for On-site Storage of Wastewater from Shale Gas and Tight Oil Development. Resources for the Future. Accessed 2/1/16.
  6. CVRWQCB. 2015. Cease and Desist Order R5-2015-0093. CVRWQCB. Accessed 2/1/16.
Proposed Palmetto Pipeline in Southeastern US

Proposed Palmetto Pipeline: At what cost?

By Karen Edelstein, Eastern Program Coordinator

Asserting that the proposed Palmetto Pipeline is essential to supply gas and diesel to the residents of south Georgia and northern Florida, Houston-based energy giant Kinder Morgan has found themselves in the crosshairs of yet another battle. Connecting to the existing Plantation Pipeline, the proposed $1 billion Palmetto Pipeline would run from Belton, SC to terminals in Augusta, SC; Richmond Hill, GA; and Jacksonville, FL, a distance of 360+ miles. Along that corridor currently, gasoline is delivered from inland terminals to ports via trucking companies rather than by pipeline.

Proposed Palmetto Pipeline Route


View full screen map | How to work with our maps

The Land in Question

In order for the pipeline to be built through Georgia, agreements for a pipeline right-of-way would need to be sealed with 396 private landowners, and the land owned by these private citizens constitutes 92% of the route of the pipeline through the state. According to Kinder Morgan, however, 80% of the pipeline would be build next to (although not within) existing rights-of way for powerlines, pipelines, railroads, and roadways.

Kinder Morgan asserts that the Palmetto Pipeline would create 28 permanent jobs in Georgia. However, opponents of the pipeline measure the flip-side of economic impacts, with more than 250 jobs lost for coastal Georgia truckers, port workers, and Merchant Marines, as a result of changing the transportation medium for the petroleum to pipeline from truck.

The proposed pipeline would carry 167,000 barrels a day of refined petroleum – crossing the Savannah River, four other major watersheds in Georgia (Ogeechee, Altamaha, Satilla, and St. Mary’s), the upper reaches of the Okefenokee watershed, and countless freshwater, tidal, and brackish wetlands. These aquatic and terrestrial ecosystems through which the pipeline would pass are home to diverse numbers of rare and endangered species, as well as sportfish and notable forest habitats. Much of the area is underlain by extensive karst rock deposits, and as such, is especially at risk for groundwater contamination.

Pipeline Push Back

42-inch Pipeline Installation in WV

Example of a 42-inch Pipeline Installation in WV

A fight against the pipeline is being waged between the public and Kinder Morgan. Opponents of the pipeline, such as the group “Push Back The Pipeline,” point out contradictions between Kinder Morgan’s rhetoric and the actual situation. For example, although the pipeline will run underground, protected from surface disturbance, should it rupture, the spilled petroleum could still have major impacts on coastal rivers that drain through wetlands, marshes, and into the Atlantic Ocean. Although 80% of landowners approached by Kinder Morgan for rights-of-way agreed to sign leases, it turns out that none of them were given the option not to sign. Kinder Morgan surveyors also trespassed on landowner property in the proposed right-of-way without any permission to be there. Kinder Morgan asserts that the pipeline will reduce reliance on foreign oil, when, in fact, the US is already a net exporter of petroleum products. Kinder Morgan also claims that the need for this oil will only increase, when statistics show that Georgia’s energy demands peaked in 2002, and have fallen 18% between 2005 and 2012 (data from eia.gov). Property owners along the proposed pipeline route are no strangers to spills, either. Kinder Morgan claims that pipelines are the safest method for transporting fuel. As recently as December 2014, however, Kinder Morgan’s Plantation Pipeline in Belton, SC – the location where Palmetto is proposed to start – spilled at least 360,000 gallons of fuel into the ground. Only half of the spilled fuel was recovered.

Opposition to the project is not following party lines. In May of 2015, Georgia’s Republican governor, Nathan Deal, vowed to fight the project in court. Similarly, the Georgia Department of Transportation rejected the proposal, stating that it was not in the public interest, and therefore, seizing the right-of-way by eminent domain was not an acceptable strategy for Kinder Morgan to pursue.

Another formidable opponent of the project is William S. Morris III, a powerful media magnate who owns newspapers in Jacksonville, Savannah, and Augusta and has been providing continual coverage of the controversy. Morris also owns more than 20,000 acres directly along the pipeline route, and could potentially lose an 11- mile corridor of land to eminent domain if the pipeline project is approved.

In late February 2016, a Georgia House subcommittee approved a moratorium on use of eminent domain on petroleum pipelines. Eminent domain would allow Kinder Morgan to take a 50-foot-wide strip of land for the pipeline right-of-way, whether or not the private citizens owning that land were in favor. The bill now moves on to a full committee. Georgia state law also requires that petroleum companies must prove a project meets guidelines of “public necessity” before eminent domain could ever move ahead.

Although Kinder Morgan hopes to see the pipeline built and in service by December 2017, critical components, such as a complete right-of-way, are far from finalized.

See the recent documentary created about the Palmetto Pipeline here:


At What Cost? Pipelines, Pollution & Eminent Domain in the Rural South from Mark Albertin on Vimeo.

Clearing land for shale gas pipeline in PA

A Push For Pipelines

By Bill Hughes, WV Community Liaison

For anyone who even casually follows Marcellus and Utica shale gas exploration and production, such as in the active gas fields of West Virginia or Southwestern PA or Ohio, we know there are many concerns surrounding the natural gas production process. These issues range from air pollution, water consumption and contamination, to waste disposal. We know that, after all well the pad drilling and construction traffic are done, we must also have pipelines to get the gas to compressor stations, processing plants, and to markets in the Eastern United States (and likely Europe and Asia in the near future). Gas companies in Wetzel County, WV, and in neighboring tri-state counties, are convinced that building pipelines – really big pipelines – will be the silver bullet to achieving some semblance of stability and profitability.

Problems With Proposed Pipelines

One of the new, very large diameter (42”) proposed gas pipelines getting attention in the press is the Mountain Valley Pipeline, which will originate in the village of Mobley in eastern Wetzel County, WV and extend Southeast, through national forests and over the Appalachian Mountains into the state of Virginia. Even if the residents of Wetzel County and other natural gas fields are guinea pigs for experiments with hydraulic fracturing, we know how to build pipelines, don’t we? The equipment, knowledge, and skill sets needed for pipeline construction is readily available and commonly understood compared to high pressure horizontal drilling with large volumes of slick water. So, what could go wrong?

I can answer that question first hand from my hayfield in Wetzel County. Almost two years ago, EQT wanted to survey my property for a similar proposed pipeline – this one 30” in diameter, called the Ohio Valley Connector (OVC). The application for this project has now been filed with the Federal Energy Regulatory Commission (FERC). The below map shows a section of the OVC as proposed almost two years ago. The red outlined area is my property. The yellow line shows one proposed pathway of the 30” pipeline that would cross our land. Multiple routes were being explored at first. Were this version approved, it would have gone right through my hayfield and under our stream.

A section of the OVC as proposed almost two years ago.

A section of the OVC as proposed almost two years ago. The red outlined area is my property. The yellow line shows one proposed pathway of the 30” pipeline that would cross our land.

Pipeline opponents express concern about habitat fragmentation, the crossing of pristine streams and rivers, erosion and sedimentation issues, spills, gas leaks, and possible explosions. These are all very valid concerns. But the potential for other logistical errors in the building process – from very simple to potentially serious ones – are also worth consideration. In this article I will use my recent personal experience as a detailed and documented example of how a professionally surveyed location on my property contained an error of almost one mile – over 4,000 feet – as part of a pipeline construction planning project. Yes, you read that right.

Part I: How Did We Get To This Point

Before we get to my story, I should review my first contact with EQT on this issue. In February of 2014, an EQT land agent asked me for permission to walk my property for preliminary evaluation of a route that would send their 30” high-pressure pipe through our land, from south to north.

It is important to keep in mind that almost every landowner in Wetzel County has been contacted by mail, phone or in person, by land agents promising cash with a verbal assurance that all will be well. The goal is to get a landowner’s signature on a loosely worded “right of way” (RoW) lease contract, with terms favorable to the gas company, and move on. Unfortunately, pipeline lease offers cannot be ignored. Not objecting or not questioning can sometime leave the landowner with fewer choices later. This is because many of the bigger interstate transmission lines are being proposed as FERC lines. When final approval is granted by FERC, these pipelines will have the legal power of eminent domain, where the property owner is forced to comply. Just filing a FERC application does not grant eminent domain in West Virginia, as it seems to in Virginia, but the potential for eminent domain gives land agents power over landowners.

I was not ready to give them surveying permission (to drive stakes or other permanent markers). Since a natural gas pipeline would affect all my neighbors, however, I agreed to allow a preliminary walk through my property and to hang surveyor ribbons in exchange for answering my questions about the project. For instance, one of my biggest concerns was the potential for significant habitat fragmentation, splitting up the forest and endangering wildlife habitat.

There are many questions residents should consider when approached by land agent. A list of these questions can be found in the appendix below.

I never did get answers to most of my questions in the few e-mail exchanges and phone conversations with EQT. I never saw the surveyors either. They simply came and left their telltale colored ribbons. Later, at a public meeting an EQT representative said the closest they would run the pipe to any residence would be 37.5 feet. That number is correct. I asked twice. They said they had the right to run a pipeline that close to a residence but would do their best not to. The 37.5 feet is just one half of the permanent RoW of 75 feet, which was also only part of a 125 foot RoW requested for construction. A few months later, a very short e-mail said that the final pipeline route had changed and they would not be on my property. For a time we would enjoy some peace and quiet.

A Word On Surveyors

Most folks can relate to the work and responsibility of bookkeepers or Certified Public Accountants (CPAs). They measure and keep track of money. And their balance sheets and ledgers actually have to, well, BALANCE. Think of Surveyors as the CPAs of the land world. When they go up a big hill and down the other side, the keep track of every inch — they will not tolerate losing a few inches here and there. They truly are professionals, measuring and documenting everything with precision. Most of the surveyors I have spoken with are courteous and respectful. They are a credit to their profession. They are aware of the eminent domain threat and their surveying success depends on treating landowners with respect. They are good at what they do. However, as this article will show, their professional success and precision depends on whether or not they are given the correct route to survey.

Part II: Surveyor Stakes and Flags

Over the next year we enjoyed peace and quiet with no more surveyors’ intrusions. However, in my regular travels throughout the natural gas fields here, countless signs of surveyor activity were visible. Even with the temporary slowdown in drilling, the proposed pipeline installations kept these surveyors busy. Assorted types of stakes and ribbons and markings are impossible to miss along our roads. I usually notice many of the newer surveyor’s flags and the normal wooden stakes used to mark out future well pads, access roads, compressor stations, and more recently pipelines. Given that survey markings are never taken down when no longer needed, the old ones sometimes hide the new ones.

It can be difficult keeping track of all of them and hard at first to identify why they are there. Even if sometimes I am not sure what a stake and flag might indicate, when one shows up very unexpectedly in what is essentially my front yard, it is impossible to not see it. That is what happened in August of 2015. Despite being unable to get our hay cut due to excessive rain the previous month, the colored flags were highly visible. Below shows one of the stakes with surveyor’s tape, and the hay driven down where the surveyors had parked their trucks in my field alongside my access road.

A surveyor stake alongside my access road.

A surveyor stake alongside my access road.

To call it trespassing might not be legally defensible yet. The stakes were, after all, near a public roadway – but the pins and stakes and flags were on my property. Incidents like this, whether intentional or accidental, are what have given the natural gas companies a reputation as bad neighbors. There were surveyors’ stakes and flags at two different locations, my hay was driven down, and I had no idea what all this meant given that I had no communication from anyone at EQT in over 18 months. I consider myself fortunate that the surveyors did not stray into wooded areas where trees might have been cut. It’s been known to happen.

Below shows the two sets of wooden stakes, roughly 70-80 feet apart, with flags and capped steel rebar pins. Both stakes were near the road’s gravel lane, which is a public right of way. Nevertheless, the stakes were clearly on my property. The markings on one side of the stake identify the latitude, longitude, and the elevation above sea level of the point. The other side of the stake identified it as locating the OVC pipeline (seen here as “OVC 6C):

These identifying numbers are unique to this pin which is used to denote a specific type of location called a “control point.” Control points are usually located off to the side of the center-line of the pipeline:

A control point, located off to the side of the center-line of the pipeline.

A control point, located off to the side of the center-line of the pipeline.

It seemed that somehow, without informing me or asking permission to be on my land, EQT had changed their mind on the OVC route and were again planning to run a pipeline through my property. If this was intentional, both EQT and I had a problem. If this was some kind of mistake, then only EQT would have a problem. Either way I could not fathom how this happened. Trespassing, real or perceived, is always a sensitive topic. This is especially true since, when I had initially allowed the surveyor to be on my property, I had not given permission for surveying. Given concerns about eminent domain, I wanted answers quickly. I documented all this with detailed pictures in preparation for contacting EQT representatives in Pittsburgh, PA, with my complaints.

Part III: What Happened & How?

I think it is safe to say that, in light of my well-known activism in documenting all things Marcellus, I am not your average surface owner. I have over 10,000 photographs of Marcellus operations in Wetzel County and I document every aspect of it. Frequently this leads to contacting many state agencies and gas operators directly about problems. I knew which gas company was responsible and I also knew exactly who in Pittsburgh to contact. To their credit, the person I contacted at EQT, immediately responded and it took most of the day to track down what had happen. The short story was that it was all a simple mistake—a 4,300 foot long mistake—but still just a mistake. The long story follows.

The EQT representative assured me that someone would be out to remove their stakes, flags and the steel pins. I told them that they needed to be prompt and that I would not alter or move their property and locating points. The next day, when I got home, the stakes with flags were gone. Just a small bare patch of dirt remained near the white plastic fencepost I had placed to mark the location. However, since I am a cultivated skeptic—adhering to the old Russian proverb made famous by President Reagan, “Trust but Verify”—I grabbed a garden trowel, dug around a bit, and clink, clink. The steel pin had just been driven deeper to look good, just waiting for my tiller to locate someday. I profusely re-painted the pin, photographed it, and proceeded to send another somewhat harsh e-mail to EQT. The pin was removed the next day.

After all the stakes, ribbons, and steel pins were removed, EQT provided further insights into what had transpired. Multiple pipeline routes were being evaluated by EQT in the area. Gas companies always consider a wide range of constraints to pipeline construction such as road and stream crossings, available access roads, permission and cooperation of the many landowners, steepness of terrain, etc. At a certain point in their evaluation, a final route was chosen. But for unknown reasons the surveyor crew was given the old, now abanoned, route on which to establish their control points. The magnitiude of the error can be seen on the map below. The bright blue line is the original path of the OVC pipeline through my property and the red line shows where the FERC filed pipeline route will go. A new control point has now been established near the highway where the pipeline was meant to cross.

The FERC filed OVC pipeline route vs. the accidentally surveyed route.

The FERC filed OVC pipeline route vs. the accidentally surveyed route.

 

Part IV: Lessons To Be Learned

Given the likely impact of many proposed large-diameter, very long, pipelines being planned, it seems useful to examine how these errors can happen. What can we learn from my personal experience with the hundreds of miles of new pipelines constructed in Wetzel County over the past eight years? First, it is important to ask whether or not similar problems are likely to happen elsewhere, or if this was this just an isolated incident. Can we realistically expect better planning on the proposed Mountain Valley Pipeline, which will run for over 300 miles? Can the residents and landowners living along these pipeline RoWs expect more responsible construction and management practices?

In general, many of the pipeline projects with which landowners, such as those in Wetzel County, are familiar with fall into the unregulated, gathering line category. They might be anywhere from six inches in diameter up to sixteen inches. As we review their track record, we have seen every imaginable problem, both during construction and after they were put into operation. We have had gas leaks and condensate spills, hillside mud slips, broken pipes, erosion and sedimentation both during construction and afterwards.

Now for some apparently contradictory assumptions—I am convinced that, for the most part, truck drivers, pipeliners, equipment operators, drilling and fracturing crews, well tenders and service personnel at well sites, all do the best job they can. If they are given the proper tools and materials, accurate directions with trained and experienced supervision, the support resources and the time to do a good job, then they will complete their tasks consistently and proudly. A majority of employees in these positions are dedicated, trained, competent, and hard working. Of course, there are no perfect contractors out there. These guys are human too. And on the midnight shift, we all get tired. In the context of this story, some pipeline contractors are better and more professional than others, some are more experienced, and some have done the larger pipelines. Therefore, despite best intentions, significant errors and accidents will still occur.

The Inherent Contradictions

It seems to me that the fragile link in natural gas production and pipeline projects is simply the weakness of any large organization’s inherent business model. Every organization needs to constantly focus on what I refer to as the “four C’s—Command and Control, then Coordination and Communication—if they are to be at all successful. It is a challenge to manage these on a daily basis even when everyone is in the same big building, working for the same company, speaking the same language. This might be in a university, or a large medical complex, or an industrial manufacturing plant.

But the four C’s are nearly impossible to manage due to the simple fact that the organizational structure of the natural gas industry depends completely on hundreds of sub-contractors. And those companies, in turn, depend on a sprawling and transient, expanding and collapsing, network of hundreds of other diverse and divergent independent contractors. For example, on any given well pad, during the drilling or fracturing process, there might be a few “company” men on site. Those few guys actually work for the gas company in whose name the operating permit is drawn. Everyone else is working for another company, on site temporarily until they are ready to move on, and their loyalty is elsewhere.

In the best of situations, it is next to impossible to get the right piece of information to the right person at just the right time. Effective coordination among company men and contractors is also next to impossible. I have seen this, and listened in, when the drilling company is using one CB radio channel and the nearby pipeline company is using some private business band radio to talk to “their people.” In that case, the pipeline contractors could not talk to the well pad—and it did not matter to them. In other cases, the pilot vehicle drivers will unilaterally decide to use another CB radio channel and not tell everyone. I have also watched while a massive drill rig relocation was significantly delayed simply because a nearby new gas processing plant was simultaneously running at least a hundred dump trucks with gravel on the same narrow roadway. Constant communication is a basic requirement for traffic coordination, but next to impossible to do properly and consistently when these practices are so prevalent.

These examples illustrate how companies are often unable to coordinate their operations. Now, if you can, just try to picture this abysmal lack of command and control, and minimal communication and coordination, in the context of building a 300-mile length of pipeline. The larger the pipeline diameter, and the greater the overall length of the pipeline, the more contractors will be needed. With more contractors and sub-contractors, the more coordination and communication are essential. A FERC permit cannot fix this, nor would having a dozen FERC permits. Unfortunately, I do not envision the four Cs improving anytime soon in the natural gas industry. It seems to be the nature of the beast. If, as I know from personal experience, a major gas company can arrange to locate a surveyed control point 4,300 feet from where it should have been, then good luck with a 300 mile pipeline. Even with well-intentioned, trained employees, massive problems are still sure to come.

The FERC approvals for these pipelines might not be a done deal, but I would not bet against them. So vigilance and preparation will still be of the essence. Citizen groups must be prepared to observe, monitor, and document these projects as they unfold. If massive pipelines like the MVP and OVC are ever built, they should become the most photographed, measured, scrutinized, and documented public works projects since the aqueducts first delivered water to ancient Rome. For the sake of protecting the people and environment of Wetzel County and similar communities, I hope this is the case.

By Bill Hughes, WV Community Liaison, FracTracker Alliance
Read more Field Diary articles.

Appendix: Questions to Ask When Approached by a Land Agent (Landsman)

These questions can be modified to suit your location. The abbreviation “Gas Corp.” is used below to reference a typical natural gas company or a pipeline subsidiary to a natural gas company.  These subsidiaries are frequently called Midstream Companies. Midstream companies build and manage the pipelines, gas processing, and some compressor stations on behalf of natural gas companies.

  1. Please provide a Plain English translation of your landowner initial contract.
  2. What will Gas Corp. be allowed to do, and not allowed to do, short term and long term?
  3. What will Gas Corp. be required to do, and not required to do?
  4. What is the absolute minimum distance this pipeline will be placed away from any dwelling anywhere along its entire length?
  5. What restrictions will there be on the my land after you put in the pipelines?
  6. Who will be overseeing and enforcing any environmental restrictions (erosion and sedimentation, slips, stream crossings, etc.)?
  7.  Who will be responsible for my access road upkeep?
  8. Who will be responsible for long term slips and settlements of surface?
  9. When would this construction begin?
  10. When would all work be completed?
  11. Who would be responsible for long term stability of my land?
  12. Will the pipeline contractor(s) be bound to any of our agreements?
  13. Who are the pipeline contractor(s)?
  14. What will be transported in the pipeline?
  15. Will there be more than one pipe buried?
  16. How wide is the temporary work RoW?
  17. How wide is the permanent RoW?
  18. How deep will the pipeline(s) be buried?
  19. What size pipe will it be; what wall  thickness?
  20. How often will the welds on the individual pipe segments be inspected?
  21. Will there be any above ground pipeline components left visible?
  22. Where will the pipe(s) originate and where will they be going to?
  23. What will the average operating pressure be?
  24. What will the absolute maximum pressure ever be?
  25. At this pressure and diameter, what is the PIR—Potential Impact Radius?
  26. Will all pipeline and excavating and laying equipment be brought in clean and totally free from any invasive species?
  27. How will the disturbed soil be reclaimed?
  28. Will all top soil be kept separate and replaced after pipeline is buried?
  29. Also, After all the above is settled, how much will I be paid per linear foot of pipeline?

Surveyor Symbols & Signs – A Guide

The following guide is a simplified description of a variety of markings that are used by land surveyors. Throughout an active shale gas field, the first signs of pending expansions are the simple markings of stakes, flags, and pins. Many months or even years before the chain saw fells the first tree or the first dozer blade cuts the dirt at a well pad location, the surveyors have “marked the target” on behalf of their corporate tactical command staff.

The three most commonly used markings are the simple stakes, flags and pins. These surveyor symbols are common to any construction project and guarantee that everything gets put in the right place. In an active gas field, these marking tools are used for all aspects of exploration and production:

  • access roads to well pads,
  • widening the traveled portion of the roadway,
  • well locations,
  • ponds and impoundment locations,
  • temporary water pipeline paths,
  • surface disturbance limits,
  • compressor stations,
  • gas processing sites, and
  • rights-of-way for roads and pipelines.

Quite frequently these simple markings are undecipherable by themselves, especially by non-professionals. One cannot just know what is happening, what is likely to occur, or how concerned one should be. Context and additional information are usually needed. Sometimes the simple colors and combinations of colored tapes might only make sense in conjunction with similar markings nearby. Sometimes public notices in the newspaper and regulatory permits must be used to decipher what is planned.

For an example, the proposed 30″ diameter EQT pipeline called the Ohio Valley Connector seems to be regularly marked using a combination of blue and white (see figure 10 below) surveyors tape to mark the actual pipeline location, then green and white (see figure 4 below) to mark all the proposed access roads along the routes that will be used to get pipe trucks and excavation equipment into the right of way. These access roads might be public roadways or cut across private leased property.

Common surveyor symbols & signs (click on images to zoom in)

Surveyor flags and tape: Sometime the flags or streamers are just attached to trees, fence posts, or put on a stake to make them visible above the weeds. There might be no markings on the stake, or only simple generic markings. This could just mean that this is the correct road and turn here. It could also signal a proposed or approximate location for some future work.

Simple surveyor’s flags or tape

Simple surveyor’s flags or tape

Surveyor flags and tapes: These are a selection of typical surveyor tapes, also called flags or ribbons. Many other specialty color combinations are available to the professional surveyor.

A selection of surveyor tapes

Stakes with simple markings: Flags with some type of identification (it might be names or numbers). This one was used for a proposed well pad access road location. There are no dimensions given on these.

Stake with simple markings

Stakes with simple flags and basic identification: The stakes shown here all indicate an access route to be used for equipment and trucks to get to a proposed pipeline right of way. The “H310″ is the EQT name for the 30” OVC pipeline.

Stakes indicating an access route

Control points: These three stakes are identifying a control point that is outside the limits of disturbance (LoD). These markings surround a pin to be used for reference.

Control point stakes

Controls points: This stake is also identifying a control point location. All control points will have some type of driven metal rod, usually with a plastic cap identifying the surveyor. Frequently there are three stakes with extra flags or tape. They are always set off to the side of the intended work area. They are not to be disturbed.

Control point stake and pin

Control points: Another set of three stakes marking a Control Point location. It is common to see triple stakes with elaborate, multiple flags. Even if only two stakes are present, there always will be a driven steel pin and identifying cap.

Control point stakes and pin

Control points: This shows a close-up of the identifying cap on a metal driven steel pin. Control point locations are not meant to be disturbed as they are for future and repeated reference. They might give the latitude and longitude on the stake plus the altitude above sea level.

Control point pin and cap

Control points: This is another, older control point location. This represents a typical arrangement where the stakes somewhat try to protect the metal pin from a bulldozer blade by warning its operator.

Control point pin protection

Limit of disturbance: The “L O D” here means the limits of disturbance. Beyond this point there should not be any trees cut or dirt moved. The stakes shown here indicates that this is the outside limit of where the contractor will be disturbing the original contour of the surface soil.

Limit of disturbance stakes

Limit of disturbance: The “L O D” means the limits of disturbance of the proposed pipeline right of way. Beyond this point there should not be any trees cut or dirt moved. This could also be used for the outside edge of well pads or access roads or pond locations.

Limit of disturbance ROW stakes

Pipelines: Stakes with flags and “center line” markings are usually for pipelines. Here you see the symbol for center line: a capital letter “C” imposed on the letter “L”.

Pipelines center line

Pipelines: Again you see the capital letter “C” super imposed on top of the letter “L” used frequently for pipe line center lines, but can also be used for proposed access roads.

Pipelines center line

Pipelines: As shown here, “C” and “L” center line flags can also be used for future well pad access roads.

Road access center line

Precise location markings: Stakes like this will usually have a steel pin also associated with it. This stake gives the latitude, longitude, and elevation of the site.

Precise location stake

Permanent property lines: You may also find markings, like this one inch steel rod with an alum cap, that denote permanent property lines and corners of property.

Permanent property rod

Permanent property lines: Another kind of permanent property line or corner marker is the “boundary survey monument.” This is likely an aluminum cap on top of a one inch diameter steel bar.

Boundary survey monument

Pilgrim Pipelines proposal & community actions

Controversial 178-mile-long parallel pipelines proposed for NY’s Hudson Valley/Northern NJ

By Karen Edelstein, Eastern Program Coordinator

Over the past seven years, there has been a very strong upswing in domestic oil production coming from Bakken Formation in North Dakota. Extraction rates increased over 700% between November 2007 and November 2015, to over 1.2 million barrels per day. With all this oil coming out of the North Dakota oil fields, the challenge is how to get that oil to port, and to refineries. For the large part, the method of choice has been to move the oil by rail. Annual shipments out of North Dakota have jumped from 9500 carloads in 2008 to close to a half million carloads by 2013.

Nearly 25% of oil leaving the Bakken Formation is destined for east coast refineries located in New Jersey, Philadelphia, and Delaware. Trains carrying the crude enter New York State along two routes. A southern route, passes through Minneapolis, Chicago, Cleveland, and Buffalo, and on to Albany. A northern route, which originates in the oil fields of southern Manitoba and Saskatchewan Provinces in Canada, passes through Toronto, Montreal, and then south to Albany.

Currently, once the oil reaches Albany, it is transported south through the Hudson Valley, either by barge or by train. Two “unit trains” per day, each carrying 3 million gallons in 125-tank car trains, are bound for Philadelphia-area refineries. In addition, a barge per day, carrying 4 million gallons, heads to New Jersey refineries. Environmental groups in New York’s Hudson Valley, including Hudson RiverKeeper, have registered alarm and opposition about the potential impacts and risks of the transport of this process poses to the safety of residents of the Hudson Valley, and to the health of the Hudson River. More background information is available in this Pilgrim Pipelines 101 webinar.

What are the Pilgrim Pipelines?

The proposed Pilgrim Pipelines are two parallel 18-24-inch pipelines that would run from the Port of Albany to Linden, NJ, alongside the New York State Thruway (I-87) for 170 miles just to the west of the Hudson River, with nearly 80% of the pipeline within the public right-of-way. The rest of the pipeline would traverse private property and some utility areas.

The pipeline running south from Albany would carry the light, explosive crude to refineries in NJ, Philadelphia, and Delaware. After the oil is refined, the North-bound pipeline would carry the oil back to Albany, moving 200,000 barrels (8.4 million gallons) of oil in each direction, every day. Touted by Pilgrim Pipeline Holdings, LLC as a central component in “stabilization of the East Coast oil infrastructure,” the project proposes to:

provide the Northeast region of the United States with a more stable supply of essential refined petroleum products… and… provide the region with a safer and more environmentally friendly method of transporting oil and petroleum products.

The Controversy

The Pilgrim company is lead by two individuals with deep ties to the energy industry. Both the company president, Errol B. Boyles, as well as vice-president, Roger L. Williams, were in the upper echelon management of Wichita, Kansas-based Koch Industries.

Proponents of the project claim that it includes environmental benefits, such as 20% lower greenhouse gas emissions than would be generated moving the same quantity of oil via barge, and even claim that the proposed Pilgrim Pipelines “will produce a net air quality benefit to the region.” Of course, this argument is predicated on the belief that the unbridled oil extraction from the Bakken Formation is both environmentally desirable, and nationally required.

Economic benefits described by the pipeline company include the faster rate the petroleum products can be pumped through existing terminals in New York, and also meet a hoped-for demand surge for petroleum products. Naturally, the company would also create some construction jobs (albeit somewhat temporary and for out-of-state firms), and increase fuel available to consumers at lower prices because of proposed transportation savings. However, the Albany Business Review indicated that the pipeline could actually create a net loss of jobs if the pipeline were to make the Port of Albany less active as a shipping location.

Project opponents cite both short- and long-term impacts of the project on human and environmental health, the local and regional economy, property values, nearly a dozen threatened and endangered wildlife species, water quality, ecology of the pristine Hudson Highlands Region, and contributions that the project invariably makes to accelerating climate change, both through local impacts, and as an infrastructure component supporting the extraction of crude from the East Coast all the way to the Bakken Fields of North Dakota. Groups also cite the high rate of “non-technical” pipeline failures, due to excavation damage, natural force damage, and incorrect operation.

Communities in Action

Close to 60 municipalities along the pipeline route have passed local resolutions and ordinances expressing their opposition to the pipeline. Residents assert that the local communities would bear most of the risks, and few, if any, of the benefits associated with the Pilgrim Pipeline. These communities, represented by over a million people in New York and New Jersey, are shown in the map below. Other groups – including the New Jersey State Assembly and Senate, numerous county boards in both New York and New Jersey, and several school districts – have also passed resolutions opposing the project.

Access links to the resolution documents for individual towns by clicking on the town location in the map below.


View full screen map | How to work with our maps

Decision Makers in Question

The New York State Thruway Authority was initially the sole lead agency on the State Environmental Quality Review (SEQR) of the project, a decision that was decried by impacted municipalities, environmental groups, and the Ramapough Lenape Nation. Dwain Perry, Ramapough Lenape chief, urged that the New York State Department of Environmental Conservation be the lead agency, instead, saying:

…DEC has a much more thorough outlook into different things that can happen….[and]..is looking out for everyone’s interest.

However, in a development announced in late December 2015, the New York State Department of Environmental Conservation revealed that they, along with the NYS Thruway Authority, would jointly lead the environmental review of the project. This decision has perplexed many groups involved in the debate, and environmental groups such as Scenic Hudson, Environmental Advocates of New York, Hudson Riverkeeper, and Coalition Against the Pilgrim Pipeline expressed their dismay over this choice, and urged that the SEQR review address whether the project will be consistent with NY Governor Cuomo’s aggressive goals to reduce carbon emissions that are driving climate disruption.

DEC’s own guidelines advise against creating co-lead agencies in projects particularly because there is no prescribed process for resolution of disputes between two such agencies. Nonetheless, a DEC spokesperson, Sean Mahar, tried to assure critics that because the two lead agencies have “unique and distinct expertise” few problems would arise.

We’ll post updates as the project’s SEQR process gets underway.

Resources

Pilgrim Pipelines 101 webinar, presented by Kate Hudson (Riverkeeper) and Jennifer Metzger (Rosendale Town Board)

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

7 Sand Mining Communities, 3 States, 5 Months – Part 1

An Exploration of Sand Mining Impacts: Lasalle County, IL by way of Chicago’s South Side
By Ted Auch, Great Lakes Program Coordinator

When it comes to high-volume hydraulic fracturing (HVHF), frac sand mining may be the most neglected aspect of the industry’s footprint. (HVHF demand on a per-well basis is increasing by 8% per year.)

To capture how this industry is changing several sand mining communities, I recently took a road trip to visit, photograph, and listen to the residents of this country’s primary frac sand areas. In total, I visited 7 sand mining communities in Illinois, Indiana, and Michigan.

This multimedia perspective is part of our ongoing effort to map and quantify the effects of silica sand mining on people, agriculture, wildlife, ecosystem services, and watersheds more broadly. Below is my attempt to give the FracTracker community a sense of what residents are hearing, seeing, and saying about the silica sand mining industry writ large.

Chicago’s South Side

Before heading to Illinois’ frac sand epicenter of Lasalle County, I couldn’t help but catch the South Shore Line out of Millennium Station. This station can be seen as you head south to the Hegewisch neighborhood on Chicago’s impoverished South Side, an area of greater Chicago-Gary, Indiana that has largely been forgotten by politicians in both states. Chicago_KCBX_BP

ChicagoLand_Income_Hardship

Figure 1. Average income per capita and Hardship Index (0-100 with 100 being the worst) for Chicago’s neighborhoods with Hegewisch highlighted in the city’s southeast corner.

This situation is a shame because collectively Hegewisch and the city of Whiting, IN are home to one of the largest – and getting larger – collections of oil refineries and oil sands infrastructure in the United States.

For an estimation of how difficult it is to live in various Chicago neighborhoods, see Figure 1, left.

This proliferation has not been without its dangers, including a compressor station explosion at BP PLC’s massive1 Whiting Refinery in August 2014. Unfortunately, that incident was just the latest in a long line of mishaps at this facility. The “operational incident,” as BP called it, rocked already stressed neighborhoods like MarkTown, IN – the aborted company town planned for steel maker Clayton Mark. MarkTown is on the National Register of Historic Places and is an example of a community that is being erased from the face of the earth in the name of Hydrocarbon Industrial Complex expansion. For those interested in architecture preservation, MarkTown’s rapid erasure is being conducted by BP itself and in the process we are losing an example of Conservatively Radical architect Howard Van Doren Shaw’s distinct English-style Tudor homes and urban planning. Residents speculate BP “may be buying up the properties because of concerns about liability.” The company counters they are just trying to create additional green space for residents.

KCBX_BP_POV

NAmerican_Ports_Refineries

Figure 2. Average daily oil refinery production per day across North America’s 152 Oil Refineries along with North American ports.

Luckily for everyone, operations following the aforementioned recent explosion were only “minimally impacted as a result of the incident and the refinery continue[d] to produce products for customers.” However, the more chronic concern is the tight supply-demand relationship between BP’s refinery and their Koch KCBX neighbor. Koch has made repeated headlines – and many neighbors turned enemies including the Southeast Environmental Task Force and its fearless leader Peggy Salazar – with its handling of the refinery’s annual production of 600,000 tons of petcoke a development Chicago Magazine called Mountains of Trouble. Petcoke is a byproduct of the refinery’s increased acceptance and processing of tar sands from Alberta Canada. Levels of production are likely to increase given BP’s completion in November 2014 of a “$4-billion revamp…to boost its intake of Canadian crude oil from 85,000 bpd to 350,000 bpd.”

Given how interconnected the hydrocarbon industry is, I thought it would be worth collecting some photos of the aforementioned infrastructure. When I saw that Koch KCBX’s terminal was also storing large amounts of silica sand, however, the connection between my next target(s) in LaSalle County was made even more obvious.

LaSalle vs. Chicagoland: A Tale of Two Worlds

Lasalle County, Illinois is situated approximately 50-60 miles south-southwest of Chicago. When you try to compare demographics and commerce, however, it is worlds away.

Chicagoland encompasses nearly 10,900 square miles – 9.5 times the area of Lasalle County. While Chicago’s population is expanding by 95,681 people per year, LaSalle’s is shrinking by 2,734 per year (Table 1). Chicagoans, though not South Siders, are making more than two times that of LaSalle County residents (with the latter actually falling nearly $4,700 below the state average). Predictably the demographics of Chicago reflect more and more those of the US, while LaSalle is typical of rural America with a population that is 93% white and only 3.3% foreign born. Thirty-five percent of Chicagoans are likely to achieve a bachelor’s degree, while only 16% of LaSalle County residents are likely to do so. Rates of poverty and more specifically child poverty, on the other hand, are significantly higher in Chicago. Finally, LaSalle is one of the country’s preeminent farming counties; it ranks #4 in the state and #126 nationally thanks to the value of agricultural commodities produced amounting to $448.5 million net of farm subsidies. See Table 1.

La Salle County, IL Silica Sand Mines & St. Peter Sandstone Geology

Figure 3. La Salle County, IL Silica Sand Mines & St. Peter Sandstone Geology

Chicago_Vs_LaSalleCounty_Comparison

Table 1. Chicagoland and LaSalle County, Illinois summary demographics, economic prosperity, and agricultural productivity.

Photos from the Tour

The above contrast was made crystal clear as I traveled down Interstate 80 westbound towards exit 90 and LaSalle’s County seat Ottawa (pop. 18,562). Upon arriving in Ottawa I drove west on Madison Street to the first target of our expedition: U.S. Silica Company’s mine and processing facility at the corner of Madison Boyce Memorial Drive. Upon arriving, however, it became clear that I would not find a suitable location to photograph the company’s mine; the perimeter had been fenced off and mounded up to the tune of 10-15 feet. So I got back in our rental car and drove to the mine’s southern perimeter adjacent to the Bear Den Bar and Grill and the Vine St.-Fern St.-15th Ave. neighborhood where there was clear line of site. It was here that I got some of the best photos of the mine’s scale and scope with respect to land-use, reclamation, and hydrology.

US_Silica_OttawaCo

Below is a sample of some of those images as well as several I took further down Route 34 between U.S. Silica’s active mine and a “reclaimed” Ottawa Silica Co. mine on the banks of the Illinois River.

After snapping several hundred shots of these two mines I headed to the I & M Canal State Trail between Utica and Ottawa emanating out of Buffalo Rock State Park and hiked east towards the Northern edge of U.S. Silica’s mine alongside a CSX railroad and recently constructed spur feeding into the mine’s loading terminal. The hope was that I would get a closer look at the mine but it turned out the angle was different but not better.

From the back of U.S. Silica’s Ottawa mine I traveled approximately 7 miles west to Unimin’s North Utica mine and a short dirt road off of 2803rd Road on the northern edge of the mine.

Unimin_NorthUtica

It was here that I photographed the mine’s reclamation plots, active mine pits, and developing water transport mechanisms. However, more importantly it was from here that I noticed off in the distance a bright red silica sand grain-size separator.

Curiously I did not – but do now – have this nascent and relatively small mine posted on our Frac Sands Mines and Related Facilities map at the time. Upon arriving at this site I found that the mine was owned and operated by a company called Northern White Sand a small mom & pop operation out of Utica, IL.

Unimin_NorthUtica_NorthernWhiteSand

The photos I took of this mine were primarily from atop a vegetated berm to the southwest of the mine’s primary footprint. This vantage point allowed us to get some great shots of the types of infrastructure/equipment typical of this sized mine including the aforementioned modular grain-size separator, conveyor belts, retention ponds, and the pyramid-like piles of powdery white silica sand so desired by the HVHF industry.

Our final stop on the LaSalle County silica sand mine tour landed us in Troy Grove 13 miles north of North Utica by way of Interstate 39. It was here that I visited several vantage points around Technisand’s MBI Manley Bros. silica mine. The expanse included the site’s mixture of old and new processing infrastructure, what appeared to be an alluvial fan derived from sand waste and associated wetland, and the mine’s far reaches alongside a Chicago and North Western Transportation Company (CNW) railroad.

Resident Testimonials

So now that I have outlined my tour of La Salle County I thought it would be helpful to share some of the stories residents told me during my travels and later by way of email.

Anna Mattes – La Salle County, IL

I live in LaSalle County, Illinois where I have prime farmland and Starved Rock State Park… the crown jewel of Illinois. I already have a fine farming industry and plenty of tourism as Starved Rock is visited by two million people annually. LaSalle County already has forty two quarries, gravel pits and sand mines. If I allow anymore the county will look as though it has been bombed. Empty sand pits will never produce food ever again. No amount of reclamation will restore this land to be productive…Each mine uses one million gallons of water daily. The LaSalle County Board has enlisted the USGS to do a hydrology study to determine how much water I have in our aquifer for municipalities and farming. Presently I have a moratorium in place on sand mines thru July 2016 and I hope forever. As a woman, wife and mother I am charged with the continuity of life. It is my job, profession, to raise healthy children, make a healthy breakfast and pack a nutritious lunch for my husband so he can do his job, and it generally falls to women to care for the elderly in families. With out clean air, pure water, healthy food what is the quality of life? Fracking is a dangerous business and I need to take better care of Planet Earth. Please do your part, I’m a Master Gardener and I’m doing my part.

Thomas Skomski – Wedron, IL

I am a resident of Wedron who has been severely impacted by Wedron Silica; and I want to report that there are many more problems associated with the influx of sand mines in LaSalle Co. than named in your recent article. In order to be fair to other residents who will be negatively affected by proximity to any sand mine I believe it is important to inform them and all concerned on the unmentioned problems associated with living near a sand mine. For example: the mountains of sand that are produced migrate everywhere the wind takes the particles. As I all know the winds are frequently fierce in this part of the country. One neighbor describes how in the morning when he sets his coffee cup down on his front porch and goes into his house to get the newspaper that he returns to find a layer of white sand covering his coffee. Another neighbor vacuums the sand off her living room rugs weekly while her husband regularly has to clean out sand-filled gutters. I do know that enabling pollutants on private property is technically criminal trespass. At the last EPA hearing in Wedron a retired mine employee admitted that Wedron Silica uses 100 million gallons of water per hour in sand processing. Some of this water is recycled. Since I have not confirmed those statistics, I prefer sticking to the fact that the mine has reversed the flow of the ground water. Who knows what the unseen consequences of that reversal might be? The toxic plume that Wedron Silica is in part responsible for creating migrates wherever the ground water moves. As a result of the threat of my well being poisoned my land, 23 acres has been devalued by the county to $1.00. All my five buildings are worth 40% of what they were before nine wells were poisoned in Wedron. Those wells were so toxic with benzene that water came out of the faucet orange and you could not breath it let alone use it to wash anything. Wedron Silica has begun buying homes in Wedron which will allow them to pursue their wealth with no concerns- BUT what about the water which I all know is in limited supply and susceptible to being polluted? So in summary, please include the human costs involved in a mine opening near you. My wife and I moved to the country to enjoy the solitude and quiet of living on a farm in our retirement years. The quality of our lives has been diminished, in addition the noise is disturbing; trains come in at all hours incessantly blowing their horns and the semi traffic is constant. Finally, I have heard a lot of what I consider negative criticism about the EPA. Having experienced this monumental problem directly it is perfectly clear to me that without the resources of a pro-environment organization I would be hard pressed to stand up to a corporation with multi billions in assets.

Ashley Williams – LaSalle County, IL

The nickname the “Silica Sand Capital of the World” has quickly transformed into a curse rather than a blessing for the citizens of LaSalle County, IL. Here, the frac sand industry continues to proliferate, endangering the health and safety of the people and local environment. Our precious life vessels: our air, water, and soil are under siege by a nexus of power that seeks to intimidate us into quiet submission, but I’ll be damned if I’m going to sit by and let that happen.

Footnote

  1. This facility alone processes nearly 2% of all oil in North America on a daily basis. This facility is the seventh-largest refinery in the United States and the largest outside of the Gulf Coast.
Coal fired power plants in North America

NYS targets an end to coal power

By Karen Edelstein, Eastern Program Coordinator

It’s been just over a year since New York Governor Andrew Cuomo made public his administration’s decision to ban high-volume hydraulic fracturing in the state. A formal ban was established in June 2015. While Cuomo’s politics and record may be controversial on some fronts, he has most certainly shown important leadership in some facets of energy policy. Significantly, activists and environmental advocacy groups have been especially strong during the Cuomo administration, pressing the governor daily to take seriously the responsibility and planning that New York State must demonstrate in light of the realities of climate change.

On Wednesday, January 13, 2016, New York Governor Andrew Cuomo delivered his annual State of the State address. Among the high points of the talk was a commitment to a full phase-out of coal-burning power plants by 2020. Coal, once more affordable alternative to other fossil fuels, is no longer an attractive option from both an economic and environmental standpoint. Despite advances in scrubber technology, coal burning still emits more particulate waste into the atmosphere than other fuels, and leaves behind copious quantities of fly ash containing radioactivity and heavy metals. Historically, fly ash, bottom ash, boiler slag, and flue gas desulfurization materials have been disposed of in landfills. While current disposal methods using landfill liner technologies do attempt to safeguard against groundwater contamination, during earlier decades, these waste products from burning coal were buried in unlined pits, some of which are now actively leaching into waterways and groundwater.

Existing coal burning power plants being shut down, but what’s next?

In New York State, many old, polluting coal plants are now only partially in service or completely shuttered. They did at one time, however, have the capacity to supply over 2100 MW of power to the state. While it’s generally accepted from an economic and environmental standpoint that New York should be transitioning away from coal, the next steps are more fraught with controversy. Several communities, such as those around the likely-to-be-closed Dunkirk (Chautauqua County, 520 MW),  as well as Huntley (Niagara County, 380 MW), and Cayuga (Tompkins County, 315 MW) power plants feel that a repowering of these plant with natural gas provides an important economic stabilizer for the surrounding communities. Another smaller coal-burning plant, Greenidge Generation (Seneca County, 107 MW) has been shuttered for several years. A recent local economic development initiative to re-start that plant with a conversion to natural gas met with considerable resistance from environmental groups. This development also resulted in a notification from the US Environmental Protection Agency indicating that proper procedure for restarting the plant had not been followed, setting back the timetable on the project indefinitely.

Coal Burning Power Plants in North America, Zoomed in to NYS

View full screen map | How to work with our maps

Cayuga Power, which has been operating at a deficit for several years as a coal burning plant, is subsidized through a surcharge that is levied on every ratepayer within the system, with each monthly bill. According to The Sierra Club, these subsidies amount to over $4M a month charged to NYSEG ratepayers for the Cayuga plant, alone. Elected officials, as well as citizen groups concerned with the impacts of natural gas on the environment, are pressing for other viable options to repowering the plant from coal to natural gas, currently estimated to cost over $500M for the Cayuga Plant, alone. These options include solar power – or, in the case of the Cayuga power plant, upgrades to a short stretch of transmissions lines for less than $100M, in lieu of repowering. In either case, the upgrade costs would be passed on to the consumer. Transmission line upgrades would actually obviate the need for the power plant itself, conserving the energy that is now lost through inefficiencies in the system. Repowering the plant would also necessitate the construction of a highly controversial 7-mile-long pipeline from the Town of Dryden, which would significantly raise the carbon footprint of Tompkins County through due to predicted fugitive methane emissions. The power utility, itself, New York State Electric and Gas (NYSEG) has said that they prefer the option of upgrading the lines, rather than converting the plant to run on natural gas. Another study by the Institute for Energy Economics and Financial Analysis also found the Cayuga repowering proposition unviable. Proponents of repowering cite the impacts that shutting down the plant would have on the local Lansing School district, which–unlike any of the surrounding school districts–has benefited for several decades from tax revenues generated by the plant.

Environmental concerns about continuing to invest in fossil fuel technologies like natural gas as an alternative to coal include the entire life cycle of methane extraction, from the air and water quality risks that occur during the process of unconventional drilling (high volume hydraulic fracturing), to environmental and public health impacts of pipelines and compressor stations that convey the gas to the power plants, to the addition of CO2 to the atmosphere as a byproduct of natural gas combustion at these fossil-fuel burning plants.

Of course, energy conservation and making lifestyle changes to how we individually, and collectively, approach energy consumption are at the heart of the changes that need to occur if we are to slow climate change caused by the dramatic upswing of methane and CO2 in the atmosphere during the past 50 years.

New York State’s Renewable Energy Agenda

Cuomo and the State Legislature have shown additional and ongoing interest in moving New York towards a clean energy future. They have been establishing appealing tax incentives for renewable energy, including:

Cuomo’s REV, or Reforming the Energy Vision, attempts to take a comprehensive look at an energy strategy across many sectors of New York. REV targets for 2030 include a goal of 50% of all NYS’s energy being met by renewable sources, a 40% reduction in greenhouse gas levels based on 1990 levels (and an overall emission cut of 80% by 2050), and based on 2012 levels, a 25% reduction on building energy use. The strategy also looks to support the growth of the clean energy sector, energy education to residents and businesses, natural resources protection, and job creation in the energy sector.

New York is taking important steps for a cleaner energy future, but should continue to put more resources towards incentives for renewable resources, as well as outreach and education to municipal, residential, and commercial energy consumers.

We have very little time to waste.

Aliso Canyon natural gas leak - Photo by Environmental Defense Fund

A Climate Disaster – California in state of emergency as a result of massive natural gas leak

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

A natural gas well equipment failure in southern California has resulted in the largest point release of methane to the atmosphere in U.S. history. California Governor Jerry Brown has declared a California state of emergency for the incident, and the California Air Resources Board (CARB) has identified the site as the single largest source point of global warming.1 Since October 23, 2015 the failure has been reported to be releasing 62 million cubic feet of methane per day – 110,000 pounds per hour – for a total of about 80 million metric tons thus far. (A running counter for the natural gas leak can be found here, on Mother Jones).2,3 This quantity amounts to a quarter of California’s total methane emissions, and the impact to the climate is calculated to be the equivalent of the operation of 7 million cars.

SoCalGas (a subsidiary of Sempra Energy) reports that nothing can be done to stop or reduce the leak until February or March of 2016. As a result, the nearby community of Porter Ranch has been largely evacuated (30,000 people) due to health complaints and the rotten egg smell of tertbutyl mercaptan and tetradydrothiophen. Air quality sampling, being assessed by the Office of Environmental Health Hazard and Assessment (OEHHA), measured volatile organic compounds, specifically the carcinogen benzene, at concentrations below acute toxicity health standards.4 Exposure to benzene even at low levels presents a risk of cancer and other health hazards. Locals have complained of headaches, sore throats, nosebleeds and nausea. The LA County Department of Public Health has ordered SoCalGas to offer free temporary relocation to any area residents affected. About 1,000 people are suing the company.5 A fly over of the site has been posted to youtube by the Environmental Defense Fund, and can be seen here. The video uses a FLIR camera to take infrared video that shows the leak.

Site Description

CA gas storage and Aliso Canyon natural gas leak

Figure 1. California active natural gas storage fields most active in 2014

The source of the leak is a natural gas storage well operated by SoCalGas in the Aliso Canyon oil field – a drained oil field now used to store natural gas. SoCalGas is the largest natural gas utility in the U.S., distributing natural gas to 20.9 million.4 Aliso Canyon is the largest gas storage field in the state, but there are numerous other gas storage fields in the state that could present similar risks. In Figure 1, to the right, California’s other currently active gas storage fields are shown. Injection volumes of natural gas are summed and averaged over the area of the field, and the Aliso Canyon is shown to have injected over 1,000,000 cubic feet per km2 of natural gas since the beginning of 2014. Other high volume fields include Honor Rancho, McDonald Island Gas, and Wild Goose Gas.

The failed well, known as Standard Sesnon 25, is marked with a red star in the map of gas storage wells shown below (Figure 2). The well was drilled in October of 1953. Reports show that pressures in the well bored reached 2,516 PSI in 2015. If you use the map to navigate around the state of California, it is clear that there are numerous other natural gas storage facilities in California, with wellbore pressures similar to or higher than the reported pressure of Standard Sesnon 25 and other wells in the Aliso Canyon Field. Beyond California, the state of Michigan is reported to have the most natural gas storage by volume, at 1.1 trillion cubic feet.6 The incident that caused the leak was a well casing failure, although the cause of the well casing failure has not yet been identified. There have been numerous editorials written that have painted SoCalGas as a model for contemporary corporate greed and corruption for several reasons, including the removal of safety valves, reports of corrosion, and lack of resources for inspections and repairs.7 Rather than this being a unique case of criminal neglect, casing failures are a statistical likelihood for wells of this age. Well casing failures are a systemic issue of all oil and gas development. Every well casing has a shelf life and will fail eventually.8 Additionally, leaks from gas storage wells have occurred at other SoCalGas natural gas storage facilities in California, such as Montebello and Playa Del Rey.

Figure 2. California’s gas storage wells. The size of orange markers indicates wellhead pressure, as reported in 2015. Blue markers show the volume of gas injected in 2014/2015. The Aliso Canyon leak at ‘Standard Sesnon 25’ natural gas storage well is marked with a red star. Click here to manipulate the map. After expanded, use the “Layers” menu to visualize the data with colored markers rather than size. 

Response

Fixing the problem is therefore much more complicated, overall, in this specific case. Since the well casing has ruptured deep underground, natural gas is leaking in the annular space outside the borehole and spewing from the topsoil surrounding the well head. To stop the leak the production pipe must be plugged below the rupture. All attempts to plug the well from the surface have failed due to the high pressure within the borehole, a 7” inner diameter of the production pipe. Therefore, a relief well is being drilled to intersect the well casing, to inject a mud-chemical cocktail intended to plug the well far below the casing failure. Updates on the response, claims information, and the location of the Community Resource Center can be found here. Additionally, Governor Jerry Brown has declared a state of emergency, which means federal support and a requirement of the state of California to cover the costs.9

The state response to the natural gas leak has included numerous agencies. According to documents from California Public Utilities Commission (CPUC), the agencies leading the response are the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR), the Office of Emergency Services (CalOES), California Air Resources Board (ARB), California Division of Occupational Safety and Health (CalOSHA), the California Energy Commission (CEC), and the CPUC. DOGGR is conducting an independent investigation of the incident. The investigation will include a third party analysis for root-cause issues. CARB is monitoring total methane emissions while the Office of Environmental Health Hazard Assessment with CalEPA are collecting and reviewing air quality data. Coordinated response information can be found on the CalOES site. SoCalGas has submitted a proposal to regulators to raise customer rates in order to raise $30 million for a more proactive approach to inspections and repairs.10

This event is the largest, but is not the first major methane/natural gas leak to occur at a wellsite. Leaks can result from a number of natural and anthropogenic (man made) causes. Besides the natural degradation of well integrity with age, acute events can also cause casing failures. There are documented cases where seismic activity has caused casing failures.

As a result of an earthquake natural fractures in the region can grow and disrupt well bores. In areas of dense drilling, fracture stimulations that propagate improperly or intersect unknown faults. When two wells become interconnected, known as “downhole communication” or a “frack hit” when it occurs due to hydraulic fracturing, spills and leaks can occur due to over-pressurization. In many states, these risks are mitigated by having setbacks between wells. California, the most seismically active state, has minimal setbacks for drilling or fracking oil and gas wells. In previous research, FracTracker found that over 96% of new hydraulic fractures in 2013 were drilled within 1,200 feet of another well, which would even violate setback rules in Texas!

Climate Impacts

Natural gas is hailed by the fossil fuel industry as the bridge fuel that will allow the world to transition to renewables. The main argument claims natural gas is necessary to replace coal as our main source of generating electricity. Burning both coal and natural gas produce carbon dioxide, but natural gas is more efficient. For the same amount of energy production, natural gas produces half as much carbon dioxide emissions. The legitimate threat of climate impacts comes from fugitive (leaked) emissions of methane, before the natural gas can be burned. Since methane is a gas, it is much harder to contain than oil or coal. Methane is also more insulating than carbon dioxide in the atmosphere (34-86 times more insulating), making it a more potent greenhouse gas. The leaked natural gas from the Aliso Canyon well is currently equivalent to 7,000,000 tons of CO2 (Updated here, on Mother Jones).

Current estimates show methane is responsible for 25% of the world’s anthropogenic warming to date. Proponents of the bridge fuel theorize that if methane leakage can be kept under 4% of total production, natural gas power generation will provide a climate-positive alternative to coal. EPA estimates set the leakage rate at 2.4%, but independent research estimates actual rates up to 7.9%.11 The EDF has been conducting an $18 million project focused on quantifying methane leaks from the natural gas industry. A team of 20 researchers from 13 institutions conducted the 2 year study measuring emissions from the Barnett Shale. Details can be found on the Environmental Defense Fund’s Page.12

Natural Gas Leak References

  1. Goldenberg, S. (2016). A single gas well leak is California’s biggest contributor to climate change. The Guardian. Accessed 1/6/16.
  2. Environmental Defense Fund. (2015). Aerial Footage of Aliso Canyon Natural Gas Leak. via YouTube. Accessed 1/5/16.
  3. Lurie, J. (2016). Thousands of Californians are Fleeing an Enormous Methane Leak. Here are 8 Things You Need to Know. Mother Jones. Accessed 1/6/16.
  4. CalOES. (2015). Aliso Canyon Natural Gas Leak. Accessed 1/8/15.
  5. BBC. (2015). California state of emergency over methane leak. Accessed 1/8/15
  6. Ellison, G. (2015). Michigan has most underground natural gas storage in U.S. MLive. Accessed 1/8/15.
  7. Reicher, M. (2015). SocalGas knew of corrosion at Porter Ranch gas facility, doc shows. LA Daily News. Accessed 1/5/16.
  8. Ingraffea et al. (2013). Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000-2012. PNAS. Vol.111 no.30.
  9. Cronin, M. (2015). Why Engineers Can’t Stop Los Angeles’ Enormous Methane Leak. Accessed 1/4/16.
  10. CUUC. (2015). Appendix A. Accessed 1/5/15. [please note that some CPUC files are being taken offline for unknown reasons]
  11. Howarth et al. (2011). Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change. 106:679-690.
  12. Song, L. (2015). Texas Fracking Zone Emits 90% More Methane Than EPA Estimated. InsideClimate News.

Feature Image: Aliso Canyon natural gas leak – Photo by Environmental Defense Fund