Our thoughts and opinions about gas extraction and related topics

WV Field Visits 2013

Intentional Omissions? Waterless Fracturing

Note

This post has been archived. It is provided here for informational purposes only.

By Samantha Malone, MPH, CPH – Manager of Science and Communications

We got called on it; we have no articles about waterless fracturing on FracTracker.org – yet.

Fracturing deep geologic formations to access oil and gas without the use of water offers some financial benefits; it minimizes the water-in and waste-out costs, even though the upfront costs are higher for the driller. Environmentally, this is a plus since the sites would theoretically use much less water than they currently do (~5 million gallons per well depending on who you ask). The omission of an article on FracTracker about waterless fracturing, while not intentional, does reflect the nature of our work. As data enthusiasts, we try to focus on information that can be obtained from available data. We’ve looked into but found there to be limited data regarding the actual use and productivity of waterless fracturing. As such, we have not written anything specifically about the technique to-date.

Having said that, if you, the public, know where we could access data of this nature, please let us know. We would be more than happy to analyze and discuss waterless fracturing on our site in the future.

Hydraulic fracturing for oil and natural gas can use millions of gallons of water per well. Waterless frac technology could change that.

You can learn more about waterless frac technology in an article on RigZone.com.

Chieftain Sands - Chetek WI Mine North

Sifting Through Sand Mining

Note

This post has been archived. It is provided here for informational purposes only.

By Brook Lenker and Ted Auch, FracTracker Alliance

Thirty miles northwest of Eau Claire, Wisconsin the land rolls gently. Wooded hills back orderly farms straight from the world of Norman Rockwell but painted red and gold by October’s cool brush.  It seems like agrarian perfection, but the harmony is interrupted by the pits and mounds of a newcomer to America’s Dairyland – sand extraction to support hydraulic fracturing for the oil and natural gas industry.

“Mine, Baby, Mine” reads a bumper sticker on a pickup outside the Baron drying plant of Superior Silica Sands – a frac sand company headquartered in Fort Worth, Texas but with significant activities located in Wisconsin. Ted Auch, Ohio Program Coordinator for FracTracker, and I are on a daylong sand mining tour organized by the West Central Wisconsin Regional Planning Commission (WCWRPC). This, the second Superior drying plant we visited, processes up to 2.4 million tons of sand per year (enough sand to complete 800 typical horizontal gas or oil wells). This is among the largest facilities of its kind in the world.

What is frac sand?

Frac sands (99% silicon dioxide – SiO2) are meant to “prop” open the rock after fracturing is complete, termed “proppants.” Aside from water, these sands represent the second largest constituent pumped into a typical well to hydraulically fracture the shale.  Usage of frac sand as a proppant is increasing due to the rising costs associated with synthetic substitutes like ceramic and related resin-coated materials. Ideally, such sand must be uniformly fine and spherical, crush-resistant, acid soluble, mature, and clay/silt-free. The northern Great Lakes Basin represents the primary stock for high quality frac sand in the world – causing many industry analysts to label the region Sand Arabia.

And where does it come from?

Most of Superior’s total production (4.2 million tons per year) comes from mines in New Auburn and Clinton, Wisconsin – in the middle of the St. Peter (Ottawa) Sandstone. This formation underlies parts of Iowa, Wisconsin, Minnesota, Illinois and Missouri. Known for its uniform and rounded grains – the region has recently surpassed the Hickory (Brady) formation in Texas, which contains sands that are far more angular, blocky and coarse.

To get an idea of the landscape where these sand mining operations are occurring in Wisconsin, see Figure 1 below.

Figure 1. Land cover types (%) and the location of the mines we visited during our recent frac sands tour of West Central Wisconsin (Note: 1.0 = 100%)

“Thank God for Superior Silica Sands,” said Jim Walker, Director of Operations. He wasn’t directly touting his employer’s virtues, but rather sharing a quote from a landowner pleased with the income derived from leasing their farm for the sand beneath. According to Walker, Superior has over 100,000 acres of mining leases in Wisconsin – enough to support their company’s anticipated needs for the next 30 years. Based on frac sand mine permitting data provided to us by the planning commission, this 100,000 acreage translates to 939,700,000 tons of frac sand (enough for 313,233 horizontal wells). Overall, Wisconsin’s frac sand mines are currently producing 185-211 million tons of frac sand from 128 facilities.

Superior is one of more than six sand companies working in the area. One state resident recently emailed me complaining that “we are being inundated with industrial sand mining.” Her perspective is one of concern, but we are told of farmers who are eager to lease their land for potentially hundreds of thousands of dollars in annual payments. Superior prides itself on hiring from the community. The jobs pay well, nearly twice the regional average, according to the planning commission. Healthcare benefits and a 401k are included. At quick glance, it is an economic boom to a rural region, but will it last? Superior has a 10-year contract to supply sand to Schlumberger, a giant in hydraulic fracturing services. Sand prices – affected by competition and overproduction – are dropping, however.

Sand Mining Risks

Environmental impacts may be the biggest cause for worry. Some mining operations can cover more than 450 acres and often involve the destruction of forests. This may happen piecemeal, perhaps 20 acres at a time, but forest habitat and the associated functions (e.g. carbon storage and accrual) are nevertheless diminished. The land is remediated1, but the landowner makes the decisions as to how this occurs. They might choose to plant prairie grasses or trees, but a common preference is more cropland – the latter option enabled by a post-mining reduction in topography. Adaptable wildlife like deer may take the changes in stride, but forest-dependent species and vulnerable plant communities will likely suffer. Water quality and quantity issues have also been highlighted by Wisconsin Watch, Minneapolis Star Tribune, and Minnesota Public Radio.

Public health impacts are perhaps less clear. Superior officials explain that only the finest sand sizes are a legitimate inhalation hazard, and those are atypical to the frac sand industry. A 2012 OSHA hazard alert, however, listed respirable crystalline silica as a significant workplace hazard on unconventional oil and gas well pads, just behind the risk for physical injuries and hydrogen sulfide exposure. At least at Superior, they rigorously monitor the air quality onsite and outside their boundaries. Employees are even monitored for what they breathe. Superior shows data underscoring its outstanding safety and regulatory compliance record. I observe no noticeable blowing of sand or dust on site. While I am on the ground touring, however, Ted enjoys a bird’s eye view courtesy of LightHawk. From the plane, he witnesses aerial movement of material off of other sand mines.

Emissions from increased truck traffic may also present an air quality concern. Dump trucks ply the back roads like worker ants delivering load after heavy load from the mines to the drying plants. The general increase in activity in these forgotten areas may be a lifesaver for some, and a worry for others. Trains with scores of covered, sand-packed cars rumble down the tracks bound for distant shale basins. Texas awaits the trains departing Superior’s Baron plant. Meanwhile, communities express concern about increasing speeds and the safety of crossings.

A Complicated Perspective

For me, the day’s enlightening dialogue and experiences underscore the rough, expanding tendrils of unconventional oil and gas development. They reach far and have complex, often abrasive effects. Here, in the land of Leopold, the father of the Land Ethic, I can’t help but wonder: What would Aldo say about the transformation of his beloved countryside?

View all photos from tour >


Footnotes

For additional resources and articles on sand mining issues, visit the Land Stewardship Project in Minnesota and Wisconsin Watch.

[1] Reclamation success, permitting, bond release, inspection and enforcement, and land restrictions were put into law by the Carter administration and introduced by Arizona Republican Morris Udall as defined by the Surface Mining Control and Reclamation Act of 1977, which also created the Office of Surface Mining.

Almost Heaven

By Brook Lenker, Executive Director, FracTracker Alliance

Touring Doddrige County, West Virginia

On September 26th, FracTracker staff and board member, Brian Segee, traveled to Doddridge County, West Virginia for an eye-popping tour. This endeavor was led by Diane Pitcock of West Virginia Host Farms and local activists who are deeply concerned about the fate of their region – an area overwhelmed by shale gas development.

Approaching West Union on route 50, a giant flare roars above the roadway and about every fourth vehicle, mostly pickups, tankers, and dump trucks, suggest association with the shale gas industry.  At the café in town, vehicles baring EQT logos fill the lot.  Nearby, Middle Island Creek flows thick and brown despite an absence of rain for the past five days. Diane says it’s frequently muddy from the constant pipeline construction upstream.

Mark West site

The first stop is a Mark West complex with a cryogenic plant burning off excess hydrocarbons, a yard for loading CNG on tanker trucks, one well pad, and another in the works (see photo right). To build the latter, a hillside is being disemboweled.  The heavy equipment and a train of idling trucks release diesel emissions. A stream once coursed through the field in the foreground, but the previous landowner had filled and relocated it without a permit. Watching and photographing from the adjoining rail trail, irony rules. The trail sign is topped by a company-placed “No Trespassing” sign. From the discussion and observations, it’s clear that the environment is being devalued and degraded in Doddridge County.

The tour continues on to a water withdrawal site. According to the permit numbers plastered beside the conduit, the site hosts approximately 50 unconventional gas wells – each requiring millions of gallons of water to crack the shale and hasten the flow of gas.

Right-of-Way?

Next, we traverse gravelly back roads widened by the industry.  The roadway expansion often requires the purchase of right-of-way from landowners.  Our guides tell us that if a landowner says no, sometimes they are told “if you don’t sell, we’ll take it by eminent domain.”  The threat is hollow if not deceitful, since in such circumstances the industry has no right to exercise eminent domain. The industry does have the right to access mineral rights they may own, however, even if they don’t own the property on the surface. In West Virginia, these “split estate” situations are as common as country music, only they project a much more somber note to the landowner, especially when the gas company comes knocking.

A Neighbor’s Perspective

Well pad visit

A freshly cut and clearcut road travels onward and upward across a half mile or more of former forest where a nice lady owns the land but not the natural gas being accessed more than a mile below.  Piles of logs line the roadside, a reminder of what was. The road ends at a fenced impoundment holding thousands of gallons of impaired water.  An odor, akin to antifreeze, hangs in the dry, dusty air. The lady tells the group about the wildlife she has seen, including the songbirds that rest on the high fence and likely drink from the poisonous reservoir.

Downhill lies an expansive well pad, big enough for a football game if there wasn’t the metallurgical din and sprawl of a towering drill rig and the pipes and machinery that accompany it. The landowner’s presence enables our group to enter the working well pad where workers, sleeping off a long shift, emerge from a trailer. While over 30 of her roughly 80 acres are affected by drilling-related activities, only a payment for timber is in negotiation. Meanwhile, she pays the taxes on the land – a parcel that will never quite be the same. Tom Bond, a local and well-informed activist, wistfully comments, “This is just the beginning.  Eventually there will be well pads everywhere.” He may be right.

Pipeline Construction

A golden afternoon closes crossing steel plates over an open trench and green pipeline.  The corridor is an undulating, exposed ribbon of ground spanning ridge to ridge in each direction. There are many more just like it snaking across the hills and hamlets of West Virginia from one compressor station to another.

From witnessing the industry’s heavy footprint to the stories we hear of problems emerging in home water wells, somehow a happy John Denver tune now seems melancholy.

Additional Resources

2013 American Industrial Hygiene Association Fall Conference

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

FracTracker was recently in attendance at the American Industrial Hygiene Association annual conference, held in Miami, FL, September 28-October 1st.  The FracTracker Alliance’s Kyle Ferrar participated in the workshop “Natural GAS EXTRACTION – Rising Energy Demands Mandate a Multi-Perspective Approach.”  The workshop was moderated by Dr. Mark Roberts, and in addition to the FracTracker Alliance, there was a presentation by NIOSH Senior Industrial Hygienist Eric Esswein and the well-versed chemist, engineer, and industry associate/consultant  John Ely.  The workshop was well-attended (sold out).

In case you missed it, FracTracker’s annotated presentation is posted here:  Ferrar_AIHA Presentation_9.29.13.

European Drilling Perspectives

By Samantha Malone, MPH, CPH – Manager of Science and Communications

In August I spent a little over two weeks in Europe, the first of which was for work in Berlin, Germany and Basel, Switzerland. Now that I have had some time to process my travels and am back on a proper sleep schedule, I thought I’d provide a little wrap up of my impressions of Europe and the issue of unconventional drilling.

Berlin, Germany

Berlin, Germany

Berlin, Germany

In Berlin, I was hosted by two innovative organizations: JF&C and Agora Energiewende. JF&C is a consulting company that advises on international markets and sustainable growth. The roundtable held by JF&C was intended to bring together a diverse group of decision-makers in Germany to discuss potential challenges of heavy drilling in Europe — and they did not disappoint. Participants included representatives from the:

The diverse backgrounds of the group led to a heated yet balanced debate on the topic of whether unconventional gas extraction should occur in Germany, as well as the rest of Europe. I was quite impressed by the transparent and matter-of-fact perspectives held by attendees, which as you can see above included governmental, NGO, and industry reps.

My next presentation in Berlin was coordinated by Agora Energiewende. Energiewende refers to Germany’s dedication to transitioning from non-renewable to more sustainable fuels. You can read more about the movement here. This forum was set up in a more traditional format – a talk by me followed by a series of questions from the audience. Many of the attendees at this event were extremely well informed about the field of unconventional drilling, climate change, and economics, so the questions were challenging in many respects. Attendees ranged from renewable energy developers to US Embassy personnel. As a reflection of such diversity, we discussed a variety of topics at this session, including US production trends and ways to manage and prepare databases in the event that heavy drilling commences in Germany and other parts of Europe.

Interestingly, one of the major opponents of this form of gas extraction in Germany, I learned, has been the beer brewers. (They were not able to be at the table that day, sadly enough.) German breweries that adhere to a 4-ingredient purity law referred to as Reinheitsgebot are very concerned and also very politically active. You can read more about beer vs. fracking here, just scroll down that page a bit.

Over decadent cappuccinos the next morning, I met with Green Parliament representatives who wanted to hear firsthand about FracTracker’s experience of drilling in the U.S. Overall, my Berlin tour showed me that many individuals seemed skeptical that unconventional drilling could safely fulfill their energy needs, while also possessing a hearty intellectual craving to learn as much about it as they could.

Basel, Switzerland

Basel, Switzerland

Basel, Switzerland

The second part of the week was dedicated to attending and presenting at the International Society for Environmental Epidemiology conference in Basel, Switzerland. I participated in a panel that discussed the potential environmental and public health impacts of unconventional gas and oil drilling, as well as methods for prevention and remediation. The audience was concerned about a lack of regulatory and data transparency and the likelihood that such operations could contaminate ground/drinking water supplies. Based on the number of oil and gas wells impacted by the recent Colorado flooding tragedy, I cannot blame them. Most of these attendees were from academia or non-profits, although not entirely; check out coverage from this Polish radio station. (As mentioned in a previous post, Poland is one of the countries in Europe that has the potential for heavy drilling.)

The amount of knowledge I gained – and shared – from this one week alone is more than could have been possible in a year through phone calls and email exchanges. I am incredibly thankful for our funders’ and FracTracker’s support of this endeavor. Being able to discuss complex issues such as unconventional drilling with stakeholders in person is an invaluable key for dynamic knowledge sharing on an international level.

Links to My Presentations (PDFs):  JF&C  |  Agora  |  ISEE

A few non-work pictures from the second week of my trip…

Dornbirn, Austria

Dornbirn, Austria

Lake Lugano, Switzerland

Lake Lugano, Switzerland

The Alps, Switzerland

The Alps, Switzerland

Milan, Italy

Milan, Italy

FracTracker Touring a Bit of Europe

Basel_Berlin_DornbirnBy Samantha Malone, MPH, CPH – Manager of Science and Communications, FracTracker Alliance

I stare into my computer during an early morning Skype call with my hosts in Germany. As my cat stubbornly tries to join the conversation, we intently discuss international energy policies, travel plans, and audience demographics. This awkward setup is all in preparation for my upcoming whirlwind tour of Europe. On August 20 and 21, JF&C and Agora Energiewende will host roundtables with participants from their organizations, oil and gas companies, European advisory groups, Green Parliament, and me – just to name a few. This trip is in conjunction with the ISEE conference, where later in the week I will be talking about FracTracker on a panel with other experts regarding shale gas and oil extraction issues.

Hydraulic Fracturing in Europe

One of the many reasons for this trip is because Europe is where the United States was several years ago with regard to the status of drilling, but their circumstances are vastly different. Where the U.S. moved quickly (in most cases) to utilize hydraulic fracturing to extract natural gas and oil, many countries in Europe are only now starting to explore this as an energy option. Some countries, such as France, outright banned the process. Whereas Poland, for many reasons, has embraced the relatively new technology. Just in terms of space, however, Europe is not an ideal location to drill. If you believe Google, in 2011 Europe hosted ~739 million people in an area of 10.82 million km2 – vs. the US in 2012 with ~314 million people in an area of 9.83 million km2. There are several other special considerations that would need to be made in order for Europeans to allow drilling operations like those that involve hydraulic fracturing in their backyards. One such technological advancement, I learned recently, is the option for wells to be completely enclosed (which helps to shield neighbors from potential air, smell, and noise pollution). Whether that refers to an enclosure during drilling or after, remains to be seen. Regardless, I am excited to share my shale gas experiences with others in Europe, but I am even more eager to learn how our experiences differ… The other reason for this trip is for vacation. Can’t fault that!

Schedule

  • Aug 19-23 (All Day): ISEE Conference. Basel, Switzerland
  • Aug 20 (12:00–15:30): JF&C Roundtable. Berlin, Germany
  • Aug 20 (16:00–18:00): Agora Energiewende Roundtable. Berlin, Germany
  • Aug 21 (Morning Meetings): Various groups. Berlin, Germany
  • Aug 22 (14:00-15:30): Conference Panel, S-3-30: Environmental & Occupational Health Risks from Fracking & Natural Gas Extraction. Congress Center, Basel, Switzerland.

When I return from Europe, I plan to write a follow up blog piece (with pictures of my own instead of stock ones). Stay tuned!

North Dakota Bakken Gas Flares

Gas Flaring and Venting: Data Availability and New Methods for Oversight

By Samir Lakhani, GIS Intern, FracTracker Alliance

In the hazy world of gas flaring and venting, finding worthwhile data often leads one to a dead end. Although the Energy Information Administration (EIA) holds the authority to require active oil/gas companies to disclose this data, they choose not to. EIA will not proceed with such actions because, “…assessing the volume of natural gas vented and flared would add significant reporting burdens to natural gas producers causing them substantial investments.” Additionally, the EIA is not confident that oil/gas producing companies have the capability to accurately estimate their own emissions from venting or flaring activities.

Piece-Meal

Some states do voluntarily submit their estimates, but only 8 of the nation’s 32 oil and gas producing states submit their data. This makes attempts for national estimates incomplete and inaccurate. State officials have repeatedly complained that the EIA has provided them with insufficient guidelines as to how the data should be submitted, and in what format. It appears the only way that concerned parties are able to monitor this practice is with satellite imagery from the sky, to literally watch flaring as it occurs.

Bird’s Eye View

The Bakken Shale Formation has received a considerable amount of attention. We’ve all seen the nighttime satellite images of North Dakota, where a normally quiet portion of the state light up like a bustling city. It is to be understood that not all the lights in this region are gas flares. Much of it is emergency lighting and temporary housing associated with drilling companies.

There are a few obvious issues with satellite surveillance. Firstly, it is difficult to monitor venting emissions from a bird’s eye perspective. Venting is the process by which unsought gas is purposely wafted from drill sites into the atmosphere. Venting is a much more environmentally costly decision compared to the ignited alternative, as pure natural gas is twenty times more potent than CO2 as a greenhouse gas. To monitor venting behavior, from up high, Infrared sensors must be used. Unfortunately, these emissions do not transmit well through the atmosphere. Proper detection must be made much closer to earth’s surface, perhaps from an airplane or on the ground. Secondly, flaring is almost impossible to detect during the day using satellites. One could equate it to attempting to see a flashlight’s beam when the sun is out. Lastly, when the time comes to churn out an estimate on how much gas is really being wasted—the statistics vary wildly.

Using SkyTruth’s satellite image, and GIS data retrieved from North Dakota’s Department of Mineral Resources, it is now possible to pinpoint North Dakota’s most active gas flaring sites. Using this, more accurate estimates are now within reach. North Dakota gas drillers may flare their “associated” gas for up to one year. However, Officials at Mineral Management Service claim that it is not difficult to get an extension, due to economic hardship. There are always instances of gas/oil operators flaring or venting without authorization. In 2003, Shell paid a 49 million dollar settlement over an unnoticed gas flaring and venting operation that lasted several years. The beauty of satellite imagery and GIS detail is the observer’s ability to pinpoint flaring operations and by referencing the leases, evaluate whether or not such practices were authorized.

This map shows flaring activity in the Bakken Formation from January 1 through June 30, 2013. Please click the “Fullscreen” icon in the upper right hand corner to access the full set of map controls.

Regulation and Control

If flaring and venting are costly to the environment and result in a loss of company product (methane), you may ask why these practices are still conducted. Flaring and venting practices are cheaper than building the infrastructure necessary to harness this energy, unfortunately. To effectively collect this resource, a serious piping network is needed. It is as if a solar farm has been built in the desert, but there is no grid to take this power to homes. To lay down piping is an expensive endeavor, and it requires continuous repairs and on-site monitors. Even when North Dakota burns over 30% of their usable product, there is little initiative to invest in long term savings. A second method, called “green completions”, is becoming a more popular choice for oil and gas companies. A green completion is a portable refinery and condensate tank aimed to recover more than half of excess methane produced from drilling. Green completions are the best management practice of today, and the EPA wishes to implement green completion technology nationwide by 2015.

The best way to estimate gas flare and venting emissions is through submissions from gas/oil companies and to analyze the data using GIS applications. Concerned organizations and citizens should not have to rely on satellite services to watch over the towering infernos. There is new research coming out each day on adverse health effects from living in close proximity to a gas flare and vent. It releases a corrosive mixture of chemicals, and returns to the earth as acid rain. Please refer to this publication for a thorough assessment of possible health effects.

This issue is not limited to US borders only; flaring has wreaked havoc in South America, Russia, Africa, and the Middle-East. During the extraction of oil, gas may return to the surface. In many of these areas where oil drilling is prevalent, there are no well-developed gas markets and pipeline infrastructure, which makes venting and flaring a more attractive way to dispose of an unintentionally extracted resource. If the US were to make substantial changes to the way we monitor, regulate, and reduce gas flaring/venting, and accessibility to data, we would set the standard on an international level. Such policy changes include: carbon taxation, streamlining the leasing process (Many oil/gas officials despise the leasing applications for pipelines), installing flaring/venting meters and controls, and tax incentives (to flare and green complete, rather than vent).

All of these changes would tremendously reduce and regulate gas flaring in the US, but without accurate and comprehensive data these proposed policies are meaningless. Data is, and forever will be, the diving board on which policy and change is founded.


Special thanks to Paul Woods and Yolandita Franklin of Skytruth, for using VIIRS and IR technologies to compile the data for the above map.

Florida Gas Drilling Developments and Legislation

By Samir Lakhani, GIS Intern, FracTracker Alliance

Florida Aquifers - Source data and map based off of Alan Baker at Florida Department of Environmental Protection.  Acquired Data from: USGS, USDA, FDEP   Source Link: http://www.dep.state.fl.us/geology/programs/hydrogeology/geographic_info_sys.htm

The Floridian Aquifer: Connectivity, Permeability, and Vulnerability

There have been a significant number of enquiries regarding the status of hydraulic fracturing activity in Florida, enough of which garner a FracTracker post. The short answer is that there is minimal drilling activity occurring in Florida—but not for long. It was only a matter of time until gas companies set their gaze on Florida, and her abundance of energy resources. Preparations to drill are already underway. Permits have been filed, equipment is being shipped, and exploratory drilling will begin any minute now. What makes Florida drilling ominous is the real risk for chemical leakage and groundwater contamination.

Imagine this:

It is just another sunny day in sunny Florida, but on this quiet day, two men ring your doorbell. You answer, of course, and find out that these men are from Total Safety, Inc., a company contracted by the independent oil company Dan A. Hughes Company, from Beeville, Texas. They ask you to provide your contact information and any other emergency contact info, just in case disaster strikes at the drill site operating barely 1000 feet from your house. For most of the citizens of Naples, Florida, this is the first they have ever heard of drilling, in their neighborhood. The citizens of Naples, Florida received quite a scare that day. The outrage in the community was so abundant and uniform that these families decided to act out against this development to preserve their piece of paradise. Read More

What makes drilling in Florida so precarious is that porous limestone shelves make up the majority of rock underlying permitted well sites. If any accident were to happen, the leakage of waste and chemicals would be virtually impossible to contain. It then would seep directly into the Florida aquifer which lies beneath the entirety of the state and large sections of Alabama, Georgia, and South Carolina. Maintaining water quality for the Floridan Aquifer is non-negotiable, since it is the primary water source for Savannah, Jacksonville, Tallahassee, Orlando, Gainesville, Tampa, and others. An attempt to clean the aquifer thoroughly would be impossible, and not to mention, prohibitively expensive. Another troubling thought is possible contamination and degradation of the beloved Florida Everglades.

Florida is an interesting case right now; the gas game is still very young. Florida lawmakers have an opportunity to draft real preventative measures, rather than legislation after the fact. Hydraulic fracturing is no new phenomenon, and Florida politicians have the prospect of learning from other states, incorporating relevant ideas and taking their own stance on this issue. Currently, a couple of bills are slowly trudging through the state legislature. The idea is to require a list of chemical disclosures from all active gas drilling companies. Environmentalists claim this bill is a sham, for the companies need to list the chemicals used in drilling, but not the quantities of each. It may be just another half-hearted attempt to show real political action, while retaining a good business relationship with drilling companies. It is unlikely more stringent policies will be successful, however, given that some powers currently in office believe climate change to be a fairy tale.

A Year in the Life of Ohio’s Utica Play

The Ohio Utica play has taken off in the last calendar year, jumping from 160 permitted wells as of March 2012 to 453 since then. This equates to 1.24 permitted wells per day. (Note: The state’s less exploited Marcellus shale had 13 permitted wells a year ago with an increase of 7 since then.) A year ago Ohio was home to 50 “drilled” wells and is now home to an additional 80 “drilled” wells (Figure 1). Meanwhile 0.65% and 1.14% of permitted wells are what Ohio Department of Natural Resources (ODNR) calls “Inactive” or “Not Drilled” with the latter being relatively similar a year ago vs. today with 3 and 4 “Not Drilled” wells, respectively. According to the latest ODNR data 54 Utica wells were permitted as of 4/1/2012 vs. 342 since then. Plugged wells constitute 1.63% of all Ohio Utica wells although the industry appears to be increasing efficiency with respect to plugging having experienced 7 “Plugged” wells as of 4/1/2012 and only 3 since. Conversely, wells that are “Producing” have declined from 25.63% (41 “Producing” wells) of all permitted wells to 1.32% (6 “Producing” wells) of all permitted wells since then with the latest reported producing well being a Mountaineer Keystone well in Windham Township, Portage County.

The permitting process has continued along its exponential path since permitting began September 28, 2010 (Figure 2). The gross average number of permitted Ohio Utica wells per month in the last five months is 39 with a total of 195 permitted since November 2012. The quarterly permit average has increased by an order of magnitude of 4.2 permits per month between September 2010 and 2011 to 39 per month since September 2012. In recent months Washington county was added to the list of Ohio counties home to Utica hydraulic fracturing permits, while Carroll remains the state with the most Utica permits followed by Harrison, Columbiana, Guernsey, and Jefferson/Noble with the average number of Utica well permits across the 22 counties home to at least one permit being 28 per county with six counties above and sixteen below this mean (Figure 3). In the last year the four counties that have entered the Utica conversation are Trumbull, neighboring Holmes and Wayne, and Washington, with 4, 3, 1, and 1 Utica permit as of April 1st, respectively. Meanwhile five other counties have seen no increase in Utica permits including Muskingum, Knox, Ashland, Geauga, and Medina. Conversely Belmont County has seen a 21-fold increase in Utica well permits followed distantly by Harrison, Guernsey, Noble, and Coshocton counties all of which have experienced ≥5-fold increases.

The average number of people per Utica well across the aforementioned 22 counties is 31,808, while the average number of wells per square mile is 0.066. The range is quite broad for both variables ranging from 0.0018 wells per square mile in Wayne – home to the Wayne National Forest – to 0.59 wells per square mile in Carroll County, with the one recent Washington County well placing it 13th out of 22 counties. The inverse is the case for people per well with Medina County, home to the highest number of people relative to Utica well permits with 172,332 people per well (vs. 124-563 people per well in Carroll, Harrison, Noble, and Monroe counties).  Since last we conducted this type of analysis in late January the valuation of Ohio’s major Utica players has actually increased by 11.7%. This is a particularly complex situation considering that Atlas Noble the owner of 6 Utica wells has actually gone private for a variety of reasons and Chesapeake Energy has ousted its CEO Aubrey McClendon due to “philosophical differences and a pending SEC investigation. Meanwhile, Wall Street-types:

… expect well results to vary greatly, given 2012 drilling activity across many fringe areas of the play. We believe weak results from other operators are likely to validate that Gulfport remains the most exposed operator. Source

Additionally, the repeated delay in 2012 production numbers scheduled for the 1st of April is creating layer upon layer of uncertainty leaving everyone guessing and relying on 2011 production numbers. This leaves public sentiment worried about the unsustainability, uncoordinated, and unbalanced nature of both Ohio’s regulatory framework and highly Utica exposed and/or leveraged balance sheets. Meanwhile Wall Street analysts are contemplating whether market forces, expectations, reality, or collusion is to blame. Our current model of potential Utica production in the form of barrels of oil equivalent speaks to small and discrete highly productive zones in Belmont, Noble, Guernsey, Morgan, and Muskingum counties, rather than the originally estimated zones of highest production in Carroll and Columbiana. An additional hotspot appears to be located in Fairfield, Perry, and Hocking counties. However, due to insufficient data quantity, quality, and methodology, and transparency from ODNR and industry, the opportunities to conduct such exercises are still accompanied by substantial uncertainty in the form of high signal-to-noise resulting from scant and unreliable data. The hope, herein and on Wall Street, is that ODNR and industry will begin to make their production data available in real-time.

This is an especially important consideration given that the aforementioned regulatory environment here in Ohio – as well as the relatively generous severance taxing system[1] – has reached a point that even industry/supply-side think tanks like The Fraser Institute in Canada have determined “the extent of investment barriers (based on All-Inclusive Composite Index values)” are as good as they are ever going to get; Ohio trails only Mississippi in a global investment barrier ranking of 146 countries, US states, and Canadian provinces. Furthermore, in one year the conditions for doing largely hydrocarbon-related business in Ohio improved so much between 2010 and 2011 that Ohio jumped up the league tables from 12th to 2nd, according to the institute’s 2011 “Global Petroleum Survey.” This loosening of regulations, combined with decreasing data quality and availability, is the primary concern of The FracTracker Alliance in Ohio.

Utica Permit activity by status to April 1, 2013

Figure 1: Utica Permit activity by status to April 1, 2013

Figure 2. Cumulative and Per Month Utica Permits to September 2010 through March 2013

Figure 2. Cumulative and Per Month Utica Permits to September 2010 through March 2013

Figure 3. Utica Permit Count by County from September 28, 2010 to April 1, 2013

Figure 3. Utica Permit Count by County from September 28, 2010 to April 1, 2013

Figure 4. Utica Permits Per Square Mile and People Per Well by County from September 28, 2010 to April 1, 2013

Figure 4. Utica Permits Per Square Mile and People Per Well by County from September 28, 2010 to April 1, 2013

(Note: This model was constructing utilizing the Geostatistical Analyst Tools “Empirical Bayesian Kriging” tool in ArcGIS)

Figure 5. A map of the current Ohio Shale and Tight Gas Plays, hydraulic fracturing permits in Ohio as of 4/1/2013, and a generalized model of potential production from with light green representing 20 Barrels of Oil Equivalent (BOE) and red approximately 10,000 BOE

Table 1. Distribution of Ohio Utica Shale wells across companies (#, %), Date of First Permit (DFP), and the valuation of the publicly funded companies at their DFP at the close of business 4/9/2013.

     

Company Valuation

Company

#

%

DFP

Share Price DFP

Share Price 4/9/2013

% Change

Anadarko

12

0.019

09/07/2011

69.88

86.70

1.241

Antero

21

0.034

03/23/2012

Atlas Noble††

6

0.010

09/24/2012

31.14

Carrizo

2

0.003

07/26/2012

24.02

26.26

1.093

Chesapeake Energy

389

0.626

12/23/2010

25.61

19.99

0.781

Chevron Appalachia

2

0.003

07/31/2012

109.58

118.71

1.083

Consol Energy

25

0.040

06/17/2011

45.86

33.85

0.738

Devon Energy

13

0.021

11/02/2011

65.46

55.28

0.844

Eclipse Resources

1

0.002

12/21/2012

Enervest

16

0.026

06/30/2011

9.37

8.79

0.938

EQT

3

0.005

09/13/2012

57.76

69.59

1.205

Gulfport Energy

46

0.074

02/28/2012

35.49

48.09

1.355

Halcon

2

0.003

11/02/2012

5.003

7.69

1.537

Hall Drilling

1

0.002

09/17/2012

Hess Ohio

24

0.039

09/28/2010

53.63

73.50

1.371

HG Energy

16

0.026

09/14/2011

Hilcorp Energy

3

0.005

12/14/2012

Mountaineer Keystone

7

0.011

07/13/2012

PDC Energy

9

0.014

05/25/2012

25.67

47.59

1.854

R E Gas Development

13

0.021

03/19/2012

Sierra Resources

3

0.005

07/02/2012

SWEPI

1

0.002

06/20/2012

XTO Energy

5

0.008

04/09/2012

0.28

0.01

0.036

BP

1

0.002

03/20/2013

613

1.083

DFP = Date of First Permit; “—“ not a publicly traded company

†† Atlas Noble has since gone private

Corporations that have reported production numbers as of this post: 1) Anadarko – 3, 2) Chesapeake – 14, 3) Consol Energy – 1, 4) Enervest and PDC Energy – 2, 5) Gulfport – 10, R E Gas Development – 4.


[1] Ernst & Young in a 2011 report found that Ohio’s hydrocarbon taxing rates were the most favorable of the eight states they investigated with a total state and local tax of 1.8% vs. 10.9-11.0% in neighboring West Virginia and Oklahoma, respectively. The average across the seven other states was 9.2% or 5.12 times that of The Buckeye State.

Trout Unlimited Testing for Water Quality in PA’s Marcellus Region

Trout Unlimited (TU) is one of several organizations that are actively monitoring water quality in Pennsylvania’s rivers and streams.  Currently, TU is collecting data in 99 different watersheds throughout the Commonwealth in an effort to help understand potential impacts of shale gas drilling and related industries on Pennsylvania’s waterways.  Mitchell Blake, TU’s Pennsylvania Marcellus Shale Field Organizer explains:

Trout Unlimited’s Coldwater Conservation Corps (CCC) is a network of volunteer stream stewards who monitor water quality throughout the Commonwealth of Pennsylvania.  With over 350 members trained, hailing from almost every Pennsylvania Trout Unlimited chapter, the CCC volunteers focus on achieving early detection of pollution events during oil and gas drilling and production activities and collecting a baseline inventory of data on important coldwater fisheries.  Using a scientific tool that focuses on trout populations and forecasted Marcellus development, CCC volunteers strategically choose their monitoring locations within their chapter and report and map their data using Trout Unlimited’s water quality monitoring database.  Protection of coldwater fisheries is an integral part of Trout Unlimited’s mission and more than any other segment of society, it is fisherman who spend considerable time on these streams, and thus are well positioned to watch over them.

While the data collection is ongoing, there are several logistical concerns involved with data digitization and distribution before the water quality data can be made available to the general public, but Mr. Blake is hopeful that these issues will be resolved in the coming months.


Watersheds where water quality testing is being conducted by TU volunteers are highlighted in green. For full access to map controls, please click the expanding arrows icon at the top right corner of the map.

At the FracTracker Alliance, we are excited to see TU’s desire to share this data with the public.  It may seem like a thankless task to brave the elements to obtain baseline water quality data, but it is important work that everyone can benefit from.  And while everyone hopes never to find the proverbial “smoking gun” in terms of streams being negatively impacted by industry, data collection efforts such as these are invaluable resources in identifying potential contamination events, should they occur.