Lycoming Watershed Digital Atlas

Water at Risk


A Digital Atlas Exploring the Impacts of Natural Gas Development in

the Lycoming Creek Watershed of Pennsylvania

Introduction


Coursing through lush valleys of the Allegheny Plateau, Lycoming Creek flows over 37 miles to its confluence with the West Branch Susquehanna River in Williamsport, Pennsylvania. The 272-square-mile watershed includes idyllic tributaries like Pleasant Stream and Trout Run, names reflecting the intrinsic beauty and bounty of the area. Rock Run in Loyalsock State Forest by some accounts is, “one of the most beautiful streams in all of Pennsylvania.” 

The mightier Pine Creek to the west perhaps carries greater notoriety, as does the enchanting Loyalsock to the east. But make no judgement about Lycoming Creek’s smaller stature. Forest covers 81% of the basin and only one percent is developed, with the rest of the land used for agriculture. Through the heart of this rugged terrain, a picturesque waterway beckons anglers and other revelers of the wilds.   

The Lenape people called the watershed home before European occupation. They knew the creek as Legani-hanne, meaning “sandy or gravelly stream.” The native residents and those who displaced them used it as a means of transportation, whether traveling by canoe or walking the Sheshequin Path that runs north and east along the shores.  

Lumber fueled the regional economy of the 19th century, and Lycoming’s forests fell. By rail and by water, saw logs were sent to Williamsport for milling. Wood-powered wealth gave rise to the city’s “Millionaire’s Row,” but prosperity apexed in the early 20th century. Today, the Williamsport area is home to nearly 30,000 people, down from a peak of around 45,000 in 1950. Comparatively, about 20,000 persons live within the Lycoming Creek watershed. 

These days, Williamsport buzzes with breweries, bookstores, and the vitality of an urban hub. The Little League World Series still comes to town every summer, ushering memories of simpler, quieter times. 

Nearby, the serene creek surges with life, including the Eastern hellbenderNorth America’s largest amphibian. But the same water can turn tempestuous and destructive. Notable floods in 1972, 1996, 2011, and 2016 caused loss of life and property damage. As climate change intensifies, heavy downpours and rapid snowmelt exacerbate flood risks. 

Unconventional drilling brought new threats to the area: congested truck traffic, exorbitant consumptive water use, myriad air pollution sources, extensive land clearing, and ecological disturbance; and, the dangers of spills, leaks, and water contamination. 

This report explores these impacts, underscoring the heavy footprint of extractionand related activitieson public and private lands throughout the Lycoming Creek watershed.

A wealth of public lands & recreational opportunities

The Lycoming Creek watershed provides ample opportunities for nature-based recreation. While there are no state parks in the watershed, a 507-acre (0.8 square miles) portion of the Tioga State Forest occupies the northern boundary of the watershed in Tioga County. Further south lies 45,022 acres (71.1 square miles) of the Loyalsock State Forest. This includes 332 acres (0.52 square miles) of the Devil’s Elbow Natural Area, a site known for its many wetlands—home to carnivorous sundew and pitcher plants—waters that feed the stunning Rock Run. 

The McIntyre Wild Area covers a 7,226 acre (11.3 square mile) expanse of the Loyalsock State Forest, situated entirely in the Lycoming Creek watershed. It includes spectacular waterfalls on streams that feed the aforementioned Rock Run, a tributary known for its vibrant trout population.



Recreational Opportunities in the Lycoming Creek Watershed

View Full Size Map | Updated 3/1/2021 | Data Tutorial




To the west of Lycoming Creek and State Route 14 is Bodine Mountain, another sweeping feature of the Loyalsock State Forest. Bodine Mountain is a north-to-south ridge rising over 1,300 feet above the Lycoming Creek valley.

In addition to state forests, the watershed contains 238 acres of State Game Land 335 at the northern boundary, and 2,430 acres (3.8 square miles) of State Game Land 133, situated southeast of Bodine Mountain. These conserved lands are designated to protect wildlifea goal that seems at odds with current oil and gas leasing practices.



Fishing and enjoying mountain streams


Pennsylvania has two separate designations for streams with excellent water quality: exceptional value (EV) and high quality (HQ). The Department of Environmental Protection (DEP) explains that the quality of HQ streams can be lowered, “if a discharge is the result of necessary social or economic development, the water quality criteria are met, and all existing uses of the stream are protected.” The water quality of EV streams cannot be lowered.  

Sadly, there are no streams in the beautiful Lycoming Creek watershed with an EV designation, however deserving. On the other hand, 412 miles of streams in its drainage are designated as HQ, representing 76% of the watershed’s 542 total stream miles, according to the state’s official designated use inventory. Statewide, 3,838 out of 86,473 miles (4.4%) of inventoried streams are categorized as EV, while 58,748 miles (67.9%) are HQ, making the Lycoming Creek watershed below average for the former, and above average for the latter.

Prior to industrialization, native brook trout populations were widespread in small, forested streams across Pennsylvania. While many streams are now stocked with several species of trout, the combination of pollution and deforestation has decimated the areas where trout—especially native brook trout—thrive in sustainable wild populations. Suitable streams are designated as Class A trout streams, and they are rare, accounting for just 3,037 miles, or 3.5% of streams across the Commonwealth. The Lycoming Creek watershed contains slightly fewer Class A streams than is typical, with 17.5 miles, representing just 3.2% of all streams in the drainage. Nevertheless, it remains an important respite for trout species and the anglers who seek them.

Split estates and the Clarence Moore lands


Hundreds of thousands of acres of Pennsylvania state forest are under lease agreements for fracked gas extraction, diminishing outdoor experiences and posing ongoing environmental threats. In those situations, the state Department of Conservation and Natural Resources (DCNR) clearly controls the surface and the gas that lies beneath. However, in some areas of the state forest, private interests claim mineral ownership, even in gaseous form—a situation called “split estate.” Loyalsock State Forest contains about 25,000 split estate acres, known as the Clarence Moore Lands.

In the Lycoming Creek watershed, most of the Clarence Moore lands lie east of US Highway 15, occupying areas that drain into Rock Run and Pleasant Stream, including some of the area’s few remaining Class A wild trout waters. Another section of the Clarence Moore lands extends west of Highway 15, on Bodine Mountain’s eastern flank. In their current state, the lands provide invaluable ecological services and—coupled with the Loyalsock Creek to the east—comprise critical source waters for two major watersheds.

Gas drilling requires a significant amount of infrastructure, including multiacre well pads, miles of gathering pipelines, retention ponds, waste processing facilities, and compressor and metering stations. Allowing surface disturbance in the Clarence Moore lands could have lasting, devastating consequences.

Nearly a decade ago, the Anadarko Petroleum Corporation approached DCNR with extensive plans for dozens of fracked gas wells and all the disruptive destruction that accompanies them in a large swatch of the Loyalsock State Forest and the Clarence Moore lands. Over the years, the Clarence Moore players have changed significantly. Southwestern Energy scored a stake, while Anadarko sold their interest to Alta Resources, a privately-held company scheduled for purchase by EQT, the nation’s largest fracked gas company. While the operators play their game of musical chairs, the situation remains a serious threat to some of the few remaining portions of the region that haven’t been spoiled with industrial gas drilling.

Ironically, modern horizontal drilling enables access to Clarence Moore’s reserves from miles away—from well pads on private land. There is no need—nor social license—to expunge the forest for future generations for short-lived, selfish gain. Organizations near and far, led by the Responsible Drilling Alliance and Save PA Forests Coalition, have rallied tirelessly to save this land from development, a truly special place deserving permanent protection.




Figure 2. The Clarence Moore Lands are a complicated split estate situation in the Loyalsock State Forest, including parts of the Lycoming, Loyalsock, and Schrader Creek watersheds.


Unique wetland biomes


Countless wetlands feed Lycoming Creek’s headwaters, providing a unique opportunity to observe aquatic flora and fauna beneath the forested canopy of Penn’s Woods. The US Fish and Wildlife Service (USFWS) explains their importance, as well as their precarious state:



“Wetlands provide a multitude of ecological, economic and social benefits. They provide habitat for fish, wildlife and plantsmany of which have a commercial or recreational valuerecharge groundwater, reduce flooding, provide clean drinking water, offer food and fiber, and support cultural and recreational activities. Unfortunately, over half of America’s wetlands have been lost since 1780, and wetland losses continue today. This highlights the urgent need for geospatial information on wetland extent, type, and change.”



The geospatial data referred to above is the National Wetland Inventory (NWI), which seeks to document all the wetlands in the United States, based primarily in aerial imagery. According to NWI data, there are 3,136 acres (4.9 square miles) of wetlands in the Lycoming Creek watershed. However, further field research is necessary to properly identify wetland boundaries, particularly in the case of ephemeral wetlands, for example, where the presence of aquatic plants help determine boundaries. All of this suggests that while there is every reason to believe the USFWS’ claim that over half of the nation’s wetlands have been lost since around the time of the Revolutionary War, it is believed the NWI discounts the total acreage.

A University of Vermont team developed another model for calculating wetlands, based primarily on, “2006-2008 leaf-off LiDAR data, 2005-2008 leaf-off orthoimagery, 2013 high-resolution land-cover data, and moderate-resolution predictive wetlands maps, incorporating topography, hydrological flow potential, and climate data.” This model calculates 6,943 wetlands acres (10.8 square miles) in the Lycoming Creek drainage, more than double the NWI’s estimated acreage.



Trails


Five trails traverse the Lycoming Creek watershed, crossing 152 miles total. This includes nearly 44 miles of the Loyalsock State Forest Cross-Country Ski Trail system south and east of the McIntyre Wild Area, suitable for hiking, biking, equestrian pursuits, and of course, cross-country skiing. The watershed also contains 33 miles of Bicycle PA Route J, which runs along Lycoming Creek from the confluence with the West Branch Susquehanna River on the southern end, all the way to the wetland border that feeds Lycoming Creek and neighboring Towanda Creek to the northeast. The watershed’s most popular trail may be the famous Old Loggers Path, a coveted backpacking route that meanders nearly 23 miles. The Hawkeye Cross-Country Ski Trail—frequented by hikers, bikers, and skiers—loops over seven miles in the northeastern corner of the watershed. Yet another watershed trail is the Lycoming Creek Bikeway, a mostly straight five-mile stretch from Hepburnville to the West Branch Susquehanna River.



Figure 3. Rock Run in Loyalsock State Forest’s McIntyre Wild Area. Photo by Ann Pinca.



Figure 4. A flyfisher casts in Lycoming Creek right beside Sheshequin Campground in Trout Run. Photo by Rebecca Johnson.



Figure 5. This wetland lies just beyond the northeastern boundary of the Lycoming Creek watershed and is similar to those feeding the headwaters of Rock Run near Devil’s Elbow Natural Area in Loyalsock State Forest. Photo by Shannon Smith.

Fracking comes to the Lycoming

The commercial oil and gas industry got its start in Pennsylvania in 1859 with the famous Drake Well, followed by a frenzy of drilling in the central and western portions of the state. The DEP has records of over 185,000 conventional oil and gas wells throughout the Commonwealth, and—because the industry preceded permitting requirements by almost a century—yearly estimates range between 480,000 and 760,000 conventional wells have punctured Pennsylvania’s surface. 

The Lycoming Creek watershed was further east than most of the conventional oil and gas pools, so it has seen very little conventional drilling. Of the 185,000 known well locations, only 25 (0.01%) are within the watershed. Of those, 11 (44%) have a status of “proposed but never materialized,” or “operator reported not drilled.” Eight wells (32%) are plugged, four (16%) have active status, one (four percent) is considered being in a regulatory inactive period, and one (four percent) is on the DEP’s orphan list—awaiting funding to be plugged properly.



Fracking boom


While drillers had long known about the Marcellus Shale, it wasn’t until 2004 that drilling in the formation became a profitable enterprise, through the combination of industrial-scale hydraulic fracturing and horizontal drilling. Soon thereafter, the Lycoming Creek watershed was no longer on the periphery of oil and gas exploration, but part of a densely drilled cluster of new unconventional wells in northeastern Pennsylvania.  



Fracking in the Lycoming Creek Watershed

View Full Size Map | Updated 3/1/2021 | Data Tutorial



The first unconventional well in the Lycoming Creek watershed was permitted by Range Resources at the Bobst Mountain Hunting Club on May 31, 2007, and drilling started less than two months later.

In the years that followed, 592 unconventional wells have been proposed for the watershed, 586 (99%) of which received permits, with 384 (65%) drilled as of June 28, 2021. Some wells had a short life, with 41 (10.6%) already plugged—a figure slightly higher than the statewide average of 8.7%. Fifteen operators have been active in the watershed.

As with the rest of Pennsylvania, the total number of drilled wells peaked in 2012, with 100 wells drilled that year. In the past seven years, the highest annual total was only one-fourth of that, with 25 wells drilled in 2019. However, these trends do not foretell an end to drilling in the region. The reduced number of wells drilled is offset by drilling each well more intensively, using five times as much water per well for hydraulic fracturing. 

Gas production has flooded markets, reducing gas prices and profit margins. At the very start of the Marcellus boom in October 2005, gas prices were $13.42 per million British Thermal Units (BTUs), but have fluctuated between $1.75 and $4.00 per million BTUs in recent years. Many of the 202 wells permitted but not drilled in the watershed are located on existing well pads and can easily be drilled and brought into production as market forces dictate. For these reasons, the area is unlikely to see an end to drilling, pipeline construction, truck convoys—and all the other ancillary activities—any time soon.




Figure 6. Active fracking operation in May 2021 on ARD Operating’s COP Tract 551 A well pad, originally planned by Anadarko E&P in 2014. Photo by Ted Auch.



Figure 7. This video was taken at the same site as Figure 6, capturing ARD Operating’s well pad and the incessant noise it makes during hydraulic fracturing activities. Video footage captured by Brook Lenker.



Figure 8. Permitting, drilling, and plugging summary of unconventional wells in the Lycoming Creek watershed by year. Data through June 28, 2021.


Figure 9. Proposed unconventional wells by current operators in the Lycoming Creek watershed. Data through June 28, 2021.  Note that wells that were proposed but not drilled are still associated with the original operator, which are not always still active in the watershed. 



Figure 10. FracTracker’s partners at LightHawk provided aerial assistance to fly our photographer over the Lycoming Creek watershed. This video offers a glimpse at the oil and gas industry’s expansion in the watershed, juxtaposed with houses, farms, forests, wetlands, and numerous waterways. FracTracker’s Ted Auch captured still images while LightHawk pilot David Hartnichek gathered video footage, captured May 2021.

TimeSlider of Bodine Mountain

On the right, we see imagery from June 2021, with a substantial number of well pads, impoundments, compressors, pipelines, and access roads. Imagery on the left is from June 2014, with significantly less infrastructure. Users can zoom, pan, and choose different dates to explore the impacts of the industry over time.


Violations


In the Lycoming Creek watershed, unconventional wells and the well pads they operate on have been issued 634 violations between 2008 and June 28, 2021. This works out to 1.65 violations per drilled well, considerably above the statewide average of 1.3 violations per well.  

 Most of the violations (545, or 86%) are considered to negatively impact environmental health and safety, with the remaining 89 (14%) assessed for administrative infractions. However, the distinction between the two categories is murky at best. For example, the most common administrative violation is, “pits and tanks not constructed with sufficient capacity to contain pollutional substances,” an infraction documented 18 times in the watershed—presenting obvious hazards to health, safety, and the environment. 

Altogether, there are 66 different violation codes cited within the watershed. The ten most frequent are seen in Figure 11.

For these 634 violations, the DEP has collected fines totaling $2,460,700 from four operators. Range Resources leads the way with $1,461,000 in fines, followed by Seneca Resources with $600,000, East Resources with $380,700, and Chief Oil & Gas with $19,000. For comparison, the average cost of drilling a single well in the Marcellus Shale is $8.3 million, according to 2017 financial data from a major operator in the region. At this rate, while assuming no inflation, the watershed will have to suffer 2,138 violations before the DEP’s penalties equal the cost of drilling and fracking one well.

Clearly, operators are not cowed by receiving violations, nor do they look at the occasional fine as anything more than the cost of doing business. It seems that in practice, the DEP’s regulatory role is chronicling the industry’s misdeeds, instead of protecting the environment and the people who live among the hundreds of wells in the area.



Figure 11. The ten most frequent violations for unconventional wells and well pads in the Lycoming Creek watershed through June 28, 2021.

Fracking’s aquatic impacts


The DEP maintains a statewide list of water resource sites. In the Lycoming Creek watershed, 76 out of 128 (59%) listed water resource facilities are associated with oil and gas activity, including 13 surface water withdrawal sites and 63 interconnections—large impoundments where water is collected and stored for future use. As excessive as these figures are, the state’s water resources data is incomplete. By examining aerial imagery, FracTracker found six impoundments adjacent to oil and gas operations that were not listed in the inventory. The DEP was aware of these facilities and provided data upon request. Multiacre lined impoundments can be identified from such imagery, but the inventory might be missing smaller withdrawal sites occluded from view by the tree canopy.



Lycoming Creek Watershed Water Usage

View Full Size Map | Updated 3/1/2021 | Data Tutorial




Overall, 259 wells reported using between 891,900 and 33,193,599 gallons of water as a base for their fracking chemical cocktail. 


These numbers only represent the water consumed for hydraulic fracturing and don’t include any water used for pipeline hydrostatic testing, dust suppression on dirt and gravel roads, or any other purpose. For example, the voluminous 33,193,599 gallons used to frack Alta Resources’ Mac North B-3H well pad represents only a fraction of its permitted capacity for fracking operations.


Figure 12. A lined impoundment that does not appear on DEP’s Water Resources inventory. Photo by Karen Edelstein.

FracFocus

The unconventional oil and gas industry dominates water extraction, distribution, and use throughout the watershed. The amount of water used per fracked well has increased dramatically over the years, according to data from the industry’s frack fluid registry, FracFocus.  

However, the registry is riddled with some obvious data inaccuracies—perhaps stemming from the fact that the registry is self-reported by the various operators.

For example, there are 272 well reports with latitude and longitude coordinates placing them inside the Lycoming Creek watershed, excluding wells where operators left the water usage field blank. There are some problematic data points with those remaining. 

Five wells reported a negative number of gallons used to stimulate wells, including four from Seneca Resources’ Gamble K well pad—with quantities ranging from -214.7 million to -1.18 billion gallons of water—and one well from EXCO Resources’ Emig Unit well pad that registered -859.0 million gallons. At the other end of the spectrum, eight wells reported water consumption over 100 million gallons, including four from Rockdale Marcellus’ Cochran well pad, two from Seneca Resources’ Gamble K well pad, and two from EXCO Resources’ Emig Unit well pad.  

As water consumption data of these 13 wells is obviously erroneous, they were excluded from the following analysis. 

These withdrawal allowances are truly staggering. 

Based on observations of consumptive use permit signs across the watershed, these water withdrawal limits are typical. Taking the 7.62 billion gallons per well pad average from Figure 15, this equates to about 716 billion gallons of permitted water consumption for the 94 well pads in the watershed that have at least one well with an active, regulatory inactive, or plugged well status. Given the average household consumes about 300 gallons of water per day—and that Pennsylvania has just over 5 million householdsthis volume is nearly equal to the entire residential consumption of the state for 628 days. If this is applied to each of the 125 proposed well pads, that figure rises to about 953 billion gallons, or a little less than the full capacity of Florida’s vast Lake Okeechobee.



Groundwater contamination


Contamination from spills and leaks can affect more than just surface water. In 2014, 75 water wells in Lycoming County—which includes most of the Lycoming Creek watershed—were tested for various contaminants by the United States Geologic Survey (USGS). Six wells with the highest methane concentrations were further analyzed for their ratio of chloride to bromide, with half of that smaller subset showing water chemistry indicative of mixing with oilfield brine. Although the study posited that it could be mixing deep in the aquifer, it did not mention the frenzied drilling in the region at the time of sampling.

Stemming from thousands of complaints across the Marcellus Shale region, there are 378 private water supplies where DEP determined the loss of water quality or quantity was because of oil and gas activities. The public isn’t provided with the exact location of these fouled wells due to privacy concerns of impacted residents, but it is known that 18 incidents occurred in municipalities wholly or partially within the Lycoming Creek watershed. 

According to Pennsylvania’s Act 13—an instrumental law governing various aspects of unconventional drilling in the state—oil and gas operators are presumed responsible for water wells negatively affected within 12 months and 2,500 feet of operations. Of course, the actual spread of a pollution plume depends on the characteristics of the aquifer itself, rather than definitions from Act 13, so it is possible that wells further than 2,500 feet from an incident could be negatively impacted—potentially years after the leak or spill occurred. 

Of the 18 determination letters issued by DEP, one occurred in Fox Township in Sullivan County, six in Liberty Township in Tioga County, and two in Union Township. In Lycoming County, Eldred Township received three, Hepburn Township got one, Jackson Township received two, and McNett Township got two.  

As previously mentioned, DEP also tracks violations of various state oil and gas regulations. The vast majority of incidents in the Lycoming Creek watershed resulted in an impact to surface or groundwater. Of the 634 total citations associated with unconventional wells and well pads: 41 (six percent) related to erosion and sedimentation concerns, which could harm aquatic life; 379 (60%) citations were for spills, leaks, or pollution discharges that degraded surface or groundwater; and 41 (six percent) were for other water issues. The remaining 173 (27%) violations were for various other shortcomings—most issued for improper handling of waste materials. Depending on what happened in the field to merit these violations, many of these incidents may also have had an impact on Pennsylvania’s waters.

Water is a defining characteristic for any watershed. From the expansive wetlands uphill to the brisk trout streams around Rock Run and the McIntyre Wild Area, down to the steep ravines of the Lycoming Creek, water makes this area special. In the rush to accommodate the thirsty and pollutive oil and gas industry, the state has allowed vast portions of the region to be spoiled. 


Figure 13. Water consumption per well in the Lycoming Creek watershed has increased nearly five-fold in less than a decade, from 3,679,467 gallons in 2011 to 17,512,356 gallons in 2020, according to FracFocus data downloaded April 28, 2021.



Figure 14. Water consumption postings for six ARD (Alta Resources Development) well pads. Of the five visible signs, water consumption was permitted at 3 to 4 million gallons per pad, per day, for over five years. Photo by Erica Jackson.



Figure 15. The five visible signs in Figure 14 show that well pads are permitted to withdraw over 38.1 billion gallons of water, or an average of 7.62 billion gallons per well pad.

Waste

When fossil fuel companies portray fracked gas as “clean,” they better hope the public doesn’t notice the enormous stream of liquid and solid waste. In the Lycoming Creek watershed, operators reported 9,064,377 barrels (380.7 million gallons) of liquid waste and 416,248 tons of solid waste were generated in the drainage between January 2011 and April 2021.

As a point of comparison, this volume of liquid waste—from 362 wells in the watershed—is equal to about 577 Olympic-sized swimming pools, or an acre of land covered in toxic waste 1,168 feet deep. In terms of solid waste, disposal of drill cuttings and other substances equals the garbage left behind after 8,672 Kenny Chesney concertslike having about 2.3 concerts every day. This estimation is based on 330 wells reporting solid waste generation in the watershed.



Lycoming Creek Waste

View Full Size Map | Updated 3/1/2021 | Data Tutorial



Problems with oil & gas waste


To compare chemical-laden flowback fluid and radioactive brines to pool water based on volume alone does little to communicate the dangers of liquid waste—just as comparing drill cuttings and filter socks to beer cans and food wrappers is insufficient.

Oil and gas waste is much more harmful to human health and the environment than normal household refuse. 

Flowback fluid includes a portion of the liquid injected into a wellbore during hydraulic fracturing. As presented in the Water section, the volume of water injected into each well averaged over 17.5 million gallons in 2020. The industry’s chemical registry site FracFocus estimates that between one-half percent and two percent of the injected volumes are composed of various chemical additives. To get an accurate estimate of the volumes of these chemicals, it is necessary to add the water volume and the non-water volume together, then calculate the above range. Unfortunately, only 18 out of the 259 wells in the watershed that provide believable water volumes also provide non-water volumes.

Approximately 25% of these chemical additives could cause cancer, according to recent studies—while others may inflict skin or respiratory damage.

What is now the Marcellus Shale formation was an ancient, shallow seabed around 384 million years ago in the Middle Devonian epoch. As this sea dried out, organic content concentrated, which would eventually be the source of hydrocarbon gasses. Other components saturated with this organic matter—including barium, benzene, chloride, radium, thallium, and more. These contaminants resurface with the oil and gas, either dissolved or suspended in fluid waste called brine. Brine will continue to rise to the surface in significant quantities during a well’s operating lifespan.

Drill cuttings comprise most of the solid waste from oil and gas sites in Pennsylvania. As with brine, these cuttings contain concentrations of the same toxic and radioactive chemicals. Whether used onsite or sent to landfills, these cuttings are problematic when precipitation causes contaminants to leach, posing risks to aquifers and surface waters. Traditionally, landfill leachate is taken to water treatment facilities. However, these facilities are ill-equipped to handle oil and gas waste and cannot effectively remove the contaminant load.


What happens to the waste?


In 2019, FracTracker analyzed and mapped the destination of Pennsylvania’s oil and gas waste from 2011 through 2018 in a project with Earthworks. Most waste stays in Pennsylvania and neighboring states, but this still requires thousands of heavy tankers travelling tens or even hundreds of miles to reach their destinations. The industry ships some waste as far as Texas, Utah, and Idaho, despite enormous transportation costs. The project underscored Pennsylvania’s incapacity to deal with this noxious and problematic waste stream.

This waste is handled in various ways, with about 54% reused at other fracking sites, 30% sent to residual waste processing facilities, and ten percent disposed in injection wells. Most of the remaining six percent is sent to surface impoundments—but it is not clear what happens to the waste from there.

For solid waste, 56% goes to landfills, 34% is reused at well pads, and eight percent goes to residual waste processing facilities—with the rest handled by other methods.

There is record of 124 waste facilities in the Lycoming Creek watershed, including 121 well pads, one landfill, one residual waste processing facility, and one temporary storage site, pending future reuse or disposal.

The Clean Earth facility—a landfill and drilling mud processing facility—has taken 157,457 tons of solid oil and gas waste and 315 barrels of liquid waste from 2013 to 2016. Between 2012 and 2013, the facility operated as Clean Streams, LLC, and accepted 10,610 additional tons of solid waste and 513,894 barrels of liquid waste. At the watershed’s northern border in Tioga County is Rockdale Marcellus’ Harer Beneficial Reuse facility. Beech Resources proposed an additional facility in currently forested land across US Highway 15 from the Clean Earth facilities.


Figure 16. Estimated chemical components of fracking fluid for the 18 wells in the Lycoming Creek watershed that provide non-water volumes. The minimum estimate is 965,434 gallons, based on 0.5% chemical concentrations, while the maximum estimate is 3,861,737 gallons, based on two percent concentrations.



Figure 17. Disposition method of liquid waste from unconventional wells in Pennsylvania in 2020, based on DEP waste reports. The total liquid waste volume was 61,832,431 barrels, or about 2.6 billion gallons.



Figure 18. Disposition of solid waste from unconventional wells in Pennsylvania in 2020. Total statewide mass was 1,397,678 tons.


Mountains of waste

As drilling continues in the Lycoming Creek watershed and nearby, enormous waste streams will continue to be a conundrum. Even reused material might contaminate the land, streams, and groundwater, and harm human health. As wells are fracked with ever-increasing volumes of fluid, they will return ever-increasing volumes of waste, requiring more and more resources to process.



To see more footage & photos from this project:





Field Day Description

On a sunny and brisk Thursday in May 2021, a group of 11 FracTracker staff members and volunteers gathered in the Lycoming watershed outside Williamsport to find and document unconventional oil and gas activities and infrastructure.

This field day was in part informed by insights from members of the Responsible Drilling Alliance, a regional organization, and the knowledge and experiences of Peter Petokas, a biology and environmental science professor at Lycoming College who has explored and kept tabs on the area’s hellbender habitats for years.

FracTracker’s Matt Kelso used DEP data to develop maps illustrating various infrastructure, including 384 drilled wells on 96 different pads, nine compressor and metering stations, and 67 water facilities related to oil and gas extractionincluding 12 surface water withdrawal sites and 55 storage reservoirs. He then divided an area of about 272 square miles into five sections, and at least two participants explored each section. 

Using Matt’s maps, FracTracker’s mobile app, cameras, decibel and distance measuring apps, and other tools, the group visited and documented various infrastructure—while observing significant truck traffic and other evidence of the industry’s pervasiveness. As the groups navigated rural back roads and small state highways, many were struck by the juxtaposition of a bucolic landscape of rolling hills, green forests, and peaceful farmland with imposing, pollutive, and sometimes noisy and smelly fracking sites.

Additional fieldwork was conducted with assistance from Earthworks’ staff and their FLIR technology, as well as aerial photography and videography captured by FracTracker’s Ted Auch—with flying assistance from partners at LightHawk.

FracTracker then used the geolocated photos, video, and site-specific descriptionscoupled with variable datasets, research, and other literatureto compile this Story Atlas, an educational tool for concerned residents of the Lycoming Creek watershed, and an insightful resource for others living near fracking activity. 

The mobile app reports from this reconnaissanceand from locations across the U.S.are visible on the FracTracker mobile app, available for download on your iOS or Android device, or by visiting the web app at https://app.fractracker.org/.



Figure 19. The field day volunteers gathered before exploring the Lycoming Creek watershed. Photo by Shannon Smith, FracTracker Alliance.



Figure 20. This FLIR footage was recorded by Earthworks at NFG Midstream Trout Run LLC’s Hagerman gas processing and metering facility in Trout Run, Pennsylvania in June 2021. This recording captures visible air pollution from combustion and fugitive emissions at the facility.

Lycoming Creek Photo Map

View Full Size Map | Updated 3/1/2021 | Data Tutorial


Local insights

Much has changed in the Lycoming watershed since unconventional oil and gas exploration ramped up over the last 15 years—in terms of ecological deterioration, as well as the deterioration of locals’ attitudes toward the industry.

At first welcomed by many as a chance for financial gain through mineral rights leasing, some community members—especially those whose families have lived in the area for generations—watched their land drastically degenerated and their sovereign land rights eclipsed by industrial encroachment they did not foresee.

Between 2011 and 2018, unconventional oil and gas drilling—notably, hydraulic fracturing—transformed sections of forest and farmland into comparatively gritty industrial zones. 

“They were assured that, after the drilling phase was completed, they would hardly know the wells were there. They were also told that they had to decide quickly, and that everyone around them had already leased. A local anti-drilling advocacy group tried to warn them, but many locals distrusted environmentalists.”

As author and professor Colin Jerolmack references in his recent article for The New Republic, some landowners who willingly leased their mineral rights to oil and gas companies now view the industry’s activities with consternation. Incessant noise, traffic congestion, and foul odors have tarnished the once peaceful countryside. Even more disconcerting for property owners, the industry often operates however they please, with little consultation or consent—making some feel that they have lost their decision-making power and agency.

This disaffection potentially makes room for environmentalists to find common ground with those who embraced the industry, couched not in anti-fracking sentiments—and not necessarily in the essential need to mitigate the climate crisis—but in their shared love for the land.

Another big ecological concern in the punctured watershed centers on the fragile Eastern hellbender populations. Five conservation groups filed a lawsuit on July 1, 2021, challenging a 2019 decision to deny the amphibian protection under the Endangered Species Act. 

“The hellbender is an ancient species that deserves better protections,” said Betsy Nicholas, Executive Director of Waterkeepers Chesapeake, one of the groups involved in the lawsuit. “The hellbender reminds us that we all live downstream. As the upstream tributaries are disturbed and polluted, the hellbender disappears. And the same pollution flows downstream to our populated areas, threatening the use and enjoyment of our rivers. We need to pay attention to what happens to the hellbender.”

Once widespread across 15 states, Eastern hellbenders have been eliminated from most of their historic range and continue to face many threats, including low water flow and poor water quality, increasing water pollution, deforestation, residential development, mining—and of course—oil and gas development. 

Peter Petokas has been studying Eastern hellbender populations in the Lycoming watershed for 16 years. He is very concerned for the future of the species in the watershed, which holds one of the richest populations in Pennsylvania, concentrated in one of the few remaining streams with optimal water quality. Even so, a drought in 2020 left the area’s waterways with very low flows, which constrains the hellbender’s habitat and stresses the population. Because they lack protection under endangered species status, agencies may be remiss to implement enhanced regulations on discharges and withdrawals in the basin. Petokas remains hopeful that the pending lawsuit against the US Fish & Wildlife Service will restart an assessment for federal endangered/threatened species protection.

“If there’s ever a spill of anything, it’s the end, it would wipe out one of the best hellbender populations in Pennsylvania,” Petokas said.

Besides concerns about low water levels, the watershed is losing tree cover along streams to invasive insects and erosion. Riparian species like ash, sycamore, and river birches provide shade and keep the water cool enough for hellbenders to thrive. 


Figure 21. A pipeline path cuts through forest in McNett Township, Lycoming County. Photo by Shannon Smith.

What does the future hold?

“An ecological threshold is the tipping point at which incremental changes or disturbances cause drastic or disproportionate results … When you remove land past the ecological threshold, a species no longer has the options to tolerate the disturbance. Beyond this point, the losses become disproportionately large.” [i]

In addition to creating new stressors on aquatic life, natural gas development in the Lycoming Creek watershed—particularly land use changes—affect bird communities. The area contains nesting habitat for many species or is an important stopover during seasonal migrations. Forest interior birds, like the cerulean warbler, are most vulnerable. They need pristine habitat.

A watch list of birds threatened by gas development in northeastern Pennsylvania features several warblers, thrushes, vireos, and woodpeckers. Nearly half of the birds are on a conservation priority list, underscoring that fracking jeopardizes species already at risk. All bird species on the watch list are known to nest in or visit the Lycoming Creek watershed.

The noise, noxious fumes, and land clearing correspondent with fracked gas takes a toll on human communities, too. 

A loud and obtrusive competitor has complicated access to unfettered public forests. This troublesome tenant strains local resourcesand relationships. Rural qualities erode like the overburdened roads.

According to Colin Jerolmack—when writing about this very place in Up to Heaven and Down to Hellone’s decision to lease, “… alienates others’ rights to liberty and property.” [ii] This paradigm, “prevents many community stakeholders from having a say in decisions even though they absorb the externalities.” [iii]

The externalities here and in other gas and oilfields are consequential for the entire global community. “It seems increasingly apparent that to prevent catastrophic global warming, society must decarbonize rapidly,” [iv] says Jerolmack. 

Burning more methane will not get us to that goal. Words of wisdom flow from native sources: 

“At the height of battles over strip mining for coal, back in the 70s, it seemed unimaginable that we would knowingly make the same mistakes again with potential for doing such harm,” says Tim Palmer, former Lycoming County resident and author of Twilight of the Hemlocks and Beeches, “but here we are with another fossil-fuel industry leaving its mark that may last for generations on our land, waters, and communities.”  

“Fight like hell to mitigate the harm … while trying to stop the industry’s spread,” [v] says Ralph Kisberg, an activist from Williamsport. People are making a difference, from afar and closer to home, and Kisberg is optimistic. “I doubt I’ll live to see a clean energy world, but maybe a clean energy U.S. economy…” [vi]

Clean and restorative, like the promise of a cool mountain stream.


Figure 22. Miner’s Run, a stream in the Lycoming Creek watershed. Photo by Tim Palmer.

THANKS TO…



Thank you to all the inspiring and persistent environmental stewards who have contributed to the creation of this digital atlas:


Project funding provided by:


SOURCES

Ohio, West Virginia, Pennsylvania Fracking Story Map

FracTracker’s aerial survey of unconventional oil & gas infrastructure and activities in northeast PA to southern OH and central WV

Channels of Life: The Gulf Coast Buildout in Texas

It’s been a little over a year since I visited the Texas Gulf Coast to document the oil, gas, and petrochemical landscape with our partners at LightHawk and Scott Humphries, an amazing pilot and Houston native.

Much has happened since then – in regard to and because of – the Gulf Coast’s petrochemical industry.

The fossil fuel landscape along the Gulf Coast is broad, and its impact is heavy.

The area has seen a massive build out over the last five years. New plastics and steel manufacturing facilities and pipelines from the Permian Basin that transport crude to ever-expanding tank farms and marine terminals – all with the blessings of local economic development groups and local government, despite known present and potential hazards.

As these developments continue, communities and workers pay the price. An incident in early December, 2020 left workers injured after a condensate fire at a Citgo tank farm in Corpus Christi. Before that, a pipeline explosion on August 20th in the Corpus Christi Ship Channel resulted in four deaths, with only two of those bodies recovered.

Channels of Life, below, is a short video looking at what is already on the ground, and what is on the horizon. Whether you are pleasure-boating in the channels or driving down the highway, you only see the edge of industrial sprawl that already exists. The depth of the incursion is not visible from the ground. Further down in an interactive Story Map, we give you a rare look from above, while pinpointing various incidents and facilities of concern. Partnering with LightHawk, we flew from Port Aransas, up the La Quinta Channel to the Nueces Delta, and ending at Refinery Row, giving you a bird’s-eye view of the sprawling fossil fuel landscape.

How much more industrial saturation can the Coastal Bend’s public health and ecosystem withstand before it is all sacrificed?

Is it destined to become a sacrifice zone for increasing corporate wealth and prestige?

 

 

Channels of Life

In many parts of Texas – as well as in Louisiana and New Mexico – oil, gas, and petrochemical facilities abut schools, backyards, and playgrounds. The Gulf Coast contains 95% of the country’s ethylene capacity and roughly half of the country’s petroleum refining and natural gas processing capacity. This development has propelled a new wave of petroleum and petrochemical infrastructure in recent years. There are 129 planned or recently completed petrochemical facilities in TX and LA alone.

This buildout has enormous consequences for the country’s greenhouse gas emissions, including intensifying climate change; increasing production of (often radioactive) waste and the need for its disposal; and discharging dangerous pollution into frontline communities where health has already been compromised by industry activities.

As the sacrifice builds and the losses mount, economic development corporations advertise the area as prime real estate for more facilities and infrastructure – even as markets steadily move away from fossil fuels. Exports are a tenuous lifeline for an industry drowning in an oversupply of oil and gas, but advocates like the Port of Corpus Christi Authority insist on proposing, financing, and constructing new crude oil and liquefied natural gas (LNG) export terminals along the Gulf Coast, including the BlueWater and GulfLink terminals.

Even with access to global markets, the outlook for this Gulf Coast petrochemical expansion doesn’t look great. Countries that planned to import the US’ fossil fuels are withdrawing interest, citing climate concerns. Major projects are being abandoned, like the petrochemical facility Project Falcon that SABIC had planned to build near Aransas Pass. Frontline communities that have suffered devastating health impacts from the industry for too long are calling out environmental racism and causing major delays for new facilities.

These Texan sites are further captured in the Story Map below, as are the footprints of countless other existing and proposed petrochemical infrastructure sites, from the frac sand mines south of San Antonio down into Corpus Christi Bay, the mushrooming industry along the La Quinta Channel, up the Gulf Coast to Freeport, and finally along the always hectic Houston Ship Channel that empties out into Galveston Bay.

Group shot in front of airplane

Left to Right: Corpus Christi native and Coastal Alliance to Protect Our Environment (CAPE) member Dewey Magee, FracTracker Alliance’s Ted Auch, and LightHawk pilot Scott Humphries stand outside Scott’s Beechcraft Bonanza A-36 at McCampbell-Porter Airport in Aransas Pass, TX, November 11th, 2019. Photo by Errol Summerlin

 

Skyline landscape shot of Corpus Christi, TX

The View of Corpus Christi’s Petrochemical Corridor along La Quinta Channel and Tule Lake Shipping Channel from 200’ above McCampbell-Porter Airport in Aransas Pass, TX, November 11th, 2019. Photo by Ted Auch, FracTracker Alliance

 

I reached out to pilot and native Houstonian Scott Humphries for his thoughts on what he expected and what he gleaned from our flight. He wrote the following:

Question #1: What about our proposed flight interested you as a Texan and/or Houstonian – or just more generally – what interested you about this mission?

I’ve always tried to be environmentally conscious, and always try to have, “think globally, act locally” rummaging around in my head, but this mission (and affiliating with LightHawk generally) presented an opportunity for me to try to (hopefully) have a little more impact than just personally recycling, outlawing Styrofoam cups at our office, etc. Separately, as a longtime Houstonian, I’ve always been proud to live and work in what many refer to as the “Energy Capital of the World.” This mission seemed a useful way to do some small part to help make sure that title continues to be held responsibly.

Question #2: After conducting the flights, or as they were happening, did you learn anything, or have any thoughts that surprised you or realizations about anything particular?

I have flown along the Gulf Coast (including to/from Houston/Corpus Christi) many, many times, and if you’d asked me before this mission, I would have said, ‘Sure, there’s a decent amount of industry along that part of the coast.’ What surprised me while we were flying was two things: (1) there’s not just a decent amount of industry along that part of the coast; rather, along that route, even flying low, you’re rarely – if ever – out of sight of a significant facility of some kind, and (2) the size of the facilities – in other circumstances I’d have been flying much higher and wouldn’t get a good sense of the size of the pads.  Flying as we were at just over 1000′, it was striking how massive the various plants were, both in Corpus Christi Bay and along the coast.

Another perspective on this flight and the area we flew over comes from Kevin Sims, Aransas Bay Birding Charters Operator whose Whooping Crane and Pink Spoonbill photos we feature in the story map below. Kevin has been plying the waters in and around Aransas Wildlife Refuge since 1972, and when I contacted him about using some of his photos, he told me the following:

“We need the desalination plants, but the planned discharge points are going to cripple our ecology and the business that rely on it for tourism. They could’ve discharged offshore, but instead they are discharging into the bay, and if it gets too salty the crab populations will plummet, and everything around here depends on crabs and shrimp. If we have a constant influx of brine it could really cripple us. I went to a fantastic meeting from Texas A&M, and their science told them that if red fish larvae migrated into the [Aransas Pass] shipping channel and hit a wall of salty water, they wouldn’t go further, and their population would crash. But despite these facts, they’ve chosen to discharge into the La Quinta Channel, and that is bad news! They were having fairly regular meetings on all of these proposals prior to COVID, but once COVID hit, they went all remote, and less people knew when the meetings were, and the meeting details weren’t widely disseminated … So, the next thing we knew, everything was passed, and they’re gonna [sic] go ahead and do [all of] it. 

My perspective comes from a lifetime of fishing and observing the Whooping Crane, and watching them progress from 157 eighteen years ago, to 507 at the present time. Well, I feel this will threaten an endangered species that they’ve been trying to bring back from the brink of extinction since the 1940s. I can remember my dad showing me the cranes in the mid-70s, and there were only 52-55. All of the projects you are mapping have the potential to decimate all the progress made, not to mention money spent on Whooping Crane recovery. From my perspective, it’s a catch-22, ‘cause [sic] the big cities take the water out of the river, and they don’t have the inflows into the bays that they did in the past. We also don’t have the rains that we used to have. The desalination plants would relieve some of that pressure if they would just put that brine offshore. The other species of concern to my industry is the Pink Spoonbills, but the Whooping Crane is the main draw.”

Channels of Life: The Gulf Coast Buildout in TX

A Story Map

This Story Map illustrates the impacts of oil and gas infrastructure from San Antonio down to Corpus Christi, and then up the Gulf Coast to Houston.

The map displays aerial photographs of infrastructure, from frac sand mines and refineries, to chemical plants and offshore drill rig construction sites. This map includes CO2 emissions from oil and gas infrastructure from 2010 – 2018 (weighted by total CO2 during this period in orange), and/or oil refineries and their myriad products (weighted by capacity in black [barrels/day oil equivalents]).

The Story Map also presents detailed information and locations for proposed petrochemical infrastructure in the Corpus Christi Bay region, courtesy of Errol Summerlin and our partners at Coastal Alliance to Protect Our Environment (CAPE). These proposals include dredging projects needed to accommodate more traffic from larger tanker ships, as well as desalination facilities that would collectively intake 758 million gallons of Corpus Christi Bay water each day, and discharge 507 million gallons of brine per day, with an average of 95 and 64 million gallons of desalinated water produced daily, respectively.

The perforated yellow line is the flight path we took with our LightHawk partners. When the viewer scrolls into any given region, they will see SkyTruth incident alerts within five miles of our flight path. The two examples cited at the beginning of this article are just a couple of the nearly 760 such incidents in just the Corpus Christi Shipping Channel since 2011, according to data provided by SkyTruth.

The most recent data in this map is Whooping Crane locations and number counts in TX as of November 2020, courtesy of The Cornell Lab of Ornithology’s eBird data portal. This data speaks to the concerns of Mr. Sims and many of his colleagues who rely on the Whooping Crane’s attraction to birders internationally, and it also highlights that the projects photographed and in the works across Corpus Christi Bay will not just negatively affect the human communities, but will have far reaching impacts on the ecosystems of the western Gulf, and the industries that have relied on these ecosystems for all manner of ecosystems services.

We recommend viewing this map in full screen

 

Looking forward

Decades of oil and gas development have created a dependency on extractive industries, which has in turn hindered community health and stability.

The Port of Corpus Christi’s controversial dock expansion and Harbor Bridge replacement project at the southern end of Refinery Row has taken over community land and eclipsed their fight to protect their neighborhoods and their public health. Even after an environmental review, the preferred route cuts through these neighborhoods that are surrounded by industry, interstates, and waste treatment facilities – isolated from other residences, and subjected to heavy pollution, noise, and constant hazard.

But with interest and investments declining in the fossil fuel industry and overproduction keeping prices low, the future of the Gulf Coast, its people, environment, and industrial landscape is uncertain – but resistance to extractive industry is strong.

Several activists and environmental coalitions are fighting this project and the industrial onslaught for the health of their communities. For more information on how to support their vision, visit our friends at Coastal Alliance to Protect our Environment (CAPE) and Texas Environmental Justice Advocacy Services (TEJAS).

 

Thank You

This video, Story Map and article were produced with much gratitude and appreciation for our partners at LightHawk, as well as the support and resources of Scott Humphries, Kevin Sims, and Errol Summerlin.


Support this work

Stay in the know

A New, Extensive Platform for Fracking Imagery

by Ted Auch, FracTracker Great Lakes Program Coordinator, and Rebecca Johnson, Communications & Administrative Specialist

FracTracker is pleased to release our improved multimedia platform of fracking imagery for your convenient use. You can easily view, download, and share photos and videos of oil, gas, and petrochemical impacts. We’ve made it easy for you to find what you need within over 1,600 photos, GIFs, and videos of the various aspects of fossil fuel industries and activities. All media are free to download and use for all visitors, and the collection will only expand as our work continues!

 

 

 

 “The aeroplane has unveiled for us the true face of the earth.” by French writer and aviator Antoine de Saint-Exupéry author of Le Petit Prince (The Little Prince)

 

Ted Auch, FracTracker Great Lakes Program Coordinator:

It was nearly five years ago on a beautiful Wednesday morning that I met Paul Feezel, a concerned citizen of Carroll County, Ohio, and Cleveland Museum of Natural History’s David Beach at the Carroll County-Tolson Airport (40.5616667, -81.0780833). The occasion was a flight with pilot Mike Stich to see what the Fracking Boom had done to Carroll and neighboring counties.

The aspect of the industry that I came away from that flight most worried about was the hundreds of miles of pipelines we saw connecting well pad to well pad and meandering on downstream to processing facilities. These pipelines took such circuitous routes between pads that everyone in the plane was scratching their heads, wondering how such routes made any financial sense for the operators to get their raw product to market.

Ever since that flight, I have spent a significant chunk of my time at FracTracker mapping the extent of these so-called gas “gathering pipelines” across Ohio, West Virginia, and Pennsylvania. I remain as flummoxed as I was on that day how such a hastily laid and poorly regulated network of pipelines makes sense. More recently, I have been wondering what the cumulative impact of these non-FERC-regulated pipelines has been on forests, wetlands, and the remaining agriculture in the region.

We have flown over this area several more times since that initial flight, with pilots volunteering their time to navigate planes provided by our excellent partners at LightHawk. As I wrote a little over two years ago:

“… you can’t really understand or appreciate the enormity, heterogeneity, and complexity of the unconventional oil and gas industry’s impact unless you look at the landscape from the cockpit of a Cessna 172. This vantage point allows you to see the grandeur and nuance of all things beautiful and humbling. Conversely, and unfortunately more to the point of what I’ve seen in the last year, a Cessna allows one to really absorb the extent, degree, and intensity of all things destructive. I’ve had the opportunity to hop on board the planes of some amazing pilots, like Dave Warner, a forester formerly of Shanks, West Virginia … Tim Jacobson, Esq., out of La Crosse, Wisconsin, northern Illinois retired commodity and tree farmer Doug Harford, and Target corporate jet pilot Fred Muskol, out of the Twin Cities area of Minnesota.”

Frac sand mine impoundment pond in Wedron, IL, 2018. Photo by Ted Auch.

Frac sand mine impoundment pond in Wedron, IL, 2018. Photo by Ted Auch, with aerial assistance from Lighthawk.

I wrote the “Bird’s-Eye-View” piece in August 2018, and since then we’ve made additional flights with our LightHawk partners, including a harrowing flight over Pine Creek State Park in Pennsylvania last May, part of our “Wilderness Lost” digital atlas series that now includes a similar project for the adjoining Loyalsock Creek.

The May 2019 flight was exhilarating to say the least – and thanks to the skills of our pilot Steve Kent, we executed the flight and extracted some powerful imagery that was three months later appended during better flying conditions with pilot Bob Keller. This flight was notable because the cloud ceiling was around 2,400 feet, and some peaks we were flying over and around were in excess of 1,200 feet, which gave us very little room to maneuver, at times forcing us to fly down into valleys to avoid the clouds. This flight also was a great opportunity for me and Steve to practice our communication, given that we were flying so low and slow, which meant that Steve would basically give me a ten-second slot to open my window, lean out, and shoot, while he was banking around the site of interest. Unlike other flights – including the subsequent flight in the Pine Creek – we did not have any opportunities to fly around infrastructure more than once, given how volatile the cloud ceiling was, and that if there was an opening that would allow us to move laterally, we had to take it.

Between our Pine Creek flights and that initial Carroll County aerial tour, we’ve compiled literally thousands of high-quality and illustrative images of the Hydraulic Fracturing Industrial Complex. When we say “hydraulic fracturing” – or “fracking” – we are not simply referring to drill rigs and frack pads, like the industry would limit us to in our analysis, but rather all manner of activities and infrastructure, to include drill rigs and pads – but also pipelines, waste disposal sites, processing plants, and frac sand mining activities, from the aforementioned forests of northeastern Pennsylvania, to Texas’ Gulf Coast. To this point, several authors have used our imagery, such as Paul Bogard and Tom Pearson, the Proceedings of the National Academy of Sciences (PNAS), Yale Environment 360, Oil Change International, the Anthropology Magazine SAPIENS, etc.

Since COVID-19 brought everything to a halt, my colleague Rebecca Johnson and I have been working to organize these images, migrating our older and more cumbersome inventory to the image and video hosting website Flickr, where we could more appropriately catalog, group, and map these images.

Please make use of this resource and keep fighting for a more just energy future.

 

Steel plants in Detroit, MI. Photo by Ted Auch, FracTracker Alliance, with aerial assistance from Lighthawk.

 

Rebecca Johnson, Communications & Administrative Specialist

I began working with FracTracker in May 2019, coming in with a new and relatively limited perspective on the energy landscape, compared to Ted’s, my partner in this undertaking, who has spent years – from the ground and from above – capturing this expansion, its degradation, and the challenges it presents. After seeing the collection of Ted’s and others’ pictures on our website, I knew we needed to amplify our efforts in graphic documentation, in order for more people to see and feel what we are collectively up against.

This task was not taken lightly. FracTracker’s imagery backlog was daunting, to say the least. I scrolled through countless pictures and videos of different aspects of fossil fuel infrastructure and activity until my eyes glazed over. I had no idea the extent of the industry landscape and its effects – and so I had no idea where to even begin. The collection was immense, but the need to get more eyes on these revealing depictions was even bigger.

How was best to expose and illuminate the extensive buildout of and degradation from these resource-intensive, extractive industries?

Cataloguing began with the frac sand industry, and I slowly pieced together the breadth and depth of resource extraction. The aerial snapshots and panoramic captures of enormous mines, immense sand piles, and vast, sandy, slurry ponds connected by looming conveyors and miles of train tracks created a twisting path through my mind, traversing the various stages of extraction to production, through landscapes wrought with reckless human consumption. But frac sand is only one starting point in the onslaught, is only an upstream activity that sets the stage for further ruin downstream, with oil and gas extraction, petrochemical and plastic production, and various types of pollution and erroneous waste disposal from all these activities – not to mention the waste and pollution following human consumption, when we think we are “done” with a material.

As I sifted through images, the dots started connecting, and what started as a simple list of subjects quickly became an outline of what our country’s communities and environment were up against. Navigating through the picture hoard, Ted and I regularly discussed the people he had met while capturing these shots.

He spoke of friends he has made along the way – people in communities that had endured this buildout, seeing their lands chipped away, their natural corridors disconnected, and their waterways depleted or entirely consumed to make room for more industrial sites. It had compelled some of them to leave their homes, and some were even forced to abandon their sacred lands, left only with the lasting, heartbreaking memory of seeing it sullied beyond recognition and repair.

 

Detroit residents stand in front of a Marathon Oil refinery in southwest Detroit, MI, 2020. Photo by Ted Auch.

Detroit residents Doug Wood and Theresa Landrum stand in front of a Marathon Oil refinery in southwest Detroit, MI, 2020. Photo by Ted Auch, FracTracker Alliance.

 

This realization lead to our stepwise sorting of imagery by these industries and activities to include the impacts and hazards to communities, culture, and livelihoods, already endured, happening currently, and looming ominously in the future. It’s easy to see the negative alterations from a bird’s-eye view, with the tainted landscape laid out below, punctured by ugly facilities and marred by indiscriminate ruin. It is another, more emotional thing to connect these scenes to those living in them, to the livelihoods dissolved and the generational homes displaced. Farmers have seen their lands infringed upon, their soils tainted and their waters poisoned. Communities have witnessed their air quality deteriorate, their children and friends fall sick, and their neighborhoods empty, at the expense of these industries. An often-overlooked aspect of extraction is those who bear its initial ramifications in their own communities.

At this point, we’ve winnowed our vast trove of imagery down to over 1,600 images across 46 albums. After weeding through this extensive catalog to identify our most powerful snapshots, we thought it would be appropriate to present the first iteration of this over five-month project to our audience and collaborators, with the hopes of better informing/illustrating your work.

With our migration to Flickr, I hope more eyes find this imagery, explore our collections, and follow the connections from album to album, to better understand the effects of fossil fuel activities. Whether it is the withered landscapes, the depleted environments, or the fragmented lives that speak to the viewer most, it is important to remember what has been endured to procure these resources, and what it will take to move to a cleaner, more just energy landscape.

In the event some of you were not aware of certain aspects of the industry, please take this opportunity to tour these albums and familiarize yourself with the myriad infrastructure and impacts of fracking.

Navigate to the Collections page to see FracTracker’s imagery convey a story through the albums grouped there – such as exploring the buildout through the Infrastructure & Transportation Collection, or the Plastics & Petrochemicals Collection. Visit the Albums page to see snapshots sorted by specific types of facilities, like Frac Sand Mining and Pipelines, or by specific projects, like Endless Effects: the Loyalsock Creek Watershed Project. Once you click on a photo, you can view its location on a map.

 

 

A primary source of inspiration for this aerial photography endeavor is the late Bill Hughes out of Wetzel County, West Virginia, who left us in March 2019. Bill was a force of nature in West Virginia’s documentation, with his camera and local know-how, the fracking industry’s negligence, and the fact that they seemed to run roughshod over his beloved state’s beautiful landscape. As our Executive Director Brook Lenker wrote following Bill’s death:

“Just taking pictures was not enough. Context was needed. Bill interpreted each picture – explaining the location, thing or activity, and significance of every image. Did it represent a threat to our water, air, or land? When did it happen? What happened before and after? Did it show a short- or long-term problem? Should state regulatory agencies see it to become better informed? Dissemination followed in many forms: tours of the gas fields; power point presentations to groups in five states; op-ed pieces written for news media; countless responses to questions and inquiries; even blogs and photo essays for various websites. Ceaseless Bill never stopped caring. Maybe Bill Hughes should be an official emblem for Earth Day – a humble, faithful man of modest proportions, spreading the stewardship imperative from a little electric car. Hitch a ride, follow his lead, and, like Bill, always tell it like it is.”

We hope that our work in the air and on the ground photographing industry impacts would make Bill proud. We will continuously update these Flickr albums, and offer as much background and locational data as possible to facilitate an unsurpassed level of depth and breadth for all users.

 

Additional Readings:

Lenker, B. “An Earth Day Tribute to Bill Hughes”, April 22nd, 2019, https://www.fractracker.org/2019/04/earth-day-tribute-bill-hughes/

Auch, T. “Documenting Fracking Impacts: A Yearlong Tour from a Bird’s-Eye-View”, August 8th, 2018, https://www.fractracker.org/2018/08/birds-eye-view-fracking/

FracTracker and Earthworks “Endless Effects: A Digital Atlas Exploring the Environmental Impacts of a Decade of Unconventional Natural Gas Extraction in the Loyalsock Creek Watershed”, August, 2020, https://www.fractracker.org/projects/the-loyalsock-watershed-project/

FracTracker and Earthworks “Wildness Lost: A Digital Atlas Examining Over a Decade of Unconventional Natural Gas Development in Pennsylvania’s Pine Creek Watershed”, August, 2019, https://www.fractracker.org/projects/wildness-lost-pine-creek/

Auch, T. “Fracking Threatens Ohio’s Captina Creek Watershed”, December, 2109, https://www.fractracker.org/2019/12/fracking-in-captina-creek-watershed-story-map/

 

Feature photo of a Toledo Refining Company refinery in Toledo, OH, July, 2019. Photo by Ted Auch, FracTracker Alliance.

 

Support this work

Stay in the know

Documenting Fracking Impacts: A Yearlong Tour from a Bird’s-Eye-View

“The aeroplane has unveiled for us the true face of the earth.” by French writer and aviator Antoine de Saint-Exupéry author of Le Petit Prince (The Little Prince)

I always tell people that you can’t really understand or appreciate the enormity, heterogeneity, and complexity of the unconventional oil and gas industry’s impact unless you look at the landscape from the cockpit of a Cessna 172. This bird’s-eye-view allows you to see the grandeur and nuance of all things beautiful and humbling. Conversely, and unfortunately more to the point of what I’ve seen in the last year, a Cessna allows one to really absorb the extent, degree, and intensity of all things destructive.

I’ve had the opportunity to hop on board the planes of some amazing pilots like Dave Warner, a forester formerly of Shanks, West Virginia (Note: More on our harrowing West Virginia flight with Dave later!!), Tim Jacobson Esq. out of La Crosse, Wisconsin, northern Illinois retired commodity and tree farmer Doug Harford, and Target corporate jet pilot Fred Muskol out of the Twin Cities area of Minnesota.

Since joining FracTracker I’ve been fortunate to have completed nearly a dozen of these “morning flights” as I like to call them, and five of those have taken place since August 2017. I’m going to take the next few paragraphs to share what I’ve found in my own words and by way of some of the photos I think really capture how hydraulic fracturing, and all of its tentacles, has impacted the landscape.

The following is by no means an empirical illustration. I’m increasingly aware, however, that often times tables, charts, and graphs fail to capture much of the scale and scope of fossil fuel’s impact. Photos, if properly georeferenced and curated, are as robust a source of data as a spreadsheet or shapefile, both of which are the traditional coins of the realm here at FracTracker.

West Central Wisconsin Frac Sand Mines

August 2, 2017

Figure 1. Wisconsin and Winona, Minnesota silica sand mines, processing facilities, and related operations

It was nearly a year ago today that I met Bloomer, Wisconsin dairy farmer Ken Schmitt at the Chippewa Valley Regional Airport (KEAU) and soon thereafter jumped into Tim Jacobson’s Cessna 172 to get a bird’s-eye-view of the region’s many frac sand mines and their impacts (Figure 1). These sites are spread out over a 12-county region known as West Central Wisconsin (WCW). Ken hadn’t been up to see these mines since October of 2016 and was eager to see how they had “progressed,” knowing what he did about their impact on his neck of the woods in northern Chippewa County.

Ken is one of the smartest guys I’ve ever met, and – befitting a dairy farmer – he is also one of the most conservative and analytical folks I’ve ever met. However, that morning it was clear that his patience with county administrators and the frac sand mining industry had long since run out. He was tired of broken promises, their clear and ubiquitous bullying tactics, and a general sense that his livelihood and the farm he was hoping to leave his kids were at risk due to sand mining’s complete capture of WCW’s residents and administrators.

Meanwhile Mr. Jacobson Esq. was intimately familiar with some of the legal tools residents were using to fight the spread of sand mining in the WCW. This is something he referred to as “anticipatory nuisance” lawsuits, which he and his colleagues were pursuing on behalf of several landowners against OmniTrax’s (f/k/a Terracor) “sand mine, wet and dry processing, a conveyor system to a rail load out with manifest yard” proposal in Jackson County, Wisconsin. I, too, have worked with Tim to inform some of his legal work with respect to the nuisance stories and incidents I’ve documented in my travels, as well as research into the effects of sand mining across Michigan, Illinois, Minnesota, and Wisconsin.

Explore details from our sand mining tour by clicking on the images below:

Our flight lasted nearly 2.5 hours and stretched out over 4,522 square miles. It included nearly 20 sand mines – and related infrastructure – in the counties of Jackson, Wood, Clark, Eau Claire, Monroe, Trempealeau, and Buffalo. What we saw was a sizeable expansion of the mining complex in the region since the last time I flew the area – nearly four years earlier on October 8, 2013. The number and size of mines that had popped up since that trip were far greater than any of us had expected.

This expansion paralleled the relative – and total –increase in demand for “proppant” from the High Volume Hydraulic Fracturing (HVHF) all across the country (Figure 2).

Figure 1. A map of the likely destination for Wisconsin’s frac sand mines silica sand based on an analysis of Superior Silica Sand’s 2015 SEC 10Ks.

Figure 2. A map of the likely destination for Wisconsin’s frac sand mines silica sand based on an analysis of Superior Silica Sand’s 2015 SEC 10Ks.

West Virginia Panhandle & Southeastern Ohio

January 26, 2018

On the morning of January 26th, I woke up on the west side of Cleveland thinking there was very little chance we were going to get up in the air for our flight with SouthWings’ pilot Dave Warner due to inclement weather. There was a part of me that was optimistic, however, so I decided to make the three hour drive down to the Marshall County Airport (KMPG) in Moundsville, West Virginia from Cleveland in the hopes that the “cold rain and snow” we’d been receiving was purely lake effect stuff and the West Virginia panhandle had not been in the path of the same cold front.

Marshall County, West Virginia Airport (KMPG) staff clearing the runway for our flight with SouthWings pilot Dave Warner, 1/26/2018

Unfortunately, when I arrived at the Moundsville airport I was wrong, and the runway was pretty slick around 8:00 a.m. However, the airport’s staff worked diligently to de-ice and plow the runway and by the time Dave Warner arrived from southern West Virginia conditions were ideal. The goal of this flight was two-fold:

  1. Photograph some of the large-scale high-volume hydraulic fracturing (HVHF) infrastructure in the West Virginia counties of Doddridge, Wetzel, and Marshall owned and operated by MarkWest, and
  2. Allegheny Front’s Julie Grant was doing a story on natural gas gathering pipeline’s impact on waterways, and more specifically the Hellbender Salamander (Cryptobranchus alleganiensis). She was looking to see the impacted landscape from the air.

Both of these goals were achieved efficiently and safely, with the resulting Allegheny Front piece receiving significant interest across multiple public radio and television platforms including PRI’s Living On Earth.

Explore details from our WV / OH tour by clicking on the images below:

On my return drive home that afternoon the one new thing that really resonated with me was the fact that hydraulic fracturing or fracking has come to be defined by 4-5 acre well pads across Appalachian, Texas, Oklahoma, and North Dakota. This is a myth, however, expertly perpetuated by the oil and gas industry and their talking shops. Fracking’s extreme volatility and quick declines in rates of return necessitate that this latest fossil fuel iteration install large pieces of infrastructure like compressor stations and cracking facilities. This all is to ensure timely movement of product from supply to demand and to optimize the “value added” products the global markets demand and plastics industry uses as their primary feedstocks. This large infrastructure was never mentioned at the outset of the shale revolution, and I would imagine if it had been there would be far more resistance.

The one old thing the trip reinforced was the omnipresence and sinuosity of natural gas gathering lines across extremely steep and forested Appalachian geographies. How these pipelines will hold up and what their hasty construction is doing to terrestrial and aquatic wildlife, not to mention humanity, is anyone’s guess; the data is just so darn bad.

Southeastern Ohio

March 5, 2018 – aka, The XTO Powhatan Point Well Pad Explosion Flight

FAA’s Temporary Flight Restriction (TFR) notification

Around 9 a.m. on Thursday, February 15, 2018, an explosion occurred at XTO’s Schnegg frack pad “as the company worked to frack a fourth well” in Powhatan Point, Belmont County, Ohio. Shortly thereafter, a two-mile Temporary Flight Restriction (TFR) was enacted by the Federal Aviation Administration (FAA) around the incident’s location. The TFR was supposed to lapse during the afternoon of March 5, however, due to complications at the site the TFR was extended to the evening of March 8.

We were antsy to see what we could see, so we caught an emergency flight with Dave Warner, only this time under the LightHawk umbrella. We left on the morning of March 5th out of the all too familiar[1] Carroll County-Tolson Airport (KTSO). Although we couldn’t get close to the site, there was a holler valley to the northwest of the pad that allowed us to capture a photo of the ongoing releases. Additionally, within several weeks we obtained by FOIA the raw Ohio State Trooper monitoring footage from their helicopter and posted this footage to our YouTube channel, where it has received 4,787 views since March 19, 2018. This type of web traffic is atypical for anything that doesn’t include kittens, the Kardashians, or the Kardashians’ kittens.

Explore details from our Southeastern Ohio tour by clicking on the images below:

Much like our flight in January the most salient points I got out of Dave’s plane thinking about were:

  • Astonishment regarding the number of gas gathering lines and the fact that they seem to have been installed with very little-to-no reclamation forethought. They are also installed during a time of year when – even if hydroseed is applied – it won’t grow, leaving plenty of chances for predictable spring rains to cause major problems for streams and creeks, and
  • Amazement over the growing inventory of large processing infrastructure required by the HVHF industry. This insfrastructure includes the large Mark West and Blue Racer Midstream processing plants in Cadiz and Lewisville, Ohio, respectively, as well as Texas-based Momentum Midstream’s natural gas liquids-separating complex in Scio along the Carroll and Harrison County borders. That complex is affectionately referred to by the company’s own spokesman as The Beast because of its sheer size.

It is a big plant, a very big plant and far bigger than other plants around here… What’s really amazing that we got it up and running in six months. No one believed that we could do that. – Momentum Midstream spokesman Eric Mize discussing their natural gas liquids-separating complex in Scio, Ohio.

LaSalle County, Illinois

May 24 & 26, 2018

 Frac Sand Mines and The Nature Conservancy’s Nachusa Grasslands Buffalo Herd, Franklin Grove, Illinois

It was during the week of June 20, 2016 that I first visited the frac sand mine capital of the United States: LaSalle County, Illinois. Here is the land of giant silica sand mines owned by even larger multinationals like U.S. Silica, Unimin, and Fairmount Santrol.

Fast forward to the week of May 21st of this year, and I was back in the frac sand capital to interview several folks that live near these mines or have been advocating for a more responsible industry. I conducted a “morning flight” with several journalists and county officials from neighboring Ottawa County.

LaSalle County is an extremely interesting case study for anyone even remotely interested in the food, energy, and water (FEW) conversation that has begun to receive significant attention in the age of the “Shale Revolution.” (Such focus is largely thanks to the extreme amounts of water required during the fracking process.) While LaSalle County has never experienced even a single HVHF permit, it is home to much of the prized silica or “proppant” the HVHF industry prizes. La Salle receives this recognition due to its location above one of the finest sources of silica sand: the St. Peter Sandstone formation. This situation has prompted a significant expansion in the permitting of new silica sand mines and expansion of existing mines throughout the county – from small townships like North Utica and Oglesby to Troy Grove 7 miles north on East 8th Road.

Meanwhile, LaSalle County is home to some of the most productive soils in the United States, due largely to the carbon sequestration capabilities of the tallgrass prairies that once dominated the region. In any given year, the county ranks in the top 5 nationally based on the amount of soybean and corn produced on a per-acre basis. According to an analysis of the most recent USDA agricultural census, total agricultural value in LaSalle County exceeds $175 million or seven times the national average by county of roughly $23 million.

Needless to say, the short-term extraction of silica sands in the name of “energy independence” stands to have a profound impact on long-term “food security” in the U.S. and worldwide. Sadly, this conflict is similar to the one facing the aforementioned West Central Wisconsin, home to similarly productive soils. The cows that feed on the forage those soils produce some of the highest quality dairy anywhere. (As an aside: both regions are facing the realities of their disproportionate support for Donald Trump and the effects his trade war will have on their economies.)

LaSalle County is also home to the 2,630-acre Starved Rock State Park along the south bank of the Illinois River. Much of the park’s infrastructure was built by the Civilian Conservation Core (CCC) back in the early 1900s. Starved Rock is home to 18 canyons featuring:

… vertical walls of moss-covered stone formed by glacial meltwater that slice dramatically through tree-covered sandstone bluffs. More than 13 miles of trails allow access to waterfalls, fed season runoff or natural springs, sandstone overhangs, and spectacular overlooks. Lush vegetation supports abundant wildlife, while oak, cedar and pine grow on drier, sandy bluff tops. – IL DNR

Starved Rock receives more than 2.5 million visitors annually, which is the most of any Illinois state park. However, it is completely surrounded by existing or proposed frac sand mines, including US Silica’s Covel Creek mine. US Silica even recently pitched an expansion to the doorstep of Starved Rock and future plans to nearly engulf the park’s perimeter. What such an expansion would do to the attractiveness of the park and its trickle down economic impact is debatable, but LaSalle County residents Paul Wheeler and photographer Michelle McCray took a stab at illustrating the value of the state park to residents for our audience back in August, 2016:


Our flight with LightHawk pilot and neighboring Mazon, Illinois retired farmer Doug Harford lifted off from Illinois Valley Regional Airport (KVYS) at around 9:00 a.m. local time on the morning of May 24th. We had perfect conditions for taking photos, with no clouds and a comfortable 70-75°F for the duration of a two-hour flight. We covered nearly 200 square miles and ten existing, abandoned, or permitted frac sand mines.

Explore details from our Illinois tour by clicking on the images below:

All passengers were struck by how large these mines were and how much several of the mines had expanded since the last time we all flew over them in June of 2016. The mines that had experienced the greatest rates of expansion were US Silica’s LaSalle Voss mine along Interstate 80 and the aforementioned Illinois River mine along with Fairmount Mineral’s major expansion, both in terms of infrastructure and actual mine footprint, in Wedron along the Fox River.

Figure 2. A map of the LaSalle County frac sand mines and associated St. Peter sandstone formation along with the city of Chicago for some geographic perspective.

Figure 3. A map of the LaSalle County frac sand mines and associated St. Peter sandstone formation, along with the city of Chicago for some geographic perspective.

Most of this expansion is due to three critical distinguishing characteristics about the industry in LaSalle County:

  • The processing and export infrastructure (i.e., east-west rail) is in place and allows for mining to take place at times when other sand mining regions are mothballed,
  • Due to the large aggregation of parcels for farming purposes, companies can lease or outright purchase large amounts of land from relatively few landowners, and
  • Only the largest firms are active in the region, and with economies of scale they are not subject to the same types of shocks that smaller firms are when the price of oil collapses (like it did between June 2015 and February 2016). This means that the conflict will only be amplified in the coming months and years as the frac sand mining industry looks to supersede agriculture as LaSalle County’s primary economic driver.

However, all is not lost in North Central Illinois. This hope was stoked during our sojourn – and my subsequent trip in person – up to see The Nature Conservancy’s 3,600 acre preserve in Franklin Grove on the border of Lee and Ogle counties. As someone who is working hard to establish a small plot of prairie grasses and associated wildflowers at my home outside Cleveland, I was hoping to see what an established prairie looks like from the air. My primary goal, however, was to see what a healthy herd of native bison looks like.[2] The Nachusa bison are unique in that they came:

… from Wind Cave National Park in South Dakota and…Unlike most other American bison, animals from the Wind Cave herd have no history of cross-breeding with cattle. Bison from Wind Cave are the species’ most genetically pure and diverse specimens.

We were fortunate during our flight to have spotted the heard at the western edge of the preserve in what volunteer naturalist, Betty Higby, later told me the staff calls Oak Island. While I am not a person of faith, seeing these behemoths roaming freely and doing what 20-30 million of their ancestors used to do across much of North America moved me in a way I was not prepared for. I was immediately overwhelmed with a sense of awe and humility. How was I going to explain this beast’s former ubiquity and current novelty to my 5-year-old son, who shares a love of the North American Bison with me and would most certainly ask me what happened to this majestic creature?

Medina & Stark counties, Ohio NEXUS Pipeline flight

June 25, 2018

Ohio is currently home to 2,840 fracking permits, with 2,370 of these laterals having been drilled since September 2010. The growing concern around the fracking and petrochemicals conversation across much of the Midwest is the increasing number of FERC-permitted natural gas pipeline “proposals”[3] the industry is demanding it needs to maximize potential. Most residents in the path of these pipelines have strong objections to such development, citing the fact that imminent domain should not be invoked for corporate gain.

Much like all of the other patterns and processes we’ve documented and/or photographed at FracTracker, we felt that a flight over the latest FERC-approved pipeline – The NEXUS pipeline – would give us a better understanding of how this critical piece of infrastructure has altered the landscapes of Medina and Stark counties. Given the population density of these two northeastern Ohio counties, we also wanted to document the pipeline’s pathway with respect to urban and suburban centers.

Our flight on June 25th was delayed due to low clouds and last minute changes to the flight plan, but once we took off from Wadsworth Municipal Airport (3G3) with a local flight instructor it was clear that NEXUS is a pipeline that navigates a sinuous path in cities and townships like Green, Medina, Rittman, and Seville – coming dangerously close to thousands of homes and farms, as well as many schools and medical facilities.

Explore details from our NEXUS Pipeline tour by clicking on the images below:

Will this be the last FERC-approved pipeline to transverse Ohio in the name of “energy independence”? Will this pipeline and its brethren with names like the Utopia and ET Rover be monitored in real-time? If not, why? It is unfortunate, to say the least, that we so flippantly assume these pipelines are innocuous given their proximity to so many Ohioans. And, as if to add insult to injury, imminent domain is invoked. All this for a piece of oil and gas infrastructure that will profit companies on the global market, with only a fraction of the revenue returning to affected communities.

What’s Next?

I don’t know of a better way to understand the magnitude of these pipelines than flying over them at 1,000-1,500 feet, and I will continue to monitor and photograph oil and gas developments from the air with the assistance of amazing pilots like those affiliated with LightHawk and SouthWings.

To this end, I will be returning to West Central Wisconsin for yet another “morning flight” with the aforementioned La Crosse-area pilot and lawyer Tim Jacobson and frequent collaborator University of Wisconsin-Stout professor Tom Pearson.[4] Our flight plan will return us to the northern Wisconsin frac sand counties of Chippewa, Barron, Dunn, Eau Claire, and if we have time we’ll revisit the mines we photographed in August of last year. We’ve been told by Susan Bence, an environmental reporter out of Milwaukee Public Radio, that she is trying to convince the powers that be at NPR in Washington, DC that this is a story the entire country should hear about. Wish us luck!


By Ted Auch, Great Lakes Program Coordinator

Bird’s-Eye-View Endnotes

  1. The first of my morning fracking flights was out of this airport back in June, 2012 along with the other passenger on this flight Paul Feezel of Carroll Concerned Citizens and David Beach of the Cleveland Museum of Natural History’s Green City Blue Lakes program.
  2. The Conservancy initially brought at least 30 bison of different ages and genders to Nachusa. The bison graze on approximately 1,500 acres of the prairie and the site currently supports more than 120 bison according to site volunteer naturalist Betty Higby.
  3. I put quotes around this word because in my travels across Ohio interviewing those in the path of these transmission pipelines it is clear that this is not the correct word because ‘proposals’ implies that these pipelines might not happen or are up for debate. Yet, neither could be further from the truth with most folks indicating that it was very clear very early in their interactions with FERC and the pipeline companies that there was never a chance that these pipelines were not going to happen with “imminent domain for private gain” being the common thread throughout my conversations.
  4. Tom is the author of a recently published book on the topic “When the Hills Are Gone.”

Supporting Documentation

Superior Silica Sand, LLC, Lundequam Picknell site, Barron County WI

New frac sand mining photos and videos are now available via FracTracker

Surface mining to obtain sand that is perfectly sized for use in the hydraulic fracturing process has been increasing in recent years. Over the summer, FracTracker had the opportunity to document a number of sand mining activities occurring in Michigan, Minnesota, and Wisconsin that supply frac sand to the oil and gas industry. Explore a selection of this imagery below:

Explore these and other frac sand mining photos and videos in our online album. The most recent imagery can be found at the bottom of the album. Additional videos are also available on this YouTube channel.

View All Albums

All of these frac sand photos, and more, can also be found on our Energy Imagery page, organized by topic and also location.

If you have photos or videos that you would like to contribute to this growing collection of publicly available information, just email us at info@fractracker.org, along with where and when the imagery was taken, and by whom.

Photo by David Nix 2015

Documenting Oil and Gas Industry Damage in North Dakota

North Dakota is now in its third oil boom due to the drilling technologies of horizontal drilling and hydraulic fracturing that have made once-inaccessible oil accessible. The Bakken formation covers western North Dakota, eastern Montana, and parts of Manitoba and Saskatchewan. At the height of the boom in 2014, just under 12,000 wells were active across the west, extracting 1.1 million barrels (bbl) of oil per day and flaring at 32%. The boom has bumped North Dakota to the second largest oil and gas producing state, second only to Texas.

Dakota Resource Council (DRC) is a member-led, grassroots organization that has been working in extraction-impacted communities in North Dakota since 1978. DRC’s members work on oil and gas campaigns that aim to eliminate impacts to land, air, water, and livelihoods of the citizens of North Dakota. Campaign issues on oil and gas industry damage include: flaring, pipelines, radioactive/oilfield waste, state accountability, and oil-by-rail.

The following photos from DRC show impacts of current and legacy oil and gas extraction in western North Dakota – an area in the heart of the Bakken that is historically a rich agricultural and ranching region. The vast contrast between the two industries are not complementary.

Bear Den Bay Incident

Fort Berthold Indian Reservation is the epicenter of fracking in the Bakken. On July 8, 2014 a wastewater pipeline rupture was accidentally discovered in rural Mandaree on the reservation. The pipeline is owned by Crestwood Midstream, LLC – a Texas-based company.

An estimated 1 million gallons of toxic saltwater ran down a ravine, ending up in the tributary of Bear Den Bay, which is located ¼ mile from the city of Mandaree’s water intake. The spill was contained, but the state doesn’t know exactly how much waste went into the bay. Tribal administration released a statement that beaver dams prevented the fluids from reaching the lake.

Weeks after the incident Crestwood released a statement saying:

… while assessment of the effect is ongoing, examination and testing to date show that an area of grass, brush and trees about 200 yards long sustained damage. Some produced water ran down a ravine into natural pools in a small stream at the bottom, but it appears that the produced water stopped there… The impact on fish and wildlife appears to have been minimal, in fact beavers, turtles, frogs, deer and pelicans have been seen returning to and re-inhabiting the impacted area.

To date, there has been no penalty for the damage that has been done to the land and reclamation is ongoing. Below are photos documenting the incident’s effects:

The Legacy of North Dakota Oil Booms

Western North Dakota has weathered through two previous oil booms in the early 1950’s and 1980’s. Previous booms left behind infrastructure that sits abandoned today. Due to hydraulic fracking technology, once-inaccessible oil is now accessible. These pre-existing wells are called legacy wells, that produce roughly 5% of North Dakota’s 1.2 million barrels per day.

Much of these wells contain infrastructure that has been in place for over 60 years. Pipelines have not been mapped or regulated in North Dakota until recently. Farmers are finding underground tanks and pipelines filled with toxic sludge. Just like previous oil booms, North Dakota was not prepared for the cost of extraction. Scroll through the following gallery showing a variety of legacy sites in ND.


By Nicole Donaghy, Dakota Resource Council

Chieftain Sands - Chetek WI Mine North

Frac Sand Photos Available on FracTracker.org

With the advent of hydraulic fracturing to increase production of oil and gas from tight geologic formations, such as shale, the demand for fracking sand (frac sand, or frack sand) has increased drastically in recent years. What does this process look like, you might ask. To help you understand this subsidiary of the oil and gas industry, we’ve compiled all of our frac sand photos into three albums on the topic.

Frac Sand Mining Photo Album

This album contains all of the photos we have amassed of frac sand mining and transportation operations – both from the ground and the sky.


Flyover Tours

We have also been fortunate enough to receive two flyover tours of frac sand mining taking place in 2013 and 2016 by LightHawk.


View All Albums

All of these frac sand photos, and more, can also be found on our Energy Imagery page, organized by topic and also location.

If you have photos or videos that you would like to contribute to this growing collection of publicly available information, just email us at info@fractracker.org, along with where and when the imagery was taken, and by whom.

Earth week in WI Feature Image

Earth Week in Wisconsin

By Brook Lenker, Executive Director, FracTracker Alliance

Frac sand mining is a growing threat to the agricultural landscapes of the upper Midwest and a health risk to those who live near the mines. With a general slowdown in the oil and gas industry, sand mining may seem a lessening concern in the universe of extraction impacts, but a recent visit to Wisconsin during Earth Week suggested otherwise.

Frac Sand Mining Presentations

Dr. Auch presenting in Wisconsin on frac sand mining issues

Dr. Auch presenting in Wisconsin on frac sand mining issues

I joined my colleague, Dr. Ted Auch, on an informative cross-state tour that started in Milwaukee. We were presenters at the Great Lakes Water Conservation Conference where representatives from breweries around the region and across the country came together to discuss their most precious commodity: clean and abundant water. Extraction affects both the quantity and quality of water – and our insights opened many eyes. Businesses like microbreweries with a focus on sustainability and a strong environmental ethic recognize the urgency and benefit of the renewable energy transformation.

From Milwaukee, we headed west to Madison and the University of Wisconsin where Caitlin Williamson of the Wisconsin Chapter of the Society for Conservation Biology organized the first of two forums entitled “Sifting the Future: The Ecological, Agricultural, and Health Effects of Frac Sand Mining in Wisconsin.” We were joined by Kimberlee Wright of Midwest Environmental Advocates to address an engaged audience of 35 people from the campus and greater community. Thanks to Wisconsin Eye, a public affairs network, the entire program was videotaped.

Brook Lenker presenting at Sifting the Future event in Wisconsin

Brook Lenker presenting at Sifting the Future event in Wisconsin

A long drive to Eau Claire revealed rolling farmland, wooded hills, and prodigious wetlands home to waterfowl and the largest cranberry industry in the nation. At the Plaza Hotel, we met Cheryl Miller of the Save the Hills Alliance, the grantor enabling us to study the regional footprint of sand mining, and Pat Popple, advocate extraordinaire and our host for the second “Sifting the Future” event. The good folks at Public Lab were also in town to facilitate citizen monitoring of silica dust from the mining process, including a free workshop and training that weekend.

The evening program attracted 50 people from as far away as Iowa and Minnesota. Their interest in and knowledge of sand mining issues was impressive, and many were heavily involved in fighting local mines. Dr. Crispin Pierce spoke of his research about airborne particulates around frac sand operations, complementing both FracTracker presentations – mine emphasizing the broad array of environmental and public health perils related to oil and gas extraction and Ted’s examining the scale and scope of sand mining, demand for proppant, and the toll of the industry on agricultural productivity, forests and the carbon cycle.

Mining Photos

During the five day trip, sand mines were visited and documented, their incongruent and expanding presence marring the countryside. Some of them can be seen in this photo gallery:

View all frac sand mining photos >

Other Sights

On Earth Day, while driving east to return to Milwaukee, Sandhill cranes, a timeless symbol of the Wisconsin wild, poked the rich prairie soils searching for food. Joined by Autumn Sabo, a botanist and researcher who assisted our Wisconsin work, we detoured to the nearby Aldo Leopold Center visiting the simple shack that inspired Mr. Leopold to write Sand County Almanac. Considering the reason for my travel, the irony was thick. Ecological consciousness has come a long way, but more evangelism is sorely needed.

Aldo Leopold Center, WI

Aldo Leopold Center, Wisconsin

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

7 Sand Mining Communities, 3 States, 5 Months – Part 2

Ludington State Park, Sargent Sand’s Mine, and US Silica and Sylvania Minerals
By Ted Auch, Great Lakes Program Coordinator

When it comes to high-volume hydraulic fracturing (HVHF), frac sand mining may be the most neglected aspect of the industry’s footprint. (HVHF demand on a per-well basis is increasing by 8% per year.)

To help fill this gap I decided to head out on the road to visit, photograph, and listen to the residents of this country’s primary frac sand communities. This multimedia perspective is part of our ongoing effort to map and quantify the effects of silica sand mining on communities, agriculture, wildlife, ecosystem services, and watersheds more broadly. Below is my follow up attempt to give The FracTracker Alliance community a sense of what residents are hearing, seeing, and saying about the silica sand mining industry writ large, through a tour of 7 sand mining communities – part 2. Read part 1.

Monroe County, MI

Monroe County, Michigan is approximately 22 miles south on I-75 from downtown Detroit with similar demographic differences to the Chicago-LaSalle County, IL comparison we made during the first part of this series. South Rockwood lies along the Northeastern edge of Monroe County and the Monroe-Wayne County border, and is consequently at the intersection of Detroit’s sprawl and rural Michigan.

Monroe County and nearly all of South Rockwood is underlain by one of the purest sandstone formations in North America. The Sylvanian Sandstone formation lies beneath 20% of Monroe County stretching from the aforementioned Wayne County border south-southwest to Lucas County, OH (Fig. 1). It is this formation that mining stalwarts such as US Silica and the appropriately named Sylvanian Minerals are mining for frac sands. Not only is the silica pure, but it is also extremely close to the surface. The region, conveniently, is situated at the crossroads of numerous rail lines capable of transporting the sand to shale plays in the east and North Dakota alike.

US Silica and Sylvanian Minerals are neighbors at the corner of Ready and Armstrong Roads in South Rockwood, with the former adjacent to I-75’s southbound lanes (Fig. 2). As of fall 2011, Sylvanian Minerals hadn’t even broken ground on its initial stab at mining frac sands. Presently the two firms have altered nearly 650 acres, or 40% of the community, with the potential to mine an additional 494 acres. These plans suggest that these two companies could collectively alter 72% of the community’s topography.

This domination of the landscape and commerce concerns many South Rockwood citizens including Sylvanian’s immediate neighbor Doug Wood, who has been the industry’s primary citizen watchdog over the last couple years (photo below).

Mr. Wood was generous enough to let us climb to the top of his barn to snap some photos of the mine. Mr. Wood witnessed the foundation of his home become compromised by the numerous blasting events down in Sylvanian’s mine, and only recently found out that the collective activity at the mines is going to force exit 26 off I-75 to be rerouted to Ready Road, converting this sleepy road into the primary entrance/exit for mine-related traffic. In addition, with the approval of Michigan’s Governor Rick Snyder, US Silica’s Telegraph Road Mine proposal has Mr. Wood and his neighbors worried about the safety of their families, the air pollution they inhale from the dust and potentially airborne silica, and the truck traffic related noise, which will all undoubtedly influence their health and quality of life.

The primary take-home message from this stop on my tour was that we have only seen the tip of the iceberg with respect to the potential of frac sand mining to literally and figuratively alter communities. Other affected areas such as South Rockwood could learn quite a bit from the likes of LaSalle County, IL residents Anna Mattes, Tom Skomski, and Ashley Williams.

On to the dunes of Western Michigan and Ludington State Park!

Ludington State Park and Sargent Sand’s Mine

After several days in Grand Rapids, I traveled to Ludington State Park in Michigan (see Fig 4 below), along with documentarian/drone pilot Tom Gunnels and Kent County Water Conservation’s Stephanie Mabie. Our destination was the camp of Linda and Ron Daul, the residents spearheading an effort to make Sargent Sand more accountable and transparent in its mining operations. There camp is also located within and adjacent to one of the most sensitive ecosystems in North America.

This is a documentary produced by Tom Gunnels and his Hive•Mind team that incorporated interviews and drone footage from our Ludington/Sargent Sand mine tour August, 2015.

Ms. Daul was kind enough to organize a tour of the mine, Ludington State Park, and northern hardwood forest for us, as well as journalist Aaron Selbig, who produced a piece on the tour for Interlochen Public Radio. The scenery sans the sand mining infrastructure, noise, and related truck traffic was beautiful in this little corner of Michigan roughly half way between Grand Rapids and Traverse City.

Great Lakes sand dunes

Michigan’s unique and threatened dune ecosystems – and associated Jack Pine (Pinus banksiana) “plains” or “barrens” ecosystem1 – comprise of 116 square miles of coastline along Lake Michigan. Unfortunately, they are simultaneously deprived of the fire regimes they require to regenerate, and are targets for the production of frac sands with Ludington State Park being the primary example. This makes the feasibility of reclaiming original plant communities dubious at best. (There have been mixed results associated with reclamation efforts, for example, at the former Rosy Mound Standard Sand Corporation’s mine 80 miles due south in Grand Haven, see Fig. 5.)

The largest obstacle to reclamation of sand mines along Lake Michigan is the inability of practitioners to document and replicate the many “microenvironments,” which as Peterson and Dersch pointed out:

…are the small environments created by differences in temperature, moisture, and light intensity within the sand dune ecosystem. Examination of these small environments is essential to a clear understanding of the ‘whole’ ecosystem. The diversity of organisms in sand dune areas is made possible by the variety of habitats found in relatively small areas. Any alteration of the dune which homogenizes the ecosystem will allow less diversity of plants and animals.

The Great Lakes dune complex requires perennial vegetation, wind, and sand for continued formation and stabilization with a complex – and specifically adapted – mosaic of lichens, fungi, mosses, grasses, wildflowers, shrubs, and trees arranged in a complicated and multi-layered manner across much of Western Michigan’s lakeshore. As Michigan’s DNR put it:

Without sand dune plants, the integrity and preservation of a stable dune complex cannot exist.

In combination with the Michigan Supreme Court’s constant fiddling of the intent and letter of mineral extraction law, namely the “very serious consequences” clause in House Bill 4746 (2011), you have the makings of a scenario that could eliminate upwards of 16 square miles of Michigan’s critical dunes in the coming years or 9-14% of the entire complex.2

Examples of this unique situation and the threats from Sargent Sand’s expansion include this dune, which is among the largest in Ludington State Park’s 2,820 acres. The Ludington Dunes are also home to the threatened Pitcher’s Thistle (Cirsium pitcheri) with the LSP encompassing one of the world’s two largest populations of this species according to Michigan’s Department of Natural Resources. Interestingly, the US Fish & Wildlife Service does not explicitly or implicitly list sand mining as one of their reasons why the species is threatened.

In addition to Pitcher’s Thistle, systems – like those found along the western edge of Michigan – are home to more than 15 endemic, or nearly so, plant species such as:

  • Wormwood (Artemisia campestris, aka the source of Absinthe),
  • The early colonizer sea-rocket (Cakile edentula),
  • Clustered Broom-Rape (Orobanche fasciculata),
  • Harebell (Cakile edentula, at the edge of Sargent Sand’s Ludington mine), and
  • Hoary Puccoon (Lithospermum canescens), and the species most responsible for dune stabilization Marram Grass (Ammophila sp.).

Additionally, these dunes are critical to the life-cycles of more than 10 different species of birds, reptiles, and herbivores including the Eastern Hog-nosed Snake, Eastern Box Turtle, American Goldfinch, and everybody’s favorite, the White-Tailed Deer.

Table 1. Number of Threatened, Endangered, and Rare Plant Species within Western Michigan’s Dune Complex

Criteria # of Species within Michigan’s Dune Complex
Michigan Threatened Species List 72
Michigan Endangered Species List 7
Michigan Rare Species List 3
Extinct 4
US Endangered Species List 1
US Threatened Species List 11

Modified from State of Michigan Department of Natural Resources, Geological Survey Division, 1979.

Finally, it is of importance to mention the final stage of dune succession are the beech-maple forests, which take an estimated 1,000 years to be achieved according to Jerry Olson (1958). With that said let’s take a look at some of the pictures and testimonial I gathered during my trip to The Great Lake(s) State…

The Photos

A. Sylvanian Minerals and US Silica, South Rockwood, Monroe County, MI from Doug Wood’s barn

The Sylvanian Minerals and US Silica Mine Complex, South Rockwood, Monroe County, MI. 7 Sand Mining Communities, 3 States, 5 Months - Part 2

Location where below photos were taken, showing the Sylvanian Minerals and US Silica Mine Complex, South Rockwood, Monroe County, MI

B. Ludington State Park and Sargent Sand’s Silica Sand Mine, Ludington, Mason County, MI

Ecosystems and Native Plants of Ludington State Park, Mason County, MI (16 images, 11 species)

Sargent Sand and Ludington State Park photography Point-Of-View and Tom Gunnel's Drone Flight Path

Sargent Sand and Ludington State Park photography point-of-view and Tom Gunnel’s drone flight path

Ecosystems (8 images, 3 ecosystems within or adjacent to the mine)

C. Eastern Mine Point-Of-View

Active mine operations and reclaimed parcels (8 images)

D. Ludington State Park Point-Of-View

Overburden stockpile, haul roads, and grain separator (7 images)

E. Drone Screenshots Courtesy of documentarian Tom Gunnels at Hive•Mind

Testimonials

Doug and Dawn Wood, South Rockwood, MI

The cards are definitely stacked against you when there is a silica quarry right next door to your dream home/property. We toiled for years to green it up with trees and grass, a labor of love for our “place in the country”. I mean, what’s not to love about semi-truck traffic, air pollution, house tremors not to mention plummeting property values! Since South Rockwood village annexed the quarry in 2010, placing a quarry wall literally 300 feet from my home, we deal with noise of crushers, loaders, drilling for blasting, and blasting. All the while we are left to wonder what kind of garbage we are inhaling since there seems to be NO REGULATIONS, AIR MONITORING OR DUST CONTROL MEASURES AT ANY TIME!! And if that isn’t enough, the village wants to relocate the freeway ramps to our road for the quarry’s trucking convenience.

Al (Chip) Henning, Ludington, MI

Sargent Sand Company has owned this site since the 1920s. The Big Sable Dune Complex is roughly twice the size of Sleeping Bear Dunes National Lakeshore, and includes the Nordhouse Federal Wilderness. If Sargent completes their mining as projected over the next 30-40 years, the Ludington Dunes (about 40% of the Complex) will be 60-70% destroyed/mined/removed, sent primarily to Pennsylvania for hydraulic fracturing in the Marcellus Shale formation. Sargent has removed 10-15% of the Ludington Dunes, to date, and faces permit renewal in January 2016. My family owns several properties which abut Ludington State Park, whose lands surround the Sargent property narrowly on three sides. Our property lies 1200 feet from the Sargent operations at closest approach; aside from the unsustainable removal of the sands, the noise from Sargent’s 24-7-365 operations is frequently intolerable.

Linda Bergles Daul, Ludington, MI

Fracking sand is mined from ancient geological sand deposits, extremely rare across the globe.   In Michigan, the Sargent Sand – Ludington (State Park) Site, on the west coastline of Lake Michigan, enjoys a controversial, grandfathered permit to mine irreplaceable sand in critical dunes for horizontal fracking application. When the Sargent Sand mine is operating, the peaceful retreat of Hamlin Lake might as well be a downtown Chicago construction site, sharing heavy truck traffic, air pollution and mine numbing noise with our Pure Michigan visitors. The beauty and majesty of Ludington State Park has enriched my life. The critical dunes are one of Michigan and LSP’s most spectacular natural features – they also are one of our most fragile! The dunes are a phenomenon unique to the State of Michigan and yet we allow permitted critical sand dune mining right next to LSP. Sargent sand expansion towards LSP resulting in the removal of 200 year-old stabilizing trees, dredging to create artificial lakes, disregard for wildlife and the critical dune ecosystem, should be addressed within LSP master plans. I would like to see a world-class, university associated educational program established at Ludington State Park, addressing dune ecosystems. The LSP master plan should deliberately study the impact of Sargent Sand Mining operation and propose a broader vision that will consolidate the park in a way that preserves its beauty for future generations. [Furthermore] The State of Michigan Sec. 35302 The legislature finds that: (a) The critical dune areas of this state are a unique, irreplaceable, economic, scientific, geological, scenic, botanical, educational, agricultural, and ecological benefits to the people of this state and to people from other states and countries who visit this resource. EXCEPT if the activity is involved in sand dune mining as defined in part 637.

Julia Chambers, President of A Few Friends for the Environment of the World (AFFEW), Ludington, MI

Sargent Sands sand mining has been viewed as mainly negative in the Ludington-Mason County community. This company was “dormant” until hydraulic fracturing became somewhat popular.   Most citizens and visitors do not like to see the dunes removed in this area so close to the Ludington State Park.   Destruction of critical dune area and possible endangered plants are the main concerns. Other impacts to this community include the immense noise created by the mining for families with homes by the mine and all the trucks going through town to the freight trains. Another issue is the wear on the roads. Also mentioned to me was the time spent waiting at the train crossings because of the sand being transported to other areas via trains. I really haven’t heard any positive comments. My guess would be that the mining creates jobs for the truckers, train workers, and of course the employees of the company. As far as in the future there are rumors that Sargent Sands will continue to mine and then make the area a destination place with condos around the lake they created. This is turn will bring more traffic to the dunes, not a sustainable idea!

Glenn Walquist, DVM, Country Veterinary Clinic, Ludington, MI

I really do “get it” in understanding that jobs are critically important for our State. Mouths are fed, bills are paid, colleges are attended. But the damage to Ludington left in Sargent Sands’ wake when it is done here someday will be permanent scars from the removal of Sand Dunes so rare and so beautiful, that I’m certain that we will all regret what we allowed to happen while on “our watch”. I believe that Ludington’s precious Sand Dunes are not really “ours”…to destroy or allow to be taken. They are timeless natural resources that we have simply been granted stewardship over by our own forefathers and mothers. Allow our children and great grandchildren the privilege of seeing and enjoying what we ourselves have been lucky enough to have seen and touched. “As a native Michigander and 13 year resident of Ludington, I can confidently tell anybody willing to listen that Sargent Sands is (at this very moment) irreversibly destroying one of Michigan’s last remaining precious and timeless natural resources. We… OWE IT to generations that follow us, the right to marvel at and enjoy what is one of this Country’s uniquely beautiful natural treasures… Ludington’s sand dunes. I ignorantly believed, at first, when Sargent Sands began mining sand again here that it would be something akin to raking one’s yard of leaves. When I had an opportunity to hike their mining operation’s perimeter, I witnessed what looks like strip-mining devastation. It’s saddens me that I was complicit (when I myself purchased some sand for my backyard from Sargent’s) but I am more frightened that our own DEQ (who should have known better) would have ever approved such disfiguring and permanent alteration to something so rarely seen in nature. I myself have marveled…at something that I believe only a few places on Earth possess…sand dunes so unique, so beautiful and so rarely seen (and…FREE to hike and to look at !) along a freshwater lake that happens to be what is increasingly being recognized as our Country’s lifeblood. In the Winter here when it snows, I often wonder how many people in other countries can even imagine what snow blowing in sand dunes looks like…the beautiful swirling mixture of sandy snow wrapping around dune grasses that stretch as far as the eyes can see –but now being trucked away. I ask our State, especially in light of Flint’s man made devastation, PLEASE do not allow this to continue when Sargent Sands’ permit expires in December of 2016. This sand mining destruction cannot be undone.

Additional Readings

Buckler, W.R., 1978. Dune Type Inventory and Barrier Dune Classification Study of Michigan’s Lake Michigan Shore, in: Resources, M.D.o.N. (Ed.). Michigan Department of Natural Resources, Lansing, MI.

Carlisle, N., 1960. Michigan’s Marching Dunes. Coronet 48, 159.

Cowles, H.C., 1899. The Ecological Relationship of the Vegetation on the Sand Dunes of Lake Michigan. Botanical Gazette 27, 95-117, 167-202, 281-308, 361-391.

Cressey, G.B., 1928. The Indian sand Dunes and Shore Lines of the Lake Michigan Basin, The Geographic Society of Chicago Bulletin. The University of Chicago Press, Chicago, IL.

Daniel, G., 1977. Dune Country A Guide For Hikers and Naturalists. The Shallow Press Inc., Chicago, IL.

Dorr, J.A., Eschman, D.F., 1970. The Geology of Michigan. University of Michigan Press, Ann Arbor, MI.

Kelley, R.W., 1962. Sand Dunes, A Geologic Sketch, in: Conservation, M.D.o. (Ed.). Michigan Department of Natural Resources, Lansing, MI.

Koske, R.E., Sutton, J.C., Sheppard, B.R., Ecology of Endogone in Lake Huron Sand Dunes. Canadian Journal of Botany 53, 87-93.

Odum, E.P., 1971. Fundamentals of Ecology. W.B. Sanders Company, Philadelphia, PA.

Olson, J.S., 1958. Rates of succession and soil changes on Southern Lake Michigan sand dunes. Botanical Gazette 119, 125-170.

Peterson, J.M., Dersch, E., 1981. A Guide To Sand Dune and Coastal Ecosystem Functional Relationships, in: Service, M.C.E. (Ed.). Michigan Cooperative Extension Service, Lansing, MI.

Ranwell, D.S., 1972. Ecology of Salt Marshes and Sand Dunes. Chapman and Hall, London, UK.

Reinking, R.L., Gephart, D.G., 1978. Pattern of Revegetation of a Shoreline Dune Area, Allegan County, Michigan. The Michigan Academician 11.

Thompson, P.W., 1967. Vegetation and Common Plants of Sleeping Bear. Cranbrook Institute of Science, Bloomfield Hills, MI.

Footnotes for 7 Sand Mining Communities, 3 States, 5 Months – Part 2

  1. Michigan’s DNR describes this ecosystem as having “always contained few large trees and little or no old growth. A forest where soils are dry and the vegetation sparse, it is called a barrens. A forest periodically swept by raging fires, only to spring back, fresh and revitalized. A forest which is amazingly productive and biologically diverse, providing homes for numerous plants and animals, many of them [endemic]. Today [we are]…seeking to extract its resources, enjoy its beauty, explore its secrets, and preserve its life. The jack pine forests can exist, only if we care.”
  2. As Michigan State researchers pointed out the Michigan coastal dune ecosystem exists in small fragments along the Atlantic Coastal Plain but nowhere else in the world