Conventional, Non-Vertical Wells in PA

Like most states, the data from the Pennsylvania Department of Environmental Protection do not explicitly tell you which wells have been hydraulically fractured. They do, however, designate some wells as unconventional, a definition based largely on the depth of the target formation:

An unconventional gas well is a well that is drilled into an Unconventional formation, which is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.


Naturally occurring karst in Cumberland County, PA. Photo by Randy Conger, via USGS.

While Pennsylvania has been producing oil and gas since before the Civil War, the arrival of unconventional techniques has brought greater media scrutiny, and at length, tougher regulations for Marcellus Shale and other deep wells. We know, however, that some companies are increasingly looking at using the combination of horizontal drilling and hydraulic fracturing in much shallower formations, which could be of greater concern to those reliant upon well water than wells drilled into deeper unconventional formations, such as the Marcellus Shale. The chance of methane or fluid migration through karst or other natural fissures in the underground rock formations increase as the distance between the hydraulic fracturing activity and groundwater sources decrease, but the new standards for unconventional wells in the state don’t apply.

The following chart summarizes data for wells through May 16, 2014 that are not drilled vertically, but that are considered to be conventional, based on depth:

These wells are listed as conventional, but are not drilled vertically.

These wells are listed as conventional, but are not drilled vertically.

Note that there have already been more horizontal wells in this group drilled in 2014 than any previous year, showing that the trend is increasing sharply.

Of the 26 horizontal wells, 12 are considered oil wells, five are gas wells, five are storage wells, three are combination oil and gas, and one is an injection well.  These 177 wells have been issued a total of 97 violations, which is a violation per well ratio of 62 percent.  429 permits in have been issued in Pennsylvania to date for non-vertical wells classified as conventional.  Greene county has the largest number of horizontal conventional wells, with eight, followed by Bradford (5) and Butler (4) counties.

We can also take a look at this data in a map view:


Conventional, non-vertical wells in Pennsylvania. Please click the expanding arrows icon at the top-right corner to access the legend and other map controls.  Please zoom in to access data for each location.

Well Worker Safety and Statistics

By Samantha Malone, MPH, CPH – Manager of Science and Communications, FracTracker Alliance

The population most at risk from accidents and incidents near unconventional drilling operations are the drillers and contractors within the industry. While that statement may seem quite obvious, let’s explore some of the numbers behind how often these workers are in harm’s way and why.

O&G Risks

Oil and Gas Worker Fatalities over Time

Fig. 1. Number of oil and gas worker fatalities over time
Data Source: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2014

Drilling operations, whether conventional or unconventional (aka fracking), run 24 hours a day, 7 days a week. Workers may be on site for several hours or even days at a time. Simply the amount of time spent on the job inherently increases one’s chances of health and safety concerns. Working in the extraction field is traditionally risky business. In 2012, mining, quarrying, and oil and gas extraction jobs experienced an overall 15.9 deaths for every 100,000 workers, the second highest rate among American businesses. (Only Agriculture, forestry, fishing and hunting jobs had a higher rate.)

According to the Quarterly Census of Employment and Wages of the U.S. Bureau of Labor Statistics, the oil and gas industry employed 188,003 workers in 2012 in the U.S., a jump from 120,328 in 2003. Preliminary data indicate that the upward employment trend continued in 2013. However, between 2003 and 2012, a total of 1,077 oil and gas extraction workers were killed on the job (Fig. 1).

Causes of Injuries and Fatalities in Oil and Gas Field

Reasons for O&G Fatalities 2003-12. Aggregated from Table 1.

Fig. 2. Reasons for O&G Fatalities 2003-12. Aggregated from Table 1.

Like many industrial operations, here are some of the reasons why oil and gas workers may be hurt or killed according to OSHA:

  • Vehicle Accidents
  • Struck-By/ Caught-In/ Caught-Between Equipment
  • Explosions and Fires
  • Falls
  • Confined Spaces
  • Chemical Exposures

If you drill down to the raw fatality-cause numbers, you can see that the fatal worksite hazards vary over time and job type1 (Table 1, bottom). Supporting jobs to the O&G sector are at higher risk of fatal injuries than those within the O&G extraction job category2. The chart to the right shows aggregate data for years 2003-12. Records indicate that the primary risk of death originated from transportation incidents, followed by situations where someone came into contact with physical equipment (Fig. 2).

Silica Research

Silica-Exposed Workers

Fig. 3. Number of total silica-exposed workers and those exposed above PEL – compared across industries
Source: OSHA Directorate of Standards and Guidance

A recent NIOSH study by Esswein et al. regarding workplace safety for oil and gas workers was that the methods being employed to protect workers against respirable crystalline silica3 were not adequate. This form of silica can be found in the sand used for hydraulic fracturing operations and presents health concerns such as silicosis if inhaled over time. According to Esswein’s research, workers were being exposed to levels above the permissible exposure limit (PEL) of ~0.1 mg/m3 for pure quartz silica because of insufficient respirator use and inadequate technology controls on site. It is unclear at this time how far the dust may migrate from the well pad or sand mining site, a concern for nearby residents of the sand mines, distribution methods, and well pads. (Check out our photos of a recent frac sand mine tour.) The oil and gas industry is not the only employer that must protect people from this airborne workplace hazard. Several other classes of jobs result in exposure to silica dust above the PEL (Fig. 3).

References and Additional Resources

1. What do the job categories in the table below mean?

For the Bureau of Labor Statistics, it is important for jobs to be classified into groups to allow for better reporting/tracking. The jobs and associated numbers are assigned according to the North American Industry Classification System (NAICS).

(NAICS 21111) Oil and Gas Extraction comprises establishments primarily engaged in operating and/or developing oil and gas field properties and establishments primarily engaged in recovering liquid hydrocarbons from oil and gas field gases. Such activities may include exploration for crude petroleum and natural gas; drilling, completing, and equipping wells; operation of separators, emulsion breakers, desilting equipment, and field gathering lines for crude petroleum and natural gas; and all other activities in the preparation of oil and gas up to the point of shipment from the producing property. This industry includes the production of crude petroleum, the mining and extraction of oil from oil shale and oil sands, the production of natural gas, sulfur recovery from natural gas, and the recovery of hydrocarbon liquids from oil and gas field gases. Establishments in this industry operate oil and gas wells on their own account or for others on a contract or fee basis. Learn more

(NAICS 213111) Drilling Oil and Gas Wells comprises establishments primarily engaged in drilling oil and gas wells for others on a contract or fee basis. This industry includes contractors that specialize in spudding in, drilling in, redrilling, and directional drilling. Learn more

(NAICS 213112) Support Activities for Oil and Gas Operations comprises establishments primarily engaged in performing support activities on a contract or fee basis for oil and gas operations (except site preparation and related construction activities). Services included are exploration (except geophysical surveying and mapping); excavating slush pits and cellars, well surveying; running, cutting, and pulling casings, tubes, and rods; cementing wells, shooting wells; perforating well casings; acidizing and chemically treating wells; and cleaning out, bailing, and swabbing wells. Learn more

2. Fifteen percent of all fatal work injuries in 2012 involved contractors. Source

3. What is respirable crystalline silica?

Respirable crystalline silica – very small particles at least 100 times smaller than ordinary sand you might encounter on beaches and playgrounds – is created during work operations involving stone, rock, concrete, brick, block, mortar, and industrial sand. Exposures to respirable crystalline silica can occur when cutting, sawing, grinding, drilling, and crushing these materials. These exposures are common in brick, concrete, and pottery manufacturing operations, as well as during operations using industrial sand products, such as in foundries, sand blasting, and hydraulic fracturing (fracking) operations in the oil and gas industry.

4. OSHA Fact Sheet: OSHA’s Proposed Crystalline Silica Rule: General Industry and Maritime. Learn more

Employee health and safety are protected under the following OSHA regulations. These standards require employers to make sure that the workplace is in due order:

Table 1. 2003-2012 U.S. fatalities in oil & gas industries by year, job category, & event/exposure
Year Oil and Gas (O&G) Industriesa Total Fatal Injuries (number)b Event or Exposurec
Violence / injuries by persons / animalsd Transportatione Fires & Explosions Falls, Slips, Trips Exposure to Harmful Substances or Environments Contact w/Objects & Equipment
2012
O&G Extraction 26 0 8 6 5 3 4
Drilling O&G Wells 39 0 10 6 8 3 10
Support Activities 77 0 46 11 5 3 10
Yearly Totals 142 0 64 23 18 9 24
2011
O&G Extraction 13 0 7 0 0 0 3
Drilling O&G Wells 41 0 15 5 4 5 12
Support Activities 58 3 29 7 4 4 11
Yearly Totals 112 3 51 12 8 9 26
2010
O&G Extraction 12 0 5 3 0 3 0
Drilling O&G Wells 47 0 8 14 7 6 12
Support Activities 48 3 28 8 0 0 8
Yearly Totals 107 3 41 25 7 9 20
2009
O&G Extraction 12 0 6 0 0 0 3
Drilling O&G Wells 29 0 9 0 0 4 13
Support Activities 27 0 12 5 0 4 5
Yearly Totals 68 0 27 5 0 8 21
2008
O&G Extraction 21 0 7 4 0 0 5
Drilling O&G Wells 30 0 6 3 4 4 13
Support Activities 69 0 36 11 4 6 12
Yearly Totals 120 0 49 18 8 10 30
2007
O&G Extraction 15 0 5 0 0 0 5
Drilling O&G Wells 42 0 12 0 4 8 16
Support Activities 65 0 33 6 0 5 19
Yearly Totals 122 0 50 6 4 13 40
2006
O&G Extraction 22 0 6 7 0 3 4
Drilling O&G Wells 36 0 11 0 5 4 14
Support Activities 67 0 2 12 0 5 21
Yearly Totals 125 0 19 19 5 12 39
2005
O&G Extraction 17 0 4 5 0 0 4
Drilling O&G Wells 34 0 9 0 7 4 10
Support Activities 47 0 21 5 0 5 13
Yearly Totals 98 0 34 10 7 9 27
2004
O&G Extraction 29 0 17 0 0 0 8
Drilling O&G Wells 30 0 6 0 6 3 11
Support Activities 39 0 22 5 0 0 10
Yearly Totals 98 0 45 5 6 3 29
2003
O&G Extraction 17 0 9 4 0 0 3
Drilling O&G Wells 26 0 5 5 0 0 13
Support Activities 42 0 17 10 0 3 10
Yearly Totals 85 0 31 19 0 3 26
2003-12 TOTAL FATALITIES 1077 6 411 142 63 85 282
a Oil and gas extraction industries include oil and gas extraction (NAICS 21111), drilling oil and gas wells (NAICS 213111), and support activities for oil and gas operations (NAICS 213112).
b Data in event or exposure categories do not always add up to total fatalities due to data gaps.
c Based on the BLS Occupational Injury and Illness Classification System (OIICS) 2.01 implemented for 2011 data forward
d Includes violence by persons, self-inflicted injury, and attacks by animals
e Includes highway, non-highway, air, water, rail fatal occupational injuries, and fatal occupational injuries resulting from being struck by a vehicle.

Utica Shale Drill Cuttings Production – Back of the Envelope Recipe

By Ted Auch, OH Program Coordinator, FracTracker Alliance

Ohio is the only shale gas state in the Marcellus and/or Utica Shale Basin that has decided to go “all in.” i.e. The state is moving forward with shale gas production, Class II Injection Well disposal of brine waste from fracking, and more recently the processing and disposal of drill cuttings/muds via the state’s Solid Waste Disposal (SWD) districts and waste landfills. The latter would fall under the joint ODNR, ODH, and EPA’s September 18, 2012  Solidification and Disposal Activities Associated with Drilling-Related Wastes advisory. It occurred to us that it might be time to try to estimate how much of these materials are produced here in Ohio on a per-well basis using basic math, data gleaned from Ohio’s current inventory of Utica wells and the current inventory of PLAT maps, and some broad assumptions as to the density of Ohio’s geology.

Developing the Estimate

1) Start with a 341 Actual Utica well lateral dataset generated utilizing the ODNR Ohio Oil & Gas Well Database PLAT inventory or the current inventory of 1,137 permitted Utica wells. Generate a Straight Line lateral dataset by converting this data from “XY To Line” with the following summary statistics:

Variable

Actual

Straight Line

#

341

1,137

Minimum

186

50

Maximum

20,295

12,109

Sum

2,196,856

7,190,889

Mean

6,442 ±1,480

6,386 ±1,489

Median

6,428

6,096

2) Average Vertical Depth for 109 Utica wells utilizing data from the ODNR RBDMS Microsoft Access database = 6,819 feet (207,843 centimeters)

Average Lateral + Vertical Footage = 13,205-13,261 total feet (402,488-404,195 centimeters) (Figure 1)

Ohio Utica Shale Actual Vs Straight Line Lateral Lengths

Fig. 1. An example of Actual and Straight Line Utica well laterals in Southeast Carroll County, Ohio

3) We assume a rough diameter of 8″ down to 5″ (20-13 centimeters) for all of 1) and 14″ to 8″ (36-20 centimeters) for the entirety of 2)

4) The density of 1) is roughly 2.61 g cm3 assuming the average of seven regional shale formations (Manger, 1963)

5) None of the materials being drilled through are igneous or metamorphic (limestone, siltstone, sandstone, and coal) thus the density of 2) is all going to be
≈2.75 g cm3

6) The volume of the above is calculated assuming the volume of a cylinder
(i.e., V = hπr2):

    1. Σ of Actual Lateral Length 49,205,721 cm3 * 2.61 g = 128,180,904 g
    2. Σ of Actual Lateral Length 153,991,464 cm3 * 2.75 g = 423,476,526 g

Average Lateral + Vertical Volume = 551,657,430 grams = 1,216,195 pounds =
608 tons of drill cuttings per Utica well * 829 drilled, drilling, or producing wells = 504,113 million tons

To put these numbers into perspective, the average Ohio household of 2.46 people generates about 3,933 pounds of waste per year or 1.78 metric tons.

7) Caveats include:

    • The coarse assumptions as to density of materials and the fact that these materials experience significant increases in surface area once they have been drilled through.
    • The assumptions as to pipe diameter could be over or underestimating drill cuttings due to the fact that we know laterals taper as they near their endpoint. We assume 45% of the vertical depth is comprised of 14″ diameter pipe, 40% 11″ diameter pipe, and 15% 8″ pipe. Similarly we assume the same percentage distribution for 8″, 6.5″, and 5″ lateral pipe.

Ohio Drilling Mud Generation and Processing

Caroll-Columbiana-Harrison Ohio Solid Waste District Drilling Muds Processed (January, 2011-April, 2014)

Fig. 2. Month-to-month and cumulative drilling muds processed by CCHSWD, one of six OH SWDs charged with processing shale gas drilling waste from OH, WV, and PA.

Ohio’s primary SWDs responsible for handling the above waste streams – from in state as well as from Pennsylvania and West Virginia – are the six southeastern SWDs along with the counties of Portage and Mahoning according to several anonymous sources. However, when attempting to acquire numbers that speak to the flows/stocks of fracking related SWD waste (i.e., drilling muds) the only district that keeps track of this data is the Carroll-Columbiana-Harrison Solid Waste District (CCHSWD). The CCHSWD’s Director of Administration was generous enough to provide us with this data. According to a month-over-month analysis they have processed 636,450 tons generating a fixed fee of $3.5 per ton or $2.23 million to date (Figure 2). This trend translates into a 1,046-1,571 ton monthly increase depending on how you fit your trend line to the data (i.e., linear Vs power functions) or put another way annual drilling mud increases of 12,546-18,847 tons.

 

An Open Letter to FracFocus

FracFocus.org is the preferred chemical disclosure registry for the oil and gas (O&G) industry, and use of your website by the industry is mandated by some states and regulatory agencies. As such, we hope you’ll be responsive to this call by FracTracker, other organizations, and concerned citizens across the country to live up to the standards of accessibility and transparency required by similar data registries.

A Focus on Data Transparency

Recent technological advances in high volume hydraulic fracturing operations have changed the landscape of O&G drilling in the United States.  As residents adjust to the presence of large-scale industrial sites appearing in their communities, the public’s thirst for knowledge about what is going on is both understandable and reasonable. The creation of FracFocus was a critical first step down the pathway to government and industry transparency, allowing for some residents to learn about the chemicals being used in their immediate vicinities.  The journey, however, is not yet complete.

Design Limitations on FracFocus

Query by Date

Even with the recently added search features there is no way to query reports by date. Currently a visitor would be unable to search by the date hydraulic fracturing / stimulation was performed, or when the report itself was submitted. Reports can only be viewed one PDF at a time, which would take someone quite a while to view all 68,000+ well sites in your system.

Aggregate Data Downloads

In October 2013, you informed us that “each registered state regulatory agency has access to the xml files for their state but they are not distributable from FracFocus to the public.” We must ask the reasonable question of “why not?” We understand that setting up a downloadable data system is a time-intensive process, as we manage one ourselves, but the benefits of providing such a service more than compensate for the effort expended. It is no longer possible to aggregate data, either automatically or manually, because of bandwidth limitations that keep users from downloading more than an arbitrarily limited number of reports in a single session. Considering public concern over the composition of frac fluid, as well as the volume and geographic extent of complaints of drinking water complaints to be related to O&G extraction, prudence would suggest making the data as accessible as possible. For example, making the aggregated data available to the public as a machine-readable download would greatly reduce the load on your servers, because users would no longer be forced to download the individual PDF reports. Changes in the way the reports are curated would also improve efficiency and reduce your server load; we would be more than happy to discuss these changes with you.

An Issue of Money?

The basic infrastructure to provide this service via FracFocus.org is already in place. An organization like the Groundwater Protection Council with a website serving some of the world’s wealthiest corporations loses credibility when making claims that “we have no way to meet your needs for the data.”  Withholding data from the public only serves to compound the distrust that many people have with regards to the oil and gas extraction industry.  Additionally, agencies that use FracFocus as a means of satisfying open government requirements are currently being short changed by the lack of access to your aggregated datasets; restricting access to data that is in the public interest is fundamentally at odds with data transparency initiatives, including the President’s 2013 Executive Order on Open Data.

One Small Step for a Company…

Within this discussion is a simple realization:  The Ground Water Protection Council, Interstate Oil and Gas Compact Commission, participating companies and states, and the federal government should recognize that data transparency is not merely a lofty ideal, but an actual obligation to our open society.  Once that realization has been made, the path of least resistance becomes clear:  you, FracFocus, should make all of your aggregate data available to the public, beginning with the easiest step: the statewide datasets that are already being provided to government agencies.

FracTracker operates in the public interest. We – and the thousands of individuals and organizations who use our services and yours – request no less from you. Thank you for addressing these critical matters.

Sincerely,
-The FracTracker Alliance-

FF Word Cloud

Geopolitics, Shale Gas, and Pipelines

By Ted Auch, OH Program Coordinator, FracTracker Alliance

The “Why?”

Recently, the US has proposed to ship American shale gas abroad to buffer Europe’s 15-30% reliance on Russian gas imports in the face of the annexation of Crimea by Russia – and parallel 80% increases in LNG prices paid by Eastern Europeans to Russia’s Gazprom. The FracTracker map below illustrates all proposed and existing hydrocarbon pipelines across South America, Africa, Europe, the Persian Gulf, and Asia/Russia1. Creating such a map seems the least we could do given that this conflict has been called the “worst crisis with the West since the end of the Cold War.” The situation in Crimea is a chronic crisis; folks like Oxford University’s Jonathan Stern have suggested:

  1. Ukraine owes Gazprom $2 billion for already delivered hydrocarbons,
  2. Russia can easily turn their supplies to Japan which will pay a premium relative to what they are getting from the European Union, and
  3. The duration of European oil and gas contracts with Gazprom, which extend 15-35 years, can’t be broken (Einhorn, 2014; Henderson and Stern, 2014).

The rhetoric framing here in the US has been lead by – and regurgitated by media outlets such as NPR who suggested “Putin Could Send Europe Scrambling For Energy Sources” –  the likes of the Council on Foreign Relations Richard Haass and the Brookings Institution’s Bruce Jones. Both of these entities have the ears of congress domestically and global decision makers at gatherings such as the World Economic Forum in Davos, Switzerland (Gwertzman, 2014; Wade and Rascoe, 2014).

Stepping up hydrocarbon and extraction technologies is not universally espoused:

This is not an immediate-term solution. It’s not even an intermediate-term solution. – Paul Bledsoe, German Marshal Fund, in The New York Times

Fracking is unlikely to reduce gas prices to the extent its proponents desire. – London School of Economics (LSE) (Krauss, 2014; McDonnell, 2014)

Originally, shale gas production was proposed as a way for the US to become “energy independent,” but the dogma has rapidly and in a coordinated fashion shifted to the export of shale gas itself and the technology used to get it out of the ground. This rhetoric is now the focus not just of Washington, DC think tanks but academics (Bordoff, 2014) .

This is a graph depicting global CO2 emissions as a function of per capita Gross Domestic Product (GDP) (US$) across 204 countries CO2 emissions data were gathered from the United Nations Statistics Division (http://unstats.un.org/unsd/ENVIRONMENT/datacollect.htm) and the US Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) (http://cdiac.ornl.gov/trends/emis/meth_reg.html)

Figure 1a) Global CO2 Per Capita Emissions (Tons) Vs Per Capita Gross Domestic Product (GDP) (US $)

The above regions are ripe for – or currently experiencing – significant political uprisings from the Niger Delta and Venezuela to the percolating anger associated with increasing economic stratification and political elite disconnect in countries like Saudi Arabia, Libya, Yemen, Pakistan, Mediterranean Africa writ large, Sudan, and Oman2. Often this discontent is emanating out of citizens’ concerns as to where oil revenues are going and how often the hydrocarbon largesse is concentrated in a handful of political elites and/or oligarchs (Nossiter, 2014). The EIA estimates Russia and China sit atop an estimated 107 billion barrels of shale oil and 1,400 TCF of shale gas. Much of this resource will be required if they are to continue > 2-5% Gross Domestic Product (GDP) growth. The remainder they will undoubtedly use as a cudgel to deflect the west’s suggestions and/or demands within their borders or their “near abroad.” In the case of Russia, the “near abroad” generally refers to the eight former Communist pliable nations – and are incidentally home to nontrivial shale oil and gas reserves – that act as a physical and ideological buffer between them and NATO/European Union states. In an effort to combat the asymmetric hydrocarbon supply and demand issues and secure access to the sizable shale reserves in eastern Europe, the European Union continues to push the European Neighborhood Policy meant to create a “ring of friends”3  – with Ukraine just the latest significant test and the only successes being Tunisia and Moldova (Charlemagne, 2014). With respect to China, their “near abroad” nations include shale oil and gas rich nations like Indonesia, Thailand, Myanmar, Cambodia, and Vietnam, along with ex-Soviet region Central Asian countries which provide China with 80% of its natural gas needs. However, the east-west tug of war has come down to the willingness of the east to offer larger instant loans, cheaper gas, and labor/technology needed to develop pipeline networks. The nexus between these two eastern giants is the proposed – and recently agreed upon – $400 billion Sino-Russian energy cooperation natural gas and oil pipeline. This proposal will stretch across heretofore relatively undisturbed and isolated communities and the ecosystems they have evolved with across the Eurasian Steppe and Siberia (Einhorn, 2014).

This is a graph depicting global CO2 emissions as a function of Oil Consumption Per day (Barrels) across 204 countries CO2 emissions data were gathered from the United Nations Statistics Division (http://unstats.un.org/unsd/ENVIRONMENT/datacollect.htm) and the US Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) (http://cdiac.ornl.gov/trends/emis/meth_reg.html) Oil consumption data drawn from EnerDatas' World Energy Statistics "Global Energy Statistical Yearbook 2013" (http://yearbook.enerdata.net/)

Figure 1b) Global CO2 Per Capita Emissions (Tons) Vs Oil Consumption Per Day (Barrels) across 204 countries

The fomenting anger and geopolitical combativeness that result from these conditions put the global hydrocarbon transport network at risk. Analogies to R.A. Radford’s The Economic Organization of a P.O.W. Camp can be made here, where the economy that Mr. Radford created flourished until the input stream from the Red Cross stopped. It was at this time that the economy collapsed due to its singular reliance on one input source. Similar analogies exist across emerging, P5+1, and frontier markets worldwide, with many countries largely dependent upon hydrocarbon imports or exports to stoke GDP. Such imports, along with oil consumption, account for 98% of per country CO2 emissions (Table 1 below, Figure 1a-b).  Revolution or even temporary and targeted political instability will fuel the type of hydrocarbon transport/production disruption that will produce the kind of jump condition described by Mr. Radford. A jump condition occurs in situations when suitable hydrocarbon stocks/flows are lost, pipelines are turned off, and alternative transport channels are deemed too perilous. Such a crisis is one that no industrialized or industrializing nation is prepared to manage, making the 2007-08 Financial Crisis look and feel like child’s play. Thus, many private and state actors are proposing new and expanded hydrocarbon pipeline networks to reduce reliance on single-large networks emanating from or traveling through volatile regions. Proposals range from the large Nabucco pipeline proposal connecting Asia and Europe or the Nord Stream AG Baltic Sea Gas Pipeline to small regional or inter-state proposals in Africa, the Persian Gulf, and Eastern Europe.

The “When?”

With this map, which was initiated in January 2014, we have attempted to accurately quantify as many existing and proposed pipeline routes as possible in Europe, Africa, South America, Asia, and the Persian Gulf.  We will be updating this map periodically, and it should be noted that all layers are predetermined aggregations of regional pipelines. Given the recent EIA global shale oil and gas estimates, it is only a matter of time before: a) European nations like Germany, Ukraine, Poland, and Romania begin to explore shale gas extraction in the name of “energy independence,” and b) Argentina hands over the proverbial keys to its 16.2-22.5 billion barrels of oil in the Vaca Muerta shale basin to the likes of Shell or Repsol-YPF (Canty, 2011; Gonzalez and Cancel, 2013; Romero and Krauss, 2013; Staff, 2013). This conversation will be accompanied by additional pipeline proposals for inter- and intra-region transport, all of which we will incorporate into this map on a quarterly basis. If you know of proposals that are not currently shown on the map, please let us know.

Table 1. Major Worldwide Flows of Oil (Thousand Barrels Per Day).

Country

Production (a)

Consumption (b)

(b)/(a)

Export

Import

Saudi Arabia

11726

2861

24

8865

United States

11105

18490

167

7386

Russia

10397

3195

31

7201

China

4372

10277

235

5904

Canada

3856

2281

59

1576

Iran

3589

1709

48

1880

UAE

3213

618

19

2595

Iraq

2987

752

25

2235

Mexico

2936

2144

73

Kuwait

2797

383

14

2414

Brazil

2652

2807

106

Nigeria

2524

270

11

2254

Venezuela

2489

777

31

1712

Norway

1902

218

12

1684

Algeria

1875

328

18

1547

Japan

4726

4591

India

3622

2632

Germany

2388

2219

South Korea

2301

2240

France

1740

1668

Indonesia

1590

616

United Kingdom

1503

Angola

1738

Qatar

1389

Kazakhstan

1355

Libya

Singapore

1360

Spain

1260

Italy

1198

Taiwan

1058

Netherlands

949

Turkey

614

Belgium

607

Compiled from U.S. Energy Information Administration World Overview (http://www.eia.gov/countries/)


References

Bordoff, J., 2014. Adding Fuel to the Fire: How the American shale gas boom can weaken Russia’s hand in Ukraine, Foreign Policy Magazine, Washington, DC.

Canty, D., 2011. Repsol hails largest ever 927 million bbl oil find, ArabianOilandGas.com. ITP Business Portal.

Charlemagne, 2014. How to be good neighbours: Ukraine is the biggest test of the EU’s policy towards countries on its borderlands, The Economist, London, UK.

Einhorn, B., 2014. How the Ukraine Crisis Could Help Clear Beijing’s Smog, Bloomberg Businessweek. Bloomberg LP, New York, NY.

Gonzalez, P., Cancel, D., 2013. Shell to Triple Argentine Shale Spending as Winds Change, Bloomberg Magazine. Bloomberg LP, New York, NY.

Gwertzman, B., 2014. How to respond to Ukraine’s Crisis, Council on Foreign Relations, Washington, DC.

Henderson, J., Stern, J., 2014. The Potential Impact on Asia Gas Markets of Russia’s Eastern Gas Strategy, Oxford Energy Comment. The Oxford Institute for Energy Studies, Oxford, UK, p. 13.

Klein, N., 2008. The Shock Doctrine: The Rise of Disaster Capitalism. Picador.

Klein, N., 2014. Why US Fracking Companies Are Licking Their Lips Over Ukraine: From climate change to Crimea, the natural gas industry is supreme at exploiting crisis for private gain – what I call the shock doctrine, The Guardian, London, UK.

Krauss, C., 2014. U.S. Gas Tantalizes Europe, but It’s Not a Quick Fix, The New York Times, New York, NY.

McDonnell, A., 2014. Fracking is unlikely to reduce gas prices to the extent its proponents desire, The London School of Economics and Political Science – British Politics and Policy. The London School of Economics, London, UK.

Nossiter, A., 2014. Nigerians Ask Why Oil Funds Are Missing, The New York Times, New York, NY.

Romero, S., Krauss, C., 2013. An Odd Alliance in Patagonia, The New York Times, New York, NY.

Staff, 2013. Argentina’s YPF: Swallowed Pride, The Economist, London, UK.

Wade, T., Rascoe, A., 2014. Global gas trade may soften foreign policy of Russia, China, Reuters, New York, NY.


[2]  The EIA estimates Mediterranean Africa contains 5,772 TCF of estimated wet shale natural gas and 1,373,770 million barrels of oil, the Former Soviet Union 4,738 TCF and 310,567 million barrels, and South America 2,465 TCF and 643,864 million barrels 73% of which is in Brazil and Argentina’s Vaca Muerta.

[3] According to The Economist “The Europeans should also rethink the neighbourhood policy, which lumps together disparate countries merely because they happen to be nearby. In the south it may have to devise a wider concept of its interests stretching out to the Sahel, the Horn of Africa and the Middle East. Here Europe has no real friends, lots of acquaintances and not a few enemies. To the east it needs better ways of helping those who want to move closer to the EU.”

US Pipeline Incidents map

Pipeline Incidents Updated and Analyzed

Pipeline spill in Mayflower, AR on March 29, 2013. Photo by US EPA via Wikipedia.

The debate over the Keystone XL pipeline expansion project has grabbed a lot of headlines, but it is just one of several proposed major pipeline projects in the United States. As much of the discussion revolves around potential impacts of the pipeline system, a review of known incidents is relevant to the discussion.

A year ago, the FracTracker Alliance calculated that there was an average of 1.6 pipeline incidents per day in the United Sates.  That figure remains accurate, with 2,452 recorded incidents between January 1, 2010 and March 3, 2014, a span of 1,522 days.

The Pipeline and Hazardous Materials Safety Administration (PHMSA) classifies the incidents into three categories:

  • Gas transmission and gathering:  Gathering lines take natural gas from the wells to midstream infrastructure.  Transmission lines transport natural gas from the regions in which it is produced to other locations, often thousands of miles away.  Since 2010, there have been 486 incidents on these types of lines, resulting in 10 fatalities, 71 injuries, and $620 million in property damage.
  • Oil and hazardous liquid:  This includes all materials overseen by PHMSA other than natural gas, predominantly crude and refined petroleum products.  Liquified natural gas is included in this category.  There were 1,511 incidents during the reporting period for these pipelines, causing 6 deaths and 15 injuries, and $1.8 billion in property damage.
  • Gas distribution:  These pipelines are used by utilities to get natural gas to consumers.  In just over 40 months, there were 455 incidents, resulting in 42 people getting killed, 183 reported injuries, and $86 million in property damage.

Curiously, while incidents on distribution lines accounted for 72 percent of fatalities and 67 percent of all injuries, the property damage in these cases were only responsible for just over 3 percent of $2.5 billion in total property damage from pipeline spills since 2010.  A reasonable hypothesis accounting for the deaths and injuries is that distribution lines are much more common in densely populated areas than are the other types of pipelines; an incident that might be fatal in an urban area might go unnoticed for days in more remote locations, for example.  However, as the built environment is also much more densely located in urban areas, it does seem surprising that reported property damage isn’t closer to being in line with physical impacts on humans.

How accurate are the data?

In the wake of the events of September 11, 2001, governmental agency data suddenly became much more opaque.  In terms of pipelines, public access to the pipeline data that had been mapped to that point was removed.  It was later restored, with limitations.  As it stands now, most pipeline data in the United States, including the link to the pipeline proposal map above, are intentionally generalized to the point where pipelines might not even be rendered in the appropriate township, let alone street.

There are some exceptions, though.  If you would like to know where pipelines are in US waters in the Gulf of Mexcio, for example, the Bureau of Ocean Energy Management makes that data not only accessible to view, but available for download on data.gov, a site dedicated to data transparency.  While the PHMSA will not do the same with terrestrial pipelines, the do release location data along with their incident data.


Pipeline incidents from 1/1/2010 through 3/3/2014. To access details, legend, and other map controls, please click the expanding arrows icon in the top-right corner of the map.

This fatal pipeline incident was in Allentown, PA, but was given coordinates in Greenland.

This fatal pipeline incident was in Allentown, PA, but was given coordinates in Greenland.

Unfortunately, we see evidence that the data are not well vetted, at least in terms of location.  One of the most serious incidents in the timeframe, an explosion in Allentown, Pennsylvania that killed five people and injured three more, was given coordinates that render in the middle of Greenland.  Another incident leading to fatalities was given location data that put it in Manatoba, well outside of the reach of the US agency that publishes the data.  Still another incident appears to be in the Pacific Ocean, 1,300 miles west-southwest of Mexico.  There are many more examples as well, but the majority of incidents seem to be reasonably well located.

Fuzzy data: are national security concerns justified?

Anyone who watches the news on a regular basis knows that there are people out there who mean others harm. However, a closer look at the incident data shows that pipelines are not a common means of accomplishing such an end.

Causes of pipeline incidents from 1/1/10 to 3/3/14, with counts.

Causes of pipeline incidents from 1/1/10 to 3/3/14, with counts.

For each category showing causation, there are numerous subcategories. While we don’t need to look into all of those here, it is worth pointing out that there is a subcategory of, “other outside force damage” that is designated as, “intentional damage.”  Of the 2,452 total incidents, nine incidents fall into this subcategory.  These subcategories are further broken down, and while there is an option to express that the incident is a result of terrorism, none have been designated that way in this dataset .  Five of the nine incidents are listed as acts of vandalism, however. To be thorough, and because it provides a fascinating insight into work in the field, let’s take a look at the narrative description for each incident that are labeled as intentional in origin:

  • Approximately 2 bbls of crude oil were released when an unknown person(s) removed the threaded pressure warning device on the scraper trap’s closure door. As a result of the absence of the 1/2 inch pressure warning device crude oil was able to flow from the open port upon start up of the pipeline and pressurization of the scraper trap. Once this was discovered the 1/2 inch pressure warning device was properly put back into the scaper trap.
  • Aboveground piping intentionally shot by unknown party. Installed stoppall on line at 176+73 (7 146′) upstream of damaged aboveground piping. Cut and capped pipeline.
  • Friday october 18th at approximately 6:00 p.m. we were notified of a gas line break at Kayenta Mobile Home Park. The Navajo Police responded to an emergency call about vandals in one of the parks alley ways kicking at meters. Upon arrival they found the broke meter riser at the mobile home park and expediently used the emergency shutdown system to remedy the situation. This immediately cut service to 118 customers in the park. [Names removed] responded to the call. we arrived on site at approximately 9:30 p.m. We located the damage and fixed the system at approximately 1:30 a.m. i called the Amerigas emergency call center and informed them that we would be restarting the system the following morning and to tell our customers they would need to be home in order to restore service. We then started the procedure of shutting every valve off to all customers before restarting the system. We started the system back up at 9:30a.m. 10/19/2013. Once the system was up to full pressure and all systems were normal we began putting customers back into service. The completion of re-establishing service to all customers on the system was completed on 10/23/2013.
  • A service tech was called at 1:15 am Sunday morning to respond to the Marlboro Fire Department at an apparent explosion and house fire. The tech arrived and called for additional resources. He then began to check for migrating gas in the surrounding buildings along the service to the house and in the street. no gas readings were detected. The distribution and service on call personnel arrived and began calling in additional company resources to assist in the response effort and controlling the incident. A distribution crew was called in to shut off and cut the service. Additional service techs were called in to assist in checking the surrounding buildings and in the streets at catch basins and manholes around the entire block. Gas supply personnel were called in and dispatched to take odorant samples in the houses directly across from 15 Grant Ct. that had active gas service. Gas survey crews were called in to survey Grant St. and the two parallel streets McEnelly St. and Washington Ct. along with the portion of Washington st. in between these streets. The meter and meter bar assembly were taken by the investigators as evidence. The service was pressure tested to the riser which was witnessed by a representative of the DPI. The service was cut off at the main. After the investigators completed gathering evidence at the scene they gave permission to begin cleaning up the site. There was a tenant home at the time of the explosion who was conscious and walking around when the fire department arrived. He was taken to the hospital and reports are that he sustained 2nd and 3rd degree burns on portions of his body.
  • On Friday, September 7, 2012 PSE&G responded to a gas emergency call involving a gas ignition. The initial call came in from the Orange Fire Department at 17:09 as a house fire at 272 Reock Ave Orange; the fire chief stated gas was not involved and the fire was caused by squatters. Subsequent investigation of the incident revealed that the fire was caused when one of the squatters lit a match which ignited leaking gas originating from gas piping removed from the head of an inside meter set. The gas meter inlet valve and associated piping were all removed by an unknown person on an unknown date prior to the fire. An appliance service tech responded and shut the gas off at the curb at 17:40 on September 7 2012. A street crew was dispatched and the gas service to 272 reock ave was cut at the curb at 19:00. Two people (names unknown) squatters were injured one by the fire one was injured jumping out a window to escape the fire. The home in question was vacated by the owner and the injured parties were trespassing on the property at the time of the incident. PSE&G has been unable to confirm any information on the status of their injuries due to patient confidentiality laws.
  • The homeowner tampered with company piping by removing 3/4″ steel end cap with a 3/4″ steel nipple on the tee was removed which caused the gas leak in the basement and resulted in a flash fire. The most likely source of ignition was the water heater. The homeowner died in the incident.
  • A structure fire involved an unoccupied hardware store and a small commercial 12-meter manifold. There were no meters on the manifold and no customers lost service. The heat from the structure fire melted a regulator on the manifold which in turn released gas and contributed to the fire. The cause is officially undetermined; however according to the fire department the cause appears to be arson with the fire starting in the back of the building and not from PG&E facilities. PG&E was notified of this incident by the fire department at 1802 hours. The gas service representative arrived on scene at 1830 hours. The fire department stopped the flow of gas by closing the service valve and the fire was extinguished at approximately 1900 hours. this incident was determined to be reportable due to damages to the building exceeding $50,000. There were no fatalities and no injuries as a result of this incident. Local news media was on-site but no major media was present.
  • A house explosion and fire occurred at approximately 0208 hours on 2/7/10. The fire department called at PG&E at 0213 hours. PG&E personnel arrived at 0245 hours. The fire department had shut off the service valve and removed the meter before PG&E arrived. The house was unoccupied at the time of the explosion. The gas service account was active and the gas service was on (contrary to initial report). The cause of the explosion is undetermined at the time of this report but the fire department has indicated the cause appears to be arson. After the explosion, PG&E performed a leak survey of the service the services on both sides of this address and the gas main in the front of all three of these addresses. No indication of gas was found. PG&E also performed bar hole tests over the service at 3944 17th Avenue and found no indication of gas. The gas service was cut off at the main and will be re-connected when the customer is ready for service.
  • On Monday, January 25, 2010 at approximately 2:30pm a single-family home at 2022 west 63rd Street Cleveland OH (Cuyahoga County) was involved in an explosion/fire. The gas service line was shut-off at approximately 4:30pm. A leak survey of the main lines and service lines on W. 83rd between Madison and Lorain revealed no indications of gas near the structure. A service leak at 2131 West 83rd Street was detected during the leak survey. This service line was replaced upon discovery. On Tuesday, January 26th, 2010 the service line at 2022 W. 83rd was air tested at operating pressure with no pressure loss. An odor test was conducted at 2028 West 83rd Street. The results of this odor test revealed odor levels well within dot compliance levels. Our investigation revealed an odor complaint at this residence on January 18th. Dominion personnel responded to the call and met with the Cleveland Fire Department. Dominion found the meter disconnected and the meter shut-off valve in the half open position. The shut-off valve was closed by the Dominion technician and secured with a locking device. The technician placed a 3/4 inch plug in the open end of the valve. The technician also attempted to close the curb-slop valve but could not. The service line was then bar hole tested utilizing a combustible gas indicator from the street to the structure. As a result, no leakage was discovered. A second attempt to close the curb box valve on January 19th ended when blockage was discovered in the valve box. The valve box was in the process of being scheduled for excevatlon and shut off by a construction crew at the time of the incident. An investigation of the incident site determined the cause to be arson as approximately 6 inches of service line and the meter shut-off valve (with locking device still intact) detached from the service line were recovered inside the structure.

While several of these narratives do make it seem as if the incidents in question were deliberate, these seem to have been caused by people on the ground, not by some GIS-powered remote effort. Seven of the nine incidents were on distribution lines, which tend to occur in populated areas, where contact with gas infrastructure is in fact commonplace, and six out of those seven incidents occurred inside houses or other structures.

On the other hand, there is a real danger in not knowing where pipelines are located. 237 accidents were due to excavation activities, and 86 others were caused by boats, cars, or other vehicles unrelated to excavation activity. Better knowledge of the location of these pipelines could reduce these numbers significantly.

Water Use in WV and PA

Water Resource Reporting and Water Footprint from Marcellus Shale Development in West Virginia and Pennsylvania

Report and summary by Meghan Betcher and Evan Hansen, Downstream Strategies; and Dustin Mulvaney, San Jose State University

GasWellWaterWithdrawals The use of hydraulic fracturing for natural gas extraction has greatly increased in recent years in the Marcellus Shale. Since the beginning of this shale gas boom, water resources have been a key concern; however, many questions have yet to be answered with a comprehensive analysis. Some of these questions include:

  • What are sources of water?
  • How much water is used?
  • What happens to this water following injection into wells?

With so many unanswered questions, we took on the task of using publically available data to perform a life cycle analysis of water used for hydraulic fracturing in West Virginia and Pennsylvania.

Summary of Findings

Some of our interesting findings are summarized below:

  • In West Virginia, approximately 5 million gallons of fluid are injected per fractured well, and in Pennsylvania approximately 4.3 million gallons of fluid are injected per fractured well.
  • Surface water taken directly from rivers and streams makes up over 80% of the water used in hydraulic fracturing in West Virginia, which is by far the largest source of water for operators. Because most water used in Marcellus operations is withdrawn from surface waters, withdrawals can result in dewatering and severe impacts on small streams and aquatic life.
  • Most of the water pumped underground—92% in West Virginia and 94% in Pennsylvania—remains there, lost from the hydrologic cycle.
  • Reused flowback fluid accounts for approximately 8% of water used in West Virginia wells.
  • Approximately one-third of waste generated in Pennsylvania is reused at other wells.
  • As Marcellus development has expanded, waste generation has increased. In Pennsylvania, operators reported a total of 613 million gallons of waste, which is approximately a 70% increase in waste generated between 2010 and 2011.
  • Currently, the three-state region—West Virginia, Pennsylvania, and Ohio—is tightly connected in terms of waste disposal. Almost one-half of flowback fluid recovered in West Virginia is transported out of state. Between 2010 and 2012, 22% of recovered flowback fluid from West Virginia was sent to Pennsylvania, primarily to be reused in other Marcellus operations, and 21% was sent to Ohio, primarily for disposal via underground injection control (UIC) wells. From 2009 through 2011, approximately 5% of total Pennsylvania Marcellus waste was sent to UIC wells in Ohio.
  • The blue water footprint for hydraulic fracturing represents the volume of water required to produce a given unit of energy—in this case one thousand cubic feet of gas. To produce one thousand cubic feet of gas, West Virginia wells require 1-3 million gallons of water and Pennsylvania wells required 3-4 million gallons of water.

Table 1. Reported water withdrawals for Marcellus wells in West Virginia (million gallons, % of total withdrawals, 2010-2012)

WV Water Withdrawals

Source: WVDEP (2013a). Note: Surface water includes lakes, ponds, streams, and rivers. The dataset does not specify whether purchased water originates from surface or groundwater. As of August 14, 2013, the Frac Water Reporting Database did not contain any well sites with a withdrawal “begin date” later than October 17, 2012. Given that operators have one year to report to this database, the 2012 data are likely very incomplete.

As expected, we found that the volumes of water used to fracture Marcellus Shale gas wells are substantial, and the quantities of waste generated are significant. While a considerable amount of flowback fluid is now being reused and recycled, the data suggest that it displaces only a small percentage of freshwater withdrawals. West Virginia and Pennsylvania are generally water-rich states, but these findings indicate that extensive hydraulic fracturing operations could have significant impacts on water resources in more arid areas of the country.

While West Virginia and Pennsylvania have recently taken steps to improve data collection and reporting related to gas development, critical gaps persist that prevent researchers, policymakers, and the public from attaining a detailed picture of trends. Given this, it can be assumed that much more water is being withdrawn and more waste is being generated than is reported to state regulatory agencies.

Data Gaps Identified

We encountered numerous data gaps and challenges during our analysis:

  • All data are self-reported by well operators, and quality assurance and quality control measures by the regulatory agencies are not always thorough.
  • In West Virginia, operators are only required to report flowback fluid waste volumes. In Pennsylvania, operators are required to report all waste fluid that returns to the surface. Therefore in Pennsylvania, flowback fluid comprises only 38% of the total waste which means that in West Virginia, approximately 62% of their waste is not reported, leaving its fate a mystery.
  • The Pennsylvania waste disposal database indicates waste volumes that were reused, but it is not possible to determine exactly the origin of this reused fluid.
  • In West Virginia, withdrawal volumes are reported by well site rather than by the individual well, which makes tracking water from withdrawal location, to well, to waste disposal site very difficult.
  • Much of the data reported is not publically available in a format that allows researchers to search and compare results across the database. Many operators report injection volumes to FracFocus; however, searching in FracFocus is cumbersome – as it only allows a user to view records for one well at a time in PDF format. Completion reports, required by the Pennsylvania Department of Environmental Protection (PADEP), contain information on water withdrawals but are only available in hard copy at PADEP offices.

In short, the true scale of water impacts can still only be estimated. There needs to be considerable improvements in industry reporting, data collection and sharing, and regulatory enforcement to ensure the data are accurate. The challenge of appropriately handling a growing volume of waste to avoid environmental harm will continue to loom large unless such steps are taken.

Report Resources

Complete Report  |  Webinar

This report was written on behalf of Earthworks and was funded by a Network Innovation Grant from the Robert & Patricia Switzer Foundation.

This FracTracker article is part of the Water Use Series

Three Cities, One Cause

FT-Fundraiser-DecorBy Brook Lenker, Executive Director, FracTracker Alliance

Tracking the impacts of oil and gas development is downright sobering. Sometimes recharge is needed for the work ahead, so as the FracTracker Alliance approaches its two-year organizational anniversary, it is due time to make time for fun and mixing with friends, partners, and supporters. On a parallel course, our strategic plan underscores the importance of diversifying the sources of income that sustain our efforts. These two needs create ideal synergy for our upcoming fundraising events, coming soon to three great American cities.

On May 16, the Beach Chalet in San Francisco refreshes with house beer, bites, and Pacific views. May 22, the Wine Spot in Cleveland indulges attendees with sumptuous wines and cheeses. Wigle Whiskey serves it by sips and slurps, June 10, in Pittsburgh’s first distillery since prohibition. More than tasty libations, these altogether fine evenings offer door prizes, silent auction items, and special exhibits of maps and art to enlighten and intrigue. FracTracker board members and staff will share in the festivities. Add you – and the occasions are sure to be picture perfect. Come out for the cuisine, the camaraderie, but most of all, for the cause!

Tickets and/or RSVP’s are required for all events. Click on your city of interest below to learn more.

CA-Button OH-Button Pgh-Button

Finding PA Department of Environmental Protection Data

Data transparency is a major issue in the oil and gas world. Some states in the U.S. do not make the location or other details associated with wells easy to find. If one is looking for Pennsylvania data, however, the basic datasets are quite accessible. The PA Department of Environmental Protection (DEP) maintains several datasets on unconventional drilling activity in the Commonwealth and provides this information online and free of charge to the public. The following databases are ones that we commonly use to update our maps and perform data analyses:

1. Wells Drilled (Spudded)

2. Permitted Wells

3. O&G Violations

Search Criteria

Below are tips for how to search the PA DEP’s records and download datasets if you would like:

Dates

Date ranges must be entered in these databases in order to narrow down the search. We suggest starting with 1/1/2000 through current if you would like to see all unconventional activity to date.

County, Municipality, Region, and Operator

This criteria can be further refined by selecting particular counties, regions, etc.

Unconventional Only

For all datasets, “Unconventional Only – Yes” should be selected if you are only interested in the wells that have been drilled into unconventional shale formations and hydraulically fractured, or “fracked.”

“Unconventional” definitions according to PA Code, Chapter 78:

Unconventional well — A bore hole drilled or being drilled for the purpose of or to be used for the production of natural gas from an unconventional formation.

Unconventional formation — A geological shale formation existing below the base of the Elk Sandstone or its geologic equivalent stratigraphic interval where natural gas generally cannot be produced at economic flow rates or in economic volumes except by vertical or horizontal well bores stimulated by hydraulic fracture treatments or by using multilateral well bores or other techniques to expose more of the formation to the well bore.

Download

Once search criteria have been defined, click View Report to see the most up to date information compiled below. From there, the file can be downloaded in different formats, such as a PDF or Excel file.

Visit this page to see all of the oil and gas reports that the PA DEP issues.

WV Field Visits 2013

H 2 O Where Did It Go?

By Mary Ellen Cassidy, Community Outreach Coordinator, FracTracker Alliance

A Water Use Series

Many of us do our best to stay current with the latest research related to water impacts from unconventional drilling activities, especially those related to hydraulic fracturing.  However, after attending presentations and reading recent publications, I realized that I knew too little about questions like:

  • How much water is used by hydraulic fracturing activities, in general?
  • How much of that can eventually be used for drinking water again?
  • How much is removed from the hydrologic cycle permanently?

To help answer these kinds of questions, FracTracker will be running a series of articles that look at the issue of drilling-related water consumption, the potential community impacts, and recommendations to protect community water resources.

Ceres Report

We have posted several articles on water use and scarcity in the past here, here, here and here.  This article in the series will share information primarily from Monika Freyman’s recent Ceres report, Hydraulic Fracturing & Water Stress: Water Demand by the Numbers, February 2014.  If you hunger for maps, graphs and stats, you will feast on this report. The study looks at oil and gas wells that were hydraulically fractured between January 2011 and May 2013 based on records from FracFocus.

Class 2 UI Wells

Class 2 UI Wells

Water scarcity from unconventional drilling is a serious concern. According to Ceres analysis, horizontal gas production is far more water intensive than vertical drilling.  Also, the liquids that return to the surface from unconventional drilling are often disposed of through deep well injection, which takes the water out of the water cycle permanently.   By contrast, water uses are also high for other industries, such as agriculture and electrical generation.  However, most of the water used in agriculture and for cooling in power plants eventually returns to the hydrological cycle.  It makes its way back into local rivers and water sources.

In the timeframe of this study, Ceres reports that:

  • 97 billion gallons of water were used, nearly half of it in Texas, followed by Pennsylvania, Oklahoma, Arkansas, Colorado and North Dakota, equivalent to the annual water need  of 55 cities with populations of ~ 5000 each.
  • Over 30 counties used at least one billion gallons of water.
  • Nearly half of the wells hydraulically fractured since 2011 were in regions with high or extremely high water stress, and over 55% were in areas experiencing drought.
  • Over 36% of the 39,294 hydraulically fractured wells in the study overlay regions experiencing groundwater depletion.
  • The largest volume of hydraulic fracturing water, 25 billion gallons, was handled by service provider, Halliburton.

Water withdrawals required for hydraulic fracturing activities have several worrisome impacts. For high stress and drought-impacted regions, these withdrawals now compete with demands for drinking water supplies, as well as other industrial and agricultural needs in many communities.  Often this demand falls upon already depleted and fragile aquifers and groundwater.  Groundwater withdrawals can cause land subsidence and also reduce surface water supplies. (USGS considers ground and surface waters essentially a single source due to their interconnections).  In some areas, rain and snowfall can recharge groundwater supplies in decades, but in other areas this could take centuries or longer.  In other areas, aquifers are confined and considered nonrenewable.   (We will look at these and additional impact in more detail in our next installments.)

Challenges of documenting water consumption and scarcity

Tracking water volumes and locations turns out to be a particularly difficult process.  A combination of factors confuse the numbers, like conflicting data sets or no data,  state records with varying criteria, definitions and categorization for waste, unclear or no records for water volumes used in refracturing wells or for well and pipeline maintenance.

Along with these impediments, “chain of custody” also presents its own obstacles for attempts at water bookkeeping. Unconventional drilling operations, from water sourcing to disposal, are often shared by many companies on many levels.  There are the operators making exploration and production decisions who are ultimately liable for environmental impacts of production. There are the service providers, like Halliburton mentioned above, who oversee field operations and supply chains. (Currently, service providers are not required to report to FracFocus.)  Then, these providers subcontract to specialists such as sand mining operations.  For a full cradle-to-grave assessment of water consumption, you would face a tangle of custody try tracking water consumption through that.

To further complicate the tracking of this industry’s water, FracFocus itself has several limitations. It was launched in April 2011 as a voluntary chemical disclosure registry for companies developing unconventional oil and gas wells. Two years later, eleven states direct or allow well operators and service companies to report their chemical use to this online registry. Although it is primarily intended for chemical disclosure, many studies, like several of those cited in this article, use its database to also track water volumes, simply because it is one of the few centralized sources of drilling water information.  A 2013 Harvard Law School study found serious limitations with FracFocus, citing incomplete and inaccurate disclosures, along with a truly cumbersome search format.  The study states, “the registry does not allow searching across forms – readers are limited to opening one PDF at a time. This prevents site managers, states, and the public from catching many mistakes or failures to report. More broadly, the limited search function sharply limits the utility of having a centralized data cache.”

To further complicate water accounting, state regulations on water withdrawal permits vary widely.  The 2011 study by Resources for the Future uses data from the Energy Information Agency to map permit categories.  Out of 30 states surveyed, 25 required some form of permit, but only half of these require permits for all withdrawals. Regulations also differ in states based on whether the withdrawal is from surface or groundwater.  (Groundwater is generally less regulated and thus at increased risk of depletion or contamination.)  Some states like Kentucky exempt the oil and gas industry from requiring withdrawal permits for both surface and groundwater sources.

Can we treat and recycle oil and gas wastewater to provide potable water?

WV Field Visits 2013Will recycling unconventional drilling wastewater be the solution to fresh water withdrawal impacts?  Currently, it is not the goal of the industry to recycle the wastewater to potable standards, but rather to treat it for future hydraulic fracturing purposes.  If the fluid immediately flowing back from the fractured well (flowback) or rising back to the surface over time (produced water) meets a certain quantity and quality criteria, it can be recycled and reused in future operations.  Recycled wastewater can also be used for certain industrial and agricultural purposes if treated properly and authorized by regulators.  However, if the wastewater is too contaminated (with salts, metals, radioactive materials, etc.), the amount of energy required to treat it, even for future fracturing purposes, can be too costly both in finances and in additional resources consumed.

It is difficult to find any peer reviewed case studies on using recycled wastewater for public drinking purposes, but perhaps an effective technology that is not cost prohibitive for impacted communities is in the works. In an article in the Dallas Business Journal, Brent Halldorson, a Roanoke-based Water Management Company COO, was asked if the treated wastewater was safe to drink.  He answered, “We don’t recommend drinking it. Pure distilled water is actually, if you drink it, it’s not good for you because it will actually absorb minerals out of your body.”

Can we use sources other than freshwater?

How about using municipal wastewater for hydraulic fracturing?  The challenge here is that once the wastewater is used for hydraulic fracturing purposes, we’re back to square one. While return estimates vary widely, some of the injected fluids stay within the formation.  The remaining water that returns to the surface then needs expensive treatment and most likely will be disposed in underground injection wells, thus taken out of the water cycle for community needs, whereas municipal wastewater would normally be treated and returned to rivers and streams.

Could brackish groundwater be the answer? The United States Geological Survey defines brackish groundwater as water that “has a greater dissolved-solids content than occurs in freshwater, but not as much as seawater (35,000 milligrams per liter*).” In some areas, this may be highly preferable to fresh water withdrawals.  However, in high stress water regions, these brackish water reserves are now more likely to be used for drinking water after treatment. The National Research Council predicts these brackish sources could supplement or replace uses of freshwater.  Also, remember the interconnectedness of ground to surface water, this is also true in some regions for aquifers. Therefore, pumping a brackish aquifer can put freshwater aquifers at risk in some geologies.

Contaminated coal mine water – maybe that’s the ticket?  Why not treat and use water from coal mines?  A study out of Duke University demonstrated in a lab setting that coal mine water may be useful in removing salts like barium and radioactive radium from wastewater produced by hydraulic fracturing. However, there are still a couple of impediments to its use.  Mine water quality and constituents vary and may be too contaminated and acidic, rendering it still too expensive to treat for fracturing needs. Also, liability issues may bring financial risks to anyone handling the mine water.  In Pennsylvania, it’s called the “perpetual treatment liability” and it’s been imposed multiple times by DEP under the Clean Streams Law. Drillers worry that this law sets them up somewhere down the road, so that courts could hold them liable for cleaning up a particular stream contaminated by acid mine water that they did not pollute.

More to come on hydraulic fracturing and water scarcity

Although this article touches upon some of the issues presented by unconventional drilling’s demands on water sources, most water impacts are understood and experienced most intensely on the local and regional level.   The next installments will look at water use and loss in specific states, regions and watersheds and shine a light on areas already experiencing significant water demands from hydraulic fracturing.  In addition, we will look at some of the recommendations and solutions focused on protecting our precious water resources.