Tag Archive for: National

US Farms and Agricultural Production near Drilling

Health vs. Power – Risking America’s Food for Energy

Over 50% of land in the United States is dedicated to agriculture. Oil and gas development, particularly hydraulic fracturing or “fracking,” is taking place near many of these farms.

Farms feed us, and unfortunately they are not protected from the impacts of fracking. Even if drilling can be done responsibly, accidents happen. In Colorado, for example, two spills occur on average per day, 15% of which result in water contamination. [1] Risking our food supply is not only a risk to our health – it’s a risk to national security.

Food Independence

Rocky Mountain Apple Orchard by Celia Roberts

Rocky Mountain apple orchard. Photo by Celia Roberts

Domestic oil and gas production has been promoted by the industry as a means to provide the U.S. with energy independence. The argument goes something like this: “We need to be a net exporter of energy so as to reduce our reliance on foreign countries for these resources, especially countries in the Middle East.” This ignores the point that for energy security we might want to keep rather than export fossil fuels.

However, energy independence and food independence are inextricably linked.

Considering that the basic human needs are clean water, food, shelter, and safety — along with energy — we need to think about self-reliance; we can’t be dependent on foreign countries for our food. The U.S. is currently a net exporter of agricultural products, and California produces 50% of the food consumed in the U.S. But what would happen if our foodsheds became contaminated?

Drilling Proximity – Why the concern?

Front Range, Colorado Working Landscape At Risk of Unconventional Oil & Gas Drilling by Rita Clagget

Front Range, Colorado working landscape at risk of unconventional oil & gas drilling. Photo by Rita Clagget

Over 58% of US agricultural market value and 74% of US farms – both conventional and organic – operate within shale basins, active shale plays, and the primary frac sand geologies.

Why is this so important? Why be concerned? Here are just a few reasons:

  1. People can be exposed to the compounds involved with oil and gas extraction through spills, emissions, and other processes. The top five health impacts associated with these chemicals are: respiratory, nervous system, birth defects, and reproductive problems, blood disorders, and cancer.[2]
  2. Rural gas gathering pipelines are unregulated; operators have no obligation to publicly report about incremental failures along the pipeline that may contaminate soil and water as long as they don’t require evacuations.[3]
  3. Oil and gas operators are exempt from certain provisions of several environmental laws designed to protect public health and safety, including the Safe Water Drinking Act, The Resource Conservation and Recovery Act, The Emergency Planning and Community Right-to-Know Act, The Clean Water Act, The Clean Air Act, and The Comprehensive Environmental Response, Compensation, and Liability Act. These exemptions, in a way, permit oil and gas operators to contaminate water supplies with chemicals from their operations, in particular hydraulic fracturing fluids and produced wastewater.[4]
  4. The gold standard of clean, chemical-free food is the USDA National Organic Program Standards, as governed by the Organic Foods Production Act. Unfortunately, organic certification does not require testing for oil and gas chemicals in water being used in organic production. The organic standard is satisfied as long as state, water, and food safety agencies deem the water safe. To our knowledge these agencies do not test for oil and gas chemicals.[5]
  5. Based on available data spills occur regularly. Recent research has identified that the mixture of chemicals from fracking fluid and produced wastewater interact in a way that can lead to soil accumulation of these chemicals. Potentially, then, the chemicals may be absorbed by plants.[6] Fifteen chemicals often used in fracking have been identified as toxic, persistent and fast-traveling.[7] Some farms – such as those in Southern California – are being irrigated with produced water from oil and gas operations. Additionally, every single farm in the San Jaoquin Valley is within eight miles of oil and gas operations.[8]
  6. There is significant Competition for water between natural gas production and agriculture. This includes growing commodity crops for energy, such as ethanol. Natural gas operations result in removing water quantity available for agriculture, and changing the water quality, which affects the agricultural product. In drought stricken areas, water scarcity is already an issue. In addition, extreme heat as a result of climate change is putting more stress on farmers operating in already depleted watersheds. Layered on all of this is the growing realization that precipitation regimes are gradually – and in many places dramatically – transitioning from many smaller and more predictable events to fewer, more intense, and less predictable rain and snow events which is are harder for the landscape to capture, process, and store for agricultural and/or other uses.
  7. Operating costs: Farmers are already operating under razor- thin margins, with the cost of inputs continually increasing and the resilience of the soils and watersheds they rely upon coming into question with unconventional oil and gas’ expansion across the Midwest and Great Plains.

Public Lands

Over 45% of lands in the Western United States are owned by the federal government. Opening up public lands—by the Bureau of Land Management, United State Forest Service in particular—is controversial on multiple levels. As it relates to food security and independence, the issue often missed is that many headwaters to prime farmland reside on federal lands, along with the majority of cattle grazing.

There isn’t enough private land in the West for oil and gas operators to reach their production goals. They have to drill on public lands in order to scale up production and develop an export market for domestic natural gas. This means that public lands, taxpayer funded public lands, could potentially be used to irreparably harm prime agricultural and grazing lands (foodsheds). More alarming, is that the Trump Administration is focused on unfettered development, extraction and distribution of natural gas resources, including opening up public lands to oil and gas leasing and gutting regulations that protect us from pollution and public health risks.

The map we have developed shows that many of the largest farms in the West are surrounded by public lands. Sixty-percent of Colorado farms are surrounded by public lands, which are within shale basins or active shale plays.  Four of the top natural gas producing counties in Colorado are also four of the top agricultural producing counties: Weld, Mesa, Montezuma, and LaPlata counties. The third, fifth, sixth, eighth and tenth agricultural producing counties in the State are surrounded by public lands within shale basins, respectively,: Larimer, Delta, El Paso, Montrose and Douglas counties. The 6,325 farms in these counties represent 17% of all Colorado farms, and 29% (nearly half) of Colorado at-risk farms for being surrounded by public lands and within shale basins.

Colorado: Public lands surround majority of farms.

Colorado: Public lands surround majority of farms.

Colorado: zoom into 3 of top agricultural producing and natural gas producing counties in Colorado, illustrating how they are surrounded by public lands.

Colorado: Map zoomed into 3 of top agricultural producing and natural gas producing counties in Colorado, illustrating how they are surrounded by public lands.

food-table

These farms, headwaters, and public lands need to be protected if we are to maintain food independence and security. Producing potentially contaminated food is neither food independence, nor food security.

Policy Implications

Why should policy makers and health insurers care? Chronic and terminal illnesses are on the rise. Healthcare costs have nowhere to go but up as long as the environment we live in, the food we eat, the water we drink, and the air we breathe continue to be polluted at such a large scale. Attempts to reduce healthcare costs by insuring all Americans will have no impact if they are all sick. The insurance model only works when there are more healthy people in the pool than unhealthy people.

Mapping Conventional & Organic U.S. Farms

Below is an interactive map showing agricultural production in the U.S. You can use the map to zoom in at the county level to understand better the type of agricultural production taking place, as well as the value of the agricultural products at the county level.

U.S. Conventional and Organic Farms and Their Productivity Near Shale Plays and Basins


View map fullscreen | How FracTracker maps work

This map excludes Alaska for a variety of reasons[9]. We include over 180 unique data points for each county across five categories: 1) Crops and Plants, 2) Economics, 3) Farms, 4) Livestock and Animals, and 5) Operators. We then break these major categories into 20 subcategories.

Table 1. Subcategories Utilized in the “US Shale Plays and Basins Along with Agricultural Productivity By County” map above

Categories Subcategories
Crops and Plants Field Crops Harvested
Fruits, Tree Nuts, Berries, Nursery and Greenhouse
Hay and Forage Crops Harvested
Seed Crops Harvested
Vegetables and Melons Harvested
Economics Buildings, Machinery and Equipment on Operation
Farm Production Expenses
Farm-Related Income and Direct Sales
Farms by Value of Sales
Market Value of Agricultural Products Sold
Farms Agricultural Chemicals Used
Farms
Farms by Size
Farms by Type of Organization
Land in Farms and Land Use
Livestock and Animals Livestock, Poultry, and Other Animals
Operators Characteristics of Farm Operators
Hired Farm Labor
Primary Occupation of Operator
Tenure of Farm Operators and Farm Operations

Analysis Results

In total, there are 589,922 and 1,369,961 farms in US Shale Plays and Basins, respectively, averaging between 589 and 646 acres in size and spread across 2,146 counties (Figure 1). These farm counties produce roughly $87.31- 218.32 billion in agricultural products each year with the highest value per-acre being the Monterey and Monterey-Temblor Formations of Southern California, the Niobrara Formation in North Central Colorado, Eastern Barnett in North Central Texas, the Antrim in Michigan, and the Northern Appalachian Shale Basins of Pennsylvania, New York, and Ohio (Figures 2a/2b). Roughly 52% of all agricultural revenue generated in US Shale Play counties comes from livestock, poultry, and derivative products vs. a national average of 44% (Figure 3).

Put another way, the value of US Shale Basin agricultural infrastructure would rank as the 9th largest economy worldwide, between Italy and Brazil.

Family-owned farms are at the greatest risk. While corporations tend to own larger acreage farms, only 8.2% of US farms are owned by corporations. This figure is nearly halved in US Shale Plays, with 4.5% of farms owned by corporations, or 95% owned by families or individuals.


Figures 1, 2a, 2b, and 3 above show the number of farms near drilling, as well as variations in the value of agricultural products produced in those regions.

Risk vs. Benefits in CO

Oil and gas activity is regulated on a somewhat patchwork basis, but generally it is overseen at the state level subject to federal laws. New York and Maryland are the only two states that ban fracking, while communities around the country have invoked zoning laws to ban fracking or impose moratoriums on a smaller scale. However, in Colorado, the Colorado Oil and Gas Conservation Commission has exclusive jurisdiction over oil and gas regulation in the State. There, fracking bans imposed by local communities, with a large number of farms, have been found to be unconstitutional by the Colorado Supreme Court.

Weld County is Colorado’s leading producer of cattle, grain, and sugar beets. Weld is the richest agricultural county in the U.S. east of the Rocky Mountains, the fourth richest overall nationally, and the largest natural gas producer in CO. Compare this to the North Fork Valley on the Western Slope of CO, which is home to the largest concentration of organic farms in the state, one of two viticultural (wine making) areas in the state, and has a reputation for being a farm-to-table hub. Delta County, in which the North Fork Valley is located, is known for its sustainable agriculture initiatives. Uniquely, Delta County is one of the few agricultural areas in the country so far untouched by the fracking boom – but that could all change. The Bureau of Land Management is considering opening 95% of BLM lands and minerals within and surrounding Delta County to oil and gas leasing.

Protecting Food Supplies

Oil and gas extraction is taking place on both private and public lands across the country. Prime and unique agricultural lands need to be protected from these industrial activities if we are to maintain food independence and ensure a healthy food supply. As demonstrated by the map above, agricultural communities in active shale plays may already in trouble. To prevent further damages on day-to-day food staples, it is imperative to increase awareness about this consequential issue.

How can people trust that the food they eat is safe to consume? Families trust farmers, food brands, school and office cafeterias, and restaurants to the extent that the food supply chain is regulated and maintained. If most of the food produced in the U.S. is within active shale plays, and the water/soil is not being tested for oil and gas chemicals, that supply chain is at risk. The secure production of our food – via clean air, water, and soil – is tantamount to lasting food independence.

Farming Testimonials

I am the leader of Slow Food Western Slope, which functions as a chapter of Slow Food USA. We envision a world in which all people can eat food that is good for them, good for the people who grow it and good for the planet: good, clean and fair food for all. Our chapter promotes and supports over 70 farmers, orchardists, ranchers, agricultural businesses and winemakers of the North Fork Valley – all of which depend on good and clean water, air and soil. With its industrial footprint and potential damage to landscape, air, water, soil and human health, extraction industries have no place in the future of the North Fork Valley. We can build a new economy around clean food, outdoor recreation, healthy lifestyle and small nonthreatening businesses.

Agricultural land is much more valuable in the long-run than the short-term gains promised from oil and gas extraction… As farmers we are attuned to crop, soil, and water conditions especially as a result of weather. If it’s too hot, too dry, too wet, too cold then there is no food. Natural gas extraction is an undeniable factor in changing climate and is incompatible with the practice of sustainable agriculture.


References and More Information

FracTracker Alliance raised awareness of this issue in 2015 when it mapped the proximity of organic farms to oil and gas wells. In that mapping analysis, it was discovered that 11% of organic farms are within ½ mile of oil and gas development. Did you know that less than 1% of agricultural lands in the United States are used to grow crops without chemicals, and that 42% of those organic farms produce food for human consumption?

Organic Farms Near Drilling Activity in the U.S.

View map fullscreen | How FracTracker maps work

This research prompted the question of what about the other 99% of agricultural lands used to grow crops and raise livestock utilizing chemicals and other conventional methods in the United States. The majority of dairy, grains, beef, poultry, fruits, vegetables, and animal feed for livestock are produced on conventional farms. Where are they located, and do we know how they are being impacted by oil and gas development?

The majority of the US population lives in urban centers and is disconnected from the American farm, including how and where food is produced. People trust their farmer, food brands, school and office cafeterias, and restaurants to the extent that they trust their supply chain, and to the extent that the farmers trust their water supply and soils. If the majority of the food produced in the U.S. is within active shale plays, and the water and soil are not being tested for oil and gas chemicals, this research questions how people can trust that their food is safe to consume. If we are to maintain our food independence and health, not only do consumers need to understand that the food supply is at risk in order to exercise their rights to protect it at the local, state, and federal levels, but policymakers need to be informed with this data to make better decisions around oil and gas development regulations and development proposals that impact our foodsheds.

References/Footnotes:

  1. 2015 Colorado Oil and Gas Toxic Release Tracker, Center for Western Priorities
  2. COMPENDIUM OF SCIENTIFIC, MEDICAL, AND MEDIA FINDINGS DEMONSTRATING RISKS AND HARMS OF FRACKING (UNCONVENTIONAL GAS AND OIL EXTRACTION), Fourth Edition, Physicians for Social Responsibility, November 17, 2016; Colborn T, Kwiatkowski C, Schultz K, Bachran M., Natural gas operations from a public health perspective, Human and Ecological Risk Assessment, 2011 17(5):1039-1056; Fracking Fumes: Air Pollution from Hydraulic Fracturing Threatens Public Health and Communities, NRDC Issue Brief, December 2014
  3. 49 CFR §192
  4. Brady, William J., Hydraulic Fracturing Regulation in the United States: The Laissez-Faire Approach of the Federal Government and Varying State Regulations, Vermont Journal of Environmental Law, Vol. 14 2012
  5. National Organic Program Standards, 7 CFR Part 205. Organic Foods Production Act, 7 U.S.C. Ch. 94
  6. Molly C. McLaughlin, Thomas Borch,, and Jens Blotevogel, Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions, Environ. Sci. Technol. 2016, 50, 6071−6078
  7. AirWaterGas Sustainability Research Network, November 2016.
  8. Matthew Heberger and Kristina Donnelly, OIL, FOOD, AND WATER: Challenges and Opportunities for California Agriculture, Pacific Institute, December 2015.
  9. Issues with Alaskan agricultural data include incomplete reporting and large degrees of uncertainty in the data relative to the Lower 48.

By Natasha Léger, Interim Executive Director, Citizens for a Healthy Community and Ted Auch, Great Lakes Program Director, FracTracker Alliance

Underground Gas Storage map by Drew Michanowicz

Underground Gas Storage Wells – An Invisible Risk in the Natural Gas Supply Chain

The largest accidental release of methane in U.S. history began October 23, 2015 with the blowout of an underground natural gas storage well in Aliso Canyon about 20 miles west of Los Angeles. By the time the well was plugged 112 days later, more than 5.0 billion cubic feet of methane and other pollutants had been released to the atmosphere. It was a disaster for the climate, the environment, California’s energy supply, and the more than 11,000 people that were forced to evacuate.

A new study from the Harvard T. H. Chan School of Public Health – Center for Health and the Global Environment shows that more than one in five of the almost 15,000 active underground gas storage (UGS) wells in the US could be vulnerable to serious leaks due to obsolete well designs – similar in design to the well that failed at the Aliso Canyon storage facility.

Published today in the journal Environmental Research Letters, the study presents a national baseline assessment of underground storage wells in the U.S. and indicates the need for a better understanding of the risks associated with the obsolescence of aging storage wells. The study also highlights the widespread nature of certain age-related risk factors, but indicates that some of the highest priority wells may be located in PA, OH, NY, and WV.

The study shows that the average construction year of largely unregulated active UGS wells in the US is 1963, with potentially obsolete wells that were not originally designed for storage operating in 160 facilities across 19 states. Some of the wells were constructed over 100 years ago – a time period that precedes many modern well containment systems such cement isolation and the use of multiple casings. Some of the oldest active UGS wells were not designed for two-way flow of gas, and therefore may not exhibit sufficient material-grade or redundant precautionary systems to prevent containment loss, as was evident at Aliso Canyon.

An Interview with the Author

Sam, Matt, and Kyle of FracTracker caught up with lead author and former FracTracker colleague, Dr. Drew Michanowicz, now with the Center for Health and Global Environment within the Harvard T. H. Chan School of Public Health to find out more about their study.

When we spoke with Drew, he began the interview by posing the first question to us:

Did you know that about 15% of the natural gas produced in the US is injected back into the ground each year?

While we had all heard of underground gas storage before, we had to admit that we never thought of the process like that before. In other words, some of the natural gas in the US is being produced twice from two different reservoirs before being consumed. And because many of these storage systems utilized depleted oil and gas reservoirs, many of the same pre- and post-conditioning processes, such as dehydrating and compressing, are necessary to bring the gas to market.

The following questions and answers from Drew expand upon the study’s findings:

Q: What prompted you and your colleagues to investigate this topic?

A: After the Aliso Canyon incident, we became interested in the question: ‘Is Aliso Canyon Unique?’ Interestingly, there were plenty of early warning signs at that facility that corrosion issues on very old repurposed wells were becoming a significant issue. Almost a year before the well blowout, Southern California gas went on record in front of California’s Public Utility Commission stating that they needed a rate increase to implement a necessary integrity management plan for their wells, and to be able to move beyond operating in a reactive mode. That unfortunately prophetic document really got us interested in better understanding why their infrastructure was in the state it was in. And like any major accident like this, a logical next step is to assess the prevalence of hazardous conditions elsewhere in the system, in the hope to prevent the next one.

From our research, it appears that a very large portion of the UGS sector may be facing similar obsolescence issues compared to Aliso, such as decades-old wells not originally designed for two-way flow. Our work here, however, is a simplified assessment that focused only on passive barriers or the fixed structures such as the steel pipes likely present in a well. Much more work is needed to fully understand the active-type safety measures in place such as safety valves, tubing/packers, and overall integrity management plans – all important factors for manage risks.

Q: We see that your team developed a well-level database of over 14,000 active UGS wells across 29 states. Because data-collation is a big part of our work here, can you describe that data collection process?

A: Very early on we also realized that underground gas storage was exempt from the Safe Drinking Water Act’s Underground Injection Control (UIC) program – similar to exemption with hydraulic fracturing and the Energy Policy Act of 2015, AKA the Halliburton Loophole. This meant in part that very little aggregate well data was available from the Federal Government or by third-party aggregators like FracTracker and DrillingInfo. Reminiscent of my former extreme data-paucity days at FracTracker, we knew we needed to build a database basically from scratch to effectively perform a hazard assessment that incorporated a spatial component.

We began by gathering what data we could from the U.S. Energy Information Administration (EIA), which gave us good detail at the field or facility level, but the fields were generalized to a county centroid. So to fully evaluate these infrastructure, we needed to figure out how to join the facility-level data to the well data for each state. We relied on NETL’s Energy Data eXchange to identify state-level wellbore data providers where applicable. Once we collected all of the state data, we created a decision-tree framework to join the individual wells to the EIA field names in order to produce a functional geodatabase. Because we had to manage data from so many sources, we had to devote quite a bit of effort to data QA/QC, and that is reflected in the methods and results of the paper. For example, some of our fields and wells had to be joined via visual inspection of company system maps, because of missing identifier information.

Q: We see that some of the oldest repurposed wells you mapped are located in PA, OH, NY, and WV. Was that a surprise to you?

A: That was a surprise considering this story started for us in California, and even more surprising was that some are more than 100 years old. Now, a bit of caution here is warranted when thinking about the age of any engineered system. On the one hand, something that functions for a very long time is an indication that the system was very well suited for its task, and likely has been very well taken care of – think of an antique automobile like a fully functional 1916 Model T Ford, for example. On the other hand, age and construction year relates to the integrity of an engineered system through two processes by:

  1. providing information to how long a system has been exposed to natural degradation processes such as corrosion, and stresses from thermal and abrasive cycles; and by
  2. proxying for knowledge and regulatory safety standards at the time of construction which informs the design, materials, technologies likely used.

To go back to the car example, while an old classic car may still be operational, it may not have certain safety features like antilock brakes, airbags, or safety belts, and generally will not be able to go as fast as a modern car. Therefore, a gas storage well’s integrity is at least indirectly related to its construction year when considering the multitude of technological and safety improvements have occurred over the years. This is how we have been thinking about well integrity from a 5,000 foot perspective. Needless to say, more research is needed to understand the causal effect of age on well integrity.

Q: So if we understand you correctly, these older wells can be maintained with sufficient management practices, but there may be inherent safety features missing on these older wells that don’t adhere to todays’ standards?

A: That’s right. So what we can say about some of these aging wells is that some will not reflect certain modern fail-safe engineering such as sufficient casing design strength and multiple casings or barriers along the full length. And these are permanent structural elements vestigial to the well’s original design, and therefore cannot be undone or redesigned away. In other words, it makes much more sense to drill a new well with new materials than attempt to significantly alter an old well. And the gas storage wells built today are designed with redundant fail-safe systems including multiple barriers and real-time pressure sensors.

But back to my earlier point about lack of federal regulations to set a minimum safety standard – because of that, there is also much uncertainty surrounding how many of these facilities have been dealing with safety and risk management. That is a future direction of this work – to really try to fill in some of regulatory gaps between states and the impending Federal guidelines and identify some best practices to help inform policy makers specifically at the state level.

Drew put together a map to highlight where some of these active storage wells are in PA, OH, NY, and WV:

Underground Gas Storage map

This area map of PA, WV, OH, and NY displays where active underground natural gas storage operations are located. The small white points represent active storage wells that have a completion, SPUD, or permit date that occurs after the field was designated for storage indicating that these wells are more likely to have been designed for storage operations. The green points are active storage wells that predate storage operations, indicating that these wells may not have been designed for storage.

There are 121 storage fields connected to at least 6,624 active gas storage wells across these four states. A portion of wells in this region were not included in this final count because they did not contain sufficient status or date information. Pennsylvania has the most individual storage fields of any state with 47, while Ohio boasts the most active storage wells of any state in the country with 3,318 across its 22 active fields. Of the 6,624 active UGS wells across these four states, 1,753 predate storage designation indicating that these wells were likely not originally designed for storage. These ‘repurposed’ wells have a median age of 84 years, with 210 wells constructed over 100 years ago (red points). The 100 year cutoff is not arbitrary, as the year 1917 marks the advent of cement zonal isolation techniques, indicating that these wells may be of the highest priority in terms of design deficiencies related to well integrity, and they are primarily located across the four states pictured above.

Top Counties with Obsolete1/Repurposed2 Wells

  1. Westmoreland, PA (86/93)
  2. Ashland, OH (50/217)
  3. Richland, OH (31/99)
  4. Greene, PA (25/76)
  5. Hocking, OH (18/99)

1Obsolete wells are repurposed wells constructed before 1916
2Repurposed wells predate the storage facility

Additional Notes

The well that failed at Aliso Canyon was originally drilled in 1954 for oil production. In 1972, it was repurposed for underground gas storage, which entails both production and injection cycles in a single well. The problem seems to be that because it was not originally constructed to store natural gas, only a single steel pipe separated the flow of gas and the outside rock formation. That meant the well’s passive structural integrity was vulnerable to a single point-of-failure along a portion of its casing. When part of the subsurface well casing failed, there were no redundancies or safety valves in place to prevent or minimize the blow out.

  • More information related to the Aliso Canyon incident and this study is available here.
  • More info on the Center for Health and the Global Environment can be found here.
Mobile app update release feature image

FracTracker Mobile App Now Includes Activity Feed and Mapped Pipelines

Explore and Document Drilling Activity Near You with the FracTracker App

The oil and gas industry – from its wells to pipelines to refineries – has a variety of ways of impacting the communities and environment that surround its infrastructure. Given the scope of the industry, it’s almost impossible to see how oil and gas affects people and for them to share their experiences with others. Until today. FracTracker is excited to announce that we have completely rebuilt and significantly improved our frack-tracking mobile app. This app can serve as a documenting and tracking tool for reporters, residents, researchers, and groups concerned about oil and gas and its impacts.

Screenshots

Updated App Features

The free app, available for iPhone and Android users, still offers the ability to see drilling near you in the U.S. and add reports and photos about this activity onto a shared map. Based on feedback from many of our partners and readers, we have added and updated several features, as well.

  • Profile – Sign in to the app with an email address and password, with the option to add other information to your profile. This area is also where you can privately view your previous and pending reports.
  • Activity Feed – Shows the most recent submissions by app users. Scroll down to view older reports.
  • Save As Draft – Not ready to submit your report? Save it as a draft and return to submit it later.
  • Real-Time Submissions – We will no longer be curating incoming reports before they go live – so the activity feed and map show real-time submissions.
  • Flagging Tool – Mark a submission as inappropriate. A FracTracker moderator will review the report and take the appropriate action.
  • Indicate Senses Affected – Classify a report by the sense(s) impacted – e.g. Nearby drilling activity is loud, or an impoundment is causing noxious odors.
  • Pipelines Mapped – In addition to active wells and user reports, we have added national pipelines to the map. Please note that many of the pipeline locations are approximate because detailed, public pipeline data is lacking. Help us make this information more accurate by posting photos of pipelines near you.

Feedback Loops

Several organizations and community groups helped to test and improve the app during its redesign, including residents living amongst the oil and gas fields on the Front Range of Colorado and Southwest Pennsylvania, as well as with students at Drexel University.

When we redesigned our mobile app, we felt it was important to go into communities that are living amongst the oil and gas industry. Together, we identified what they needed most when reporting their concerns and potential impacts. The results are a very versatile app. People living around urban refinery hubs, as well as those living in rural extraction regions, will find this tool incredibly useful.

We’d love to hear your feedback about these changes once you have had a chance to explore the app’s updated features.

The app was developed by FracTracker Alliance in collaboration with Viable Industries, L.L.C.

Mobile App Contact

Kirk Jalbert, PhD, MFA
Manager of Community-Based Research and Engagement
FracTracker Alliance
jalbert@fractracker.org

Frac sand mining from the sky in Wisconsin

Fracking in Dairy Country

A dairy farmer in Wisconsin reflects upon a new industry in town: frac sand mining, how it is perceived, and where the industry is headed.

By Paul Jereczek
Jereczek Homestead Dairy, Dodge, Wisconsin

In 4th grade, every Wisconsin student learns about their state. Topics pertaining to Wisconsin’s economy, geography, and history along with ethnicity and traditions are introduced and explored. State facts and anecdotes are discussed and naturally memorized. The one that stood out to me the most was how Wisconsin became known as the “Badger State.”

The origin of the badger nickname is from mining. The 4th grade story I remember was that miners were too busy to build houses so they moved into abandoned mineshafts and/or dug their own burrows. These men became known as “badgers.” The 4th grade version of myself thought that was real impressive. I pictured strong, hard working men fiercely toiling away in the earth like mythical creatures, helping make Wisconsin what it is today.

It made for a great story.

Back to Reality

The reality and documentation of the times suggests something different. Most miners lived in cabins or other structures above ground. There most certainly were a few outliers on the fringe of mining society who burrowed their own holes or lived in abandoned underground mines, but the adult version of myself has a hard time imagining that the term used to describe such men – badgers – was used as a compliment.

Either way, the result is the same. Word spread and eventually Wisconsin became known as the Badger State. The state may be known worldwide for its cheese and agriculture, but there was mining in Wisconsin long before the first dairy cow. While the state was earning its nickname, mining was a prominent reason for the early success of the region.

Dairy Farming in WI

The 700 acre Jereczek Homestead Dairy in Dodge Township, Trempealeau County, Wisconsin first established in 1873 and now being operated by the the 6th generation of Jereczeks.

The 700 acre Jereczek Homestead Dairy in Dodge Township, Trempealeau County, Wisconsin first established in 1873 and now being operated by the 6th generation of Jereczeks.

Our farm is in Trempealeau County, Wisconsin – a driftless area – meaning the land was not covered by glaciers during the last ice age. The terrain is hilly and uneven, with tree-topped bluffs and hills overlooking valleys. The valleys, ranging from deep and narrow to wide and shallow, bump and flow into each other. Over the years, our farm has received its fair share of breaker rock, crushed rock, and gravel from the prevalent rock quarries. Sandstone deposits are huge and close to the surface. As a kid, there was a ledge in the cow pasture, where I hunted through chunks of sandstone for fossils.

As with everything else in the world, dairy farming continues to change. Most barns sit derelict and hold only memories of cows as they fade into the landscape. Small farms that clung to the valley walls have been sold to bigger operations, sit vacant, or have been built over. A lot of once prime farmland has been converted into houses with ridiculously large lawns. In 1990, Wisconsin had over 34,000 licensed dairy herds. Now there are just over 9,000.

We are the last dairy farm in our valley. Parallel to the trend, my childhood herd of 40 cows has turned to 200, which is about an average-sized herd. Margins are tighter than ever. Consistent help is hard to find. Milk prices are a terrible rollercoaster ride – it seems to take forever for them to go up, but when they fall, it’s fast and sickening. In the dairy business world, survival is a measure of success.

Frac Sand Mining Perceptions

Wisconsin Frac Sand Mines, Processing Facilities, and Related Operations

Wisconsin Frac Sand Mines, Processing Facilities, and Related Operations

The term frac sand is relatively new to me. I always assumed sand was sand and had given the word sand a negative connotation. Sand’s large particles don’t hold moisture or nutrients well, so sandy fields tend to perform poorly. But what if that sand has value for something else? What if there is a market for this sand much like a market for corn or soybeans?

Farmers tend to be resourceful. Every asset is scrutinized and employed to the fullest. Every acre is pushed. But what about what may lie beneath the soil? Sand mining has been going on in Wisconsin for well over a hundred years, but the recent surge in fracking has created an enormous demand for frac sand – and there are many people and companies set to take advantage of the boom.

Top U.S. Destinations for Wisconsin's Frac Sands Estimated from Superior Silica Sands' 2015 SEC 10Ks

Top U.S. Destinations for Wisconsin’s Frac Sands Estimated from Superior Silica Sands’ 2015 SEC 10Ks

Trempealeau County has zoning and planning ordinances to protect its industries and way of life. These aggressive ordinances allow more citizen input than other county’s ordinances. Public hearings are required, and orderly processes are enforced. With the economics involved with frac sand mining, citizens got educated very quickly. Much like abortion or immigration, frac sand has become a polarizing subject. Strong emotions built up by personal ideologies have pushed this topic to a boiling point. The for and against groups trade barbs without much convincing being done on either side. Frac sand mining editorials are common in local papers with those against appearing to be the most vocal and emotional.

New Player, New Approach

One such editorial detailed the approach a sand company took to obtaining a property. A local farmer had a sand mine company representative approach him with an oversized check written out to him for a sizable amount of money for his land. It was as though the sand rep was taking a page out of the Publishers Clearing House’s playbook. The farmer turned down the check. The sand rep left and returned a short time later with a significantly larger offer. The farmer was equally surprised and insulted. He found out later a few neighbors turned down similar proposals.

So what’s the deal with such a brazen approach? Intentions from this company may well have been good. Many people believed the sand mines were a win-win opportunity. Companies were selling hype – there was no way for anything but success. Extreme optimism. Sand mines were going to increase the tax base, fund schools and roads. Concerns were minimized, and residents were told what they wanted to hear. Such talk produced plenty of skeptics.

Environmental Costs of Frac Sand Mining

With both dairying and fracking, there is an environmental cost. Whether you milk 10, 100, or 1,000 cows – there are environmental pressures. With sand mining, the environmental effects are well documented. It is important, if not just practical, to measure these with the fiscal rewards. And where does this money go and who benefits the most? But, most importantly, who must deal with the consequences?

The risks of sand mines can be mitigated if proper regulations are taken seriously. With the extra scrutiny, a magnifying glass was placed over the sand mines, and what was found only proved the skeptics right. Trapping or pooling storm water seemed to be a learning process for sand mine companies; reported in 2012, every operating sand mine in Trempealeau County had storm water runoff violations. In 2014, over half of the sand mines in all of Wisconsin had violated environmental regulations imposed by the Department of Natural Resources. Add to this loss of surrounding property values, damage to roads, and a damper on quality of life – and you’ll create a substantial amount of public backlash.

Regulations Have Their Place

As was mentioned earlier, mining Is not new to the state. There are many multi-generational mining companies who have the experience, tradition, and financial network to abide by current standards and environmental regulations. Nobody likes to be told what to do. No industry is out there begging for more regulations. Often, the rules are in place to protect – not hinder – those that use environmentally safe and humane practices. Dairying has its own unique regulations – some are good, some not so much, and some downright stupid. Yet, overall it can be argued that these regulations protect the industry and the environment.

One heated topic in the dairy industry involves the sale of raw (unpasteurized) milk. It is illegal for any dairy in the state to sell raw milk. I have been drinking raw milk straight from the bulk tank since before I can remember. Our whole family did. Now, I still drink it and so do all my children from the age of a year and a half on up. None of us has ever had trouble with it. However, I am in complete agreement that the sale of raw milk should be illegal. All it takes is for one child to get terribly sick (which most certainly would happen) and for that kid lying on a hospital bed being blasted by every news network in the nation. These images create strong negative emotions that reverberate throughout society. The potential costs far outweigh the economic benefits from such a sale. Sure, some people are upset, but the greater good is maintained by taking away a risky practice.

The same principle works for mining. Rules and regulations get negative press and reaction, but who stands to lose the most from environmental catastrophes related to mining – the company in business 90-some years or the startup mining ventures trying to capture lightning in a bottle? Some companies have built years of trust and compatibility and support for their local communities. These are businesses that will remain after the sand rush has fizzled.

Booms and Busts, Ups and Downs

The frac sand industry is going through the same economic cycle as the dairy industry. The sand companies are getting better at what they do and increase their production capacity. Like milk, sand is a commodity. As the price of sand decreased, production increased to maintain profits. The dairy industry does the same thing, by expanding and improving efficiency to get more milk to catch those dollars slipping away. However, when the market is flush with milk or bombed with sand, they’re just doing more damage to themselves. This is a simplified take on the industry, as there are many global factors that come into play, but the overall pattern tends to remain. As the dairy industry can attest, this fluctuating cycle is not sustainable for all producers.

Primary and Secondary US Silica Sand Geologies and Existing Frac Sand Mines

Primary and Secondary US Silica Sand Geologies and Existing Frac Sand Mines

Worse yet for the sand industry, this cycle has occurred in hyper speed. At first, just the small mines cut production. Outcompeted by larger operations, production at smaller mines was no longer profitable. Soon, the larger mines cut production due to the weakening demand. Many mines in the permit or early production phases never got started. Unlike the dairy industry, there was no rollercoaster effect because prices have yet to return to prior levels. The bubble, it seems, had popped.

With any kind of new mine developed comes the environmental impacts. Yet, I find the fervent negative reaction to such practices directly related to the end result. Fracking. Fracking isn’t magic. They’re not just mixing water with this sand and forcing oil and gas out of the ground. Harmful chemicals are being added to the mix. Worst yet, the quantity and potency of such chemicals is kept secret, closely guarded from the public. Harmful chemicals are being legally pumped into the ground. All the short-term gains will have long-term consequences. This is where I believe a significant backlash for new mines comes from. The end result. Can you imagine what the public’s perception of dairy farms would be if milk was mixed with chemicals and pumped into the ground?

The Future of Dairy Farming in Wisconsin

The 2016 presidential election has breathed some life into the frac sand industry. The new president promises to cut regulations interfering with business, and thus far has kept those promises. The environment will not be a detriment to his goals. Sand companies are returning with ads in the local papers, looking for qualified applicants and offering great salaries. In contrast, the dairy industry is stuck in a rollercoaster spiral. Milk prices have been too low for far too long. The dairy dispersal continues with some very good cows being sold and very good dairymen and women calling it quits. Naturally, some land will be sold. To what end remains to be seen. But it is a safe bet, the frac sand mining ride has not ended.

The Shale Gas & Oil Health Registry: A Collective Step to Track the Impacts of Fracking

“It’s all about facts. Documented facts…”

… asserted a county commissioner to a recent gathering of concerned residents in Hannibal, Ohio. His comment came at the end of over an hour of deeply moving narratives from residents, sharing disturbing changes in their health after a disastrous well pad fire in their community and other ongoing shale development in the area. One family, whose home was blanketed by the heavy black smoke from the fire, which burned for five days in 2014, told of respiratory problems, hair loss, newly-diagnosed thyroid issues, and a premature birth. Another family reported worsening of existing cardiac conditions, sleep disturbances, and considerable stress due to continued encroachment of pipelines and compression stations.

lisa-photo-1

Figure 1: Residents of the Fort Berthold Indian Reservation in North Dakota live amid numerous oil rigs. Photo credit: Shalefield Stories, Vol. 2.

Throughout the country, personal stories like these offer a meaningful window into the experiences of people living at the frontlines of shale gas and oil development – often called ‘fracking.’ But aggregated into a formal health registry, these experiences can also form the kind of documentation needed to inform public health research and legislators who, like the county commissioner in Ohio, insist on documented evidence before issuing health-protective policies.

A health registry is “a dataset of uniform information about individuals collected in a systematic and comprehensive way, in order to serve a predetermined medical or public health purpose.”

The Southwest PA Environmental Health Project (EHP), in partnership with the Genetic Alliance, has just introduced the first such national system. In this online system, participants share – and control access to – their own data, making it unique among many other registries. This exciting new forum invites those living, working, or going to school near shale gas and oil development, like the families described above, to share their exposures and document their health symptoms. Perhaps most importantly, it ensures that personal stories are collected, respected, and treated as the important data that they are.

Figure 2: These quick and informative videos introduce EHP’s Shale Gas & Oil Health Registry and how it works. They feature the voices of those who helped create it, including public health professionals, the director of EHP, and a community member.

Why a registry?

Public health research affirms that there are significant health risks for those living, working, or attending school near shale gas and oil development. Research points to links between proximity to fracking and worsened asthma and other respiratory impacts and skin conditions; fracking’s noise pollution and stress-related conditions, like cardiovascular problems; and low birth weight babies among mothers living near numerous hydraulically fractured wells.

Physicians, Scientists, and Engineers for Healthy Energy (PSE) conducted a thorough examination of the extensive and growing body of shale gas and oil-related research and found that between 2009 and 2015, 84% of the studies focused on health have findings that “indicate public health hazards, elevated risks, or adverse health outcomes.”

US map of populations near active drilling activity

Figure 3: Populations in the U.S. near active drilling. The Shale Gas & Oil Health Registry has a national scope. Click on the image to learn more about how this map was made.

For years, some medical professionals attuned to environmental effects on health have noted correlations between fracking and health symptoms in their patients. But without a clear explanation of causation that links such symptoms to fracking, researchers need more data.

The Pennsylvania Medical Society recommended a registry as a necessary step toward getting a grasp on the public health problem. A health registry collects health data systematically, and may support further epidemiology and toxicology research by putting these patterns in higher contrast.

Laying the Groundwork

The Shale Gas & Oil Health Registry did not emerge in isolation, but rather is one of several ongoing efforts toward gathering the innumerable accounts of health symptoms from shale development regions around the country.

Important grassroots initiatives include the List of the Harmed, started by Jenny Lisak in 2011. The List catalogues over 20,000 stories of human, animal, and environmental impacts. The Natural Gas Exploration & Production Health and Community Impacts Survey, created by The Damascus Citizens for Sustainability (DCS), is an effort to collect health impact information from individuals in shale gas communities and hopefully trigger further review from the Agency for Toxic Substances and Disease Registry (ATSDR). Additionally, there are numerous peer reviewed studies on the topic, but they are often too limited in scope and size to be generalized to communities outside of where the data was originally collected.

Families in Washington Co., Pa who are facing possible issues through the creation of cybergentic gas processing plant in western Pa. A Cibus Imperial compression station sits above a suburban community, people there are fearful of their air quality because of this plant, in Bulger, PA

Figure 4: In Washington County, PA, houses sit just below a compressor station, a type of natural gas facility that can produce air emissions, noise, and light pollution. In the health registry, participants can answer questions about the types of facilities they are exposed to. Photo credit: Karen Kasmauski, iLCP.

Two states have begun their own registry-related efforts. Colorado’s Oil & Gas Health Information and Response Program includes an online self-referral form, a hotline for those with health concerns potentially related to oil and gas, and a health information “clearinghouse.” Their program aims to illuminate “possible health effects related to oil and gas operations,” which the program intends to make available to the public, researchers, and policy-makers (source).

Pennsylvania, where EHP does much of its on-the-ground work, has a history of legislative calls for its own registry, beginning with recommendations issued by Governor Tom Corbett’s Marcellus Shale Advisory Commission in 2011. The Secretary of Health at the time called a registry “the most timely and important initiative” for the Department of Health (DOH). Current Governor Tom Wolf called for a shale gas health registry in his 2014 gubernatorial campaign. He proposed budgeting $100,000 to the PA Department of Health (DOH) for the cause, although health professionals argue that more is needed to implement an effective registry. According to recent conversations with EHP, DOH is in the process of developing a system similar to Colorado’s, in coordination with that state. For the time being, Pennsylvanians seeking assistance from DOH will find a webpage with limited information, directing calls to the state’s Bureau of Epidemiology.

Making the Registry a Reality

There is a clear need for a system to collect individuals’ exposures and health symptoms, with a national scope that matches the country-wide scale of shale development. Yet, the costs of initiating and maintaining a registry, political issues related to industry reporting on the chemicals they use and discharge, and scientific issues such as scant exposure data and limited funding for research, are some of the various obstacles that faced the implementation of a health registry.

From a health perspective, symptoms potentially related to drilling activity may be similar to symptoms from unrelated causes, or may be exacerbations of existing health conditions. Added to this is the complexity of exposure sources, since an individual or family may live, work, or go to school in proximity to multiple types of shale gas and oil facilities. Moreover, those at the frontlines of shale oil and gas development – whose health data is essential to the registry – may be reluctant to participate due to social or family pressures.

The Shale Gas & Oil Health Registry directly addresses each of these challenges. Using an existing registry infrastructure created by Genetic Alliance significantly reduced the costs of launching and maintaining the registry. Including systematic questions that let users record their proximity to – and frequency of – exposure captures the complexity of this important information. And through steps like collecting zip codes instead of home addresses, and offering the choice of privacy settings that only allow researchers to see data in anonymous form, the registry ensures confidentiality and user control of data.

Figure 6. A variety of sources can trigger health issues during shale gas and oil development. These include air emissions from processing facilities and well pad accidents, as well as the heavy truck traffic required to drill and frack a well; spills and other forms of water contamination; and psychological impacts like stress and sleep disruption. 

End Result: The Shale Gas & Oil Health Registry

hughes-bill-workers-launching-pigs

Figure 7: The health registry includes a set of questions for participants whose exposures come from working in the gas and oil industry. Photo credit: Bill Hughes.

The result of these efforts is a secure, online system where participants – people within five miles of shale gas and oil development, with or without health symptoms – can create an account for themselves and/or their family members. The online registry guides them through a series of screens inviting them to share the various exposures they encounter, such as heavy truck traffic, air emissions, and water impacts. Participants can catalogue and update health symptoms that have surfaced or worsened during their exposure, while controlling who can view and share their personal information.

Industry workers and children can even be registered in this system using a set of tailored questions. The registry also allows an assistor to create a profile and answer the questions for someone not comfortable with or able to use the online system.

One Registry to Meet Many Needs

EHP created the health registry to respond to the needs of several groups: affected communities, researchers, policymakers, and the public.

shirley-eakin

Figure 8: A resident of Washington County, PA sits in front of paperwork documenting health struggles that may be connected to shale gas development near her home. Photo credit: Shalefield Stories, Vol. 2.

In developing the health registry, EHP recognized that those affected by shale development must not be treated as “data points,” but as collaborators in – and beneficiaries of – the process. As a venue to share health concerns, the registry helps give voice to those who may be suffering in silence. Participants can connect with researchers, receive a biannual newsletter of updates on the growing size of the registry and new knowledge around health impacts and treatment. In the long view, the registry gives individuals an opportunity to take part in a large-scale effort that may ultimately inform positive change and promote protections from ever-expanding shale development.

 The data participants provide via the registry can also help researchers identify emergent patterns and generate testable hypotheses for new studies. Through this process, a registry can enable research that is responsive to community needs.

Policymakers stand to benefit, as well. The patterns that the registry highlights, and the additional research it makes possible, can help elected leaders to understand the scope of the health problem. In time, this knowledge can inform policies and regulations that benefit those living in shale country.

A chance to be a part of something larger

EHP encourages those who live near shale gas and oil development, with or without health symptoms, to register now and fill out the registry questionnaire. The three-step process takes only about 20 minutes.

  1. Share: Answer as many questions as you would like, and control how and with whom that information is shared
  2. Connect: Find out how you compare to others, and let support and helpful resources come to you
  3. Discover: If you wish, let researchers access your information to help them understand the health impacts of shale oil and gas development and transport

Researchers and healthcare providers who want to take part in the possibilities created by the registry, such as studying data patterns from participants who have elected to share certain information, can contact Jill Kriesky (jkriesky@environmentalhealthproject.org) or Beth Weinberger (bweinberger@environmentalhealthproject.org) for more information.

Button to join the Shale Gas & Oil Health Registry

Ready to get started?
Click here to join the Shale Gas & Oil Health Registry!

Sincere Appreciation

Many thanks to those who contributed to this article about the Shale Gas & Oil Health Registry through interviews and by sharing the images used in this story.

The International League of Conservation Photographers and the Environmental Integrity Project for sharing photographs of families coping with fracking where they live, “The Human Cost of Energy Production.”

Dana Dolney, co-founder of Friends of the Harmed. Friends of the Harmed, publishers of Shalefield Stories, dedicate 100% of donations they receive to providing much-needed direct aid to families negatively affected by fracking.

Jenny Lisak, creator of List of the Harmed. List of the Harmed is an ever-growing list of the individuals and families that have been harmed by fracking (or fracked gas and oil production) in the U.S.

Barbara Arrindell, director of Damascus Citizens’ Group. Damascus Citizens for Sustainability (DCS) is a collaborative endeavor to preserve and protect clean air, land and water as a civil and basic human right in the face of the threat posed by the shale gas extraction industry.

Jill Kriesky, Associate Director and Beth Weinberger, Research & Communications Specialist, both of The Southwest PA Environmental Health Project. The Environmental Health Project (EHP) is a nonprofit public health organization that assists and supports residents of Southwestern Pennsylvania and beyond who believe their health has been, or could be, impacted by unconventional oil and gas development (UOGD, or “fracking”).


By Leann Leiter, Environmental Health Fellow, FracTracker Alliance & EHP

34 states with active drilling activity in US map

34 states have active oil & gas activity in U.S. based on 2016 analysis

Each year, FracTracker Alliance compiles a national well file to try to assess how many wells have been drilled in the U.S. We do this by extracting data from the various state regulatory agencies that oversee drilling in oil and gas producing states. We’re a little late posting the results of our 2016 analysis, but here it is.

Based on data from 2014-2015, 34 states * saw drilling activity, amounting to approximately 1.2 million facilities across the U.S. – from active production wells, to natural gas compressor stations, to processing plants.

The process we used to count these wells and related facilities for the 2016 analysis changed a bit this time around, which obviously impacts the total number of wells in the dataset. 2016’s compilation was created in consultation with Earthworks, for the purpose of informing the Oil and Gas Threat Map project. The scope was more restrictive than previous editions (see our 2014 and 2015 analyses), focusing only on wells that we were reasonably confident were actively producing oil and gas wells, thus excluding wells with inactive or uncertain statuses, as well salt water disposal (SWD) and other Class II injection (INJ) well types.

There are facilities included in this dataset that we don’t normally tally, as well (See Table 1 below). Earthworks was able to determine the latitude and longitude coordinates of a number of compressors and other processing plants, which are included in the dataset below and final map.

In all, the facility counts are reduced from about 1.7 million in 2015 to about 1.2 million in 2016, but this is more a reflection of the definition than substantial changes in the active well inventory in the U.S. You can explore this information by state, and additional results of this project, using Earthworks’ Threats Maps. Additionally, the national well file is available to download below.

Download 2016 National Well File Data

* The zip file separates out TX wells from the rest of the states due to the significant number of TX facilities.

You’ll notice that we don’t refer to the wells in this analysis as “fracked” wells. The primary reason for not using such terminology is because no one common definition exists across those states for what constitutes a hydraulically fractured well. In PA, for example, such wells are considered “unconventional” because drilling occurs in an unconventional formation and usually involves some sort of well stimulation. Contrastingly, in CA, often drillers use “acidizing” not fracking – a similar process that breaks up the ground using acidic injected fluids instead of the high pressure seen in traditional fracking. As such, we included all active oil and gas production instead of trying to limit the analysis to just wells that have been stimulated. We will likely continue to use this process until a federal or national definition of what constitutes a “fracked” well is determined.

Table 1. Facilities by State and Type

State Count of Facilities by Type Grand Total
Compressor Processor Well
AK 7 3,356 3,363
AL 17 7,016 7,033
AR 231 8 13,789 14,028
AZ 40 40
CA 7 21 92,737 92,765
CO 426 49 50,881 51,356
FL 2 102 104
ID 6 6
IL 5 48,748 48,753
IN 7,374 7,374
KS 9 90,526 90,535
KY 5 11,769 11,774
LA 6,486 94 2,555 9,135
MI 19 16,525 16,544
MO 2 687 689
MS 6 4,556 4,562
MT 5 9,768 9,773
ND 19 13,024 13,043
NE 1 16,202 16,203
NM 902 37 57,839 58,778
NV 176 176
NY 12,244 12,244
OH 29 10 90,288 90,327
OK 856 96 29,042 29,994
OR 56 56
PA 452 11 103,680 104,143
SD 408 408
TN 15,956 15,956
TX 758 315 397,776 398,849
UT 18 20,608 20,626
VA 9,888 9,888
WI 1 1
WV 20 16,118 16,138
WY 325 48 38,538 38,911
Grand Total 10,472 825 1,182,278 1,193,575
* NC facilities are not included because the state did not respond to multiple requests for the data. This exclusion likely does not significantly affect the total number of wells in the table, as historically NC only had 2 oil and gas wells.
Cuyahoga River on fire - Photo by Cleveland State Univ Library

On a Dark Road to Nowhere

Teddy Roosevelt is rolling over in his grave. The progressive conservationist and one-time republican knew that healthy air, clean water, and stewardship of natural resources are tantamount to a high quality of life. Fifty years before Donald Trump drew his first infantile breath, Roosevelt was championing national parks and cities beautiful. America gained stature in the world – not only from economic might – but from noble ideas and values shared. Roosevelt was a visionary.

The ideals he sowed led to further cultivation of good. From Aldo Leopold to Rachel Carson, we learned that ecology includes humans. Everything is interconnected; everything has consequence. Ignoring the science of climate change and elementary cause and effect will have dire consequences.

In just a few days, the new president has wrought unprecedented carnage on laws and institutions created to protect our land and its people. The Center for Disease Control cancelled a long planned conference on climate change and health. An executive order was signed to clear the way for the Dakota and Keystone XL pipelines – potentially locking-in carbon pollution for decades if the projects move forward. The administration imposed a freeze on EPA grants and contracts and may be considering legislation to ban the EPA from generating its own internal science. The EPA is the federal agency charged to “protect human health and the environment.” Leadership with our best interests in mind would encourage scientific inquiry and requisite oversight, not silence it.

Economies thrive and civilizations rise when challenged to adapt and improve. Prosperity is on the rise in states with high expectations and greater public investment. The mantra of cutting regulations is gross deception. We can’t forget silent springs and burning rivers (photo top), Love Canals or the gulf spills. Attempts to roll back environmental laws and agreements – some enacted decades ago with bipartisan support – can’t go unchecked. Which safeguard enacted to protect life and property is too much? Should billionaire-funded anti-regulatory agendas trump civil rules designed to benefit mankind?

Conservation, restoration, green infrastructure, clean energy, and smart public expenditure pay huge social and economic dividends:

Fighting climate change fuels innovation. Research grows jobs. Cutting pollution reduces healthcare costs. Creating open space and public amenities retains and attracts a motivated, productive workforce. Sustainability nurtures hope.


Other countries will build the renewable energy future if we don’t. They already are. We can be in the top tier or risk sliding into a dirty and dangerous, carbon-dependent oblivion. If that sounds alarmist, take a look at the basic impacts we’ve seen from fossil fuel extraction and distribution nationwide. Hundreds of thousands of abandoned oil and gas wells lay strewn across the country, 200,000 in Pennsylvania alone. Thousands of miles of streams have been contaminated by coal mining. Volatile and potentially explosive oil trains and pipelines pass by our homes, across sacred tribal lands, and through highly populated cities. Refineries pollute the very air we breathe. Degradation and injustice is un-American.

These strange and troubling times require a loud and unified chorus. Roosevelt said “It is only through labor and painful effort, by grim energy and resolute courage, that we move on to better things.”

There is no choice but to resist. And we will.

On a Dark Road to Nowhere – By Brook Lenker, Executive Director, FracTracker Alliance


Feature Image Credit: Cleveland State University Library. The Cuyahoga River is a river in the United States, located in Northeast Ohio, that feeds into Lake Erie. The river is famous for having been so polluted that it “caught fire” in 1969. The event helped to spur the environmental movement in the US – via Wikipedia

AG Pruitt testifies before a congressional committee on issues surrounding energy and the environment

“Polluting Pruitt:” A Wolf to Guard the Hen House?

Guest article by Dakota Raynes, Co-Organizer of Stop Fracking Payne County (OK)

President Trump recently tapped Oklahoma Attorney General Scott Pruitt to head the Environmental Protection Agency (EPA), even though Pruitt is a self-proclaimed “leading advocate against the EPA’s activist agenda.” Pruitt is currently opposing investigation of Exxon Mobile’s handling of climate-change science based on the belief that climate change science is not yet settled and “debate should be encouraged in classrooms, public forums, and the halls of Congress.” Senate confirmation hearings regarding Pruitt’s nomination are currently ongoing – many questions have focused on Pruitt’s legacy as AG of OK and what that tells us about actions he might take as head of the EPA.

Pruitt’s Past as AG

Elected in 2010, Pruitt’s six-year tenure illuminates the full extent of the troubling stances he takes. For instance, he has fought against the overturn of DOMA, same-sex marriage rights, granting legal status to undocumented immigrants, the Affordable Care Act, access to safe and affordable birth control and abortions, and Dodd-Frank Wall Street reform. These actions demonstrate Pruitt’s inability to accept or implement procedures, policies, and programs supported by a majority of US residents, members of the nations’ highest courts, and even his own colleagues.

A Focus on Environmental Issues

More specifically related to environmental issues, he has openly criticized the EPA in congressional hearings and op-ed pieces. Due to his belief that the EPA frequently abuses its authority, Pruitt’s office has filed 14 antiregulatory lawsuits against the EPA. Investigative reporters uncovered that in 13 of these cases co-litigators included companies that had contributed significant amounts of money to Pruitt and/or Pruitt-affiliated political action committees (PACs). He also routinely joins lawsuits against other states. For example, Pruitt and five other Attorneys General challenged a California law banning the sale of eggs laid by hens living in cramped conditions, but a US District Judge ruled they lacked legal standing because they were representing the economic interests of a few industrial egg producers rather than the interests of their broader constituents.

Several such lawsuits are still pending, which legal experts and others claim presents a conflict of interest should Pruitt become the new Director of the EPA. When asked specifically about this issue during Senate confirmation hearings, Pruitt refused to recuse himself from the lawsuits, saying he would leave such a decision up to the EPA’s legal counsel team. Notably, across the course of his six-years as AG, Pruitt’s office has distributed more than 700 news releases announcing the office’s actions, his speeches and public appearances, and efforts to challenge federal regulations. More than 50 of these releases promoted the office’s efforts to sue the EPA, but not once has a release described actions the office has taken to enforce environmental laws or to hold violators accountable for their actions.

Potential Conflicts of Interest

In OK, Pruitt has made many choices, that when viewed together, strongly suggest that his loyalties reside with the industries that have donated hundreds of thousands of dollars to his election campaigns rather than with the people he is sworn to protect. Here is a short list of the most troubling examples:

  • Pruitt’s predecessor had filed suit against Tyson, Cargill, and a number of other poultry producers in OK due to inappropriate disposal of an estimated 300,000 tons of animal waste per year, which was causing toxic algae blooms along the Illinois River. But shortly after his election, Pruitt dropped the case, citing a need for more research. Some have questioned whether his decision was impacted by the fact that the poultry industry had donated at least $40,000 to his campaign that year.
  • He also quickly dismantled the Attorney General’s in-house environmental protection unit, a team of four attorneys and a criminal investigator, and replaced it with the state’s first “federalism unit,” which was created to litigate against overreach by the federal government, mostly the EPA. Pruitt has repeatedly made it clear that he believes states should handle environmental issues, regardless of the fact that environmental issues frequently cause problems that cross geopolitical boundaries such as state lines (OK’s induced seismicity issue1 is a key example, more information about induced seismicity can be found here).
  • In 2013, he created a coalition of 9 Attorneys General, major energy CEOs, and their lawyers and brought them all to OK for a strategizing session regarding how to stop government and citizen responses to the ills of the oil and gas industry; it was an all-expenses paid event funded by Mercatus, a right-wing think tank favored by the Koch brothers.
    1. Notably, the energy industry is Pruitt’s second largest campaign contributor. When he came up for re-election in 2013, he chose Harold Hamm (CEO of Continental Resources, one of the largest oil companies in OK) to co-chair his campaign. Shortly after winning reelection in 2014, Pruitt joined forces with key industry players including Oklahoma Gas and Electric and the Domestic Energy Producers Alliance (chaired by Hamm) to file several antiregulatory lawsuits, which include attempts to block the Clean Power Plan and Waters of the US rule.
    2. Pruitt has also served as leader of the Republican Association of Attorneys General, which has collected at least $4.2 million in donations from fossil-fuel related companies since 2013.
  • Recently, local investigative reporters discovered that Pruitt’s office failed to follow a state law requiring state agencies to disclose spending on outside attorneys. Their examination illuminated that Pruitt has spent more than $1 million on legal fees since FY2012 – a total that does not include costs directly related to lawsuits against the EPA or the Affordable Care Act.

Induced-Seismicity and Wastewater Disposal

OK Map of Recent Earthquakes for Pruitt article

Map of Oklahoma Class II Injection Wells and Volumes 2011 to 2015 (Barrels). Click image to explore a full screen, dynamic map.

Oklahoma recently became the earthquake capital of the world due to a phenomenon referred to as injection-induced seismicity. While OK has not historically been known as a seismically active area, thousands of tremors have shaken the state since the shale gas boom began.

Several researchers have used geospatial analysis to demonstrate how these quakes are caused by the high-pressure injection of oil and gas industry wastes such as the flowback and produced water created by the unconventional oil and gas production process known as hydraulic fracturing. The map above shows where injection wells (tan dots) are located and where earthquakes (green dots) occurred from 2011-2015.

Oklahomans have been harmed by the implicitly pro-fracking stance Pruitt has taken, as evidenced by his lack of action regarding induced seismicity – as well as air, water, and soil contamination due to oil and gas industry activities. Several people, including Johnson Bridgewater (Director of OK Chapter of the Sierra Club) have noted that:

There are various places where the attorney general’s office could have stepped in to fix this overall problem…Its job is to protect citizens. Other states were proactive and took these issues on…[yet] Pruitt has been completely silent in the face of a major environmental problem for the state and its taxpayers.

Specifically, the AG’s office could have responded to the legal question of whether the state could limit or ban transport of fracking-related wastewater, sent by other states for disposal in underground injection wells in OK.

He also did nothing to address the phenomenally low earthquake insurance claim approval rate; after the 5.8M quake shook Pawnee in September of 2016, 274 earthquake damage claims were filed but only 4 paid out. Estimates of statewide approval rates generally suggest that approximately 1% of claimants receive funds to aid repairs.

Lastly, there are a number of class action lawsuits against a variety of industry actors regarding earthquake damages, yet Pruitt’s office has not entered any of these as an intervenor even though AGs in other states have done so.

Pruitt not at fault?

Photo Credit: JIM BECKEL/The Oklahoman

Earthquake damage. Photo Credit: Jim Beckel/The Oklahoman

Pruitt was recently called out by investigative reporters who used open-records requests to reveal that letters, briefs, and lawsuits that he submitted were written in whole or in part by leading energy firms such as Devon (another of OK’s largest oil and gas companies). Pruitt’s response was that he had done nothing wrong, nothing even potentially problematic. Rather, he said, of course he was working closely with industry and isn’t that what he should be doing. Some would argue that as AG what he should be doing is working closely with the people of Oklahoma, especially those whose homes, lives, and livelihoods have crumbled under the weight of attempting to repair earthquake damage due to industry activities.

Historical AG Influence

It is important to remember, though, that what’s happening with Pruitt is not isolated. Rather, as several long-time reporters have noted, increased attention to developing beneficial relationships with AGs is a result of historical processes.

About 20 years ago more than 40 state AGs banded together to challenge the tobacco industry, which led to a historic $206 billion settlement decision. Later, Microsoft, the pharmaceutical industry, and the financial services industry each faced similar multistate challenges regarding the legality or illegality of particular business practices.

As some AGs began hiring outside law firms to investigate and sue corporations, industry leaders realized that AGs’ actions were far more powerful and immediate than those of legislative bodies. So, they began a heretofore unprecedented campaign to massively increase their influence at this level.

Several people have critiqued the ways in which such actions undermine democratic processes, prompt troubling questions about ethics, and negatively impact attorney generals’ abilities to fulfill their duties to the state and its residents.

A Mission at Risk

Those of us on the frontlines here in OK have seen just how powerful such coalitions can be, how much sway they can have on local and state officials, how they destabilize people’s faith and trust in the systems that are supposed to protect them, and how coalitions undercut people’s hope and desire to be civically engaged. The mission of the US Environmental Protection Agency is to protect human health and the environment. If confirmed to lead the EPA, it is very likely Pruitt will prioritize his relationships with industry over the health and welfare of the people and environment he’s directed to protect.

Footnotes

  1. To learn more about induced seismicity read an exclusive FracTracker two-part series from former VTSO researcher Ariel Conn: Part I and Part II. Additionally, the USGS has created an Induced Earthquakes landing page as part of their Earthquake Hazards Program.
Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

New Frac Sand Resources on FracTracker.org

We’ve added several new frac sand resources for visitors to our website this month, including a map of frac sand mines, as well as geolocated data you can download. Explore these resources using the map and links below:

Updated Frac Sand Mining Map


View map fullscreen | How FracTracker maps work

On the map above you can view silica sands/frac sand mines, drying facilities, and value-added facilities in North America. Click view map fullscreen to see the legend, an address search bar, and other tools available on our maps.

Additional data shown on this map include addresses and facility polygons. Wisconsin provides sand production data for 24 facilities, so that information has been included on this map. The remaining Wisconsin and other state facilities do not have production or acreage data associated with them. (Most states lack disclosure requirements for releasing this kind of data. Additionally the USGS maintains a confidentiality agreement with all firms, preventing us from obtaining production data.)

The sandstone/silica geology polygons (areas on the map) include a breakdown of how much land is currently made up of agriculture, urban/suburban, temperate deciduous forest, and conifer forests. At the present time we only have this information for the primary frac-sand-producing state: Wisconsin. We should have details for Ohio and Minnesota soon.

Data Downloads

Click on the links below to download various geolocated datasets (zipped shape files) related to the frac sand industry:

  1. SIC and/or NAICS related violations and inspections
  2. Resin Coating Facilities
  3. Silica Sand Mine Time Series polygon expansion over time (in Wisconsin, Illinois, Arkansas, Minnesota, and Missouri)
  4. Existing Silica Sand Mine Points
  5. Existing Silica Sand Mine Polygon land-use
  6. St. Peter and Sylvanian Surficial Sandstone Geologies
  7. Frac Sand Mine Proposals – inventory of frac sand mine proposals in LaSalle County, IL; Monroe County, IL; Arkansas; and Minnesota
  8. Western Michigan frac sand mines within or adjacent to sensitive dunes
  9. Mid or downstream frac sand industry participants (PDF) – detailed descriptions of 34 US and 4 Canadian firms

Woody Biomass & Waste-To-Energy

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

While solar and wind energy gets much of the attention in renewable energy debates, various states are also leaning more and more on burning biomass and waste to reach renewable energy targets and mandates. As is the case with all sources of energy, these so-called “renewable energy” projects present a unique set of environmental and socioeconomic justice issues, as well as environmental costs and benefits. In an effort to document the geography of these active and proposed future projects, this article offers some analysis and a new map of waste and woody biomass-to-energy infrastructure across the U.S. with the maximum capacities of each facility.

 

Map of U.S. Facilities Generating Energy from Biomass and Waste

View map full screen to see map legend, additional layers, and bookmarks
How FracTracker maps work

Woody Biomass-to-Energy

To illustrate the problems of woody biomass-to-energy projects, one only needs to look at Michigan. Michigan’s growing practice of generating energy from the wood biomass relies on ten facilities that currently produce roughly 209 Megawatts (an average of 21 MW per facility) from 1.86 million tons of wood biomass (an average of 309,167 tons per facility). Based on our initial analysis this is equivalent to 71% of the wood and paper waste produced in Michigan.

Making matters worse, these ten facilities rely disproportionately on clearcutting 60-120 years old late successional northern Michigan hardwood and red pine forests. These parcels are often replanted with red pine and grown in highly managed, homogeneous 20-30 year rotations. Reliance on this type of feedstock stands in sharp contrast to many biomass-to-energy facilities nationally, which tend to utilize woody waste from urban centers. Although, to provide context to their needs, the area of forest required to service Michigan’s 1.86 million-ton demand is roughly 920 mi2. This is 1.65 times the area of Chicago, Milwaukee, Detroit, Cleveland, Buffalo, and Toronto combined.

 

Panorama of the Sunset Trail Road 30 Acre Biomass Clearcut, Kalkaska Conty, Michigan

 

Based on an analysis of 128 U.S. facilities, the typical woody biomass energy facility produces 0.01-0.58 kW, or an average of 0.13 kW per ton of woody biomass. A few examples of facilities in Michigan include Grayling Generating Station, Grayling County (36.2 MW Capacity and 400,000 TPY), Viking Energy of McBain, Missaukee County (17 MW Capacity and 225,000 TPY), and Cadillac Renewable Energy, Wexford County (34 MW Capacity and 400,000 TPY).

 

The relationship between wood processed and energy generated across all U.S. landfill waste-to-energy operations is represented in the figure below (note: data was log transformed to generate this relationship).

 

Waste-To-Energy

Dr. Jim Stewart at the University of the West in Rosemead, California, recently summarized the Greenhouse Gas (GHG) costs of waste landfill energy projects and a recent collaboration between the Sierra Club and International Brotherhood of Teamsters explored the dangers of privatizing waste-to-energy given that two companies, Waste Management and Republic Services/Allied Waste, are now a duopoly controlling all remaining U.S. landfill capacity (an additional Landfill Gas Fact Sheet from Energy Justice can be found here).

Their combined analysis tells us that, by harnessing and combusting landfill methane, the current inventory of ninety-three U.S. waste-to-energy facilities generate 5.3 MW of electricity per facility. Expanded exploitation of existing landfills could bring an additional 500 MW online and alleviate 21.12 million metric tons of CO2 pollution (based on reduction in fugitive methane, a potent greenhouse gas). Looking at this capacity from a different angle, approximately 0.027 MW of electricity is generated per ton of waste processed, or 1.64 MW per acre. If we assume the average American produces 4.4 pounds of waste per day, we have the potential to produce roughly 6.9 million MW of energy from our annual waste outputs, or the equivalent energy demand created by 10.28 million Americans.

 

The relationship between waste processed per day and energy generated across all U.S. landfill waste-to-energy operations is represented in the figure below.

 

Conclusion

Waste burning and woody biomass-to-energy “renewable energy”projects come with their own sets of problems and benefits. FracTracker saw this firsthand when visiting Kalkaska County, Michigan, this past summer. There, the forestry industry has rebounded in response to several wood biomass-to-energy projects. While these projects may provide local economic opportunity, the industry has relied disproportionately on clearcutting, such as is seen in the below photograph of a 30-acre clearcut along Sunset Trail Road:

 

As states diversify their energy sources away from fossil fuels and seek to increase energy efficiency per unit of economic productivity, we will likely see more and more reliance on the above practices as “bridge fuel” energy sources. However, the term “renewable” needs parameterization in order to understand the true costs and benefits of the varying energy sources it presently encompasses. The sustainability of clearcutting practices in rural areas—and the analogous waste-to-energy projects in largely urban areas—deserves further scrutiny by forest health and other environmental experts. This will require additional mapping similar to what is offered in this article, as well as land-use analysis and the quantification of how these energy generation industries enhance or degrade ecosystem services. Of equal importance will be providing a better picture of whether or not these practices actually produce sustainable and well-paid jobs, as well as their water, waste, and land-use footprints relative to fossil fuels unconventional or otherwise.

 

Relevant Data

All US Waste-to-Energy Operations along with waste processed and energy produced (MW)

All US Woody Biomass-to-Energy Operations along with waste processed and energy produced (MW)