New York State Closes the Fracking Waste Loophole

Overview

On August 3, 2020, New Yorkers rejoiced in Governor Cuomo’s signing of legislation to protect the Empire State from Pennsylvania’s fracking waste. Although New York State has banned high-volume, horizontal hydraulic fracturing, or “fracking” within its borders, a fracking waste loophole allowed numerous landfills to received both solid and liquid waste products from drilling operations just south of its border, according to records from the Pennsylvania Department of Environmental Protection (PA DEP).

What has been at stake

A regulatory loophole in New York State’s laws exempted drilling waste from scrutiny as hazardous materials. Therefore, solid and liquid wastes from drilling operations — including many constituents which are considered secret or “proprietary” — were sent to landfills, and in some cases, spread on roads and walkways in the state. Municipalities were provided with very little understanding of the risks those materials might be posing to air and water quality in and around landfills. Until the signing of this legislation, New York State Department of Environmental Conservation has considered road-spreading of waste brine from both conventional and unconventional oil and gas wells that was spread on roads a “BUD,” or a beneficial use determination.

Nevertheless, research has shown that produced water from fracking operations can contain tens to thousands of times the allowable drinking water concentration limit of radium, strontium, barium, lead, arsenic, and other elements. Human health impacts of all phases of drilling operations were explored in a recent paper by Wollin et al. (May 2020).

Water that flows to the surface from oil and gas wells, so-called ‘produced water’, represents a mixture of flow-back, the injected frac fluid returning to the surface, and the reservoir water present in natural oil and gas deposits. Among numerous hazardous compounds, produced water may contain bromide, arsenic, strontium, mercury, barium, radioactive isotopes and organic compounds, particularly benzene, toluene, ethylbenzene and xylenes (BTEX). The sewage outflow, even from specialized treatment plants, may still contain critical concentrations of barium, strontium and arsenic. Evidence suggests that the quality of groundwater and surface water may be compromised by disposal of produced water.

Carcinogenic and radioactive wastes that are brought to the surface with both conventional and unconventional drilling technologies can have toxic impacts on human health and the natural environment, impacting the endocrine, nervous, cardiovascular, and respiratory systems, as well as air and water quality. According to the Natural Resources Defense Council, more than 75 percent of the chemicals used in fracking are associated with harm to human organs, while 25 percent are tied to cancer and other genetic mutations.

How could this be allowed?

Although the federal Resource Conservation and Recovery Act (RCRA)—passed in 1976—specifically safeguards human and environmental health, an amendment to the Act in 1980 exempted from regulation all waste from oil and gas exploration, development, and production. Despite close to 40 years of federal oversight of pollution created by countless industries, oil and gas operations have been subject to far more lax regulations. And although states can pass their own regulations to supplement the federal rule-making, this had not occurred in New York State.

The lead-up to the legislation

The recent legislation to close the fracking loophole in New York State was sponsored in 2019 by Senator Rachel May and Assemblyman Steve Engelbright. Lawmakers had been deadlocked on the issue since 2011, but through much hard work, political and public will, and a favorable complement of elected officials, after the bills finally passed both the New York State Senate and Assembly, they could move to Governor Andrew Cuomo’s desk, where they were signed into law in early August, 2020. According to EarthWorks, all oil and gas waste will be

  • Subject to laboratory analysis to determine whether it has the characteristics of hazardous waste (i.e., ignitability, corrosivity, reactivity, and toxicity)
  • Subject wastes to clearer, stronger management regulations like processing, tracking and marking of loads, recordkeeping with a manifest system, reporting to DEC, and specific requirements for clean up in the case of a spill

In addition, the law ensures that waste is disposed of only at facilities equipped to safely handle it.

Now, even wastes like brine from conventional drilling operations must undergo laboratory analysis to determine whether they have characteristics consistent with hazardous materials.

Here’s a look back at our history of accepting fracking waste from Pennsylvania into New York State.

Visualizing a long history of oil and gas waste coming to New York State from Pennsylvania

FracTracker has annually mapped the flow of drilling waste from Pennsylvania to New York State.

To view the map a full screen, click here

 

Since 2011, nearly 29,000 barrels of fracking liquid waste (drilling fluids, fracturing fluids, produced waters, etc.), along with close to 645,000 tons of solid waste (drill cuttings—some of it radioactive, sludge, contaminated soils, etc.) from Pennsylvania drilling operations have been disposed of in New York State. For more references on radioactivity in drilling materials, explore this resource. Drilling waste reports available from 2010 through the present show a steady decline in waste sent to New York State, beginning in 2011. Nonetheless, New York’s landfills have received as much as 11,548 barrels of drilling waste, and 214,168 tons of solid waste in a given year.

PA DEP’s records are far from complete prior to 2016, however, with disposal destinations unknown for close to 2/3 of liquid waste (see yellow portions of the bar chart in Figure 1) generated between 2012 and 2015.

 

Figure 1. Pennsylvania’s liquid unconventional drilling waste disposal by state, 2010-2019

 

In more recent years, waste products were accounted for more accurately, as well as shipped to injection wells in Ohio.

On a relatively smaller scale, one can also see how West Virginia’s acceptance of Pennsylvania’s fracking waste has skyrocketed in 2018 and 2019, particularly in comparison to states other than Pennsylvania and Ohio (Figure 2).

 

Figure 2. Pennsylvania’s liquid unconventional drilling waste disposal by state (excluding Pennsylvania and Ohio), 2010-2019

 

In general, records indicate more solid waste disposal occurring within Pennsylvania over time, with Ohio accepting varying quantities from year to year, and New York State steadily receiving less over time (Figure 3).

 

Figure 3. Pennsylvania’s solid unconventional drilling waste disposal by state, 2010-2019

 

Now that the regulatory loophole has been closed, these numbers should drop to near zero. Data about waste coming from Pennsylvania to New York in the first half of 2020 support that assertion (Figures 4 and 5).

 

Figure 4. Pennsylvania’s liquid unconventional drilling waste disposal by state, January-May 2020

 

Figure 5. Pennsylvania’s solid unconventional drilling waste disposal by state, January-May 2020

In conclusion

FracTracker applauds New York State for closing the fracking waste loophole and in doing so, continuing to set high standards to protect its residents from the human and environmental impacts created by oil and gas extraction. We hope that other states will follow suit, and develop their own stringent standards to protect human and environmental health, in particular where federal legislation like RCRA has fallen woefully short.

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

Feature photo by Ted Auch, FracTracker Alliance, with aerial support by Lighthawk

Support this work

Stay in the know

Fig. 1. Appalachia Midstream SVC LLC , Cherry Compressor Station in Cherry, Sullivan County, PA. (FLIR camera footage by Earthworks, July 2020)

An Introduction to the Loyalsock Creek Watershed


Nestled in Pennsylvania’s scenic Endless Mountains region, the Loyalsock Creek flows 64 miles from its headwaters in Wyoming County near the Sullivan County line, to a peaceful confluence with the West Branch Susquehanna River at Montoursville, east of Williamsport in Lycoming County. The lively, clear water drains 495 square miles, journeying through thick forests of the Allegheny Plateau over a landscape prized for rugged outdoor recreation, bucolic wooded respites, and quaint villages. 

Local place names reflect the Munsee-Lenape, Susquehannock, and Iroquois peoples who called the area home at the time of early colonial settlement. The name Loyalsock stems from the native word Lawi-sahquick, meaning “middle creek.” 

A favorite for angling, swimming, and whitewater paddling, the waterway supports a notorious resident – the aquatic eastern hellbender, the largest salamander in North America. In 2018, the Pennsylvania Department of Conservation and Natural Resources (DCNR) crowned the Loyalsock “River of the Year,” a program honoring the state’s premier rivers and streams and encouraging their stewardship.



Fig 2. Loyalsock Watershed Overview Map. (FracTracker Alliance, July 2020)

A Wealth of Public Lands and Recreational Opportunity

Public Lands

Nearly one third of the Loyalsock watershed consists of state-owned public lands, including the 780-acre Worlds End State Park; 37,519 acres of state game lands; and, 65,939 acres of the Loyalsock State Forest. The State Forest encompasses two Natural Areas, Tamarack Run (201 acres) and Kettle Creek Gorge (774 acres), as well as a 1935-acre portion of Kettle Creek Wild Area.

Worlds End State Park was originally purchased by the state in 1929 in an attempt to allow the area to recover from clear-cutting. The land was significantly improved due to the work of the Civilian Conservation Corps in the 1930s. There is some uncertainty about the historical name of the region, and as a result, the park was renamed Whirl’s End in 1936, but reverted to Worlds End in 1943. 

The area is a deep gorge cut by water rushing over millions of years through the Loyalsock Creek, over sedimentary formations known as the Sullivan Highlands. The gorge reaches 800 feet deep in some locations, where the fossilized remnants of 350-million-year-old lungfish burrows can be found.

Current amenities include 70 tent camping sites, 19 cabins, as well as group camping options accommodating up to 90 campers. A small swimming area on Loyalsock Creek is open in the summer months, and the Creek is also used for boating and fishing.

The Tamarack Run Natural Area protects one of the few enclaves of the tamarack tree, a species of larch common in Canada, but relatively rare as far south as the Loyalsock watershed. 

The Kettle Creek Gorge Natural Area follows the path of Falls Run, which as the name suggests, contains numerous majestic waterfalls, including Angel Falls, which drops around 70 feet. The Natural Area is buffered by the Kettle Creek Wild Area. Kettle Creek is a Class A Wild Trout stream, meaning that natural populations of trout are sufficient in quantity and size to support fishing activities.


Fig. 3. A view of Loyalsock Creek from the High Rock Trail in Worlds End State Park. (Brook Lenker, FracTracker Alliance, August 2019)


Fig. 4. Tubing on Loyalsock Creek. (Brook Lenker, FracTracker Alliance, August 2019)

Relaxing on the Water

The Loyalsock watershed contains 909 miles of streams, with more than 395 miles (43%) classified as high quality (358 miles) or exceptional value (37 miles). The watershed contains 10,573 acres of wetlands, including 4,844 acres of forested wetlands, 3,261 acres of riverine wetlands, 1,013 acres of freshwater ponds, 761 acres of lakes, and 694 acres of emergent wetlands.

Another popular recreation spot within the Loyalsock watershed is Rose Valley Lake, a 389-acre artificial reservoir managed by the Pennsylvania Fish and Boat Commission. The lake contains a variety of fish, including bigmouth bass, bluegill, and walleye. Boating is restricted to electric motors and unpowered craft, making the area an idyllic getaway.

Trails

There are 238 miles of trails in the watershed, accommodating a variety of uses, including hiking, biking, horseback riding, cross-country skiing, and snowmobiles. Some notable examples include: 

  • over 90 miles of snowmobile trails in the Loyalsock State Forest and Worlds End State Park; 
  • most of the 64-mile-long Loyalsock Trail, showcasing numerous waterfalls; 
  • the Double Run Ski Trail, providing cross-country opportunities in the Loyalsock State Forest; 
  • and the 19-mile Loyalsock State Forest Bridle Trail for equestrian pursuits.

The Loyalsock Watershed also contains the entirety of state Game Lands #134 and #298, as well as parts of six others, including Game Lands #12, #13, #36, #57, #66, and #133. Not only hunting locations, these tracts preserve habitat for important bird and mammal species, provide opportunities for birding, and offer a variety of outdoor education resources.



Commercial Opportunities

There are also privately-owned recreational opportunities in the region. A portion of the historic Eagles Mere Country Club has provided golf and other activities for over 100 years. Eagles Mere Lake, just south of the watershed boundary, provides recreation opportunities for members of the privately-held Eagles Mere Association. At the south of the lake is the regionally-famous Eagles Mere Tobaggan Slide, where riders race down a specialized track at speeds up to 45 miles per hour, when winters are cold enough for sufficient ice conditions – a fleeting situation due to climate change. 

A few miles to the east of Eagles Mere lies a cluster of lakes that surround the borough of Laporte, in Sullivan County. The largest of these lakes is Lake Mokoma, administered by the Lake Mokoma Association. Participation in the Association is limited to those who own residences or vacation homes in Sullivan County.

Loyalsock State Forest Trail

Fig. 5. Hiking trail in the Loyalsock State Forest. (FracTracker Alliance, July, 2020)

Fig. 6. An interactive map of recreation opportunities in the Loyalsock Watershed. (FracTracker Alliance, July 2020)

View map fullscreen

Fracking comes to the Loyalsock

Figures 7-9. Aerial imagery of unconventional oil and gas infrastructure in the Loyalsock State Forest. (Ted Auch, FracTracker Alliance, with aerial assistance from Lighthawk. June, 2020)

On November 17, 2009, Inflection Energy began drilling the Ultimate Warrior I well in Upper Fairfield Township, Lycoming County. In quick succession came Pennsylvania General Energy, Chesapeake Appalachia, Chief Oil & Gas, Anadarko E&P, Alta Resources (ARD), and Southwestern Production (SWN), all of which drilled a well by the end of 2010. It was a veritable invasion on the watershed, one that ushered in a dramatic change from a mostly agrarian landscape, to one with heavy industrial presence.

Residents have to deal with constant construction of well pads, pipelines, compressor stations, and staging grounds. Since each drilled well requires thousands of truck trips, enormous traffic jams are common, with each idling engine spewing diesel exhaust into the once clean air. The noise of drilling and fracking continues into the night, and bright flaring of gasses at wells and other facilities disrupts sleep schedules, and may contribute to serious health issues as well.

Fig. 10. An interactive map of the impacts of the unconventional oil and gas industry to the Loyalsock Creek Watershed. Note: Pipelines may be only partially depicted due to data limitations. (FracTracker Alliance, 2020)

View map fullscreen

Fracking is a nuisance and a risk in the best of times, but the Marcellus boom in the Loyalsock watershed has been notably problematic. The most frequent violations in the watershed are casing and cementing infractions, for which the “operator conducted casing and cementing activities that failed to prevent migration of gas or other fluids into sources of fresh groundwater.” This particular violation has been reported 47 times in the watershed, although there are dozens of additional casing and cementing issues that are similarly worded (see appendix). Erosion and sediment violations have also been commonplace, and these can have significant impacts on stream system health.

Improperly contained waste pits have leached toxic waste into the ground. A truck with drilling mud containing 103,000 milligrams per liter of chlorides – about five times more than ocean water – was driving down the road with an open valve, spewing fluids over a wide area. Some spills sent plumes of pollution directly into streams.

  • Fig. 11. Diesel truck traffic carrying fracking equipment in the Loyalsock watershed. (FracTracker Alliance, June, 2020)

  • Fig. 12. Diesel exhaust spewing from fracking equipment. (Barb Jarmoska)

    Diesel exhaust spewing from fracking equipment. Photo by Barb Jarmoska.
  • Fig. 13. Fracking is a heavily industrial activity. Many of these sites in the Loyalsock Creek watershed are immediately adjacent to homes. (Barb Jarmoska)

    Fracking is a heavily industrial activity. Many of these sites in the Loyalsock Creek watershed are immediately adjacent to homes. Photo by Barb Jarmoska.
  • Fig. 14. Open pits used to be permitted for temporary storage of oil and gas waste. Here, the liner is not properly covering the bottom-right corner, sludge is piled up past the liner in the top-right corner, and temporary fencing is failing in numerous locations. (Barb Jarmoska)

    Open pits used to be permitted for temporary storage of oil and gas waste. Here, the liner is not properly covering the bottom-right corner, sludge is piled up past the liner in the top-right corner, and temporary fencing is failing in numerous locations. Photo by Barb Jarmoska.

In short, it has been a mess. Altogether, there have been 631 violations issued for 317 unconventional wells drilled in the Loyalsock, an average of two violations per well. 

The Pennsylvania Department of Environmental Protection (DEP) issues violations on pipelines as well, but we are unable to match pipeline violations to a specific location, so there is no way to know which ones occurred in the Loyalsock watershed. 

We also know that pipeline construction is a process filled with mishaps. Specifically, there is a technique for drilling a pipeline segment underneath existing obstacles – such as streams and roads – known as horizontal directional drilling (HDD). These HDD sites frequently bleed large quantities of drilling mud into the ground or surface water. When these leaks surface, these spills are known euphemistically as “inadvertent returns.” Sometimes, the same phenomenon occurs but the fluid drains instead to an underground cavity, referred to as “loss of circulation.” We do not have data on either category for pipelines in the Loyalsock watershed. However, the DEP has published inadvertent returns for the Mariner East II route to the south, and when combining spills impacting the water and ground, these occur at a rate of about two spills for every three miles of installed pipe. Many of these releases are measured in thousands of gallons. 

Unfortunately, drilling and all related activity continue in the Loyalsock Creek watershed. As the industry has proven incapable of conducting these activities in an unsullied manner that is protective of the environment and the health of nearby residents, we can expect the litany of errors to continue to grow.

A Brief Timeline of Infractions

In 2016, a major incident was reported to the Pipeline and Hazardous Materials Safety Administration (PHMSA), a federal agency under the Department of Transportation (DOT). On October 21, a Sunoco pipeline ruptured, spilling 55,000 gallons of gasoline into Wallis Run, a tributary of Loyalsock Creek. The eight-inch pipeline burst when high winds and heavy floods triggered mudslides, sweeping away at least two homes and leaving flooded roads impassable. Water suppliers and national and state agencies advised locals to conserve water, and the DEP and water supplier American Water shut down intake valves until they had measured contamination levels in three water supplies serving thousands of people downstream, including populations in Lewisburg, Milton, and Gamble Township. 

Limited access to the area delayed identifying the source of the rupture, though Sunoco shut off the pipeline that runs from Reading to Buffalo, NY. When waters receded, Sunoco officials replaced the broken pipe, which they said was broken by debris from a washed out bridge ten feet upstream. The pipeline was buried five feet below the creek, but heavy rains exposed it. 

Agency authorities later found that heavy rains had flushed out much of the pollution, though they recorded the highest levels in the Loyalsock Creek. While this is obviously a weather-related event, local residents questioned the placement of a hazardous liquids pipeline crossing at such a volatile location, noting that the same pipeline had been exposed, (although not breached), just five years earlier.

Sunoco tops the list of U.S. crude oil spills. Sunoco and their subsidiaries reported 527 hazardous liquids pipeline incidents between 2002 and 2017, incidents that released over 87,000 barrels of hazardous liquids, according to Greenpeace USA and Waterkeeper Alliances’ 2018 report on Energy Transfer Partners (ETP) & Sunoco’s History of Pipeline Spills. Sunoco and its subsidiary ETP are developing the Dakota Access Pipeline, the Mariner East pipeline, and the Permian Express pipeline, sites that have already seen construction errors causing leaks and spills.

The area suffered another heavy spill in 2017, when a well operated by Colorado-based Inflection Energy leaked over 63,000 gallons of natural gas drilling waste into a Loyalsock Creek tributary. The spill occurred when waste was being transferred from one container to another, a neglect of the contracted worker who had fallen asleep. DEP spokesman Neil Shader said the waste – called “flowback” – was filtered and treated, but this brine can contain chemicals, metals, salts, and other inorganic materials that can pollute soil and groundwater. Carol Parenzan, at the time serving as Middle Susquehanna’s Riverkeeper, said many residents are supplied by well water, and were not alerted of the spill until a local began investigating and calling local and state authorities.

Chesapeake Manning July 2020 Earthworks

Fig. 16. At the Chesapeake Appalachia LLC Manning Well Site and Lambert Farms Well Site, the emissions sources appear to be engines or combustion devices. (FLIR camera footage by Earthworks, July 2020)

One of Earthworks’ trained and certified thermographers visited the Loyalsock watershed and surrounding area in mid-July with a FLIR optical gas imaging (OGI) camera. This industry standard tool can make visible pollutants that are typically invisible to the human eye, but that still pose significant risks to health and the environment–including 20 volatile organic compounds, such as the carcinogens benzene and toluene, and methane, a greenhouse gas 86 times more potent than carbon dioxide.

Oil and gas air pollution isn’t isolated to the Loyalsock watershed, and Earthworks has gathered optical gas imaging evidence of leaks and other air emissions on more PA public lands–like the Allegheny National Forest and the Pine Creek watershed area.


To see more photos and videos FracTracker collected in the Loyalsock Watershed, visit our Flickr album.

Water – a precious resource

Water is the lifeblood of the Loyalsock watershed, as it is in any basin. However, in the Loyalsock, water is of particular importance. As we have seen, recreation opportunities in the area are defined by water, including fantastic fishing streams and lakes, meandering trails passing many waterfalls, various boating sites, and inviting swimming holes. For one reason or others, most visitors come to the Loyalsock to enjoy these natural aquatic locations.

Perhaps the most important water assets are underground aquifers. The majority of the watershed is rural, and private wells for potable household water are typical. Even the municipal water supply for the Borough of Montoursville is fed by groundwater, including five wells and an artesian spring.

Contamination

For a region so dependent on surface water for tourism, commercial activities, and groundwater for drinking supplies, the arrival of fracking is a significant concern. Unfortunately, spills and other violations are common at well pads and related infrastructure, with over 631 violations in the watershed since 2010. 

Even pipelines that are not yet operational can have impacts on the waterways in the Loyalsock Creek watershed. In September 2012, for example, a “significant amount” of sediment and mud spilled into the Loyalsock Creek during the construction of Central New York Oil and Gas’ Marc I pipeline project. Such incidents introduce silt and clay into waterways, fine sediments that have the potential to deplete aquatic fauna. These types of episodes have received considerably more attention since this event, and it turns out that they are quite common during pipeline construction. For example, the Mariner East pipeline has had hundreds of these so-called inadvertent returns, many of which directly affected the waters of the Commonwealth. 

Trucks withdrawing water for drilling-related activities at the Forksville Heritage Freshwater Station, operated by Chief Oil & Gas. Photo from FracTracker mobile app report.

Fig. 17. Trucks withdrawing water for drilling-related activities at the Forksville Heritage Freshwater Station, operated by Chief Oil & Gas. Photo from FracTracker mobile app report.

Average water use per well in the Loyalsock Watershed

Fig. 18. The average amount of water used per well in the Loyalsock Watershed has increased over time. In recent years, several wells exceeded 30 million gallons (FracTracker Alliance, 2020).

In addition to contamination concerns, unconventional oil and gas wells are extremely thirsty operations. FracTracker has analyzed wells in the watershed using the industry’s chemical registry site FracFocus. Of the 274 wells in the watershed reporting to FracFocus between January 2011 and April 2020, 38 did not include a value for total water usage. These wells were all fracked on or before September 13, 2012, when the registry was still in its early phase and its use was not well standardized. Two wells fracked in 2018 by Pennsylvania General Energy had very low water consumption figures, with one reporting 2,100 gallons, and the other reporting 6,636 gallons. These two reports appear to be erroneous, and so these wells were removed from our analysis.

Of the remaining 234 wells in the data repository, one reported using less than one million gallons, although it came close, with 925,606 gallons. Another 63 wells used between one and five million gallons, 137 wells used between five and ten million gallons, 25 wells used between ten and 20 million gallons, and eight used more than 20 million gallons. The average consumption was 7,739,542 gallons, while the maximum value was for Alta Resources’ Alden Evans A 2H well, which used 34,024,513 gallons of water.

The well’s operator has a tremendous impact on the total amount of water usage reported on FracFocus in the Loyalsock watershed. 

However, it is worth noting that time factors into this analysis. None of the three companies averaging less than five million gallons of water per well – including Anadarko, Atlas, and Southwestern – have records after 2014, and water consumption has increased dramatically since then. Still, Alta’s average of nearly 24.7 million gallons per well stands out, with more than twice the amount of water consumed per well, compared to the next highest user. 

Altogether, the wells on the FracFocus registry in the Loyalsock watershed consumed over 1.8 billion gallons of water, enough water to supply nearly 36,000 households for a year, assuming an average of 138 gallons per household, per day. This is a real need in the United States, as a 2019 report by DigDeep and US Water Alliance estimated that there were twmillion people in the U.S. without running water in their homes.

Operator Average Gallons per Well
Alta Resources 24,658,871
Anadarko Petroleum Corporation 3,320,469
Atlas Energy, L.P. 4,926,427
Chesapeake Operating, Inc. 6,572,047
Chief Oil & Gas 8,537,475
Inflection Energy (PA) LLC 7,716,069
Pennsylvania General Energy 11,680,249
Seneca Resources Corporation 8,410,013
Southwestern Energy 2,355,864

Fig. 19. Total amount of water usage reported by oil and gas operators in the Loyalsock watershed. (FracFocus, 2020)

Fig. 20. An interactive map of oil and gas related water sites in the Loyalsock Creek Watershed. (FracTracker Alliance, 2020)

View map fullscreen

A Waste-Filled Proposition

Between January 2011 and April 2020, two conventional wells and 297 unconventional wells combined to produce 7,017,102 barrels (294.7 million gallons) of liquid waste, and 340,856 tons (681.7 million pounds) of solid waste.

Liquid oil and gas waste produced in the Loyalsock Creek watershed, in barrels. Note that 2020 includes data from January to March only.

Fig. 21. Liquid oil and gas waste produced in the Loyalsock Creek watershed, in barrels. Note that 2020 includes data from January to April only. (FracTracker Alliance, July 2020)

Solid oil and gas waste produced in the Loyalsock Creek watershed, in tons. Note that 2020 includes data from January to March only.

Fig. 22. Solid oil and gas waste produced in the Loyalsock Creek watershed, in tons. Note that 2020 includes data from January to April only. (FracTracker Alliance, July, 2020)

For sake of comparison, this amount of liquid waste could fill the Lincoln Memorial Reflecting Pool more than 43 times, while the solid waste from this modest-sized watershed exceeds the weight of three Nimitz-class aircraft carriers.

This averages out to 23,469 barrels (985,680 gallons) and 1,140 tons (2,279,973 pounds) per well drilled in the basin, and most of these wells are active and continue to produce waste. Many of these wells have generated waste quantities in great excess of these averages.

Unlike gas production, which tends to drop off precipitously after the first year, liquid waste production remains at an elevated level for years. For example, the Brooks Family A-201H well, the well reporting the largest quantity of liquid waste in the basin, produced 1,499 barrels in 2017, 28,847 barrels in 2018, 35,143 barrels in 2019, and 23,829 barrels in the first four months of 2020. The volumes from this well increase substantially each year. 

For all wells in the watershed reporting liquid waste between 2018 and 2019, waste totals decreased by almost 42%. While a significant decrease, these 237 wells still generated 829,267 barrels (34.8 million gallons) of waste in 2019, and some have been generating waste since at least 2011. Wells will continue to produce waste until they are permanently plugged, but unfortunately, there are plans for more drilling in the watershed. There are 17 active status wells that have been permitted and not yet drilled. Important to remember is that fracking waste is often radioactive, and laden with salt, chemicals, and other contaminants, making it a hazardous product to transport, treat, or dispose. 

Cumulative liquid waste totals produced by oil and gas wells in Loyalsock Creek watershed between January 2011 and April 2020.

Fig. 23. Cumulative liquid waste totals produced by oil and gas wells in Loyalsock Creek watershed between January 2011 and April 2020. (FracTracker Alliance, July, 2020)

Fig. 24. An interactive map of oil and gas waste generated in the Loyalsock Creek Watershed between January 2011 and May 2020. (FracTracker Alliance, July, 2020)

View map fullscreen

Documentation Field Day

On a sunny Friday in June 2020, a group of 18 FracTracker staff members and volunteers gathered in the Loyalsock watershed to document activities and infrastructure related to unconventional oil and gas activities. FracTracker’s Matt Kelso used a variety of data from the DEP to prepare maps depicting an array of infrastructure, including 317 drilled wells on 110 different pads, five compressor stations, a compressed natural gas truck terminal, and 24 water facilities related to oil and gas extraction – including five surface water withdrawal sites and 19 storage reservoirs. He then divided an area of about 496 square miles into five sections, and at least two participants were assigned to explore each section. 

Using the FracTracker mobile app, cameras, and other documentation tools, the group was able to verify the location of 91 infrastructure sites, including well pads, compressor stations, pipelines, water withdrawal sites and reservoirs, as well as significant truck traffic. As they made their way over the rural back roads, many participants were struck by the juxtaposition of a breathtaking landscape and peaceful farmlands with imposing, polluting fracking sites.

The day was also documented by Rachel McDevitt from StateImpact Pennsylvania, a reporting project of NPR member stations, as well as the filmmakers Justin Grubb, Alex Goatz, and Michael Clark from Running Wild Media

With the geolocated photos and site descriptions documented on this day, FracTracker was able to compile this story atlas to serve as an educational tool for concerned residents of the Loyalsock. 

You can find these reports and many more by downloading the FracTracker app on your iOS or Android device, or by going to the web app at https://app.fractracker.org/.

  • Fig. 25. FracTracker’s Executive Director Brook Lenker addresses the gathering of volunteers, media members, and FracTracker staff at Canfield Island Heritage Trail Park on documentation day. (FracTracker Alliance, June, 2020)

    Loyalsock watershed fractracker app expedition
  • Fig. 26 FracTracker’s Matt Kelso explains the maps he made of different sections in the Loyalsock Watershed. (FracTracker Alliance, June, 2020)

  • Fig. 27 Running Wild Media’s filmmaker captures the introduction to the documentation day by FracTracker staff. These filmmakers tagged along for additions to a film about the eastern hellbender, to be released in spring 2021. (FracTracker Alliance, June, 2020)

  • Fig. 28. A compressor station is seen across a field of wildflowers, somewhere in the Loyalsock Watershed. (FracTracker Alliance, June, 2020)

  • Fig. 29. Volunteers stand outside gated infrastructure in the watershed on the documentation field day. (FracTracker Alliance, June, 2020)

  • Fig. 30. A pipeline path cutting through forest in the Loyalsock watershed. (FracTracker Alliance, June, 2020)

  • Fig. 31. Grass has grown to cover a pipeline path traversing a hillside in the Loyalsock. (FracTracker Alliance, June, 2020)

Click on various elements in te map to see visualizations such as videos, FLIR camera footage, gifs, and photos.


Fig. 32. An interactive map of community-led documentation of oil and gas related impacts in the Loyalsock Creek Watershed. (FracTracker Alliance, 2020)

View map fullscreen

Local Insights

Barb Jarmoska is a lifelong environmental and social justice activist with property adjacent to the Loyalsock State Forest that has been in her family for five generations. She has witnessed a dramatic and devastating transformation of the pristine area surrounding her home as the fracking industry moved into what they consider the Marcellus Sacrifice Zone.

This is Barb’s account, in her own words:


“For me, the door to the woods is the door to the temple,” wrote poet Mary Oliver. I understand those words, they are part of my lifetime of lived experience in the Loyalsock watershed. 

I am a retired special-ed teacher and a business owner – a mother and a grandmother – and someone who treasures and reveres the rapidly dwindling wild places in Penns Woods.

Where my front yard ends, the Loyalsock State Forest (LSF) begins. Access to my property is via a no-outlet gravel road that dead-ends in the Forest. 

In 1933, my grandfather bought 20 acres with an old cabin and barn bordering what is now the LSF. 

As a child, I didn’t miss indoor plumbing or air conditioning in that cabin beside the Loyalsock Creek where we spent our summers. I now live on the land year-round, in a home I built in 2007, before I had ever heard the words Marcellus Shale. I have indoor plumbing now, but still no desire for air conditioning, preferring to rely on open windows and big shade trees. 

The memories my family has made on this land are priceless, and my grandchildren are the fifth generation to run in the meadow, swim and fish in the creek, climb the trees, and play in the nearby woods of the PA Wilds. In our increasingly transient society, roots this deep are precious and rare. 

My appalled, angry, and admittedly frightened response to the gas industry invasion of the Loyalsock watershed began in 2010, when a parade of trucks spewing diesel fumes rumbled up the no-outlet road I live on, enroute to leased COP tracts in the LSF. 

That dirt trail that we loved to hike was the first thing to go. Dump trucks carrying fist-sized gravel and heavy equipment transformed the forest trail into a road – gated off and posted with trespass warnings carrying severe penalties. In my neighborhood, as in so many places in the watershed, land that legally belongs to the citizens now carries grim warnings of the consequences of trespassing. 

When the drilling and fracking equipment passed my driveway, the ground shook. Oftentimes, I had to wait 15 or 20 minutes just to leave – or come home. There was a flag car pretty much permanently blocking my driveway for a while. I also walked out for the mail one day and found a porta-potty had been set up on my land. No one thought to ask permission. They just put it on my property – a few yards from my mailbox. 

Life in my Loyalsock watershed neighborhood has forever changed at the hands of industry permitted to remove millions of gallons of water for fracking from the Loyalsock – the beautiful Creek that carries the designation “Exceptional Value”. Named PA’s River of the Year in 2018, the Loyalsock Creek begins in the endless mountain region of the PA Wilds, and travels 64 miles on its way to the West Branch of the Susquehanna River.

The beloved Loyalsock Creek provides recreation for hundreds of fishermen, kayakers, inner-tubers, swimmers, and summer cabin dwellers – offering clear water that to this day supports abundant fish, amphibians, birds, and wildlife – clear water the gas industry now pumps out by the millions of gallons, to be mixed with toxic chemicals and forced at great pressure through boreholes a mile deep and miles long, to release methane trapped in the Marcellus Shale. 

In 2018, about two miles from my home, an estimated 55,000 gallons of “produced water” spilled from a well pad ironically named TLC. This toxic fluid ran downhill into a tributary and directly into the Loyalsock Creek. On its approximately two-mile path, the chemicals flooded a little tributary that runs through a rural neighborhood where children play in the water. Frightened residents gathered to question DEP about the safety of their private drinking water wells, and they expressed concern over the tadpoles and frogs, and in the deeper, shady pools – native trout they were used to seeing. 

Pennsylvania lawmakers could obey the Constitution, protect the watershed, and choose a way forward that leads to a future of renewable energy and well-paying green jobs for Pennsylvania citizens, as well as the promise of a brighter future for our children and grandchildren. 

Time is running out.

I look at my grandchildren and believe that such a shift of consciousness and political will is truly their last, great hope. 

Keep It Wild

-By Barb Jarmoska

What Does the Future Hold?

On its own, climate change brings with it a wave of new and/or intensified challenges to PA’s state forests, parks, and natural areas. Flooding and erosion, insect-borne illnesses, invasive species, and changes to plant and animal life are ongoing issues the state’s natural resource managers have to consider as the climate changes. These interactive stressors will continue to disrupt ecosystem function, processes, and services; result in the loss of biodiversity and shifts in forest compositions; and negatively impact industries and communities reliant on Penns Woods.

Over the past 110 years, PA’s average temperature has increased nearly two degrees Fahrenheit, and the Commonwealth has also seen a gradual uptick in annual precipitation, but a decline in and shorter span of snow cover. As ranges shift, the state will see the distribution and abundance of native plants and animals change, a pattern that will continue to accelerate. 

Penns Woods are home to over 100 species of trees. Oak/hickory forests contain primarily oaks, maples, and hickories, with an understory of rhododendrons and blueberry bushes. Northern hardwood forests are composed of black cherry, maples, American beech, and birch, with understories of ferns, striped maple and beech brush. But the composition of PA’s forests are changing. Smithsonian’s Conservation Biology Institute compared colonial-era data to recent U.S. Forest Service data, and found that maples have increased by as much as 20%, but beeches, oaks and chestnuts – important foliage for wildlife – have declined. The presence of pine trees has been more volatile, seeing increases in some areas, and decreases in others.

Overall, PA’s forests are becoming more unsustainable, conditions compounded by misaligned harvesting, suburban sprawl, insect infestations, and disease. These impacts trickle down to the wildlife that call Penns Woods home. PA’s Natural Heritage Program has begun to compile this Environmental Review List, to identify threatened and endangered species, species of special concern, and rare and significant ecological features. 

One of the most notable among these is North America’s largest salamander, the eastern hellbender, designated PA’s official amphibian in April 2019. This salamander is a great indicator of clean and well-oxygenated water, as it requires fast-flowing, freshwater habitat with large rock deposits to thrive. Originally dispersed across the Appalachians from Georgia to New York, the eastern hellbender’s population has suffered greatly from the impacts of pollution, erosion and sedimentation, dams, and amphibious fungal disease. 

These salamanders can reach lengths up to two feet, and live for as long as 50 years, so their presence is a key indicator of long-term stream and riparian health. Western Pennsylvania Conservancy has monitored their habitats throughout PA since 2007. Though named the state’s official amphibian, this title does not incorporate its special protection.



Fig. 33. An aerial view of the Loyalsock Creek. (Ted Auch, FracTracker Alliance, June 2020)



In its recent Loyalsock State Forest Resource Management Plan (SFRMP), PA DCNR states that “Natural gas development…especially at the scale seen in the modern shale-gas era, can affect a variety of forest resources, uses, and values, such as:

• recreational opportunities,

• the forest’s wild character and scenic beauty, and

• plant and wildlife habitat.”

Despite extensive areas marred by well pads and other fracking infrastructure, the Loyalsock watershed retains resplendent beauty and pastoral character. Natural resources have endured spills, leaks, habitat fragmentation, deforestation, and increases in impervious buildout related to the gas industry. While a global pandemic and cascading company debts have diminished extraction activities, the region remains vulnerable to future attempts to drill more — on both private and public lands.

Indicative of the omnipresent threats, Pennsylvania General Energy Company, LLC (PGE) intends to develop a substantial pipeline corridor across the Loyalsock Valley. According to PA DEP public records, the project includes the construction of the Shawnee Pipeline, with over 15,000 linear feet of an existing eight-inch diameter gas pipeline to be replaced with a 16-inch pipeline. It will be supplemented by the Shawnee Pipeline Phase 2, encompassing an additional 189 linear feet of gas pipeline.

Arranged to accompany the pipelines is a temporary waterline to extend from planned pump stations on both sides of the Loyalsock Creek, to a proposed impoundment site within Loyalsock State Forest.

The company envisions cofferdams and trenches to cross the Loyalsock Creek. Other streams and wetlands will also be traversed, further degrading and endangering these vulnerable resources. Visible scarring from the pipeline cut is a major concern adding to the diminishment of the valley’s lush, green slopes. Methods exist to minimize the visibility of such development, but no one knows if PGE will follow those practices, or if regulators will require this of them. Some believe the project portends more fracking — with ceaseless demands for more water, and endless production of noxious waste and climate-killing emissions.

Only a few miles northeast of the watershed, New Fortress Energy is constructing a 260-acre complex near Wyalusing, Pennsylvania, to convert fracked gas into liquified natural gas, or LNG. The LNG will be dangerously transported by truck and rail to a planned export facility in Gibbstown, New Jersey, to send these private exploits overseas. A local group, Protect Northern PA, has formed to encourage a more sustainable path forward for the area, one that values people and the planet. The New Fortress Energy plant, if completed, would create inertia for extended extraction across the Marcellus Shale. 

But hope abides in the Loyalsock. Hikers flock to enchanted trails, revelers rejoice on graveled shores. The place exudes an invisible elixir called stewardship, rippling through the air, nourishing receptive hearts and minds. Brandished for free, it shares this necessary ethos, seeking more followers. 


Thanks to…

Thank you to all of the inspiring and steadfast environmental stewards who have contributed to the creation of this digital atlas:

  • Dick Martin from PAForestCoalition.org;
  • Barb Jarmoska, Harvey M. Katz, and Ralph Kisberg from Responsible Drilling Alliance; 
  • Ann Pinca from Lebanon Pipeline Awareness; 
  • Paul V. Otruba and Victor Otruba from Environeers; 
  • Justin Grubb, Alex Goatz, and Michael Clark from Running Wild Media; 
  • and Rachel McDevitt from StateImpact
  • Leann Leiter from Earthworks 
  • Lighthawk 
  • Staff at FracTracker Alliance

Project funding provided by The Foundation for Pennsylvania Watersheds

Support this work

Stay in the know

Oil & Gas waste tank operated by SWEPI and Enervest at the Hayes pad, Otsego County, Michigan May 21st, 2016

The North Dakota Shale Viewer Reimagined: Mapping the Water and Waste Impact

We updated the FracTracker North Dakota Shale Viewer with current data and additional details on the astronomical levels of water used and waste produced throughout the process of fracking for oil and gas in North Dakota.

As folks who visit the FracTracker website may know, the fracking industry is predicated on cheap sources of water and waste disposal. The water they use to bust open shale seams becomes part of the waste stream that they refer to by the benign term “brine,” equating it to nothing more than the salt water we swim in when we hit the beaches.

Some oil and gas operators like SWEPI and Enervest in Michigan, however, have taken to calling their waste “SLOP” (Figure 1), which from my standpoint is actually refreshingly honest.

Fracking Energy Return on Investment 2012 – 2020

Since we created our North Dakota Shale Viewer on October 5th, 2012, much has changed across the fracking landscape, while other songs have remained the same. Both of these truths exist with respect to fracking’s impact on water and the industry’s inability to get its collective head around the billions of barrels of oftentimes radioactive waste it produces by its very nature. From the outset, fracking was on dubious footing when it came to the water and waste associated with its operations, and we have seen a nearly universal and exponential increase in water demand and waste production on a per well basis since fracking became the highly divisive topic it remains to this day.

Oil & Gas waste tank operated by SWEPI and Enervest at the Hayes pad, Otsego County, Michigan May 21st, 2016 (44.892933, -84.786530).

Figure 1. Oil & Gas waste tank operated by SWEPI and Enervest at the Hayes pad, Otsego County, Michigan May 21st, 2016 (44.892933, -84.786530). Photo by Ted Auch, FracTracker Alliance.

Environmental economists like to look at energy sources from a more holistic standpoint vis a vis engineers, traditional economists, and the divide-and-conquer rhetoric from Bismarck to the White House. They do this by placing all manner of energy sources along a spectrum of Energy Return On Energy Invested (EROEI).

Since the dawn of the fracking revolution, shale gas from horizontal wells has been near the bottom of the league tables with respect to EROEI which means it “…has decreased from more than 1000:1 in 1919 to 5:1 in the 2010s, and for production from about 25:1 in the 1970s to approximately 10:1 in 2007” for US oil and gas according to Hall et al. (2014). This is what John Erik Meyer has come the “EROI Mountain” whereby we’ve already “burned through the richest resources.”

It stands to reason that if natural gas from fracking were a real “bridge fuel” in the transition away from coal, it would at least approach or exceed the EROEI of the latter, but at 46:1 coal is still four times more efficient than natural gas. However, it must be said that coal’s days are numbered as well. Witness the recent bankruptcy of coal giant Murray Energy, and the only reason its EROEI has increased or remained steady is because the mining industry has transitioned to almost exclusively mountaintop removal and/or strip mining and the associated efficiencies resulting from mechanization/automation.

The North Dakota Shale Viewer

We enhanced our North Dakota Shale Viewer nearly eight years since it debuted. This exercise included the addition of several data layers that speak to the above issues and how they have changed since we first launched the North Dakota Shale Viewer.

View map fullscreen 

It is worth noting that oil production in total across North Dakota has not even doubled since 2012, and gas production has only managed to increase 3.5-fold. However, the numbers look even worse when you look at these totals on a per well basis, which as I have mentioned seems to me to be the only way reasonable people should be looking at production. Using this lens, we see that production of oil in North Dakota on a per well basis oil is 1% less than it was in 2012 and gas production has not even doubled per well. This is a stunning contrast to the upticks in water and waste we have documented and are now including in our North Dakota Shale Viewer.

Water Demand Rises for Fracking

We’ve incorporated individual horizontal well freshwater demand for nearly 12,000 wells up to and including Q1-2020. The numbers are jaw dropping when you consider that at the time we debuted this map North Dakota, unconventional wells were using roughly 2.1 million gallons per well compared to an average of 8.3 million gallons per well so far this year. This per well increase is something we have been documenting for years now in states like Pennsylvania, Ohio, and West Virginia.

This is concerning for multiple reasons, the first being that if fracking ever were to rebound to its halcyon days of the early teens, it would mean some of our country’s most prized and fragile watersheds would be pushed to an irreversible hydrological tipping point. Hoekstra et al. (2012) have come to call this the “blue water” precautionary principle whereby “depletion beyond 20% of a river’s natural flow increases risks to ecological health and ecosystem services.”

Another concern is that while permitting in North Dakota has slowed like it has nationwide, the aforementioned quarterly water usage totals per well are now 5.25 times what they were in October 2012 and the total water used by the industry in North Dakota now amounts to 60.43 billion gallons– that we know of —  which is nearly 50 times what the industry had used when we created our North Dakota Shale Viewer (Figure 2).[1]

With respect to the points made earlier about the value of EROEI, this increase in water demand has not been reflected in the productivity of North Dakota’s oil and gas wells, which means the EROEI continues to fall at rate that should make the industry blush.  Furthermore, this trend should prompt regulators and elected officials in Bismarck and elsewhere to begin to ask if the long-term and permanent environmental and/or hydrological risk is worth the short-term rewards vis à vis the “blue water” precautionary principle, in this case of the Missouri River, outlined by Hoekstra et al. (2012). It is my opinion that it most assuredly is not and never was worth the risk!

The most stunning aspect of the above divergence in production and water demand is that on a per well basis, water only costs the industry roughly 0.46-0.76% of total well pad costs. This narrow range is a function of the water pricing schemes shared with me by the North Dakota Western Area Water Supply Authority (WAWSA). This speaks to an average price of water between $3.68 and $4.07 per 1,000 gallons for “industrial” use (aka, fracking industry) by way of eight depots and “several hundred miles of transmission and distribution lines” spread across the state’s four northwest counties of Mountrail, Divide, Williams, and McKenzie.

 

Figure 2. Average Freshwater Demand Per Well and Cumulative Freshwater Demand by North Dakota fracking industry from 2011 to Q1-2020.

Average Freshwater Demand Per Well and Cumulative Freshwater Demand by North Dakota fracking industry from 2011 to Q1-2020

Increasing Fracking Waste Production

On the fracking waste front, the monthly trend is quite volatile relative to what we’ve documented in states like Oklahoma, Kansas, and Ohio. Nonetheless, the amount of waste produced is increasing per well and in total. How you quantify this increase is quite sensitive to the models you fit to the data. The exponential and polynomial (Plotted in Figure 3) fits yield 4.76 to 9.81 million barrel per month increases, while linear and power functions yield the opposite resulting in 1.82 to 10.91 million-barrel declines per month. If we assume the real answer is somewhere in between we see that fracking waste is increasingly slightly at a rate of 1.51% per year or 460,194 barrels per month.

 

Figure 3. Average Per Well and Monthly Total Fracking Waste Disposal across 675 North Dakota Class II Salt Water Disposal (SWD) wells from 2010 to Q1-2020.

Average Per Well and Monthly Total Fracking Waste Disposal across 675 North Dakota Class II Salt Water Disposal (SWD) wells from 2010 to Q1-2020.

 

North Dakota has concerning legislation related to oil and gas waste disposal. Senate Bill 2344 claims that landowners do not actually own the “subsurface pore space” beneath their property. The bill was passed into law by Legislature last Spring but there are numerous lawsuits working against it. We will have further analysis of this bill published on FracTracker.org soon.

 

Earthworks ND Frack Waste Report

FracTracker collaborated with Earthworks to create an interactive map that allows North Dakota residents to determine if oil and gas waste is disposed of or has spilled near them in addition to a list of recommendations for state and local policymakers, including the closing of the state’s harmful oil and gas hazardous waste loophole. Read the report for detailed information about oil and gas waste in North Dakota.

 

The Value of Our Water

This data is critical to understanding the environmental and/or hydrological impact(s) of fracking, whether it is Central Appalachia’s Ohio River Valley, or in this case North Dakota’s Missouri River Basin. We will continue to periodically update this data.

Without supply-side price signaling or adequate regulation, it appears that the industry is uninterested and insufficiently incentivized to develop efficiencies in water use. It is my opinion that the only way the industry will be incentivized to do so is if states put a more prohibitive and environmentally responsible price on water and waste. In the absence of outright bans on fracking, we must demand the industry is held accountable for pushing watersheds to the brink of their capacity, and in the process, compromising the water needs of so many communities, flora, and fauna.

Data Links

  1. Water Usage for nearly 12,000 fracked laterals in North Dakota up to and including April, 2020. We also include API number and operator in GIS, KML, and Spreadsheet formats. (https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/05/ND_FracFocus_April_2020_With_KML_Excel.zip)
  2. Monthly volumes (2010 to 2020) and demographics for surrounding area for the 675 Class II Salt Water Disposal (SWD) Fracking Waste Injection Wells in North Dakota. We also include API number and operator in GIS, KML, and Spreadsheet formats. (https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/05/ND_ClassII_Well_MonthlyWaste_2010_Q2_2020_Demographics_WithKML_Excel.zip)
  3. North Dakota Gas Plants (https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/06/GasPlants_WithExcel_KML.zip)

[1] Here in Ohio where I have been looking most closely at water supply and demand across the fracking landscape it is clear that we aren’t accounting for some 10-12% of water demand when we compare documented water withdrawals in the numerator with water usage in the denominator.

By Ted Auch, PhD, Great Lakes Program Coordinator

Support this work

Stay in the know

Overhead view of injection well

The Hidden Inefficiencies and Environmental Costs of Fracking in Ohio

Ohio continues to increase fracked gas production, facilitated by access to freshwater and lax radioactive waste disposal requirements.

View map fullscreen | How FracTracker maps work

Map: Ohio Quarterly Utica Oil and Gas Production along with Quarterly Wastewater Disposal

Well Volumes

A little under a year ago, FracTracker released a map and associated analysis, “A Disturbing Tale of Diminishing Returns in Ohio,” with respect to Utica oil and gas production, highlighting the increasing volume of waste injected in wastewater disposal wells, and trends in lateral length in fracked wells from 2010 to 2018. In this article, I’ll provide an update on Ohio’s Utica oil and gas production in 2018 and 2019, the demands on freshwater, and waste disposal. After looking at the data, I recommend that we holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste in order to minimize negative externalities.

Recently, I’ve been inspired by the works of Colin Woodward[1] and Marvin Harris, who outline the struggle between liberty and the common good. They relate this to the role that commodities and increasing resource intensity play in maintaining or enhancing living standards. This quote from Harris’s “Cannibals and Kings” struck me as the 122 words that most effectively illustrate the impacts of the fracking boom that started more than a decade ago in Central Appalachia:

“Regardless of its immediate cause, intensification is always counterproductive. In the absence of technological change, it leads inevitably to the depletion of the environment and the lowering of the efficiency of production since the increased effort sooner or later must be applied to more remote, less reliable, and less bountiful animals, plants, soils, minerals, and sources of energy. Declining efficiency in turn leads to low living standards – precisely the opposite of the desired result. But this process does not simply end with everybody getting less food, shelter, and other necessities in return for more work. As living standards decline, successful cultures invent new and more efficient means of production which sooner or later again lead to the depletion of the natural environment.” From Chapter 1, page 5 of Marvin Harris’ “Cannibals and Kings: The Origins of Cultures, 1977

In reflecting on Harris’s quote as it pertains to fracking, I thought it was high time I updated several of our most critical data sets. The maps and data I present here speak to intensification and the fact that the industry is increasingly leaning on cheap water withdrawals, landscape impacts, and waste disposal methods to avoid addressing their increasingly gluttonous ways. To this point, the relationship between intensification and resource utilization is not just the purview of activists, academics, and journalists anymore; industry collaborators like IHS Markit admitting as much in their latest analysis pointing to the fact that oil and gas operators “will have to drill substantially more wells just to maintain current production levels and even more to grow production”. Insert Red Queen Hypothesis analogy here!

Oil and Gas Production in Ohio

The four updated data sets presented here are: 1) oil, gas, and wastewater production, 2) surface and groundwater withdrawal rates for the fracking industry, 3) freshwater usage by individual Ohio fracked wells, and 3) wastewater disposal well (also referred to as Class II injection wells) rates.

Below are the most important developments from these data updates as it pertains to intensification and what we can expect to see in the future, with or without the ethane cracker plants being trumpeted throughout Appalachia.

From a production standpoint, total oil production has increased by 30%, while natural gas production has increased by 50% year over year between the last time we updated this data and Q2-2019 (Table 1).

According to the data we’ve compiled, the rate of growth for wastewater production has exceeded oil and is nearly equal to natural gas at 48% from 2017 to 2018.  On average the 2,398 fracked wells we have compiled data for are producing 27% more wastewater per well now than they did at the end of 2017.

————–2017————– ————–2019————–
Oil (million barrels) Gas (million Mcf) Brine (million barrels) Oil (million barrels) Gas (million Mcf) Brine (million barrels)
Max 0.51 12.92 0.23 0.62 17.57 0.32
Total 83.14 5,768.47 76.01 108.15 8,679.12 112.28
Mean 0.40 2.79 0.37 0.45 3.62 0.47

Table 1. Summary statistics for 2,398  fracked wells in Ohio from a production perspective from 2017 to Q2 2019.

 

Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.

Figure 1. Total fracked gas produced per quarter and average fracked gas produced per well in Ohio from 2013 to Q2-2019.

The increasing amount of resources and number of wells necessary to achieve marginal increases in oil and gas production is a critical factor to considered when assessing industry viability and other long-term implications. As an example, in Ohio’s Utica Shale, we see that total production is increasing, but as IHS Markit admits, this is only possibly by increasing the total number of producing wells at a faster rate. As is evidenced in Figure 1, somewhere around the Winter of 2017-2018, the production rate per well began to flatline and since then it has begun to decrease.

Water demands for oil and gas production in Ohio

Since last we updated the industry’s water withdrawal rates, the Ohio Department of Natural Resources (ODNR) has begun to report groundwater rates in addition to surface water. The former now account for nine sites in seven counties, but amount to a fraction of reported withdrawals to date (around 00.01% per year in 2017 and 2018). The more disturbing developments with respect to intensification are:

1) Since we last updated this data, 59 new withdrawal sites have come online. There are currently 569 sites in total in ODNR’s database. This amounts to a nearly 12% increase in the total number of sites since 2017. With this additional inventory, the average withdrawal rate across all sites has increased by 13% (Table 2).

2) Since 2010, the demand for freshwater to be used in fracking has increased by 15.6% or 693 million gallons per year (Figure 2).

3) We expect to see an inflection point when water production will increase to accommodate the petrochemical buildout with cracker plants in Dilles Bottom, OH; Beaver County, PA; and elsewhere. In 2018 alone, the oil and gas industry pulled 4.69 billion gallons of water from the Ohio River Valley. Since 2010, the industry has permanently removed 22.96 billion gallons of freshwater from the Ohio River Valley. It would take the entire population of Ohio five years to use the 2018 rate in their homes.[2]

As we and others have mentioned in the past, this trend is largely due to the bargain basement price at which we sell water to the oil and gas sector throughout Appalachia.[3] To increase their nominal production returns, companies construct longer laterals with orders of magnitude more water, sand, and chemicals.  At this rate, the fracking industry’s freshwater demand will have doubled to around 8.8-.9.5 billion gallons per year by around 2023.  Figure 3 demonstrates that average fracked lateral length continues to increase to the tune of +15.7-21.2% (+1,564-2,107 feet) per quarter per lateral. This trend alone is more than 2.5 times the rate of growth in oil production and roughly 24% greater than the rate of growth in natural gas production (See Table 1).

4. The verdict is even more concerning than it was a couple years ago with respect to water demand increasing by 30% per quarter per well or an average of 4.73 million gallons (Figure 4). The last time we did this analysis >1.5 years ago demand was rising by 25% per quarter or 3.84 million gallons. At that point I wouldn’t have guessed that this exponential rate of water demand would have increased but that is exactly what has happened. Very immediate conversations must start taking place in Columbus and at the region’s primary distributor of freshwater, The Muskingum Watershed Conservancy District (MWCD), as to why this is happening and how to push back against the unsustainable trend.

2017 2018
Sites 510 569
Maximum (billion gallons) 1.059 1.661
Sum (billion gallons) 18.267 22.957
Mean (billion gallons) 0.358 0.404

Table 2. Summary of fracking water demands throughout Ohio in 2017 when we last updated this data as well as how those rates changed in 2018.

Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (Million Gallons Per Year).

Figure 2. Hydraulic fracturing freshwater demand in total across 560+ sites in Ohio from 2010 to 2018 (million gallons per year).

Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (Feet).

Figure 3. Average lateral length for all of Ohio’s permitted hydraulically fractured laterals from from Q3-2010 to Q4-2019, along with average rates of growth from a linear and exponential standpoint (feet).

Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (Million Gallons).

Figure 4. Average Freshwater Demand Per Unconventional Well in Ohio from Q3-2011 to Q3-2019 (million gallons).

 

Waste Disposal

When it comes to fracking wastewater disposal, the picture is equally disturbing. Average disposal rates across Ohio’s 220+ wastewater disposal wells increased by 12.1% between Q3-2018 and Q3-2019 (Table 3). Interestingly, this change nearly identically mirrors the change in water withdrawals during the same period. What goes down– freshwater – eventually comes back up.

Across all of Ohio’s wastewater disposal wells, total volumes increased by nearly 22% between 2018 and the second half of 2019. However, the more disturbing trend is the increasing focus on the top 20 most active wastewater disposal wells, which saw  an annual increase of 17-18%. These wells account for nearly 50% of all waste and the concern here is that many of the pending wastewater disposal well permits are located on these sites, within close proximity, and/or are proposed by the same operators that operate the top 20.

When we plot cumulative and average disposal rates per well, we see a continued exponential increase. If we look back at the last time, we conducted this analysis, the only positive we see in the data is that at that time, average rates of disposal per well were set to double by the Fall of 2020. However, that trend has tapered off slightly — rates are now set to double by 2022.

Each wastewater disposal well is seeing demand for its services increase by 2.42 to 2.94 million gallons of wastewater per quarter (Figure 5). Put another way, Ohio’s wastewater disposal wells are rapidly approaching their capacity, if they haven’t already.  Hence why the oil and gas industry has been frantically submitting proposals for additional waste disposal wells. If these wells materialize, it means that Ohio will continue to be relied on as the primary waste receptacle for the fracking industry throughout Appalachia.

Variable ——————-All Wells——————- ——————-Top 20——————-
To Q3-2018 To Q3-2019 % Change To Q3-2018 To Q3-2019 % Change
Number of Wells 223 243 +9.0 ——- ——- ——-
Max (MMbbl) 1.12 1.20 +7.1 ——- ——- ——-
Sum (MMbbl) 203.19 247.05 +21.6 101.43 119.31 +17.6
Average (MMbbl) 0.91 1.02 +12.1 5.07 5.97 +17.8

Table 3. Summary Statistics for Ohio’s Wastewater Disposal Wells (millions of barrels (MMbbl)).

Average Fracking Waste Disposal across all of Ohio’s Class II Injection Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (Million Barrels).

Figure 5. Average Fracking Waste Disposal across all of Ohio’s Wastewater Disposal Wells and the cumulative amount of fracking waste disposed of in these wells from Q3-2010 to Q2-2019 (million barrels).

Using the Pennsylvania natural gas data merged with the Ohio wastewater data, we were able to put a finer point on how much wastewater would be produced with a 100,000 barrel ethane cracker like the one PTT Global Chemical has proposed for Dilles Bottom, Ohio. The following are our best estimate calculations assuming 1 barrel of condensate is 20-40% ethane. These calculations required that we take some liberties with the merge of the ratio of gas to wastewater in Ohio with the ratio of gas to condensate in Pennsylvania:

  1. For 2,064 producing Ohio fracked wells, the ratio of gas to wastewater is 64.76 thousand cubic feet (Mcf) of gas produced per barrel of wastewater.
  2. Assuming 40% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 320.08 Mcf of gas per barrel of ethane condensate. For 100,000 barrels of ethane needed per cracker per day, that would result in 494,285 barrels (20.76 million gallons) of brine per day.
  3. Assuming 20% ethane, the ratio of gas to condensate in Washington County, PA wells for the first half of 2019 was 640.15 Mcf per barrel of ethane condensate = For 100,000 barrels of ethane needed per cracker per day that would result in 988,571 barrels/41.52 million gallons of wastewater per day.

But wait, here is the real stunner:

  1. The 40% assumption result is 3.81 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 5.37 times the daily rates of brine taken in by the top 20 wells (Note: the top 20 wastewater disposal wells account for 71% of all wastewater  waste taken in by all of the state’s disposal wells).
  2. The 20% assumption result is 7.62 times the daily rates of wastewater taken in by our current inventory of wastewater disposal wells and 10.74 times the daily rates of wastewater taken in by the top 20 wells.

Therefore, we estimate the fracked wells supplying the proposed PTTGC ethane cracker will generate between 20.76 million and 41.52 million gallons of wastewater per day. That is 3.8 to 7.6 times the amount of wastewater currently received by Ohio’s wastewater disposal wells.

What does this means in terms of truck traffic? We can assume that  at least 80% of the trucks that transport wastewater are the short/baby bottle trucks which haul 110 barrels per trip. This means that our wastewater estimates would require between 4,493 and 8,987 truck trips per day, respectively. The pressures this amount of traffic will put on Appalachian roads and communities will be hard to measure and given the current state of state and federal politics and/or oversight it will be even harder to measure the impact inevitable spills and accidents will have on the region’s waterways.

Conclusion

There is no reason to believe these trends will not persist and become more intractable as the industry increasingly leans on cheap waste disposal and water as a crutch. The fracking industry will continue to present shareholders with the illusion of a robust business model, even in the face of rapid resource depletion and precipitous production declines on a per well basis.

I am going to go out on a limb and guess that unless we more holistically price our water resources and the ways in which we dispose of the industry’s radioactive waste, there will be no other supply-side signal that we could send that would cause the oil and gas industry to change its ways. Until we reach that point, we will continue to compile data sets like the ones described above and included in the map below, because as Supreme Court Justice Louis Brandeis once said, “Sunlight is the best disinfectant!”

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance with invaluable data compilation assistance from Gary Allison

[1] Colin Woodward’s “American Character: A history of the epic struggle between individual liberty and the common good” is a must read on the topic of resource utilization and expropriation.

[2] https://pubs.er.usgs.gov/publication/cir1441

[3] In Ohio the major purveyor of water for the fracking industry is the Muskingum Watershed Conservancy District (MCWD) and as we’ve pointed out in the past they sell water for roughly $4.50 to $6.50 per thousand gallons. Meanwhile across The Ohio River the average price of water for fracking industry in West Virginia in the nine primary counties where fracking occurs is roughly $8.38 per thousand gallons.

Data Downloads

Quarterly oil, gas, brine, and days in production for 2,390+ Unconventional Utica/Point Pleasant Wells in Ohio from 2010 to Q2-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/Production_To_Q2_2019_WithExcel.zip

Ohio Hydraulic Fracturing Freshwater and Groundwater Withdrawals from 2010 to 2018

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_WaterWithdrawals_2010_2018_WithExcel.zip

Lateral length (Feet) for 3,200+ Fracked Utica/Point Pleasant Wells in Ohio up to and including wells permitted in December, 2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2020/01/OH_Utica_December_2019_StatePlane_Laterals.zip

Freshwater Use for 2,700+ Unconventional Wells in Ohio from Q3-2011 to Q3-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_FracFocus_December_2019_WithExcel.zip

Quarterly Volume Disposal (Barrels) for 220+ Ohio Class II Salt Water Disposal Wells from 2010 to Q4-2019

https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2019/12/OH_ClassII_Loc_Vols_10_Q4_2019_WithExcel.zi

Support this work

Stay in the know

Fracking in Pennsylvania: Not Worth It

Despite the ever-increasing heaps of violations and drilling waste, Pennsylvania’s fracked wells continue to produce an excess supply of gas, driving prices down. To cut their losses, the oil and gas industry is turning towards increased exports and petrochemical production. Continuing to expand fracking in Pennsylvania will only increase risks to the public and to the climate, all for what may amount to another boom and bust cycle that is largely unprofitable to investors.

Let’s take a look at gas production, waste, newly drilled wells, and violations in Pennsylvania in the past year to understand just how precarious the fracking industry is.

Production

Fracked hydrocarbon production continues to rise in Pennsylvania, resulting in an increase in waste production, violations, greenhouse gas emissions, and public health concerns. There are three types of hydrocarbons produced from wells in Pennsylvania: gas, condensate, and oil. Gas is composed mostly of methane, the most basic of the hydrocarbons, but in some parts of Pennsylvania, there can be significant quantities of ethane, propane, and other so-called “natural gas liquids” (NGLs) mixed in. Each of these NGLs are actually gaseous at atmospheric conditions, but operators try to separate these with a combination of pressure and low temperatures, converting them to a liquid phase. Some of these NGLs can be separated on-site, and this is typically referred to as condensate. Fracked wells in Pennsylvania also produce a relatively tiny amount of oil.

View map fullscreen | How FracTracker maps work

For those of you wondering why we are looking at the November, 2018 through October, 2019 time frame, this is simply a reflection of the available data. In this 12-month period, 9,858 fracked Pennsylvania wells, classified as “unconventional,” reported producing 6.68 trillion cubic feet of gas (Tcf), 4.89 million barrels of condensate, and just over 70,000 barrels of oil.

By means of comparison, Pennsylvania consumed about 1.46 Tcf of gas across all sectors in 2018, of which just 253 billion cubic feet (Bcf) was used in the homes of Pennsylvania’s 12.8 million residents. In fact, the amount of gas produced in Pennsylvania exceeds residential consumption in the entire United States by almost 1.7 Tcf. However, less than 17% of all gas consumed in Pennsylvania is for residential use, with nearly 28% being used for industrial purposes (including petrochemical development), and more than 35% used to generate electricity.

Fracked Gas Production and Consumption in Pennsylvania from 2013 through 2018

Figure 1. Fracked gas production compared to all fracked gas consumption and residential gas consumption in Pennsylvania from 2013 through 2018. Data from ref. Energy Information Administration.

 

While gas production has expansive hotspots in the northeastern and southwestern portions of the state, the liquid production comes from a much more limited geography. Eighty percent of all condensate production came from Washington County, while 87% of all fracked oil came from wells in Mercer County.

Because the definition of condensate has been somewhat controversial in the past (while the oil export ban was still in effect), I asked the Department of Environmental Protection (DEP) for the definition, and was told that if hydrocarbons come out of the well as a liquid, they should be reported as oil. If they are gaseous but condense to a liquid at standard temperature and pressure (60 degrees Fahrenheit and pressure 14.7 PSIA) on-site, then it is to be reported as condensate. Any NGLs that remain gaseous but are removed from the gas supply further downstream are reported as gas in this report. For this reason, it is not really possible to use the production report to find specific amounts of NGLs produced in the state, but it certainly exceeds condensate production by an appreciable margin.

The one-year volume withdrawal of gas from unconventional wells in Pennsylvania is equal to the volume of 3.2 Mount Everests

The volume of gas withdrawn from fracked wells in Pennsylvania in just one year is equal to the volume of 3.2 Mount Everests!

 

Waste

Hydrocarbons aren’t the only thing that come out of the ground when operators drill and frack wells in Pennsylvania. Drillers also report a staggering amount of waste products, including more than 65 million barrels (2.7 billion gallons) of liquid waste and 1.2 million tons of solid waste in the 12-month period.

Waste facilities have significant issues such as inducing earthquakes, toxic leachate, and radioactive sediments in streambeds.

Waste Type Liquid Waste (Barrels) Solid Waste (Tons)
Basic Sediment 63
Brine Co-Product 247
Drill Cuttings 1,094,208
Drilling Fluid Waste 1,439,338 11,378
Filter Socks 143
Other Oil & Gas Wastes 2,236,750 6,387
Produced Fluid 61,376,465 41,165
Servicing Fluid 17,196 3,250
Soil Contaminated by Oil & Gas Related Spills 25,505
Spent Lubricant Waste 1,104
Synthetic Liner Materials 21,051
Unused Fracturing Fluid Waste 7,077 1,593
Waste Water Treatment Sludge 35,151
Grand Total 65,078,240 1,239,831

Figure 2. Oil and gas waste generated by fracked wells as reported by drillers from November 1, 2018 through October 31, 2019. Data from ref: PA DEP.

Some of the waste is probably best described as sludge, and several of the categories allow for reporting in barrels or tons. Almost all of the waste was in the well bore at one time or another, although there are some site-related materials that need to be disposed of, including filter socks which separate liquid and solid waste, soils contaminated by spills, spent lubricant, liners, and unused frack fluid waste.

Where does all of this waste go? We worked with Earthworks earlier this year to take a deep dive into the data, focusing on these facilities that receive waste from Pennsylvania’s oil and gas wells. While the majority of the waste is dealt with in-state, a significant quantity crosses state lines to landfills and injection wells in neighboring states, and sometimes as far away as Idaho.

Please see the report, Pennsylvania Oil & Gas Waste for more details.

 

Drilled Wells

Oil and gas operators have started the drilling process for 616 fracking wells in 2019, which appear on the Pennsylvania DEP spud report. This is less than one third of the 2011 peak of 1,956 fracked wells, and 2019 is the fifth consecutive year with fewer than 1,000 wells drilled. This has the effect of making industry projections relying on 1,500 or more drilled wells per year seem rather dubious.

 

Fracked Unconventional Wells Drilled per Year in Pennsylvania from 2005 through 2019

Figure 3. Unconventional (fracked) wells drilled from 2005 through December 23, 2019, showing totals by regional office. Data from ref: PA DEP.

 

Oil and gas wells in Pennsylvania fall under the jurisdiction of three different regional offices. By looking at Figure 2, it becomes apparent that the North Central Regional Office (blue line) was a huge driver of the 2009 to 2014 drilling boom, before falling back to a similar drilling rate of the Southwest Regional Office.

The slowdown in drilling for gas in recent years is related to the lack of demand for the product. In turn, this drives prices down, a phenomenon that industry refers to as a “price glut.” The situation it is forcing major players in the regions such as Range Resources to reduce their holdings in Appalachia, and some, such as Chevron, are pulling out entirely.

Violations

Disturbingly, 2019 was the fifth straight year that the number of violations issued by DEP will exceed the total number of wells drilled.

Unconventional fracked wells drilled and violations issued from 2005 through 2019

Figure 4. Unconventional (fracked) drilled wells and issued violations from 2005 through December 2019. Data from ref: DEP.

 

Violations related to unconventional drilling are a bit unwieldy to summarize. The 13,833 incidents reported in Pennsylvania fall into 359 different categories, representing the specific regulations in which the drilling operator fell short of expectations. The industry likes to dismiss many of these as being administrative matters, and indeed, the DEP does categorize the violations as either “Administrative” or “Environmental, Health & Safety”. However, 9,998 (72%) of the violations through December 3, 2019, are in the latter category, and even some of the ones that are categorized as administrative seem like they ought to be in environmental, health, and safety. For example, let’s look at the 15 most frequent infractions:

Violation Code Incidents Category
SWMA301 – Failure to properly store, transport, process or dispose of a residual waste. 767 Environmental Health & Safety
CSL 402(b) – POTENTIAL POLLUTION – Conducting an activity regulated by a permit issued pursuant to Section 402 of The Clean Streams Law to prevent the potential of pollution to waters of the Commonwealth without a permit or contrary to a permit issued under that authority by the Department. 613 Environmental Health & Safety
102.4 – Failure to minimize accelerated erosion, implement E&S plan, maintain E&S controls. Failure to stabilize site until total site restoration under OGA Sec 206(c)(d) 595 Environmental Health & Safety
SWMA 301 – MANAGEMENT OF RESIDUAL WASTE – Person operated a residual waste processing or disposal facility without obtaining a permit for such facility from DEP. Person stored, transported, processed, or disposed of residual waste inconsistent with or unauthorized by the rules and regulations of DEP. 540 Environmental Health & Safety
601.101 – O&G Act 223-General. Used only when a specific O&G Act code cannot be used 469 Administrative
402CSL – Failure to adopt pollution prevention measures required or prescribed by DEP by handling materials that create a danger of pollution. 362 Environmental Health & Safety
78.54* – Failure to properly control or dispose of industrial or residual waste to prevent pollution of the waters of the Commonwealth. 339 Environmental Health & Safety
401 CSL – Discharge of pollutional material to waters of Commonwealth. 299 Environmental Health & Safety
102.4(b)1 – EROSION AND SEDIMENT CONTROL REQUIREMENTS – Person conducting earth disturbance activity failed to implement and maintain E & S BMPs to minimize the potential for accelerated erosion and sedimentation. 285 Environmental Health & Safety
102.5(m)4 – PERMIT REQUIREMENTS – GENERAL PERMITS – Person failed to comply with the terms and conditions of the E & S Control General Permit. 283 Environmental Health & Safety
78.56(1) – Pit and tanks not constructed with sufficient capacity to contain pollutional substances. 256 Administrative
78a53 – EROSION AND SEDIMENT CONTROL AND STORMWATER MANAGEMENT – Person proposing or conducting earth disturbance activities associated with oil and gas operations failed to comply with 25 Pa. Code § 102. 247 Environmental Health & Safety
102.11(a)1 – GENERAL REQUIREMENTS – BMP AND DESIGN STANDARDS – Person failed to design, implement and maintain E & S BMPs to minimize the potential for accelerated erosion and sedimentation to protect, maintain, reclaim and restore water quality and existing and designated uses. 235 Environmental Health & Safety
CSL 401 – PROHIBITION AGAINST OTHER POLLUTIONS – Discharged substance of any kind or character resulting in pollution of Waters of the Commonwealth. 235 Environmental Health & Safety
OGA3216(C) – WELL SITE RESTORATIONS – PITS, DRILLING SUPPLIES AND EQUIPMENT – Failure to fill all pits used to contain produced fluids or industrial wastes and remove unnecessary drilling supplies/equipment not needed for production within 9 months from completion of drilling of well. 206 Environmental Health & Safety

Figure 5. Top 15 most frequently cited violations for unconventional drilling operations in Pennsylvania through December 3, 2019. Data from ref: DEP.

Of the 15 most common categories, only two are considered administrative violations. One of these is a general code, where we don’t know what happened to warrant the infraction without reading the written narrative that accompanies the data, and is therefore impossible to categorize. The only other administrative violation in the top 15 categories reads, “78.56(1) – Pit and tanks not constructed with sufficient capacity to contain pollutional substances,” which certainly sounds like it would have some real-world implications beyond administrative concerns.

Check out our Pennsylvania Shale Viewer map to see if there are violations at wells near you.

Bloated With Gas, Fraught With Trouble

To address the excess supply of gas, companies have tried to export the gas and liquids to other markets through pipelines. Those efforts have been fraught with trouble as well. Residents are reluctant to put up with an endless barrage of new pipelines, yielding their land and putting their safety at risk for an industry that can’t seem to move the product safely. The Revolution pipeline explosion hasn’t helped that perception, nor have all of the sinkholes and hundreds of leaky “inadvertent returns” along the path of the Mariner East pipeline system. In a sense, the industry’s best case scenario is to call these failures incompetence, because otherwise they would be forced to admit that the 2.5 million miles of hydrocarbon pipelines in the United States are inherently risky, prone to failure any time and any place.

In addition to increasing the transportation and export of natural gas to new markets, private companies and elected officials are collaborating to attract foreign investors to fund a massive petrochemical expansion in the Ohio River Valley. The planned petrochemical plants intend to capitalize on the cheap feedstock of natural gas.

Pennsylvania’s high content of NGLs is a selling point by the industry, because they have an added value when compared to gas. While all of these hydrocarbons can burn and produce energy in a similar manner, operators are required to remove most of them to get the energy content of the gas into an acceptable range for gas transmission lines. Because of this, enormous facilities have to be built to separate these NGLs, while even larger facilities are constructed to consume it all. Shell’s Pennsylvania Petrochemicals Complex ethane cracker being built in Beaver County, PA is scheduled to make 1.6 million metric tons of polyethylene per year, mostly for plastics.

This comes at a time when communities around the country and the world are enacting new regulations to rein in plastic pollution, which our descendants are going to finding on the beach for thousands of years, even if everyone on the planet were to stop using single-use plastics today. Of course, none of these bans or taxes are currently permitted in Pennsylvania, but adding 1.6 million metric tons per year to our current supply is unnecessary, and indeed, it is only the beginning for the region. A similar facility, known as the PTT Global Chemical cracker appears to be moving forward in Eastern Ohio, and ExxonMobil appears to be thinking about building one in the region as well. Industry analysts think the region produces enough NGLs to support five of these ethane crackers.

Despite all of these problems, the oil and gas industry still plans to fill the Ohio River Valley with new petrochemical plants, gas processing plants, and storage facilities in the hopes that someday, somebody may want what they’ve taken from the ground.

Here’s hoping that 2020 is a safer and healthier year than 2019 was. But there is no need to leave it up to chance. Together, we have the power to change things, if we all demand that our voices are heard. As a start, consider contacting your elected officials to let them know that renewing Pennsylvania’s blocking of municipal bans and taxes on plastic bags is unacceptable.

By Matt Kelso, Manager of Data & Technology, FracTracker Alliance

 

Support this work

Stay in the know

Fracking Threatens Ohio’s Captina Creek Watershed

FracTracker’s Great Lakes Program Coordinator Ted Auch explores the risks and damages brought on by fracking in Ohio’s Captina Creek Watershed

 

Scroll down or click here to view the story map full screen

The Captina Creek Watershed straddles the counties of Belmont and Monroe in Southeastern Ohio and feeds into the Ohio River. It is the highest quality watershed in all of Ohio and a great examples of what the Ohio River Valley’s tributaries once looked, smelled, and sounded like. Sadly, today it is caught in the cross-hairs of the oil and gas industry by way of drilling, massive amounts of water demands, pipeline construction, and fracking waste production, transport, and disposal. The images and footage presented in the story map below are testament to the risks and damage inherent to fracking in the Captina Creek watershed and to this industry at large. Data included herein includes gas gathering and interstate transmission pipelines like the Rover, NEXUS, and Utopia (Figure 1), along with Class II wastewater injection wells, compressor stations, unconventional laterals, and freshwater withdrawal sites and volumes.

Ohio Rover NEXUS Pipelines map

The image at the top of the page captures my motivation for taking a deeper dive into this watershed. Having spent 13+ years living in Vermont and hiking throughout The Green and Adirondack Mountains, I fell in love with the two most prominent tree species in this photo: Yellow Birch (Betula alleghaniensis) and Northern Hemlock (Tsuga candadensis). This feeling of being at home was reason enough to be thankful for Captina Creek in my eyes. Seeing this region under pressure from the oil and gas industry really hit me in my botanical soul. We remain positive with regards to the area’s future, but protective action against fracking in the Captina Creek Watershed is needed immediately!

Fracking in the Captina Creek Watershed: A Story Map

Go to the story map fullscreen for a better viewing experience

Support this work

Stay in the know

Want Not, Waste Not? Fossil Fuel Extraction’s Waste Disposal Challenges

Pennsylvania’s fracking industry is producing record amounts of toxic waste — where does it all go?

Drilling for methane and other fossil fuels is an energy-intensive process with many associated environmental costs. In addition to the gas that is produced through high volume hydraulic fracturing (“unconventional drilling,” or “fracking”), the process generates a great deal of waste at the drill site. These waste products may include several dozen tons of drill cutting at every well that is directionally drilled, in addition to liner materials, contaminated soil, fracking fluid, and other substances that must be removed from the site.

In 2018, Pennsylvania’s oil and gas industry (including both unconventional and conventional wells) produced over 2.9 billion gallons (nearly 69 million barrels) of liquid waste, and 1,442,465 tons of solid waste. In this article, we take a look at where this waste (and its toxic components) end up and how waste values have changed in recent years. We also explore how New York State, despite its reputation for being anti-fracking, isn’t exempt from the toxic legacy of this industry.

Waste that comes back to haunt us

According to a study by Physicians, Scientists and Engineers, over 80% of all waste from oil and gas drilling stays within the state of Pennsylvania. But once drilling wastes are sent to landfills, is that the end of them? Absolutely not!

Drilling waste also gets into the environment through secondary means. According to a recent report by investigative journalists at Public Herald, on average, 800,000 tons of fracking waste from Pennsylvania is sent to Pennsylvania landfills. When this waste is sent to landfills, radioactivity and other chemicals can percolate through the landfill, and are collected as leachate, which is then shipped to treatment plants.

Public Herald documented how fourteen sewage treatment plants in Pennsylvania have been permitted by Pennsylvania’s Department of Environmental Protection (PA DEP) to process and discharge radioactive wastes into more than a dozen Pennsylvania waterways.

Public Herald’s article includes an in-depth analysis of the issue. Their work is supported by a map of the discharge sites, created by FracTracker.

Trends over time

Pennsylvania Department of Environmental Protection maintains a rich database of oil and gas waste and production records associated with their Oil and Gas Reporting Website. The changes in waste disposal from Pennsylvania’s unconventional drilling reveal a number of interesting stories.

Let’s look first at overall unconventional drilling waste.

According to data from the federal Energy Information Administration, gas production in Pennsylvania began a steep increase around 2010, with the implementation of high volume hydraulic fracturing in the Marcellus Shale (see Figure 1). The long lateral drilling techniques allowed industry to exploit exponentially more of the tight shale via single well than was ever before possible with conventional, vertical drilling.

Figure 1. Data summary from FracTracker.org, based on EIA data.

The more recently an individual well is drilled, the more robust the production. We see an overall increase in gas production over time in Pennsylvania over the past decade. Paradoxically, the actual number of new wells drilled each year in the past 4-5 years are less than half of the number drilled in 2011 (see Figure 2).

Figure 2: Data summary from FracTracker.org, based on PA DEP data

Why is this? The longer laterals —some approaching 3 miles or more—associated with new wells allow for more gas to be extracted per site.

With this uptick in gas production values from the Marcellus and Utica Formations come more waste products, including copious amounts drilling waste, “produced water,” and other byproducts of intensive industrial operations across PA’s Northern Tier and southwestern counties.

Comparing apples and oranges?

When we look at the available gas production data compared with data on waste products from the extraction process, some trends emerge. First of all, it’s readily apparent that waste production does not track directly with gas production in a way one would expect.

Recall that dry gas production has increased annually since 2006 (see Figure 1). However, the reported waste quantities from industry have not followed that same trend.

In the following charts, we’ve split out waste from unconventional drilling by solid waste in tons (Figure 3) and liquid waste, in barrels (Figure 4).

Figure 3: Annual tonnage of solid waste from the unconventional oil and gas industry, organized by the state it is disposed in. Data source: PA DEP, processed by FracTracker Alliance

Figure 4: Annual volume of liquid waste from the unconventional oil and gas development, organized by state it is disposed in. One barrel is equivalent to 42 gallons. Data source: PA DEP, processed by FracTracker Alliance

Note the striking difference in disposal information for solid waste, compared with liquid waste, coming from Pennsylvania.

“Disposal Location Unknown”

Until just the last year, often more than 50% of the known liquid waste generated in PA was disposed of at unknown locations. The PA DEP waste report lists waste quantity and method for these unknown sites, depending on the year: “Reuse without processing at a permitted facility,” “Reuse for hydraulic fracturing,” “Reuse for diagnostic purposes,” “Reuse for drilling or recovery,” “Reuse for enhanced recovery,” and exclusively in more recent years (2014-2016), “Reuse other than road-spreading.”

In 2011, of the 20.5 million barrels of liquid waste generated from unconventional drilling, about 56% was allegedly reused on other drilling sites. However, over 9 million barrels—or 44% of all liquid waste—were not identified with a final destination or disposal method. Identified liquid waste disposal locations included “Centralized treatment plant for recycle,” which received about a third of the non-solid waste products.

In 2012, the quantity of the unaccounted-for fracking fluid waste dropped to about 40%. By 2013, the percentage of unaccounted waste coming from fracking fluid dropped to just over 21%, with nearly 75% coming from produced fluid, which is briny, but containing fewer “proprietary”—typically undisclosed—chemicals.

By 2017, accounting had tightened up further. PA DEP data show that 99% of all waste delivered to undisclosed locations was produced fluid shipped to locations outside of Pennsylvania. By 2018, all waste disposal was fully accounted for, according to DEP’s records.

In looking more closely at the data, we see that:

  1. Prior to 2018, well drillers did not consistently report the locations at which produced water was disposed of or reused. Between 2012 and 2016, a greater volume of unconventional liquid waste went unaccounted for than was listed for disposal in all other locations, combined.
  2. In Ohio, injection wells, where liquid waste is injected into underground porous rock formations, accounted for the majority of the increase in waste accepted there: 2.9 million barrels in 2017, and 5.7 million barrels in 2018 (a jump of 97%).
  3. West Virginia’s acceptance of liquid waste increased  significantly in 2018 over 2017 levels, a jump of over a million barrels, up from only 55,000. This was almost entirely due to unreported reuse at well pads.
  4. In 2018, reporting, in general, appears to be more thorough than it was in previous years. For example, in 2017, nearly 692,000 barrels of waste were reused at well pads outside PA, but those locations were not disclosed. Almost 7000 more barrels were also disposed of at unknown locations. In 2018, there were no such ambiguities.

A closer look at Pennsylvania’s fracking waste shipped to New York State

Despite a reputation for being resistant to the fracking industry, for most of this decade, the state of New York has been accepting considerable amounts of fracking waste from Pennsylvania. The greatest percentage shipped to New York State is in the form of drilling waste solids that go to a variety of landfills throughout Central and Western New York.

Looking closely at the bar charts above, it’s easy to notice that the biggest recipients of Pennsylvania’s unconventional liquid drilling waste are Pennsylvania itself, Ohio, as well as a significant quantity of unaccounted-for barrels between 2011 and 2016 (“Disposal location unknown”). The data for disposal of solid waste in New York tells a different story, however. In this case, Pennsylvania, Ohio, and New York State all play a role. We’ll take a look specifically at the story of New York, and illustrate the data in the interactive map that follows.

In this map, source locations in Pennsylvania are symbolized with the same color marker as the facility in New York that received the waste from the originating well pad. In the “Full Screen” view, use the “Layers” drop down menu to turn on and off data from separate years.

View map full screenHow FracTracker maps work

Solid waste transported to New York State

From the early days of unconventional drilling in Pennsylvania, New York State’s landfills provided convenient disposal sites due to their proximity to the unconventional drilling occurring in Pennsylvania’s Northern tier of counties. Pennsylvania and Ohio took the majority of solid wastes from unconventional drilling waste from Pennsylvania. New York State, particularly between 2011-2015, was impacted far more heavily than all other states, combined (Figure 5, below).

Figure 5: Known disposal locations (excluding PA and OH) of Pennsylvania’s solid waste. Data source: PA DEP, processed by FracTracker Alliance

Here’s the breakdown of locations in New York to where waste was sent. Solid waste disposal into New York’s landfills also dropped by half, following the state’s ban on unconventional drilling in 2014. Most of the waste after 2012 went to the Chemung County Landfill in Lowman, New York, 10 miles southeast of Elmira.

Figure 6: Solid waste from unconventional drilling, sent to facilities in NYS. Data source: PA DEP, processed by FracTracker Alliance

Is waste immobilized once it’s landfilled?

The fate of New York State’s landfill leachate that originates from unconventional drilling waste is a core concern, since landfill waste is not inert. If drilling waste contains radioactivity, fracking chemicals, and heavy metals that percolate through the landfill, and the resulting leachate is sent to municipal wastewater treatment plants, will traditional water treatment methods remove those wastes? If not, what will be the impact on public and environmental health in the water body that receives the “treated” wastewater? In Pennsylvania, for example, a case is currently under investigation relating to pollution discharges into the Monongahela River near Pittsburgh. “That water was contaminated with diesel fuels, it’s alleged, carcinogens and other pollutants,” said Rich Bower, Fayette County District Attorney.

Currently, a controversial expansion of the Hakes Landfill in Painted Post, New York is in the news. Sierra Club and others were concerned about oversight of radium and radon in the landfill’s leachate and air emissions, presumably stemming from years of receiving drill cuttings. The leachate from the landfill is sent to the Bath Wastewater Treatment plant, which is not equipped to remove radioactivity. “Treated” wastewater from the plant is then discharged into the Cohocton River, a tributary of the Chesapeake Bay. In April 2019, these environmental groups filed a law suit against Hakes C&D Landfill and the Town of Campbell, New York, in an effort to block the expansion.

Similar levels of radioactivity in leachate have also been noted in leachate produced at the Chemung County Landfill, according to Gary McCaslin, President of People for a Healthy Environment, Inc.

In recent years, much of the solid unconventional waste arriving in New York State has gone to the Chemung County Landfill (see Figure 6, above). Over the course of several years, this site requested permission to expand significantly from 180,000 tons per year to 417,000 tons per year. However, by 2016, the expansion was deemed unnecessary, and according, the plans were put on hold, in part “…because of a decline in the amount of waste being generated due to a slower economy and more recycling than when the expansion was first planned years ago.” The data in Figure 5 above also parallel this story, with unconventional drilling waste disposed in New York State dropping from over 200,000 tons in 2011 to just over 20,000 tons in 2018.

Liquid waste transported to New York State

The story about liquid unconventional drilling waste exported from Pennsylvania to states other than Ohio is not completely clear (see Figure 7, below). Note that the data indicate more than a 2000% increase in waste liquids going from Pennsylvania to West Virginia after 2017. While it has not been officially documented, FracTracker has been anecdotally informed that a great deal of waste was already going to West Virginia, but that the record-keeping prior to 2018 was simply not strongly enforced.

Figure 7: Known disposal locations (excluding Pennsylvania and Ohio) of Pennsylvania’s liquid waste. Data source: PA DEP, processed by FracTracker Alliance

Beginning in the very early years of the Pennsylvania unconventional fracking boom, a variety of landfills in New York State have also accepted liquid wastes originating in Pennsylvania, including produced water and flowback fluids (see Figure 8, below).

Figure 8: Liquid waste from unconventional drilling, sent to facilities in New York State. Data source: PA DEP, processed by FracTracker Alliance

In addition, while this information doesn’t even appear in the PA DEP records (which are publicly available back to 2010), numerous wastewater treatment plants did accept some quantity, despite being fully unequipped to process the highly saline waste before it was discharged back into the environment.

One such facility was the wastewater treatment plant in Cayuga Heights, Tompkins County, which accepted more than 3 million gallons in 2008. Another was the wastewater treatment plant in Auburn, Cayuga County, where the practice of accepting drilling wastewater was initially banned in July 2011, but the decision was reversed in March 2012 to accept vertical drilling waste, despite strong public dissent. Another wastewater treatment plant in Watertown, Jefferson County, accepted 35,000 gallons in 2009.

Fortunately, most New York State wastewater treatment plant operators were wise enough to not even consider adding a brew of unknown and/or proprietary chemicals to their wastewater treatment stream. Numerous municipalities and several counties banned fracking waste, and once the ban on fracking in New York State was instituted in 2014, nearly all importation of liquid unconventional drilling waste into the state ceased.

Nevertheless, conventional, or vertical well drilling also generates briny produced water, which the New York State Department of Environmental Conservation (DEC) permits communities in New York to accept for ice and dust control on largely rural roads. These so-called “beneficial use determinations” (BUDs) of liquid drilling waste have changed significantly over the past several years. During the height of the Marcellus drilling in around 2011, all sorts of liquid waste was permitted into New York State (see FracTracker’s map of affected areas) and was spread on roads. As a result, the chemicals—many of them proprietary, of unknown constituents, or radioactive—were indirectly discharged into surface waters via roadspreading.

Overall, in the years after the ban in 2014 on high volume hydraulic fracturing was implemented, restrictions on Marcellus waste coming into New York have strengthened. Very little liquid waste entered New York’s landfills after 2013, and what did come in was sent to a holding facility owned by Environmental Services of Vermont. This facility is located outside Syracuse, New York.

New York State says “no” to this toxic legacy

Fortunately, not long after these issues of fracking fluid disposal at wastewater treatment facilities in New York State came to light, the practice was terminated on a local level. The 2014 ban on fracking in New York State officially prevented the disposal of Marcellus fluids in municipal wastewater treatment facilities and required extra permits if it were to be road-spread.

In New York State, the State Senate—after 8 years of deadlock—in early May 2019, passed key legislation that would close a loophole that had previously allowed dangerous oil and gas waste to bypass hazardous waste regulation. Read the press release from Senator Rachel May’s office here. However, despite strong support from both the Senate, and the Assembly, as well as many key environmental groups, the Legislature adjourned for the 2019 session without bringing the law to a final vote. Said Elizabeth Moran, of the New York Public Interest Research Group (NYPIRG), “I want to believe it was primarily a question of timing… Sadly, a dangerous practice is now going to continue for at least another year.”

 

See Earthworks’ recent three part in-depth reporting on national, New York, and Pennsylvania oil and gas waste, with mapping support by FracTracker Alliance.

All part of the big picture

As long as hydrocarbon extraction continues, the issues of waste disposal—in addition to carbon increases in the atmosphere from combustion and leakage—will result in impacts on human and environmental health. Communities downstream and downwind will bear the brunt of landfill expansions, water contamination, and air pollution. Impacts of climate chaos will be felt globally, with the greatest impacts at low latitudes and in the Arctic.

Transitioning to net-zero carbon emissions cannot be a gradual endeavor. Science has shown that in order to stay under the 1.5 °C warming targets, it must happen now, and it requires the governmental buy-in to the Paris Climate Agreement by every economic power in the world.

No exceptions. Life on our planet requires it.

We have, at most, 12 years to make a difference for generations to come.

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

Support this work

Stay in the know

Fair Shake Environmental Legal Services

Guest Blog by Josh Eisenfeld, Director of Marketing with Fair Shake Environmental Legal Services

 

Fair Shake Environmental Legal Services looks maps the origin of their intake calls and reflects on their geographic distribution as it relates to areas with heavy environmental burdens.

 

Over the last five years, Fair Shake Environmental Legal Services has worked in Ohio and Pennsylvania to promote environmental justice by providing legal services at income-based rates. Our service area has a long history of extraction, from timbering, conventional drilling for oil, multiple forms of mining, and unconventional drilling for natural gas. Because of our proximity to these resources, we also have a long history of industrial manufacturing, which can be evidenced by the many oil refineries, steel production facilities, power plants, cement factories, factory farms, and chemical production facilities. Fair Shake offers counsel and representation in environmental law with accessible, sliding scale fees, and we receive a continuous stream of phone calls from those on the front lines. We were curious to see if our intake calls correlated with geographic areas with heavy environmental burdens in order to allocate our limited resources to those regions most efficiently.

With the help of Ted Auch from FracTracker Alliance we collected zip codes from nearly 600 of intake calls received by Fair Shake and placed them on the map below.

 

View map fullscreen | How FracTracker maps work

In general, our intakes in Pennsylvania mirror the Marcellus Shale formation. Over the last decade and a half, technical advancements in drilling have transformed the Marcellus Shale formation from a nonproducing region to the largest producing natural gas formation by volume in the world. Entering 2005, only 13 “unconventional” wells had been drilled in the Marcellus Shale region of Pennsylvania, where today there are roughly 12,000 wells according to FracTracker’s PA Shale Viewer Map. Reduced regulations for unconventional drilling and infrastructure have facilitated this rush for production, resulting in an influx of compressor stations, gathering lines, pump stations, processing plants, wastewater impoundments, wastewater treatment facilities, wastewater injection wells, and more.

We believe that this map indicates that these 12,000 wells place a significant burden on residents living within this region. Speaking broadly, reduced regulation has left loopholes in major environmental laws that have to get justice when their rights have been violated and, even more concerning, when harm has occurred.

One of the most prominent manifestations of this burden is the contamination of private drinking water sources near drilling and wastewater sites. Our region’s history of extraction and industrial enterprise and the pollution associated with these industries makes it extremely difficult to prove, in court, that drilling activity is the sole cause of damage to private wells. The fact is that our groundwater (and therefore private drinking wells) has been contaminated over and over again. Polluters use this to their advantage, leaning on the uncertainty of what caused the contaminants in question to get there. Simply put, water contamination is not a question of whether contaminants exist (they do) it’s a question of how can you prove that it was a given industry when there are many other possible culprits.

One thing we do know is that the number of reports for well contamination has increased in conjunction with the increase in drilling activity. The graph below, created by FracTracker and The Public Herald, shows the correlation of wells drilled, complaints to the Department of Environmental Protection, and complaints specifically about water.

 

 

Upon closer examination of the intake map, we saw a higher density of cases in more populated areas of Allegheny County, which actually has very little fracking activity (less than 170 drilled wells). But Allegheny is also one of the most polluted counties in America. The American Lung Association gave the county all F’s on its air quality and ranked it as 7th worst air quality in the nation according to the association’s state of the air. Allegheny County is also home to two of the most polluted rivers in our country: the Monongahela and the Ohio. Over a century of industrial activity and coal mining have impaired the water but most recently sewer overflows from the city of Pittsburgh have sent dangerous levels of raw sewage into the surrounding waterways.

The population density combined with the very poor air and water quality could be the explanation for the anomaly. Furthermore, Allegheny County is also where our Pittsburgh office is located, which is perhaps the reason that we see so many cases in this region and not in other regions of high population density such as Philadelphia, Harrisburg, or Scranton.

When we started this project, we thought we would discover a correlation between intakes and regions with the heaviest environmental burdens. This could allow us to allocate our limited resources to those regions most efficiently. Unfortunately, the problem is not so simple.

As evidenced by the intake map, resource extraction in Ohio and Pennsylvania is spread over a very large area. That is troubling because the bigger the problem geographically the harder it becomes to deal with. We need to devote far more resources to protecting individuals who face spills, emissions, erosion, impacts to wetland, etc. By speaking more openly about how pervasive these environmental risks are, and how that risk plays into the bigger picture of the climate emergency, we hope we can incite folks to give their time, effort, and resources to defending their health and environment.


By Josh Eisenfeld, Marketing Director at Fair Shake Environmental Legal Services

Support this work

Stay in the know

Ohio Secret Fracking Chemicals Report

Ohio’s Secret Fracking Chemicals

Ohio’s Secret Fracking Chemicals

Records Show Widespread Use of Secret Fracking Chemicals Poses Risks to Water Supplies, Health in the Buckeye State

Photo from the U.S. Environmental Protection Agency showing a fire on June 28-29, 2014 at the Eisenbarth Well operated by Statoil in Monroe County, Ohio. The photographer is not listed.[i]

Ohio’s Secret Fracking Chemicals:

Records Show Widespread Use of Secret Fracking Chemicals Poses Risks to Water Supplies, Health in the Buckeye State

A Research Report by Dusty Horwitt, J.D.
Partnership for Policy Integrity
September 16, 2019

This report, by Partnership for Policy Integrity, with mapping and data analysis by FracTracker Alliance, shows that Ohioans may be unknowingly exposed to toxic secret drilling and fracking chemicals through multiple pathways including leaks, spills, air emissions and underground migration at oil and gas production wells.

Evidence compiled by the U.S. Environmental Protection Agency (EPA) including data released in response to a Freedom of Information Act request indicate that these chemicals could have serious health effects including blood toxicity, developmental toxicity, liver toxicity and neurotoxicity.


Take Action

Click on this link to jump to the Call to Action section of this page

On this page, you can read the report, use the interactive map to locate oil and gas wells fracked with secret chemicals, and write a letter of concern to first responders in your Ohio county.




1400

Number of Ohio oil and gas wells that have been injected with secret chemicals (2013 – 2018)

11000

Number of times secret fracking chemicals have been injected into Ohio wells (2013 – 2018)

13000000

average number of gallons used to frack a single well (2018)

70000

fish died after tens of thousands of gallons of chemicals spilled into a tributary from a natural gas well in Monroe County (2014)

Take Action

If you are concerned about the findings presented in the Ohio’s Secret Fracking Chemicals report, please consider taking action today. Multiple first responders, and grassroots organizations working on environmental and public health issues in Ohio ask that you complete the form below to send a letter to first responders in your county. If you do not live in Ohio, your letter will be sent to first responders Franklin County, Ohio.

Halt the Harm Network and FracTracker Alliance will send a paper copy of your letter to the appropriate first responder location(s). See below for a map of these locations by Ohio county.

EXAMPLE LETTER

You may compose your own letter or use the example letter below as a guide.

Take Action

If you are concerned about the findings presented in the Ohio’s Secret Fracking Chemicals report, please consider taking action today. Multiple first responders, and grassroots organizations working on environmental and public health issues in Ohio ask that you complete the form below to send a letter to first responders in your county. If you do not live in Ohio, your letter will be sent to first responders in Franklin County, Ohio.

Halt the Harm Network and FracTracker Alliance will send a paper copy of your letter to the appropriate first responder location(s). See below for a map of these locations by Ohio county.

EXAMPLE LETTER

You may compose your own letter or use the example letter below as a guide.

Dear Chief,

Thanks to you and all first responders for your selfless acts of service. I am reaching out because I am concerned that there are dangerous chemicals being used at fracking sites in our county and across the county. Because the identity of many of these chemicals are kept secret, any spills or accidents present a significant risk to you as a first responder as well as to the public.

The report “Ohio’s Secret Fracking Chemicals” provides research about secret fracking chemicals and maps of oil and gas wells where secret fracking chemicals were used. The report’s author also interviewed Silverio Caggiano, Battalion Chief with the Youngstown Fire Department and an original member of the Ohio Hazardous Materials and Weapons of Mass Destruction Technical Advisory Committee. The Chief, the data, and the stories paint a clear picture of Ohio’s exposure to a mix of dangerous chemicals, lack of equipment, lack of training, and inadequate information. This failure by the State and other authorities creates risks for your first responders and all of us in the community.

Please join us in the fight against secret chemicals in our community by calling for the following measures to be put in place:

  • Require full public disclosure of drilling and fracking chemicals in one location where information can be easily searched and sorted (e.g. citizens can locate each well in which toxic chemicals were used).
  • Require disclosure before drilling and fracking occurs.
  • Require that no Class II wells for underground fracking wastewater disposal be permitted in Ohio unless disposal companies report all of the following in their permit requests: A) Average and Maximum Volumes, B) Average and Maximum wellhead pressures, C) Groundwater/water source and rate of withdrawal, D) Egress
  • Require testing of groundwater and well water for a representative number of homes within 2 miles of oil and gas wells and underground injection wells by impartial third parties to guard against migration of toxic chemicals. Data should be collected monthly.
  • Grant communities the power to determine where, and under what conditions, drilling and fracking occur.
  • Demand companies that operate underground fracking wastewater injection wells pay for independent third parties to conduct groundwater monitoring and data collection about health impacts.
  • Require that all haulers transporting fracking wastewater, also known as brine, permitted to operate in Ohio maintain complete manifests for every truck and maintain GPS tracking for all routes into and out of the state as well as across state lines.
  • Require all brine haulers report the number of trucks in operation and how they go about cleaning each truck on a quarterly basis.
  • Require that all brine haulers list where they maintain truck yards in addition to where they are domiciled.
  • Require that all waste landfills in Ohio collect detailed manifest on tonnage of drill cuttings coming into their facilities, source by company and well API, and that all waste be tested for radioactivity level that the level shall not exceed 1-2 picocuries per gram.

You have my full support in requests for this information. It is important to all of us. Please let me know if you have seen the report, reviewed the chemicals, and have appropriate response, training, and equipment in place.

Sincerely,

Letter to Ohio first Responders Re: Secret Fracking Chemicals

Letter to Ohio first Responders Re: Secret Fracking Chemicals

reCAPTCHA


By signing, you accept Halt the Harm Network’s Terms of Service and agree to receive occasional emails following up on your letter, about Ohio fracking, and related public health campaigns. Your information will never be sold. You can unsubscribe at any time.


Ohio First Responders by County

Click on your county to learn more

Photograph of the Eisenbarth well site is from the U.S. Environmental Protection Agency. The photographer is not listed.[ii]

[i] U.S. Environmental Protection Agency. On Scene Coordinator. Eisenbarth Well Response. Fire Damage on Eisenbarth Well Pad (June 29, 2014). Accessed September 2, 2019 at https://response.epa.gov/site/image_zoom.aspx?site_id=9350&counter=221854&category=.

[ii] U.S. Environmental Protection Agency. On Scene Coordinator. Eisenbarth Well Response. View of Damaged Equipment on Well Pad (June 29, 2014). Accessed September 2, 2019 at https://response.epa.gov/site/image_zoom.aspx?site_id=9350&counter=221847&category=.

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

INTRODUCTION

“The Iroquois…called Pine Creek ‘Tiadaghton’ meaning either ‘The River of Pines’ or ‘The Lost or Bewildered River’.”[i] The river’s iconic watershed in North Central Pennsylvania spans 979 square miles, spanning parts of Clinton, Lycoming, Potter, and Tioga counties, and an infamous 47-mile gorge through which the Pine Creek flows. At 87 miles in length, it is the largest tributary to the West Branch Susquehanna River.[ii]

In 1964, Congress included Pine Creek as one of 27 rivers under study for inclusion in the National Wild and Scenic River System.[iii]  Four years later, the US Department of the Interior designated twelve miles of the canyon a National Natural Landmark. In 1992, Pine Creek was recognized as a Pennsylvania Scenic River.[iv] These accolades underscore its vibrant beauty, ecological value, and cultural significance.

A rugged landscape carved into the Allegheny Plateau, the watershed contains extensive public lands and the highest concentrations of exceptional value (EV) and high quality (HQ) streams anywhere in Pennsylvania.  It is a prized recreational attraction in the region known as the Pennsylvania Wilds, a destination for nature-based tourism. The area has endured episodes of resource extraction – logging, coal mining, and shallow gas development – but nothing quite the same as the assault from hundreds of new unconventional gas wells and the sprawling pads, pipelines, impoundments, compressor stations, and access roads accompanying such development.

Modern extraction is heavy industry – loud, dusty, and dirty. It is incongruent with the thick forests, sensitive habitats, hushed solitude, and star-drenched skies one expects to experience in many wilderness pursuits. Threats to air, water, and wildlife are manifest. Landscape fragmentation and forest loss are collateral damage. Ecological impacts, while sometimes immediate, are often insidious as they slowly degrade environmental health over time. The Oil and Gas Program of the Pennsylvania Department of Conservation and Natural Resources (DCNR) acknowledged in a 2012 presentation: “…that Marcellus Shale will be a long-term influence on the character of Pennsylvania landscapes.”[v] To what extent remains to be determined.

Writer and conservationist Samuel P. Hayes noted “The Pennsylvania Administrative Code of 1929 identified watershed protection as the primary purpose of the state forests.”[vi] Enduring more than 10 years of fracking history, and with more planned, the Pine Creek watershed is an experiment for this tenent and overdue for the geospatial examination that follows.


According to the NOAA, a watershed is a land area that channels rainfall and snowmelt to creeks, streams, and rivers, and eventually to outflow points such as reservoirs, bays, and the ocean.

Use the time slider below to explore the changes in the Pine Creek watershed from 2008 to 2016

A LEGACY OF EXTRACTION

Humans have left their mark on Pine Creek for thousands of years, but the effects of timber and fossil fuel extraction in the last 220 years are most notable. Historical accounts and agency records provide substantial documentation of these impacts.

TIMBER

In 1799, Pine Creek’s first sawmill was set up near the confluence with Little Pine Creek. By 1810, eleven saw mills were in operation. In the next 30 years, that number rose to 145. Pine Creek earned the moniker of “Lumber Capital of the World,” but by the end of the Civil War, the great pine forests along Pine Creek were depleted due to clearcutting. By the end of the Civil War, the great pine forests along Pine Creek were depleted. Underappreciated for lumber, eastern hemlocks remained, but were eventually felled as well, their bark prized for tanning leather. The advent of logging railroads accelerated the forest’s demise. By the first years of the 20th century, the trees were all but gone, “…branches and stumps littered the mountainsides and sparks from locomotives created fires of holocaustal proportions.”[vii]

Sadly, much of the wildlife was gone too. Bounties, market hunting, and habitat loss had taken a toll. The area’s last timber wolf was killed in 1875. The beaver, otter, fisher, martin, lynx, and wolverine were exterminated by the early 1900s. The remaining solitary panthers lasted until the 1930s, then “faded into oblivion.”[viii]

COAL

While not often thought of as a part of Pennsylvania’s coal country, the Pine Creek Watershed has seen its share of coal mining and related activity. Coal was first discovered along the Babb Creek portion of the watershed in 1782, and mining operations began in earnest in the 1860s. By 1990, the area was so impacted by mine drainage and other pollution that there were no fish found in Babb Creek. Efforts to rehabilitate the stream have made some progress, raising the pH of the stream and restoring fish populations, to the point where Babb Creek was officially removed from the list of impaired streams in 2016.

Within the watershed’s abandoned mine areas, 68 specific sites totaling nearly 500 acres are flagged as “containing public health, safety, and public welfare problems created by past coal mining.” This represents more than 11% of the total mined area. Only five of these 68 sites – all strip mines – have completed the reclamation process.

Table 1. Problematic coal mine areas in the Pine Creek Watershed

SITE TYPEABANDONED RECLAMATION COMPLETETOTAL FACILITIESTOTAL ACRES
Dry Strip Mine31536322.0
Flooded Strip Mine221.7
Spoil Pile1313148.4
Refuse Pile121223.2
Known Subsidence Prone Area220.4
Coal Processing Settling Basin331.5
TOTAL63568497.4

OIL & GAS

The oil and gas industry in Pennsylvania started with the Drake Well near Titusville in 1859, before the onset of the Civil War. In the years since, perhaps as many as 760,000 such wells have been drilled statewide.[ix] While the Pennsylvania Department of Environmental Protection (DEP) is the current state agency with regulatory oversight of the industry, it estimates that there could be as many as 560,000 wells drilled that they have no record of in their database. Given the lack of data for these early wells, it is not possible to know exactly how many wells have been drilled in the Pine Creek Watershed.[x]

Over a century ago, pollution was seen as the price to be paid for a job in timbering or mining.  Some politicians seem to want a return to those bad old days by gutting some of our reasonable regulations that protect our air and water. Here, as in the rest of the Marcellus gas play, our politicians are not protecting our air and water as mandated in Article 1, Section 27 of our State Constitution.

-Dick Martin Coordinator for the Pennsylvania Forest Coalition and board member of Pennsylvania Environmental Defense Foundation, PEDF

A Wealth of Public Lands & Recreational Opportunity

The Pine Creek Watershed is in the heart of the Pennsylvania Wilds, a 12-county region in North Central Pennsylvania focused on nature-based tourism. “Adventure to one of the largest expanses of green between New York City and Chicago,” touts the initiative’s website.[xi]  The area includes over two million acres of public land, and is marketed for its notorious starry skies, quaint towns, large elk herd, and other attractions, like Pine Creek.

The watershed and its trails and public lands contribute substantially to the PA Wilds estate and offerings, including:

  • 1,666 stream miles (187.6 miles Exceptional Value and 1,011.5 miles High Quality)
  • Eight state parks, spanning 4,713 acres (7.36 sq. miles)
  • Four state forests, covering 264,771 acres (414 sq. miles)
  • Eight natural areas
  • Three wild areas
  • Seven state game lands, totaling 51,474 acres (80.42 sq. miles)
  • And 31 trails, traversing 789 miles

These largely remote and rugged spaces are relished for their idyllic and pristine qualities. Modern extraction brings discordant traffic, noise, lights, and releases of pollutants into the air and water. Stream waters – ideal for trout, anglers, and paddlers – are siphoned for the fracturing process. Trails are interrupted by pipelines and access roads. The erosion of outdoor experiences is piecemeal and pervasive.

A recent study lends credence to the concern that shale gas development is incongruent with the region’s ecotourism and recreational goals. “The Impacts of Shale Natural Gas Energy Development on Outdoor Recreation: A Statewide Assessment of Pennsylvanians” found that “only a small population of Pennsylvania outdoor recreationists were impacted by [shale natural gas energy development (SGD)] related activities. In the regions of Pennsylvania where SGD was most prominent (e.g., North Central and Southwest), outdoor recreation impacts were considerably higher.”[xii]



Weak rules favor the gas companies and allow them to waste resources, pollute our air, and destroy our climate. Continued exploitation of our public lands diminishes the value of this common good.

Leann Leiter, OH/PA Field Advocate, Earthworks

Read more about Leann’s view on fracking in Pine Creek and using FLIR photography to expose polluting emissions. Go to this post on Earthworks’ blog.

Fracking Comes to Pine Creek

Natural resource extraction in the Pine Creek Watershed did not stop with timber, coal, and traditional oil and gas. The drilling landscape in Pennsylvania changed dramatically around 2005, as operators began to develop the Marcellus Shale, a carbon-rich black shale that had eluded the industry for decades, because the rock formation was reluctant to release the large quantities of gas trapped within it. Based on successes in other shale formations, the Marcellus began to be drilled with a combination of horizontal drilling and high volume hydraulic fracturing – now using millions of gallons of fluids, instead of tens of thousands – and built upon multi-acre well pads. Operators were successful in releasing the gas, and this type of well, known as “unconventional” drilling, took off in vast swaths of Pennsylvania. Similar techniques were extended to other formations, notably the Utica shale formation.

The map below shows the cumulative footprint of extractive practices in Pine Creek, with the exclusion of timber.

Midstream Infrastructure

In 2018, unconventional wells in the Pine Creek Watershed produced 203 billion cubic feet of gas, which is more than the entire state of West Virginia consumed in 2017, not including electricity generation. To get all of that gas to market requires an extensive network of pipelines, and multi-acre compressor stations are required to push the gas through those pipes.

Pipeline data for the region, largely based on the Pipeline and Hazardous Materials Safety Administration’s (PHMSA) public pipeline viewer map, includes over 85 miles of pipelines in the watershed. However, this data does not include any of the gathering lines that crisscross the watershed, connecting the drilling sites to the midstream network.

Among other concerns, gas pipelines need to be placed in areas where they will not be impacted by tree roots, and so operators clear a 50-foot wide right-of-way, at minimum. This width results in the clearing of more than 6 acres per linear mile of pipe, which would be a total of 515 acres for the known pipeline routes in the region. However, the 50-foot width is a minimum, and some rights-of-way exceeding 300 feet were observed in the watershed, which would require the clearing of more than 36 acres per linear mile. These land clearing impacts are in addition to those required for well pads, access roads, and other infrastructure.

Many of the compressor stations in the Pine Creek Watershed are considered major pollution sources, and therefore require a Title V permit from the US Environmental Protection Agency (EPA). This means that they either produce at least 10 tons per year of any single hazardous air pollutant, or at least 25 tons of any combination of pollutants on the list.

Missing pipeline data is evidenced by FracTracker’s records of many compressor stations that are not along documented pipeline routes. Of the 26 compressors in the watershed that we have records for, only six are within 250 meters of known pipeline routes. Similarly, only 29 of the 594 drilled unconventional wells in the watershed are within the quarter-kilometer radius of known pipeline routes. One way or another, all compressors and well sites have to be connected to pipelines.



Table 2. Oil & Gas Well Status in the Pine Creek Watershed


Oil & Gas Well Status# of Wells
Operator reported not drilled404
Proposed but never materialized111
Active (conventional) 25
Active (unconventional) 529
Other304
TOTAL1,374

The PA DEP has records for 1,374 oil and gas wells within the watershed, although not all of these were actually drilled.  Of these wells, 404 wells have an official status of “operator reported not drilled,” while an additional 111 have a similar status of “proposed but never materialized.” Of the remaining 859 wells, 554 are currently considered active (including 25 conventional and 529 unconventional wells). An active status is given once the well is proposed — even before it is officially permitted by DEP, let alone drilled. The status remains until some other status applies.

Seventy-four wells are considered to be “regulatory inactive” (four conventional, 71 unconventional), meaning that the well has not been in production for at least a year, and must meet several other requirements. The remainder of the wells in the watershed have reached the end of their functional life, of which 168 have been plugged (119 conventional, 49 unconventional). This is done by filling the well bore with concrete, and is considered permanent, although the plugs have been known to fail from time to time. Fifty-seven additional conventional wells are considered abandoned, meaning that they are at the end of their useful life but have not been appropriately plugged, neither by the operator nor DEP. Five additional conventional wells are considered to be orphaned, which is a similar status to abandoned, but these wells are no longer linked to an operator active in the state. Given the lack of recordkeeping in the early part of the industry’s history in PA, the number of plugged, abandoned, and orphaned wells in the Pine Creek Watershed is likely significantly underrepresented.

Conventional drilling activity has essentially ceased in the watershed. A single well categorized as conventional, the Bliss 3H well, has been drilled in 2019. In fact, this well is almost certainly miscategorized. Not only does its well name follow conventions for horizontal unconventional wells, but the DEP’s formation report indicates that it is in fact drilled into the Marcellus Shale.  Prior to Bliss 3H, the two most recent conventional wells were drilled in 2011.

Unconventional drilling is a different story altogether. In terms of the number of wells drilled, the peak within the Pine Creek Watershed was in 2011, with 186 wells drilled. That represented 9.5% of the statewide total that year, and Pine Creek is just one of 35 comparably sized watersheds targeted for unconventional development in Pennsylvania.

More recently, there were 16 wells drilled in the watershed in 2018, and 17 wells through the halfway point of 2019, indicating that the extraction efforts are once again on the upswing.

Table 3. Number of unconventional wells drilled in Pennsylvania and the Pine Creek Watershed

YEARSTATEWIDEPINE CREEK WATERSHEDPCT. TOTAL
20063712.7%
200711310.9%
200833292.7%
2009821263.2%
201015981147.1%
201119561869.5%
20121351856.3%
20131212484.0%
20141369302.2%
2015784111.4%
2016503204.0%
2017810293.6%
2018777162.1%
2019 (YTD)366174.6%
TOTAL119995935.8%

The map below shows a heavily forested section of the watershed that has been significantly damaged by unconventional oil and gas development. Notice the forest fragmentation and land disturbance that has occurred as a result of fracking activities.

Use the time slider below to explore the changes in the Pine Creek watershed from 2008 to 2016

On May 9, 2019, nearly two dozen people descended upon the Pine Creek Watershed for the purpose of chronicling the impacts that the oil and gas industry is currently wreaking on the landscape. The documentation began early in the morning at the William T. Piper Memorial Airport in the town of Lock Haven, located in Clinton County. FracTracker  Alliance organized the blitz with numerous partner organizations, including EarthWorks, Sierra Club, Save Our Streams PA, Responsible Drilling Alliance, Pennsylvania Forest Coalition, Environeers, Pine Creek Headwaters Protection Group, and Lebanon Pipeline Awareness.

The massive watershed was broken up into 10 impact zones, which were mostly determined by concentrations of known sites such as well pads, compressor stations, retention ponds, and pipeline corridors.

Some people brought cameras and specialized equipment to Pine Ceek, such methane sensors and global positioning system devices. Participants were encouraged to try out the FracTracker Mobile App, which was designed to allow users to communicate and share the location of oil and gas concerns. Earthworks brought a FLIR infrared camera, which can capture volatile organic compounds and other pollutants that are typically invisible to the human eye, but that still pose significant risks to health and the environment. Others participants brought specialized knowledge of oil and gas operations from a variety of perspectives, from those who had previously interacted with the industry professionally, to those who have been forced to live in close proximity of these massive structures for more than a decade.

While we knew that it would not be possible to photograph every impact in the watershed, the results of this group effort were tremendous, including hundreds of photos, dozens of app submissions, and numerous infrared videos.  All of these have been curated in the map above. In our exuberance, we documented a number of facilities that wound up not being in the Pine Creek Watershed – still impactful but beyond the scope of this project. In some cases, multiple photos were taken of the same location, and we selected the most representative one or two for each site. Altogether, the map above shows 22 aerial images, 84 app submissions, 46 additional photos, and nine infrared FLIR videos.

FracTracker also collaborated with a pilot from LightHawk, a nonprofit group that connects conservation-minded pilots with groups that can benefit from the rare opportunity to view infrastructure and impacts from the air. Together, LightHawk and FracTracker’s Ted Auch flew in a mostly clockwise loop around the watershed, producing the aerial photography highlighted in this article, and in the map below.

The benefits of being able to see these impacts from the air is incalculable. Not only does it give viewers a sense of the full scope of the impact, but in some cases, it provides access to sites and activities that would otherwise be entirely occluded to the public, such as sites with active drilling or hydraulic fracturing operations, or when the access roads are behind barriers that are posted as no trespassing zones.

It can be difficult to maintain a sense of the massive scale of these operations when looking at aerial images. One thing that can help to maintain this perspective is by focusing on easily identifiable objects, such as nearby trees or large trucks, but it is even more useful to cross-reference these aerial images with those taken at ground level.

Water – A Precious Resource

Drilling unconventional wells requires the use of millions of gallons of water per well, sometimes as high as 100 million gallons. Unconventional drilling operations in Pennsylvania are required to self-report water, sand, and chemical quantities used in the hydraulic fracturing stage of well production to a registry known as FracFocus. Because of this, we have a pretty good idea of water used for this stage of the operation.

This does not account for all of the industry’s water consumption. The amount of water required to maintain and operate pipelines, compressor stations and other processing facilities, and to suppress dust on well pads, access roads, and pipeline rights-of-way is unknown, but likely significant. Much of the water used for oil and gas operations in this watershed is withdrawn from rivers and streams and the groundwater beneath the watershed.

Table 3. Water consumption by well in the Pine Creek Watershed

CATEGORYGALLONSEQUIVALENT PERSONS (ANNUAL USAGE)
Average Single Well6,745,697246
Maximum Single Well13,313,916486
All Wells (2013-2017)850,648,21931,074

There are 60 water-related facilities for oil and gas operations active within the watershed in 2019, including two ground water withdrawal locations, 20 surface water withdrawal locations, and 38 interconnections, mostly retention ponds. This dataset does not include limits on the 22 withdrawal locations, however, one of the surface withdrawal sites was observed with signage permitting the removal of 936,000 gallons per day. If this amount is typical, then the combined facilities in the watershed would have a daily capacity of about 20.6 million gallons, which is about 27 times the daily residential consumption within the watershed.

Predictably, water withdrawals ebb and flow with fluctuations in drilling activity, with peak consumption exceeding 1.2 billion gallons in the three-month period between April and June 2014, and an aggregate total of nearly 20.4 billion gallons between July 2008 and December 2016. It is not known what fraction of these withdrawals occurred in the Pine Creek Watershed.

Violations

Between October 22, 2007, and April 24, 2019, the Pennsylvania DEP issued 949 violations to unconventional oil and gas operations within the Pine Creek Watershed.[xiii] It can be difficult to know precisely what happened in the field based on the notations in the corresponding compliance reports. For example, if an operator failed to comply with the terms of their erosion and sediment control permit, it is unclear whether there was a sediment runoff event that impacted surface waters or not. However, as these rules were put into place to protect Pennsylvania’s waterways, there is no question that the potential for negative water impacts exists. Therefore, erosion and sedimentation violations  are included in this analysis.

Other violations are quite explicit, however. The operator of the Hoffman 2H well in Liberty Township, Tioga County was cited for failing to prevent “gas, oil, brine, completion and servicing fluids, and any other fluids or materials from below the casing seat from entering fresh groundwater,” and failing to “prevent pollution or diminution of fresh groundwater.” A well on the Tract 007 – Pad G well pad was left unplugged. “Upon abandoning a well, the owner or operator failed to plug the well to stop the vertical flow of fluids or gas within the well bore.”

The violation description falls into more than 100 categories for sites within the watershed. We have simplified those as follows:

Table 4. Oil and gas violations in the Pine Creek Watershed

VIOLATIONSCOUNTWATER RELATED
Administrative 61No
Casing / Cement Violation31Yes
Clean Streams Law Violation32Yes
Erosion & Sediment84Yes
Failed to Control / Dispose of Fluids279Yes
Failure to Comply With Permit3No
Failure to Plug Well1Yes
Failure to Prevent Pollution Event23Yes
Failure to Protect Water Supplies8Yes
Failure to Report Pollution Event20Yes
Failure to Restore Site8No
Hazardous Venting1No
Industrial Waste / Pollutional Material Discharge229Yes
Rat Hole Not Filled7Yes
Residual Waste Mismanagement2Yes
Restricted Site Access to Inspector1No
Site Restoration Violation9No
Unmarked Plugged Well1No
Unpermitted Residual Waste Processing73Yes
Unsound Impoundment20Yes
Unspecified Violation48No
Waste Analysis Not Completed1No
Water Obstruction & Encroachment7Yes
TOTAL949

Altogether, 816 out of the 949 violations (86%) issued in the Pine Creek Watershed were likely to have an impact on either surface or ground water in the region. Two sites have more than 50 violations each, including the Phoenix Well Pad, with 116 violations in Duncan Township, Tioga County, and the Bonnell Run Hunting & Fishing Corp Well Pad in Pine Township, Lycoming County, with 94 violations.

Water Complaints

When things go wrong with oil and gas operations, it is often residents in the surrounding areas that are exposed to the impacts. There are limited actions that affected neighbors can take, but one thing that they can do is register a complaint with the appropriate regulatory agency, in this case the Pennsylvania DEP.

A thorough file review was conducted by Public Herald for complaints related to oil and gas operations in PA, yielding 9,442 complaints between 2004 and 2016. While this includes all oil and gas related complaints, Public Herald’s analysis show that the frequency is highly correlated with the unconventional drilling boom that occurred within that time frame, with the number of new wells and complaints both peaking in 2011.

Many of these complaints occurred in the Pine Creek Watershed. It is impossible to know the exact number, as the precise location of the events was redacted in the records provided by DEP.  Most of the records do include the county and in some cases, the municipality. Altogether, there were complaints in 32 municipalities that are either partially or entirely within the watershed, for a total of 185 total complaints.  Of those, 116 of (63%) specifically indicate water impacts, spread out over 25 municipalities throughout the watershed.

Additional complaints with unspecified municipalities were received by DEP in Lycoming County (n=4), Potter County (n=4), and Tioga County (n=3). These counties substantially overlap with the Pine Creek Watershed, but the data is unclear as to whether or not these impacts were noted within the watershed or not.

It is worth remembering that complaints are dependent upon observation from neighbors and other passersby. As Pine Creek is composed of rugged terrain with vast swaths of public land, it is relatively sparsely populated. It is likely that if these drilling sites were placed in more densely populated areas, the number of complaints related to these operations would be even higher.


“It was 2007, and my water well was fine. I mean, I didn’t have any problem with it. I was cooking, drinking, bathing with it and everything else. Well, then after they drilled I thought it was kind of…it didn’t taste like it did before.”[xiv]

– Judy Eckhart

A Waste-Filled Proposition

Since the Pine Creek Watershed has been the site of considerable oil and gas extraction activity, it has also been the site of significant quantities of waste generated by the industry, which is classified as residual waste in Pennsylvania. This category is supposedly for nonhazardous industrial waste, although both liquid and solid waste streams from oil and gas operations pose significant risks to people exposed to them, as well as to the environment. Oil and gas waste is contaminated with a variety of dangerous volatile organic compounds and heavy metals, which are frequently highly radioactive. There are also a large number of chemicals that are injected into the well bore that flow back to the surface, the content of which is often kept secret, even from workers who make use of them onsite.

There were 37 sites in the Pine Creek Watershed that accepted liquid waste between 2011 and 2018. Of these sites, 30 (81%) were well pads, where flowback from drilling may be partially reused. While this reduces the overall volume of waste that ultimately needs to be disposed of, it frequently increases the concentration of hazardous contaminants that are found in the waste stream, which can make its eventual disposal more challenging. Most of the sites that accept waste do reuse that waste. However, the largest quantity of waste are from the remaining seven sites.

Table 5. Disposal of liquid gas waste in the Pine Creek Watershed

CATEGORYBARRELSGALLONSPCT. TOTAL
Reuse at Well Pads2,042,66285,791,80123%
Other Facilities6,701,292281,454,26177%
GRAND TOTAL8,743,954367,246,062100%

One single site – the Hydro Recovery LP Antrim Facility in Pine Township, Lycoming County – accounted for the majority of liquid waste disposed in the watershed, with 6,622,255 barrels (278,134,704 gallons.) has This amounts to 98.8% of all liquid waste that was not reused at other well pads.

Wastewater is also spread on roads in some communities, as a way to suppress dust on dirt roads.  3,001 barrels (126,050 gallons) of liquid waste have been used for road spreading efforts in regions intersecting the watershed in Ulysses Township, Potter County, and across private lots and roads throughout Potter and Tioga counties. Note that these figures include waste generated from conventional wells, which have different legal requirements for disposal than waste from unconventional wells, despite a similar chemical profile.

There are three facilities that have accepted solid oil and gas waste in the watershed, including a small one operated by Environmental Products and Services of Vermont (55 tons), Hydro Recovery LP Antrim Facility (10,415 tons), and Phoenix Resources Landfill (900,094 tons). This includes 200,808 tons in 2018, which is close to the previous peak value of 216,873 tons accepted in 2012.

Figure 1. Tons of solid O&G waste accepted at the Phoenix Resources Landfill


Recap: How has a decade of fracking impacted the Pine Creek Watershed?

  • 1,374 recorded oil and gas wells in the watershed
    • 554 are currently considered active
    • including 25 conventional and 529 unconventional wells
  • 949 violations to unconventional oil and gas operations within the Pine Creek Watershed, 86% of which were likely to have an impact on either surface or ground water
  • 185 complaints in 32 municipalities that are either partially or entirely within the watershed
  • A minimum of 515 acres cleared for the known gas pipeline routes in the region
  • 26 compressor stations in the watershed
  • 850,648,219 gallons of water used to frack wells in the watershed between 2013-2017
  • 60 water-related facilities for oil and gas operations active within the watershed active in 2019, including two ground water withdrawal locations, 20 surface water withdrawal locations, and 38 interconnections (mostly retention ponds)
  • 37 sites in the Pine Creek Watershed that accepted liquid waste between 2011 and 2018

And When It’s Over?

In the last ice age, glaciers came from the finger lakes area into Pine Creek. This made the soil there very deep and rich– in fact, people come from all over to study that soil. The Pine Creek area could be a mecca for sustainable agriculture. There is great soil, excellent water, and plenty of space for wind and solar. Under the right leadership, this region of Pennsylvania could feed people in a time when climate resilience is so urgently needed.

Melissa Troutman, Research & Policy Analyst, Earthworks. Director of “Triple Divide.” Journalist, Public Herald

The Pine Creek region retains a primeval grandeur – an alluring wild spirit of great pride and significance to our state. Natural gas development has – and will further – compromise the natural and experiential qualities of this special place. For the benefit of Pennsylvanians today and tomorrow, extraction must be replaced by cleaner forms of energy and conservation values made preeminent.

Brook Lenker, Executive Director, FracTracker Alliance

The Pine Creek Watershed in Pennsylvania’s Susquehanna River Basin has seen more than its fair share of industrial impacts in the centuries since European contact, from repeated timber clearcutting, to coal extraction, to the development of unconventional oil and gas resources in the 21st century. Despite all of this, Pine Creek remains one of the Commonwealth’s natural gems, a cornerstone of the famed Pennsylvania Wilds.

Many of the impacts to the watershed could be thought of as temporary, in that they would likely stop occurring when the oil and gas developers decide to pack up and leave for good. This includes things like truck traffic, with all of the dust and diesel exhaust that accompanies that, pollution from compressor stations and leaky pipe junctions, and even most surface spills.

And yet in some ways, the ability of the land to sustain this industry becomes substantially impaired, and impacts become much more prolonged. Consider, for example, that prior logging efforts have permanently changed both the flora and fauna of the region. Similarly, while there is no more active coal mining in Pine Creek, almost 500 acres of sites deemed to be problematic remain, and some streams impacted by contaminated runoff and mine drainage have yet to return to their former pristine state, even decades later.  

Unconventional drilling in the watershed will have similarly permanent impacts. While there is a legal threshold for site restoration, these multi-acre drill sites will not resemble the heavily forested landscape that once stood there when they reach the end of their useful life. Access roads and gathering lines that crisscross the landscape must be maintained until all well pads in the area are out of service, and then the aging infrastructure will remain in situ. Contaminated groundwater supplies are likely to take centuries to recover, if it is even possible at all.  

Thousands of feet of rock once separated the unconventional formations from the surface. That distance was a barrier not just to the gas, but also to salty brines, toxic heavy metals, and naturally occurring radioactive materials that are present at those depths. To date, 593 holes have been drilled in the Pine Creek Watershed, creating 593 pathways for all of these materials to move to the surface. The only things keeping them in place are concrete and steel, both of which will inevitably fail over the course of time, particularly in the highly saline environment of an old gas well. 

Even if the industry were to leave today and properly plug all of the wells in the Pine Creek Watershed, impacts from the drilling are likely to remain for many years to come.

[i] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P. 11.

[ii] Wikipedia. Pine Creek (Pennsylvania). https://en.wikipedia.org/wiki/Pine_Creek_(Pennsylvania)

[iii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P. 11.

[iv] DCNR. History of Colton Point State Park, 2019. https://www.dcnr.pa.gov/StateParks/FindAPark/ColtonPointStatePark/Pages/History.aspx

[v]  DCNR, Bureau of Forestry.  Marcellus Shale Management Field Tour, 2012. http://www.paforestcoalition.org/documents/Marcellus_Shale_Management_Field_Tour_5-14-12.pdf

[vi] Hayes, Samuel P. Wars in the Woods: The Rise of Ecological Forestry in America. Pittsburgh, PA. University of Pittsburgh Press, 2006.  (2007). P 120-121.

[vii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P.58-60.

[viii] Owlett, Steven. Seasons Along the Tiadaghton: An Environmental History of the Pine Creek Gorge. Wellsboro, PA: Steven E. Owlett, 1993. P.61.

[ix] Pennsylvania Department of Environmental Protection, Oil Gas Locations – Conventional Unconventional, 2019. https://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=1088

[x] Pennsylvania Department of Environmental Protection. Abandoned and Orphan Oil and Gas Wells and the Well Plugging Program, 2018. http://www.depgreenport.state.pa.us/elibrary/PDFProvider.ashx?action=PDFStream&docID=1419023&chksum=&revision=0&docName=ABANDONED+AND+ORPHAN+OIL+AND+GAS+WELLS+AND+THE+WELL+PLUGGING+PROGRAM&nativeExt=pdf&PromptToSave=False&Size=411528&ViewerMode=2&overlay=0

[xi] Pennsylvania Wilds. Homepage, 2019. https://pawilds.com/#modal-2

[xii]  Ferguson et al. The impacts of shale natural gas energy development on outdoor recreation: A statewide assessment of pennsylvanians, September 2019. Journal of Outdoor Recreation and Tourism. Volume 27.

[xiii]Pennsylvania Department of Environmental Protection. Oil and Gas Compliance Report Viewer. 2019. http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/OG_Compliance

[xiv] Joshua Pribanic & Melissa Troutman. Triple Divide, 2013.

All aerial photography by Ted Auch with flight support by LightHawk (May 2019).

Pine Creek compressor station FLIR camera footage by Earthworks (May 2019).

Project funding provided by: