Where have all the guardrails gone?

Guardrails vs. Trucks

Wetzel County in northwestern West Virginia is remarkable for its steep, knobby hills and long narrow winding valleys – providing residents and visitor alike with beautiful views. Along with these scenic views, however, comes difficult roadways and dangerous traveling.

Two two-lane roads traverse the county from the west, along the Ohio River, to the east. There are very few connecting roads going north-south between these two main highways, and only one of them is semi-paved. This road is called Barker Run Road — treacherous, steep and winding. There is at least a 400-foot change in elevation in about ½ mile at one point, with multiple switchbacks.

Switchbacks have a reputation for swallowing up the long trailer component of the tractor-trailer combos, which now comprise a larger part of the traffic on Barker Run Road. Many of these trucks are heading to the HG Energy drilling sites on the ridges at the top. HG Energy has a significant footprint up there. On the east ridge there are four well pads in place and two additional pads being completed to the east, and two large ones on the ridge to the west of Barker Run Road. All that traffic must use Barker Run Road. Until the recent expansion of natural gas exploration in the area, however, I had never seen a tractor and trailer come up either side of the very steep road.

The first casualty caused by the large, long trailer trucks needed to service these well pads is always the full-time sentinels of our traffic safety – our faithful guard rails that are designed to take a beating before we and our vehicle descend over the hillside sideways or rolling over. A good example of a damaged but still useful guardrail is shown below from February on 2012 – wrinkled but useful. The very sharp turn in the roadway is also obvious here.

Figure 1. Switchback curve on Barker Run Road has seen its share of damage from the increase in truck traffic.

Figure 1. Switchback curve on Barker Run Road has seen its share of damage from the increase in truck traffic.

After leaving Route 7 heading south on Barker Run Road, one encounters a particularly sharp and steep switchback curve as shown in Figure 1. It is this kind of turn that is so sharp that it allows the driver of an overlong truck to be able to look back and check the lug nuts on the rear wheels.

On a few occasions, I have been able to actually witness the attempt of our full-time guards as they try to keep a truck somewhat close to the roadway. The below photo shows that the guardrail was barely able to keep the trailer from going completely over the hillside. The truck was stuck, causing the road to be closed for hours till help could arrive (Figure 2, below).

When that incident was over, the photo below from a few weeks later, on March 16, 2013, shows the final damaged rail (Figure 3). The guardrail and posts were replaced and were largely intact when the rail was pushed over again in May of 2013 by another oversized truck trying to get up the hill and around the turn (Figure 4). Ongoing impacts with the guardrail eventually rendered it useless. Figure 5 below is a photo taken in August of 2013.

Infrastructure Damage & Costs

When the Marcellus shale gas drilling began here in Wetzel County eight years ago, it quickly became apparent that the rapidly expanding Chesapeake Energy drilling footprint in north central Wetzel County was leaving scars in the neighborhood, particularly on the roadways. The most visible damages were the road signs, guardrails, and pavement. These effects resulted in a three-layer, road bonding program implemented by the West Virginia Department of Highways. The stipulation requires that any of the large natural gas drillers or operators must post a $1-million bond to cover them statewide, or a single highway district bond for $250,000. This bonding only applies to secondary roads. The third option is to post a bond for fixed, limited miles along specific roads. Some of the pipeline contractors who might be working in a smaller area will use the latter option. Since the DOH generally knows which companies are using the roads, the department usually knows who to approach to pay for damage. In a few cases the companies have reported the damage to the Highway department, and at other times the truckers’ insurance companies report an accident or insurance claim. .

During a recent conversation with a WV-DOH representative, I was told that he quite frequently gets good cooperation from the gas industry companies in paying for damages. He said this is true even when a number of different companies and dozens of their subcontractors are using the same road.

Usually the guardrails just need to be fixed or replaced and new posts installed. Sometimes it is not critical that it be done immediately. However, at times the repairs should be done now. A good example of when repairs are needed soon is shown below in Figure 7, right. This remnant is the shredded, mangled, twisted remains of the stubborn effort of the steel to stop a truck.

The rail has now been totally sliced open, making it an extraordinary danger to the traveling public. As we enter the winter season with a bit of snow and ice on this steep road above this section, any of my neighbors could slide into this. I am optimistic that it will be replaced soon and have had several conversations with the WV-DOH to speed up the process.

By Bill Hughes, WV Community Liaison, FracTracker Alliance
Read more Field Diary articles.

Has our beer been fracked?

By Matt Unger and Gianna Calisto, FracTracker PA Interns

Recently, a Grist.com article, entitled Hey! Did somebody frack my favorite beer? caught our attention here at FracTracker Alliance. In the piece, a concerned citizen questioned whether or not fracking could be affecting what many consider to be the crown jewel of Pennsylvania brewing – Yuengling. The author responded very thoroughly, but needed a map to help show the locations of breweries closest to drilling. To help identify any potential problems and hopefully allow the Commonwealth’s beer drinkers to drink easily tonight, we’ve pulled together such a map.

The PA Beer and Unconventional Drilling Map

Beer and Fracking Map

Click on the map to explore the breweries and nearby drilling activity

On this map you will see all of the drilled wells (orange), permitted wells (purple), and breweries / brewpubs that we could find in Pennsylvania as of 11-16-2014. The data was gathered from the PA DEP website and The Beer Mapping Project, as well as from a tool our map below contains that allows the viewer to measure distances between two points.

The breweries/brewpubs in the South Central and South Eastern parts of the state are located quite a long distance away from unconventional well pads. This means that Yuengling is likely safe so long as there are no pipeline or traffic incidents nearby!

Even the other areas of Pennsylvania show that brewing near areas of fracking is relatively uncommon. However, there are a few exceptions, particularly in the North Eastern and South Western parts of the state.

Select Results

  • Yuengling Brewery: 38 Miles from the nearest permitted well, 40 miles from the nearest drilled well.
  • Iron City Brewing Company: 12 miles from the nearest permitted well, 11.7 miles from the nearest drilled well. Both well sites are upstream from the brewery.
  • Nimble Hill Brewing Company: 0.5 miles from nearest drilled and permitted well

Use the measure tool on the fullscreen map to explore more about PA brewing and its proximity to drilling.

Things to Consider

The Grist article that we referred to earlier did a great job at outlining some of the risks of drilling and caveats to supporting your favorite brewery. Simply being located near a drilling site does not necessarily mean that the area’s water and air are polluted, but it is a risk. In addition to the points that Grist made, keep in mind that fracking can have other, more indirect effects on the beer industry; well pads are not the only places where effects on the environment can be seen. Spills and traffic involving the transportation of drilling resources, products, and waste pose very serious risks through the areas that these items are transported. This intense industrial activity can also give off localized air pollution. The map above only begins to highlight all of the potential beer-scare scenarios, unfortunately.

If you do feel that your favorite beer is being affected by nearby drilling activity, there are very easy things that you can do, as the Grist article explains. In the mean time, we at FracTracker will happily taste test each PA brewery’s product should the need arise!

If there are other maps that you would like to see made showing where drilling is located near you, just let us know.

Updated PA Data and Trends

By Matt Kelso, Manager of Data and Technology

The FracTracker Alliance periodically takes a deeper look into the unconventional oil and gas data in Pennsylvania, in order to provide updates for some frequently requested statistics on the industry. Here we provide updated PA data and trends as of December 4, 2014. Since unconventional drilling began in the Commonwealth permits have been issued to drill 15,573 unconventional wells, according to data from the Pennsylvania DEP. Many – 8,696 (56%) – of those permits have actually been drilled. In terms of violations, there have been 5,983 entries on the statewide Compliance Report for unconventional wells throughout the state, which are attributed to 1,790 distinct wells.

Pennsylvania Shale Viewer Map


Please click here for the full screen version, with additional map tools and controls.

Additional Stats

The number of permits, wells, and violations vary significantly from month to month, but each category is well off of its peak. The largest number of unconventional permits issued in a single month was 402, which was in December 2010, more than twice as many as were issued last month. In that year, there were six months with 300 or more permits issued, whereas there has only been one such month to date in 2014.

PA unconventional O&G activity per month from Jan. 2009 to Nov. 2014.  Source:  PADEP

PA unconventional O&G activity per month from Jan. 2009 to Nov. 2014. Source: PADEP

The 210 wells spudded (drilled) in August 2011 represents the high water mark, and is more than two times the amount of wells drilled last month. In the 28 months between March 2010 and June 2012, the industry failed to spud 100 wells only once, reaching 98 in April 2011. In the first 11 months of 2014, that plateau was missed three times, with a low of 58 spuds in February.

There was a significant spike in violations appearing on the compliance report from December 2009 through August 2011. More than 100 violations were issued in 17 out of 21 months, including 196 in March 2010. The number of violations issued has slowed down considerably since then, with November 2014 being the 34th straight month with fewer than 100 violations. Only 14 violations were issued in June 2014.

Violations per Well (VpW)

Unconventional violations per well by county in PA, showing the 10 counties with the largest number of violations.  Counties with an above average Violations per Well (VpW) score are highlighted in red.

Unconventional violations per well by county in PA, showing the 10 counties with the largest number of violations. Counties with an above average Violations per Well (VpW) score are highlighted in red.

We often ask whether drilling is more problematic in some areas than others. Since the number of wells varies depending upon the location, we must approach this question by looking at the number of violations issued per well drilled (VpW). However, there is an important caveat to consider. Put simply, what is a violation? The Pennsylvania DEP publishes a Compliance Report for unconventional wells, which has 5,983 incidents listed from 2000 through December 4, 2014. However, it used to be common for the DEP to lump several incidents into the same Violation ID number, although this is not the case for more recent infractions. When the DEP counts violations issued, they look at the total number of unique Violation ID numbers that have been issued, not the total number of incidents on the report. Here, we include the more inclusive list of items on the compliance report.

Of the 10 counties with the largest number of violations issued, only 3 counties have a violations per well mark below the statewide average. Notably, each of those three counties are located in Southwestern Pennsylvania. It is unclear from these numbers what is going on in Potter County, but clearly there is a significant problem in that location – with almost three violations issued per well drilled, Potter County has a VpW score 4.3 times the statewide average.

Operator Trends

Before we look at the operators with the most violations, there is an additional caveat to consider: It is relatively common for wells to change hands over their operational lifetimes. This characteristic could be due to one company buying another out, or simply transferring some of their assets. Still, wells changing from one operator to another is a normal aspect of the oil and gas industry. Such a fact matters for this analysis because while violations issued always stick with the responsible party in the DEP data, the name of the operator changes on the Spud Report to the current operator.

Unconventional violations per well by operator in PA, showing the 10 operators with the largest number of violations.  Operators with an above average Violations per Well (VpW) score are highlighted in red.

Unconventional violations per well by operator in PA, showing the 10 operators with the largest number of violations. Operators with an above average Violations per Well (VpW) score are highlighted in red.

Because of how these datasets are maintained, we see that East Resources has 261 violations for zero wells, which is of course an impossibly large ratio. That is because East sold off its stake in the Marcellus to Royal Dutch Shell, which does business as SWEPI in Pennsylvania. SWEPI, by the way, is 13th on the list of violations in its own right, with 154 violations for 675 wells, resulting in a 0.23 VpW. If the legacy violations for the old East wells were included, the result would be a 0.61 ViW score, which is almost three times as high, but still below the statewide average. FracTracker doesn’t do the analysis that way, both because it is unfair to the new operator to charge them with violations that they had nothing to do with, as well as being nearly impossible to keep track of the various transactions that result in wells changing hands over the years.


Cover image by Pete Stern, 2013.

Oil Trains Passing Through Pittsburgh

A Pilot Train Count

By Samantha Malone – Manager of Education, Communications, & Partnerships

FracTracker Alliance and the CREATE Lab at CMU recently launched a pilot project to track the transportation of volatile crude oil as it passes through Pennsylvania and specifically the Pittsburgh region.

For a bit of background, we were specifically interested in how many cars marked with either a 1075 or 1267 placard (shown below). 1075 placards designate cars that are carrying or recently carried (not yet cleaned out) butane, LPG, propane, or a flammable gas. Alternatively, 1267 placards are warning signs for cars carrying petroleum crude oil or some sort of flammable liquid.

DOT Placard 1075 Butane, LPG, Propane, Flammable Gas, Class 2

DOT Placard 1075 Butane, LPG, Propane, Flammable Gas, Class 2

D.O.T. Placard 1267 Petroleum Crude Oil, Flammable Liquid, Class 3

DOT Placard 1267 Petroleum Crude Oil, Flammable Liquid, Class 3

Oil Train Counts

Over 11 hours we counted 28 trains, 10 of which contained at least one car with the 1075 or 1267 placard. Most of these trains were quite long, with 28 trains hauling 2,874 cars.

The largest inbound train with the 1267 placard that we identified and estimated to be full was hauling 97 crude tankers. If they were indeed full, this train carried between 2.5 and 3.4 million gallons of crude oil. As a point of reference, the Lac-Mégantic derailment that occurred in 2013 in Quebec and killed 47 people was only carrying 74 Bakken crude cars.

Of the 2,874 cars that we counted, 360 were carrying some sort of oil product. Of those oil cars, approximately 70% were of the 1267 variety (Figure 1).

Ratio of oil cars to total over 11 hours

Figure 1. Ratio of oil cars to total documented by volunteers in Pittsburgh, PA over 11 hours

Speed Matters

The fastest oil train that we observed was going approximately 50 MPH. This train was likely full, based on load estimates and the direction it was traveling. This speed violates a voluntary compliance that crude trains run <40 MPH through high-threat areas. A train that derailed in Lynchburg, VA in April was traveling just 24 mph. Our counting location would likely qualify as a high-threat area, as we were near Neville Island, relatively close to ALCOSAN and the City of Pittsburgh, and just a few yards from the Ohio River and residential homes.

While Pittsburgh certainly has its share of oil trains, concern over the dangers that these trains pose to towns along its tracks extends far beyond the Pittsburgh area. Groups as far as California have gathered together to monitor train traffic. We hope that by tracking and monitoring the number of oil trains over time, we can begin to understand the risks that these trains pose should an incident occur.

The Data Collection Process

 

Here is how we collected the above data: On October 21st our staff, interns, and generous volunteers spent designated shifts observing the passing of trains and the contents of their cars between about 7:30 AM and 6:30 PM. Under the cover of a pop-up shelter, teams of at least three participants videotaped trains as they passed in either direction, counted and recorded the number of cars that they carried, and most importantly identified and counted specific placards that labeled individual cars as oil-carrying.

Many thanks to the groups who helped with this pilot count: volunteer citizens, Group Against Smog and Pollution, Three Rivers Waterkeeper, Women for a Healthy Environment, our interns from Pitt and Duquesne, and CMU staff.

The CREATE Lab then reviewed and analyzed the collected information and video feed. You can take a look at some of the high-resolution video feed they were able to collect with their BreatheCam. If you have specific questions about the train counting protocol or would like to set up one of your own, please contact us.

About Us

FracTracker Alliance is a non-profit with an office in the Pittsburgh area whose mission is to share maps, data, and analyses to communicate impacts of the global oil and gas industry and to inform actions that positively shape our energy future. www.fractracker.org

The Community Robotics, Education and Technology Empowerment Lab (CREATE Lab) explores socially meaningful innovation and deployment of robotic technologies and is based out of Carnegie Mellon University. www.cmucreatelab.org

Is it getting hot in North Dakota?

By Samantha Malone, Manager of Education, Communications & Partnerships, FracTracker Alliance

North Dakota sure is popular recently. You might wonder why ND’s oil and gas development has been such a hot topic when the average monthly temperature there in November is only 27° F. Below we summarize the recent ND coverage and why the state has been the focus of several conversations lately.

The Intensity of Drilling

On November 22nd The New York Times launched a two-part series starting with The Downside of the Boom. Herein, the NY Times highlights how North Dakota’s regulatory system is insufficient to manage a hefty oil and gas industry. Part two in the series looks into Where Oil and Politics Mix in ND. This investigative journalism series questioned how well the state is managing oil and gas development, which was followed quickly by criticism of the series by state officials. If you haven’t checked out this series and its incredible visuals yet, I would highly recommend it.

FracTracker maintains a shale viewer map of North Dakota and its horizontal oil wells if you would like to explore where the industry is operating. Interestingly, ND is one of the few states where the horizontally drilled well data is available to the public. (Horizontal wells jut out from the vertical wells below ground.) Our interactive map of ND includes zooming features, well API information, and a measurement tool to examine horizontal well lengths. The screenshot below shows that one of the laterals on this map extends out two miles underground. Click the map to explore more:

Interactive Map of ND Wells on FracTracker

Interactive Map of ND Wells on FracTracker, with Measurement Tool

Alternatively, here the New York Times shows what ND would look like if all of the state’s oil wells were aboveground:

NYTimes Graphic: What North Dakota Would Look Like if Its Oil Drilling Lines Were Aboveground

NYTimes Graphic: What North Dakota Would Look Like if Its Oil Drilling Lines Were Aboveground

NPCA

On November 12 and 13, 2014, the National Parks Conservation Association launched their campaign to educate citizens about how oil and gas development may affect America’s national parks. NPCA kicked off their campaign with two events in Pittsburgh and Philadelphia, PA to showcase a crowd-sourced digital map we helped them create with our new mobile app. The map’s photos detail the scale of oil and gas development near North Dakota’s Theodore Roosevelt National Park and is shown below:


NPCA Photo Map. View fullscreen

Photos

And finally… We spent some time with NPCA collecting photos for that map with our app in ND this spring. Below are just a few, the rest of which can be found in our new ND photo album:

Hydraulic fracturing, stimulations, & oil & gas drilling unjustly burden Hispanic & non-white students

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

As my first year in The Bay Area of California comes to a conclusion and the summer once again turns into fall I realize how much more this time of year meant for me living on the east coast. For us lucky ducks living in the Bay Area, fall is perpetual. With the California drought seasons blur together, but back home in Pennsylvania and New York, fall marks a much appreciated relief from 90°F+ days. Regardless of where you live certain fall activities are universal, including hockey, postseason baseball, football, and most importantly for kids – going back to school.

In California alone, almost 6.24 million students from kindergarten to 12th grade are enrolled and attend classes at one of the 10,366 state “campuses.” State-recognized schools range in size from under a dozen students to a maximum 2013/2014 enrollment of 5,229. When so many children are together in one space, they share much more than just the scholarship, social development, and the occasional but inevitable flu virus. They share the same environmental media (air, water, soil) and are therefore exposed to the same environmental contaminants.

To understand who among this vulnerable population is subject to potential health impacts, the FracTracker Alliance has put together a report analyzing the demographic characteristics of schools located near oil and gas extraction activity. An interactive map of the data that was analyzed is shown below, as are the points of the report. The full report can be found here:

 Disproportionate Burdens for Hispanic and Non-White Students in California

and here in Spanish:

Las Estimulaciones por Fracturación Hidráulica y la Perforación Petrolífera Cerca de las Escuelas y dentro de los Distritos Escolares de California son una Carga Desproporcionada para los Estudiantes Hispanos y Estudiantes No Blancos.

Fracked well near elementary school

Sequoia Elementary School located in Shafter, CA.

In the background, less than 1,200 feet from the school is
an oil well (API 403043765) that was hydraulically fractured.

Key Findings of School Analysis:

  • There are 485 active/new oil and gas wells within 1 mile of a school and 177 active/new oil and gas wells within 0.5 miles of a school.
  • There are 352,784 students who attend school within 1 mile of an oil or gas well, and 121,903 student who attend school within 0.5 miles of an oil or gas well.
  • There are 78 stimulated wells drilled within 1 mile of a school and 14 stimulated wells drilled within 0.5 miles of a school.
  • There are 61,612 students who attend school within 1 mile of a stimulated oil or gas well, and 12,362 students who attend school within 0.5 miles of a stimulated oil or gas well.
  • School Districts with greater Hispanic and non-white student enrollment are more likely to contain more oil and gas drilling and stimulation.
  • Schools campuses with greater Hispanic and non-white student enrollment are more likely to be closer to more oil and gas drilling and stimulation.
  • Students attending school within 1 mile of oil and gas wells are predominantly non-white (79.6%), and 60.3% are Hispanic.
  • The top 11 school districts with the highest well counts are located the San Joaquin Valley with 10 districts in Kern County and the other just north of Kern in Fresno County.
  • The two districts with the highest well counts are in Kern County; Taft Union High School District, host to 33,155 oil and gas wells, and Kern Union High School District, host to 19,800 oil and gas wells.
  • Of the schools with the most wells within a 1 mile radius, 8/10 are located in Los Angeles County.

Report Map

The interactive map below allows the user to compare the demographical profiles of school districts with oil and gas drilling and stimulation activity. Non-white enrollment percentages of school districts are displayed in shades of blue. Overlaid with red are the relative counts of stimulated and/or non-stimulated oil and gas wells. The highest counts of wells are hosted in school districts located in the Central (San Joaquin) Valley and along California’s south coast. Geologically, these areas lay above the Monterey Shale – the 50 million year sedimentary basin producing California’s oil reserves.

Hope Rising

By Brook Lenker, Executive Director, FracTracker Alliance

We came to make a stand. People of every age from every corner of the country amassed in New York City on September 21, 2014 – 400,000 people transported by hope. It may have been the autumnal equinox, but the event was a solstice of human expression and determination.

Down Central Park West, across 59th Street, south on Avenue of the Americas, onward to Times Square. Like the circuitous path of the people’s climate march, lawmakers and society at large have meandered around our fossil fuel dependency for too long but take notice: the era of wasting time and wasting away the planet is over.

You could see it in the eyes of college students, parents, grandparents, and children, and I could see it in my daughter, an unfrackable resolve, stronger than any geology. A man remarked that he hadn’t seen so many young people mobilized since the Vietnam War. It will take the involvement of many, many more to move institutions and the public beyond the status quo – to adopt better technologies, modify lifestyles, and accept wholesale conservation.

Images from the Peoples Climate March, September 2014. Photo by Savanna Lenker Images from the Peoples Climate March, September 2014. Photo by Savanna Lenker Images from the Peoples Climate March, September 2014. Photo by Savanna Lenker
Images from the March. Photos by Savanna Lenker

I believe we’ve reached a tipping point with the atmosphere and mankind. The former may be hemorrhaging, getting worse before any sign of recuperation – and that’s downright frightening (from rampaging weather to rising seas, life on earth is in for a helluva ride). But the latter has found a partial cure: intergenerational power lifting and embracing renewable energy and lighter ways for civilization.

Change starts with humility and introspection and gains with peer support. In the one-day, peaceful occupation of midtown Manhattan, warm hearts of spectators and a world in solidarity pushed us ahead. Feel the inertia. Join the ride. Because going forward, nothing will be the same.

Images from the Peoples Climate March, September 2014. Photo by Savanna Lenker

Images from the March. Photo by Savanna Lenker

The Water-Energy Nexus in Ohio, Part II

OH Utica Production, Water Usage, and Waste Disposal by County
Part II of a Multi-part Series
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

In this part of our ongoing “Water-Energy Nexus” series focusing on Water and Water Use, we are looking at how counties in Ohio differ between how much oil and gas are produced, as well as the amount of water used and waste produced. This analysis also highlights how the OH DNR’s initial Utica projections differ dramatically from the current state of affairs. In the first article in this series, we conducted an analysis of OH’s water-energy nexus showing that Utica wells are using an ave. of 5 million gallons/well. As lateral well lengths increase, so does water use. In this analysis we demonstrate that:

  1. Drillers have to use more water, at higher pressures, to extract the same unit of oil or gas that they did years ago,
  2. Where production is relatively high, water usage is lower,
  3. As fracking operations move to the perimeter of a marginally productive play – and smaller LLCs and MLPs become a larger component of the landscape – operators are finding minimal returns on $6-8 million in well pad development costs,
  4. Market forces and Muskingum Watershed Conservancy District (MWCD) policy has allowed industry to exploit OH’s freshwater resources at bargain basement prices relative to commonly agreed upon water pricing schemes.

At current prices1, the shale gas industry is allocating < 0.27% of total well pad costs to current – and growing – freshwater requirements. It stands to reason that this multi-part series could be a jumping off point for a more holistic discussion of how we price our “endless” freshwater resources here in OH.

In an effort to better understand the inter-county differences in water usage, waste production, and hydrocarbon productivity across OH’s 19 Utica Shale counties we compiled a data-set for 500+ Utica wells which was previously used to look at differenced in these metrics across the state’s primary industry players. The results from Table 1 below are discussed in detail in the subsequent sections.

Table 1. Hydrocarbon production totals and per day values with top three producers in bold

County

# Wells

Total

Per Day

Oil

Gas

Brine

Production

Days

Oil

Gas

Brine

Ashland

1

0

0

23,598

102

0

0

231

Belmont

32

55,017

39,564,446

450,134

4,667

20

8,578

125

Carroll

256

3,715,771

121,812,758

2,432,022

66,935

67

2,092

58

Columbiana

26

165,316

9,759,353

189,140

6,093

20

2,178

65

Coshocton

1

949

0

23,953

66

14

0

363

Guernsey

29

726,149

7,495,066

275,617

7,060

147

1,413

49

Harrison

74

2,200,863

31,256,851

1,082,239

17,335

136

1,840

118

Jefferson

14

8,396

9,102,302

79,428

2,819

2

2,447

147

Knox

1

0

0

9,078

44

0

0

206

Mahoning

3

2,562

0

4,124

287

9

0

14

Medina

1

0

0

20,217

75

0

0

270

Monroe

12

28,683

13,077,480

165,424

2,045

22

7,348

130

Muskingum

1

18,298

89,689

14,073

455

40

197

31

Noble

39

1,326,326

18,251,742

390,791

7,731

268

3,379

267

Portage

2

2,369

75,749

10,442

245

19

168

228

Stark

1

17,271

166,592

14,285

602

29

277

24

Trumbull

8

48,802

742,164

127,222

1,320

36

566

100

Tuscarawas

1

9,219

77,234

2,117

369

25

209

6

Washington

3

18,976

372,885

67,768

368

59

1,268

192

Production

Total

It will come as no surprise to the reader that OH’s Utica oil and gas production is being led by Carroll County, followed distantly by Harrison, Noble, Belmont, Guernsey and Columbiana counties. Carroll has produced 3.7 million barrels of oil to date, while the latter have combined to produce an additional 4.5 million barrels. Carroll wells have been in production for nearly 67,000 days2, while the aforementioned county wells have been producing for 42,886 days. The remaining counties are home to 49 wells that have been in production for nearly 8,800 days or 7% of total production days in Ohio.

Combined with the state’s remaining 49 producing wells spread across 13 counties, OH’s Utica Shale has produced 8.3 million barrels of oil as well as 251,844,311 Mcf3 of natural gas and 5.4 million barrels of brine. Oil and natural gas together have an estimated value of $2.99 billion ($213 million per quarter)4 assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively.

Potential Revenue at Different Severance Tax Rates:

  • Current production tax, 0.5-0.8%: $19 million ($1.4 Million Per Quarter (MPQ). At this rate it would take the oil and gas industry 35 years to generate the $4.6 billion in tax revenue they proposed would be generated by 2020.
  • Proposed, 1% gas and 4% oil: At Governor Kasich’s proposed tax rate, $2.99 billion translates into $54 million ($3.9 MPQ). It would still take 21 years to return the aforementioned $4.6 billion to the state’s coffers.
  • Proposed, 5-7%: Even at the proposed rate of 5-7% by Policy Matters OH and northeastern OH Democrats, the industry would only have generated $179 million ($12.8 MPQ) to date. It would take 11 years to generate the remaining $4.42 billion in tax revenue promised by OH Oil and Gas Association’s (OOGA) partners at IHS “Energy Oil & Gas Industry Solutions” (NYSE: IHS).5

The bottom-line is that a production tax of 11-25% or more ($24-53 MPQ) would be necessary to generate the kind of tax revenue proposed by the end of 2020. This type of O&G taxation regime is employed in the states of Alaska and Oklahoma.

From an outreach and monitoring perspective, effects on air and water quality are two of the biggest gaps in our understanding of shale gas from a socioeconomic, health, and environmental perspective. Pulling out a mere 1% from any of these tax regimes would generate what we’ll call an “Environmental Monitoring Fee.” Available monitoring funds would range between $194,261 and $1.8 million ($16 million at 55%). These monies would be used to purchase 2-21 mobile air quality devices and 10-97 stream quantity/quality gauges to be deployed throughout the state’s primary shale counties to fill in the aforementioned data gaps.

Per-Day Production

On a per-day oil production basis, Belmont and Columbiana (20 barrels per day (BPD)) are overshadowed by Washington (59 BPD) and Muskingum (40 BPD) counties’ four giant Utica wells. Carroll is able to maintain such a high level of production relative to the other 15 counties by shear volume of producing wells; Noble (268 BPD), Guernsey (147 BPD), and Harrison (136 BPD) counties exceed Carroll’s production on a per-day basis. The bottom of the league table includes three oil-free wells in Ashland, Knox, and Medina, as well as seventeen <10 BPD wells in Jefferson and Mahoning counties.

With respect to natural gas, Harrison (1,840 Mcf per day (MPD)) and Guernsey counties are replaced by Monroe (7,348 MPD) and Jefferson (2,447 MPD) counties’ 26 Utica wells. The range of production rates for natural gas is represented by the king of natural gas producers, Belmont County, producing 8,578 MPD on the high end and Mahoning and Coshocton counties in addition to the aforementioned oil dry counties on the low end. Four of the five oil- or gas-dry counties produce the least amount of brine each day (BrPD). Coshocton, Medina, and Noble county Utica wells are currently generating 267-363 barrels of BrPD, with an additional seven counties generating 100-200 BrPD. Only four counties – 1.2% of OH Utica wells – are home to unconventional wells that generate ≤ 30 BrPD.

Water Usage

Freshwater is needed for the hydraulic fracturing process during well stimulation. For counties where we had compiled a respectable sample size we found that Monroe and Noble counties are home to the Utica wells requiring the greatest amount of freshwater to obtain acceptable levels of productivity (Figure 1). Monroe and Noble wells are using 10.6 and 8.8 million gallons (MGs) of water per well. Coshocton is home to a well that required 10.8 MGs, while Muskingum and Washington counties are home to wells that have utilized 10.2 and 9.5 MGs, respectively. Belmont, Guernsey, and Harrison reflect the current average state of freshwater usage by the Utica Shale industry in OH, with average requirements of 6.4, 6.9, and 7.2 MGs per well. Wells in eight other counties have used an average of 3.8 (Mahoning) to 5.4 MGs (Tuscarawas). The counties of Ashland, Knox, and Medina are home to wells requiring the least amount of freshwater in the range of 2.2-2.9 MGs. Overall freshwater demand on a per well basis is increasing by 220,500-333,300 gallons per quarter in Ohio with percent recycled water actually declining by 00.54% from an already trivial average of 6-7% in 2011 (Figure 2).

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale.

Figure 1. Average water usage (gallons) per Utica well by county

Average water usage (gallons) on a per well basis by OH’s Utica Shale industry, shown quarterly between Q3-2010 and Q2-2014.

Figure 2. Average water usage (gallons) on per well basis by OH Utica Shale industry, shown quarterly between Q3-2010 & Q2-2014.

Belmont County’s 30+ Utica wells are the least efficient with respect to oil recovery relative to freshwater requirements, averaging 7,190 gallons of water per gallon of oil (Figure 3). A distant second is Jefferson County’s 14 wells, which have required on average 3,205 gallons of water per gallon of oil. Columbiana’s 26 Utica wells are in third place requiring 1,093 gallons of freshwater. Coshocton, Mahoning, Monroe, and Portage counties are home to wells requiring 146-473 gallons for each gallon of oil produced.

Belmont County’s 14 Utica wells are the least efficient with respect to natural gas recovery relative to freshwater requirements (Figure 4). They average 1,306 gallons of water per Mcf. A distant second is Carroll County’s 250+ wells, which have injected 520 gallons of water 7,000+ feet below the earth’s service to produce a single Mcf of natural gas. Muskingum’s Utica well and Noble County’s 39 wells are the only other wells requiring more than 100 gallons of freshwater per Mcf. The remaining nine counties’ wells require 15-92 gallons of water to produce an Mcf of natural gas.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Oil Produced (Gallons of Water Per Gallon of Oil).

Figure 3. Average water usage (gallons) per unit of oil (gallons) produced across 19 Ohio Utica counties

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Gas Produced (Gallons of Water Per MCF of Gas)

Figure 4. Average water usage (gallons) per unit of gas produced (Mcf) across 19 Ohio Utica counties

Waste Production

The aforementioned Jefferson wells are the least efficient with respect to waste vs. product produced. Jefferson wells are generating 12,728 gallons of brine per gallon of oil (Figure 5).6 Wells from this county are followed distantly by the 32 Belmont and 26 Columbiana county wells, which are generating 5,830 and 3,976 gallons of brine per unit of oil.5 The remaining counties (for which we have data) are using 8-927 gallons of brine per unit of oil; six counties’ wells are generating <38 gallons of brine per gallon of oil.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Brine Production Per Unit of Oil Produced (Gallons of Brine Per Gallon of Oil)

Figure 5. Average brine production (gallons) per gallon of oil produced per day across 19 Ohio Utica Counties

The average Utica well in OH is generating 820 gallons of fracking waste per unit of product produced. Across all OH Utica wells, an average of 0.078 gallons of brine is being generated for every gallon of freshwater used. This figure amounts to a current total of 233.9 MGs of brine waste produce statewide. Over the next five years this trend will result in the generation of one billion gallons (BGs) of brine waste and 12.8 BGs of freshwater required in OH. Put another way…

233.9 MGs is equivalent to the annual waste production of 5.2 million Ohioans – or 45% of the state’s current population. 

Due to the low costs incurred by industry when they choose to dispose of their fracking waste in OH, drillers will have only to incur $100 million over the next five years to pay for the injection of the above 1.0 BGs of brine. Ohioans, however, will pay at least $1.5 billion in the same time period to dispose of their municipal solid waste. The average fee to dispose of every ton of waste is $32, which means that the $100 million figure is at the very least $33.5 million – and as much as $250.6 million – less than we should expect industry should be paying to offset the costs.

Environmental Accounting

In summary, there are two ways to look at the potential “energy revolution” that is shale gas:

  1. Using the same traditional supply-side economics metrics we have used in the past (e.g., globalization, Efficient Market Hypothesis, Trickle Down Economics, Bubbles Don’t Exist) to socialize long-term externalities and privatize short-term windfall profits, or
  2. We can begin to incorporate into the national dialogue issues pertaining to watershed resilience, ecosystem services, and the more nuanced valuation of our ecosystems via Ecological Economics.

The latter will require a more real-time and granular understanding of water resource utilization and fracking waste production at the watershed and regional scale, especially as it relates to headline production and the often-trumpeted job generating numbers.

We hope to shed further light on this new “environmental accounting” as it relates to more thorough and responsible energy development policy at the state, federal, and global levels. The life cycle costs of shale gas drilling have all too often been ignored and can’t be if we are to generate the types of energy our country demands while also stewarding our ecosystems. As Mark Twain is reported to have said “Whiskey is for drinking; water is for fighting over.” In order to avoid such a battle over the water-energy nexus in the long run it is imperative that we price in the shale gas industry’s water-use footprint in the near term. As we have demonstrated so far with this series this issue is far from settled here in OH and as they say so goes Ohio so goes the nation!

A Moving Target

ODNR projection map of potential Utica productivity from Spring, 2012

Figure 6. ODNR projection map of potential Utica productivity from spring 2012

OH’s Department of Natural Resources (ODNR) originally claimed a big red – and nearly continuous – blob of Utica productivity existed. The projection originally stretched from Ashtabula and Trumbull counties south-southwest to Tuscarawas, Guernsey, and Coshocton along the Appalachian Plateau (See Figure 6).

However, our analysis demonstrates that (Figures 7 and 8):

  1. This is a rapidly moving target,
  2. The big red blob isn’t as big – or continuous – as once projected, and
  3. It might not even include many of the counties once thought to be the heart of the OH Utica shale play.

This last point is important because counties, families, investors, and outside interests were developing investment and/or savings strategies based on this map and a 30+ year timeframe – neither of which may be even remotely close according to our model.

An Ohio Utica Shale oil production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7a. An Ohio Utica Shale oil production model using Kriging6 for Q1-2013

An Ohio Utica Shale oil production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7b. An Ohio Utica Shale oil production model using Kriging for Q2-2014

An Ohio Utica Shale gas production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8a. An Ohio Utica Shale gas production model using Kriging for Q1-2013

An Ohio Utica Shale gas production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8b. An Ohio Utica Shale gas production model using Kriging for Q2-2014


Footnotes

  1. $4.25 per 1,000 gallons, which is the current going rate for freshwater at OH’s MWCD New Philadelphia headquarters, is 4.7-8.2 times less than residential water costs at the city level according to Global Water Intelligence.
  2. Carroll County wells have seen days in production jump from 36-62 days in 2011-2012 to 68-78 in 2014 across 256 producing wells as of Q2-2014.
  3. One Mcf is a unit of measurement for natural gas referring to 1,000 cubic feet, which is approximately enough gas to run an American household (e.g. heat, water heater, cooking) for four days.
  4. Assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively
  5. IHS’ share price has increased by $1.7 per month since publishing a report about the potential of US shale gas as a job creator and revenue generator
  6. On a per-API# basis or even regional basis we have not found drilling muds data. We do have it – and are in the process of making sense of it – at the Solid Waste District level.
  7. An interpolative Geostatistical technique formally called Empirical Bayesian Kriging.

Comparison of Oil and Gas Violations and the Sale of Wells

Well pad spill, wetland. Photo courtesy of WV Host Farms Program (http://www.wvhostfarms.org)

Well pad spill, wetland. Photo courtesy of WV Host Farms Program

By Matt Unger, FracTracker GIS Intern

When the unconventional oil and gas extraction boom hit Pennsylvania in the mid-2000s small, local operators were among the first on the scene. As shale plays continued to develop, many of these smaller companies were bought out by larger, national corporations. Larger oil and gas development companies often maintain that they are better able to handle the expected regulatory requirements, and so FracTracker wanted to determine if there was a change in the compliance record for wells that changed hands. Does having more resources available to them translate into stronger compliance standards for oil and gas drillers, better training for their employees, and a greater burden to get things right? Investigating these questions by looking into compliance data and the sale of wells, however, was no easy task.

Analysis Methods

There are no indications in either the drilled wells or permits datasets available from the DEP that a well has changed hands; in both of these sources, one operator’s name is simply substituted for the other. It is possible to comb through old news stories, and find that East Resources sold its assets to Shell in 2010, for example. However, this approach is piecemeal, and would not lead to satisfactory results on an industry-wide analysis.

Major obstacles to our analysis included:

  • Lack of information on the transfer of oil and gas wells from one operator to another
  • There is often a lag time between the time violations occur and when they are reported
  • Errors in compliance reporting. For example, one API Number was found to have the operator listed as “Not Assigned” (It was later discovered that this well was never sold).

Results

Unlike wells and permits, any items on the compliance dataset are attributed to whichever company was operating the well at the time the violation was issued. So while FracTracker could not do the analysis that we wanted to because of the limitations of available data, we were able to isolate 30 wells that have changed hands between January 1, 2000 and November 4, 2014 (Table 1). One well has been bought and sold twice, with each of the three operators being issued violations.

In some instances the original well owner was reported to be out of compliance more times than the second owner. For example, API Number 013-20012 had 11 violations reported under its first owner and only 1 since it has been sold. The contrary also occurred, however, such as in the case of API Number 065-26481, which had 4 violations reported under its first owner and 14 under its second owner. There are not enough data points to determine which scenario is the trend in the data – if in fact there is one.

Due to limitations in the data, we cannot currently evaluate whether the notion that larger companies can improve the track record of problematic wells. In fact, many of the wells that were issued violations for multiple operators really just changed hands from one big operator who wanted to get out of the Marcellus to another big operator who wanted to get in. Our small sample doesn’t include any of the wells that were issued violations to only one company, of all the wells that changed hands over the years. To accurately assess the scenario, more data would have to be released, specifically the date when wells changed hands from one company to another.

Table 1. Wells with violations by API number that have changed ownership

API Number First Owner Last Known Date Of Ownership Second Owner First Known Date Of Ownership Third Owner First Known Date Of Ownership
013-20012 Chief Oil & Gas LLC 5/24/10 Chevron Appalachia LLC 2/5/13
015-20033 Belden & Blake Corp 4/10/09 Chesapeake Appalachia LLC 12/7/11
015-20051 Consol Gas Co 6/16/04 Range Resources Appalachia LLC 8/9/05 Talisman Energy USA Inc 11/16/11
019-21494 Phillips Exploration Inc 6/10/08 XTO Energy Inc 7/24/13
019-21680 Phillips Exploration Inc 4/6/10 XTO Energy Inc 3/13/13
065-26481 Dannic Energy Corp 5/11/11 Mieka LLC 11/10/11
065-26832 Dannic Energy Corp 3/2/11 Mieka LLC 4/11/12
081-20062 Chief Oil & Gas LLC 1/6/09 Exco Resources Pa LLC 8/16/11
081-20069 Chief Oil & Gas LLC 5/21/08 Exco Resources Pa LLC 3/28/11
081-20128 Chief Oil & Gas LLC 11/15/10 Exco Resources Pa LLC 6/27/11
081-20144 Chief Oil & Gas LLC 7/21/10 Exco Resources Pa LLC 3/15/12
081-20149 Chief Oil & Gas LLC 1/10/11 Exco Resources Pa LLC 2/21/12
081-20244 Chief Oil & Gas LLC 5/20/10 Exco Resources Pa LLC 11/15/12
081-20255 Chief Oil & Gas LLC 11/15/10 Exco Resources Pa LLC 11/29/11
081-20279 Chief Oil & Gas LLC 12/3/10 Exco Resources Pa LLC 4/20/12
081-20298 Chief Oil & Gas LLC 5/26/10 Exco Resources Pa LLC 6/27/11
083-53843 Anschutz Exploration Corp 4/7/09 Chesapeake Appalachia LLC 3/20/13
113-20025 Chief Oil & Gas LLC 2/15/11 Exco Resources Pa LLC 3/16/11
113-20049 Chief Oil & Gas LLC 11/30/10 Exco Resources Pa LLC 4/13/11
115-20052 Turm Oil Inc 9/24/08 Chesapeake Appalachia LLC 8/21/14
115-20169 Alta Opr Co LLC 11/24/09 WPX Energy Appalachia LLC 4/13/11
115-20174 Alta Opr Co LLC 4/16/10 Wpx Energy Appalachia LLC 4/29/11
115-20191 Alta Opr Co LLC 12/1/09 Wpx Energy Appalachia LLC 6/1/11
115-20214 Alta Opr Co LLC 7/19/10 Wpx Energy Appalachia LLC 8/16/10
115-20231 Alta Opr Co LLC 4/8/10 Wpx Energy Appalachia LLC 6/1/11
117-20197 East Resources Inc 4/8/08 Talisman Energy USA Inc 1/26/11
117-20280 East Resources Inc 5/19/10 Swepi LP 8/28/14
117-20330 East Resources Inc 12/18/09 Talisman Energy USA Inc 2/20/13
117-20394 East Resources Inc 12/14/09 Swepi LP 10/25/11
117-20538 East Resources Inc 12/18/10 Swepi LP 5/27/10

 

FracTracker Launches Oil and Gas Tracking App

Pittsburgh, PA – FracTracker Alliance announces the release of our free iPhone app – designed to collect and share experiences related to oil and gas drilling across the United States. As unconventional drilling or “fracking” intensifies, so too do the innovative ways in which citizens can track, monitor, and report potential issues from their smart phones.

The app allows users to submit oil and gas photos or reports. Users can also view a map of wells drilled near them and user-submitted reports. This map shows wells that have been drilled both unconventionally and conventionally.

“FracTracker’s app contributes to the collective understanding of oil and gas impacts and provides a new opportunity for public engagement,” explains Brook Lenker, Executive Director of the FracTracker Alliance. “We hope that our mobile app will revolutionize how people share oil and gas information.”

Development Partners

Several organizations and community groups helped to test and improve the app during its development. To address questions about the impacts of oil and gas development across landscapes, FracTracker joined with the National Parks Conservation Association (NPCA) to create a crowd-sourced digital map with photos detailing the scale of oil and gas development near North Dakota’s Theodore Roosevelt National Park using the app. The photo map is part of a NPCA’s campaign designed to educate citizens about the cross-landscape impacts of oil and gas development near America’s national parks. NPCA is hosting two events this week in support of this campaign work – in Pittsburgh and Philadelphia.

“FracTracker’s new app allows us to tell a visual story about fracking’s impacts to national parks and their local communities,” said Nick Lund, who manages the NPCA’s Landscape Conservation program. “With this week’s public events in Pittsburgh and Philadelphia, we will show the dramatic impact that fracking continues to have, in just a few years, near Theodore Roosevelt National Park. These images can help inform the public and our elected officials as they finalize drilling regulations in Pennsylvania. We hope this information will lead to strong protections for our national parks, our forests, and our drinking water.”

Beta testing and reviews of the app were also conducted by Mountain Watershed Association, Responsible Drilling Alliance, Audubon PA, PA Forest Coalition, Southwest PA Environmental Health Project, and Save Our Streams PA. The app was developed in collaboration with Viable Industries, L.L.C.

Like NPCA, groups can use the FracTracker app to collect visual data and develop customized maps for their own projects. Contact FracTracker to learn more: info@fractracker.org.

Download the App

Download_on_the_App_Store_Badge_US-UK_135x40

Download the free app from the iTunes store or visit FracTracker.org to learn more: www.fractracker.org/apps. Currently the app is only available for only iPhone users, but an Android platform is due out later this year.

App Screenshots

app1

See a map of wells near you or submit a report.

app4

The legend describes the points on the map in more detail.

app2

Clicking on a dot shows the record/well

app3

Clicking the “i” shows you more information about the point

# # #

Media Contact

Samantha Malone
FracTracker Alliance
malone@fractracker.org
412-802-0273

FracTracker Alliance is a non-profit organization with offices in PA, OH, NY, WV, and CA that shares maps, data, and analyses to communicate impacts of the global oil and gas industry and inform actions that positively shape our energy future. Learn more about FracTracker at www.fractracker.org.

National Parks Conservation Association: Since 1919, the nonpartisan National Parks Conservation Association has been the leading voice of the American people in protecting and enhancing our National Park System. NPCA, its one million members and supporters, and many partners work together to protect the park system and preserve our nation’s natural, historical, and cultural heritage for our children and grandchildren. For more information, please visit www.npca.org.