Drilling, Emergency Preparedness, & Public Engagement

By Danny Kallich, Southwest Pennsylvania Environmental Health Project

This article examines whether emergency responders are prepared in rural areas for oil and gas drilling emergencies, how people may be put at risk if the proper procedures aren’t in place, and other critical safety questions that citizens in Southwest Pennsylvania should be asking.
Drilling and populations as they relate to emergency preparedness in SW PA

Maps of wells per sq. mile and people per well in Washington County, PA

The rapid spread of unconventional natural gas development (UNGD) across Pennsylvania has highlighted the need for state, county, and municipal agencies to regulate industry activity and protect the public on several fronts. In particular, comprehensive emergency preparedness and response specific to natural gas development is an obvious necessity for residents living within close proximity of wells, compressor stations, and other stages of UNGD.

While experts in the field of emergency planning are rightfully responsible for creating and executing emergency plans, the Federal Emergency Planning and Community Right to Know Act of 1986 (EPCRA) defines citizens’ rights to engage in the process, both through open records requests and public meetings with local emergency planners. EPCRA establishes roles and requirements for emergency planners while clarifying the rights of citizens to engage in dialogue with those responsible for safety about potentially harmful industrial activity in their community.

Unique Emergency Preparedness Challenges

UNGD presents a unique set of challenges for residents and emergency planners. The high likelihood that UNGD will be located in a rural area not typically supporting industrial use argues for the need for special treatment by emergency planners. Furthermore, responding to a UNGD emergency requires specialized training that is not mandated for local first responders, often volunteer fire fighters. While local first responders cannot be expected to specialize in UNGD related emergencies, it takes many hours for the contracted well-fire specialists, Texas-based Wild Well Control, to arrive and mitigate an emergency situation. The interim period between the arrival of local and county first responders and the arrival of Wild Well Control is, nonetheless, a critical time during which a system for consistent updates to nearby residents should be a priority. An emergency situation, as demonstrated by the February 11, 2014 Chevron Appalachia well fire, discussed below, can affect a community in a variety of ways, even if evacuation is not necessary.

Chevron Appalachia Incident, Greene County, PA

Testing The System:

Using Right-To-Know requests to gauge transparency & citizen awareness

The opportunities for citizen comment and engagement with emergency planners are limited and not well publicized. The dearth of clear and consistent means of communication between residents and those responsible for emergency planning provides a noteworthy opportunity to test the provisions of EPCRA as they relate to UNGD.

In this regard, testing the emergency response system related to oil and gas drilling emergencies is intended to analyze existent emergency plans, municipal preparedness, communication between county, municipal, and industry emergency planners, and perhaps most importantly, how much of this information is available to citizens.

The transparency of the system was tested by filing Right-To-Know requests. These public information requests were filed with nine municipalities in various counties across the state of Pennsylvania. All filed requests specifically asked for “all available county, municipal, and company generated emergency plans” in relation to specific well sites. One request asked for emergency plans generated by an elementary school in relation to a well site within approximately a half-mile.

Of these nine requests, three were fulfilled with returned emergency plans. Of the remaining six requests, five were not fulfilled because no emergency plan existed on record in the municipality. Initially, the request for the elementary school emergency plan was unable to be met by the municipal open records officer because no plan existed. Two months after that request, an unsolicited response from the same individual was received stating that the now-existent plan could not be shared because of security issues. A final question posed to the open records officer asked what concerned parents might be able to do to prepare themselves for emergency situations. This question, too, was deemed unanswerable due to security reasons. Another unmet municipal request was redirected to a county emergency planner who stated that the company generated plan was not theirs to distribute. Of the three emergency plans received, only one made any specific mention of residents living within close proximity; this response merely stated the number of nearby houses. Excluding GPS coordinates, no plan addressed any other infrastructure specific to the surrounding area, indicating a broad generality to their application.

The fact that six out of nine queried communities in PA were unable or unwilling to provide emergency response plans is highly concerning. These findings, when considered in the broader national context, indicate a significant chance that UNGD specific emergency planning and necessary communication with the public is deficient, particularly on the municipal level.

What Communities Need

Lack of specificity, inter-agency communication, and transparency indicate that the potential of EPCRA to benefit citizens has been largely untapped during the Marcellus Shale boom relative to emergency planning. Residents living within close proximity to UNGD should not only be apprised of emergency risk and strategy before an emergency arises, they should have a clearly accessible venue through which to voice concerns, needs, and recommendations. Furthermore, residents have valid reason to demand greater public oversight of current emergency planning efforts when the overwhelming majority of publicly available emergency plans fail to provide any information useful to a layperson.

Currently, there are communities in which the questionable practice of locating UNGD within a half-mile of elementary schools and other sensitive areas continues. In such areas, every effort must be made to develop, institute, and practice emergency plans prioritizing the concerns, safety, and coordination of local residents. Recommendations for improved transparency include:

  1. Make publicly available site-specific plans,
  2. Hold regular public meetings, and
  3. Prioritize communication between emergency responders and residents during emergency events

We encourage residents who are concerned about what their community is doing for UNGD-specific emergency planning to contact their local emergency responders and attend Local Emergency Planning Committee meetings in their county to advocate for such measures.

About EHP

The Southwest Pennsylvania Environmental Health Project (EHP) is a nonprofit environmental health organization created to assist and support Washington County residents who believe their health has been, or could be, impacted by natural gas drilling activities. Their Mission is to respond to individuals’ and communities’ need for access to accurate, timely and trusted public health information and health services associated with natural gas extraction.

Nearly 2 Million Pennsylvanians Live Within a Kilometer of Oil & Gas Wells

By Matt Kelso, Manager of Data & Technology

In October 2014, the FracTracker Alliance performed an analysis showing an estimated 1.2 million people lived within a half mile of oil and gas wells in Pennsylvania. We have now updated the analysis, but this time, the unit of measure is one kilometer (0.62 miles).

PA Population Within 1km of Active Oil and Gas Wells


This map shows the estimated population within one kilometer of active oil and gas wells in PA – a total of nearly 2 million Pennsylvanians. To access the full set of tools and details about how the map was made, click here for the full screen version of the map.

Methods

To get as complete a picture as possible of the oil and gas industry in PA, we queried the spud date report to show all wells that were listed as being spudded between January 1, 1800 and November 12, 2015. We used the former date because it appears to be a default for unknown spud dates, and the latter being the date that the data were downloaded for the analysis. Altogether, this yielded 203,887 oil and gas wells throughout the state, but 74,900 (37%) of these lacked location coordinates. All of those missing latitude and longitude data were classified as conventional wells, and many of them were fairly old. We then filtered out wells that were reported as not being drilled, as well as those that were permanently plugged, either by the operator, or by the PA Department of Environmental Protection (PADEP). The resulting set, which we refer to as “active” oil and gas wells, included 106,970 wells, of which 9,042 (8%) are defined as unconventional wells by the state.

To obtain an estimated population, we used the Census Tract level of detail, using official 2010 population figures. We calculated the area within 1 kilometer of active wells in three categories – conventional, unconventional, and all oil and gas wells. The population was then estimated by comparing the area inside the 1 km zone to the entire Census Tract, multiplying that ratio to the population of that tract, and repeating the process for each of the three datasets.

This area calculation was performed in Albers Equal Area projection optimized for the Great Lakes Basin area.  Every method of flattening an area of a globe on the map will lead to some type of distortion, but this projection prioritizes area over other factors, and is therefore appropriate for this type of analysis.

Results

An additional year of drilling activity, a more comprehensive date range, and the slight increase of the radius distance has had a significant effect on the estimated population near wells. The 2014 analysis yielded an estimated 1,264,576 within a half-mile of wells, while the current analysis has the figure at 1,965,837, an increase of 55%. Below is a table showing differences between the two analyses:

PA_PopWells_2015

This chart shows summaries of the current analysis of population within 1 km of wells in PA and an October 2014 version, showing population within a half-mile of wells.

One thing you will notice in this figure is that simply adding up the number of people who live in areas near unconventional and conventional drilling will not get you to the 1,965,837 figure we’ve presented. This is because some people live within the specified distance of both types of wells.

Additionally, it is impossible to say how many people live near the oil and gas wells that lack location data, as we obviously can’t map these wells. The majority of these wells may be in the areas that are already represented in the buffer zones, or they may extend that distance significantly.

Time Sequence Map of PA Drilling Available

Pennsylvania’s Drake Well is known for sparking the first oil boom in the United States in 1859. In more recent history, the industry has resurrected hydrocarbon extraction in the Commonwealth through unconventional oil and gas drilling – or fracking. Between 2002 and October 28, 2015, at least 16,826 of these high-impact wells have been approved statewide, and 9,508 drilled.

While standard maps can be useful to show the reach of the industry in aggregate, they aren’t the best way to show how drilling activity has changed over time. Luckily, we have other tools in the toolbox to show the trend. See drilling by year in this time sequence map below.

PA Unconventional Drilling Time Sequence Map

This representation starts slowly, just as the industry did in the state. Activity begins to pick up around 2008. In later years, watch exploration expand throughout the Marcellus and Utica shale plays. Eventually the activity concentrates in the northeastern and southwestern portions in the state.

The Ultimate Price of PA State Forest Drilling

By Ted Auch, Matt Kelso, and Sam Rubright

PA DCNR recently released a draft State Forest Resource Management Plan. The draft plan, last revised in 2007, is an important tool that the Bureau of Forestry (BOF) uses to help manage Pennsylvania’s approximately 2.2 million acre state forest system. Approximately 1.5 million acres of state forest lands lie within the shale gas fairway and gas extraction – along with related issues like water resources –  is among the numerous subjects addressed in the document.

In total, approximately 673,000 acres are available for oil and gas development in PA state forests, either because private interests own the mineral rights below the land or because DCNR has opened up state-lands for drilling where it controls the mineral rights.

Approximately 386,000 acres have been leased by DCNR to allow drilling. DCNR’s shale gas monitoring report in 2014 said that only 16% of available state forest lands have been developed, which means that 84% (or 328,700 acres) could still be accessed for oil and gas through DCNR leases. Another 287,000 acres of state forest land sits atop private mineral rights. Mineral rights supersede – or overrule – those of the surface rights.

By some estimates, the projected “drillout” of state forest lands may include an additional 2,000 to 3,000 unconventional natural gas wells. There are concerns that the draft plan also does not adequately address the full scale and scope of such drilling and the serious impacts associated with it.

Derived from available data, FracTracker has prepared the following portrait of the projected impact to Pennsylvania’s state forest estate with emphasis on the resource-intensive nature of hydraulic fracturing and its extensive footprint on this sensitive landscape.


View or print static infographic

Get Involved

If you are concerned about these risks and potential development, DCNR is holding twelve meetings to gather public input on this draft plan until Nov 12th. Written comments can also be submitted through November 30 at StateForestPlan2015@pa.gov.

More background information about PA’s Draft 2015 State Forest Resource Management Plan


Extra Resources: Projected Build out Statistics

Land Use

Table 1. Projected land use needed to add 2,000 to 3,000 more wells on PA state forestlands

 Facility Type  Unit Projected Drilled Wells
2,000 3,000
Well Pads # 606 909
Acres 2,477 3,716
Limit Of Disturbance (LOD)* Acres 7,130 10,695
Gathering Lines Acres 20,189 30,284
Addtl. Mid/Down-stream Facilities Acres 2,847 4,271
Compressor Stations** # 126-210 189-316
Acres 2,978-4,976 4,466-7,464
ESTIMATED TOTAL Acres 36,621 54,931

*Limit of Disturbance includes infrastructure, mounded earth, etc. needed to access and service the well pads.
**1 compressor station is needed for every 25-30 miles of gathering lines, at 15-30 acres per station.

In Ohio, well pads average 4-5 acres, 3.4 laterals per well pad, and 8.5 acres of gathering line per acre of well pad. However, each pad has what we are calling a “Limit of Disturbance,” which includes infrastructure, mounded earth, etc. LOD likely represents a conservative estimate of miscellaneous land disturbance as it does not include the access roads; it was not possible with our current datasets to discern which roads were specifically added to access the well pads. LODs are averaging 10-14 acres.

Using the 2,000-3,000 wells proposed, the total acreage that could be disturbed by new well pads, well pad LODs, gathering lines, compressor stations, and related mid/downstream facilities in PA’s state forests would be between and 36,621 and 54,931 acres depending on the number and size of compressor stations (i.e., averaging 24 acres) (Table 1).

Water Use

Table 2. Projected resource use and waste produced per well based on OH, WV, and PA historical figures.

Variable Unit Avg Increase / Quarter
Water Needed Gallons 3.5 MGs

PA Stats

Gallons 4.4 MGs

OH Stats*

Gallons 6.2-7.0 MGs 405-410 K

WV Stats

Gallons 7.9 MGs 450 K
Drill Cuttings** Tons 1,050 4.96
OH Stats Tons 700+ (estimate) 4.7-5.2
PA Stats Tons 1,400
Landfill Waste (Drilling Muds) Tons / Facility 28,098 15,319
Silica Sand Tons 4,303 86
Injection Waste Gallons / Quarter 117 MGs 5.4 MGs

* 7-9% of injected fluids returns to the surface as fracking waste
** significantly dependent upon lateral length

A Fresh Look at Oil and Gas Drilling from Europe

By Ted Auch, Kyle Ferrar, and Samantha Rubright with Max Gruenig

Fourteen days is not nearly enough time to fully understand the complex differences between oil and gas drilling issues and policies in the United States and several European Union countries. The EU’s drilling policies, geography, and the industry’s level of activity are quite distinct from those of the States in some cases. Still, as part of the Our Energy Solutions project, four staff from FracTracker Alliance and Ecologic Institute attempted to understand and share as many lessons-learned in Europe as we could in the first two weeks of September. Our interest covered all aspects of oil and gas development, but focused on those relating to the use of stimulation techniques (hydraulic fracturing – fracking) in unconventional reservoirs. Even with significant differences between the US and EU, there is still much to be gleaned in sharing our regulatory approaches, community concerns, and environmental challenges.

“Chaos is merely order waiting to be deciphered” ― José Saramago, The Double 

London, England Meetings

The House of Commons meeting was held in Parliament, just below London's Big Ben

The House of Commons meeting was held in Parliament, just below London’s Big Ben. Photo by Sam Rubright

Our European tour started in London with Ecologic Institute’s Max Gruenig. The first stop was a meeting with University of Salford Professor of Regeneration and Sustainable Development Erik Bichard outside of The Palace of Westminster. Erik has worked extensively to understand and chronicle common threads that weave together community response(s) to hydraulic fracturing (fracking) proposals. Much of Erik’s research in the UK has focused on the efforts of the leading shale gas extraction company in the EU, Cuadrilla Resources, to employ hydraulic fracturing technologies, as well as local oppositions to this development. The major points of contention are in Lancashire County, Northwest England and Balcombe in West Sussex. Erik pointed to the fact that Cuadrilla admitted their claims that the 4% decline in UK energy cost was a result of Lancashire oil and gas exploitation were significantly overstated. Such manipulative statements appear to be cut directly from North American energy’s playbook.

House of Commons meeting, London

House of Commons meeting, London. Photo by Sam Rubright

We then attended a spirited Fracking with Nature Meeting at The House of Commons hosted by 21st Century Network and convened by MP Cat Smith (photo right). Many, if not all, of the attendees were concerned about the negative impacts of fracking and oil and gas development in general, but perhaps the event’s purpose self-selected for those attendees. We found the conversations to be very advanced considering that the UK has not seen nearly the same level of oil and gas activity as the US. Most questions centered on the potential for fracking to negatively impact ground water, followed by the induction of earthquakes. Air quality was not discussed as often, despite the serious risks that oil and gas air pollutants pose to health, and the frequency and severity of ambient degradation reported in the US. With the UK’s move to cut subsidies for renewables and a push toward fracking, these concerns may soon become a reality.

We later met with one of the speakers at the House of Commons meeting, Damien Short LLB, MA, PhD, Director of the University of London’s Human Rights Consortium[1] and the Extreme Energy Initiative.[2] NGO’s, we learned, are on the forefront of the issue, debating the need to prioritize community health over corporate profits. They have had quite a lot of success on this front, despite Tory projections.[3] The past state of UK politics under the direction of PM David Cameron, was supportive of extractive industries and corporate interests, blocking any attempt to introduce regulations. Even with the defeat of David Cameron’s administration, new “fast-tracking” rules to accelerate permits for fracking passed in August.[4] The overwhelming victory of democratic socialist Jeremy Corbyn as the leader of the opposition Labour Party – means that the tenure of the current fracking moratoria in North Yorkshire, as well as in Scotland, Wales, and Northern Ireland[5] could be brief.

Our time in London was filled with several other meetings, including one with Greenpeace UK’s new fracking coordinator, Hannah Martin. During our meeting she indicated that while Greenpeace was sympathetic to the views and tactics of Mr. Corbyn, they were concerned that his election would further divide Labour. In her opinion this change could allow the oil and gas sympathetic – and united – Tories to expedite their vision for fracking in the UK.

Regardless of the similarities between community concerns and industry tactics, however, one difference between the UK and US was crystal clear; no matter their view on the use of fracking, Brits support a substantial Petroleum Revenue Tax (PRT) rate to the tune of 50-60%. The PRT will fall to 35% in January, 2016, however. This latter figure is a sizeable decrease but would still be 40% higher than the average in the US.  California for example, the fourth largest producing state, does not and has never levied a severance tax.[6] Unfortunately, the UK is seeing similar conflict of interest issues and deliberate attempts to de-democratize the rule-making around fracking, as demonstrated in a recent move to prevent a proper parliamentary debate about drilling under protected areas in the UK.

Brussels, Belgium Workshop and Meeting

After the European Commission meeting

Geert, Max, Kyle, and Ted after our meeting with the European Commission in Brussels. Photo by Sam Rubright

The next phase of OES Europe took us to Brussels to host a community workshop and meet with members of the European Commission’s Directorate-General for Environment. Both events brought to light many concerns and questions about drilling’s safety.

The European Commission is currently drafting a best available techniques reference document (BREF) regarding hydrocarbon extraction for the European Union to consider in December 2015. The recommendations will build upon the “Minimum Principles,” published in January, 2014.[7] Representatives from the European Commission asked us about a variety of concerns that have arisen from drilling in the US, and how Europe might have similar or different experiences. The Commission was most interested in environmental health risks and research focused on exposure to air pollutants, as well as other degraded environmental media (drinking water, soil, etc.). We also shared figures about water consumption, land use, and waste management. It was immediately apparent that the lack of high quality publicly accessible data in the US is making it very difficult for the Commission to make well-informed decisions or policy recommendations. This meeting was arranged by Geert De Cock, of Food and Water Europe, and – interestingly – was one of the first times that the European Commission met with non-industry representatives. (Several major oil and gas players have offices near the European Commission’s in Brussels.)

Rotenburg (Wümme), Germany Workshop

Presentations during Rotenburg Germany workshop, Sept 2015. Photo by Kyle Ferrar

Max presenting during the Rotenburg Germany workshop, Sept 2015. Photo by Kyle Ferrar

Our next stop in Germany was Rotenburg. Lower Saxony also has a long lineage of drilling, with the first well drilled in 1953 and the majority of natural gas development dating back to the mid 1980’s. Currently, this is an area were unconventional oil and gas drilling (fracking) is being heavily proposed and lobbied.

This workshop was by far the most well attended event. A variety of groups and stakeholders, including the town’s mayor, were in attendance and extremely well informed about environmental and public health risks that drilling could pose. They’ve been dealing with a series of environmental health concerns for some time, including high mercury levels in drilling waste and cancer clusters of questionable origin. A systematic statistical analysis has even suggested that cases of Non-Hodgkin lymphoma are higher in an area heavy with oil and gas wells and development.

See maps below for more information about drilling in Germany and Europe at large.

Unconventional gas production, conventional gas drilling, fracking and test boring in Europe
Map by Gegen Gasbohren (Against Gas Drilling)

View Gegen Gasbohren’s map fullscreen

A dynamic map similar to the one above was created by us to show simply where unconventional drilling is occurring in the UK and Netherlands:
View FracTracker’s map fullscreen

Rotenburg Field Tour

The following morning we set out with a local advocate, Andreas Rathjens, to tour over eight different oil and gas drilling sites and facilities in and around Rotenburg. This area is vey rural and a major agriculture hub, hosting 162k people, 200k cows, and 600k pigs according to our guide.

In recent years Germany has received very positive scores for its environmental policies and shift toward renewables. However, this tour highlighted some of the country’s lingering and poorly-regulated drilling history, which experienced a sharp increase in development here in the 1980’s. The pictures below will give you an idea of the issues that German residents are is still seeing from the country’s older oil and gas drilling operations. Click to enlarge the photos:

Rotenburg, Germany surface water runoff pond on a gas well pad in production

This pit is used to capture rainwater and runoff from the well pad. Since runoff from the pad will carry with it any contaminants spilled on the site, runoff must be quarantined for removal and proper disposal. Unfortunately, these tanks are rarely pumped and drained, and the runoff instead spills into local streams in small watersheds. Such is the case with this tank, with the spillway visible in the lower left corner of the photo.

IMG_0063

This site was recently renovated to improve the drainage off of the wellpad. The drainage leads to an excavated waste pit used as an overflow catchment.[8] In these types of waste pits pollutants evaporate into the air and percolate into groundwater sources. The waste from drilling in this region is known for its high levels of mercury.

Andreas showing us the site where he says 80,000 metric tonnes of solid waste from oil and gas drilling was mixed with residential waste and then disposed of in a field on top of a hill. Residents have tested the site and found troubling levels of arsenic and radioactive elements, but to Andreas’ knowledge no governmental or company testing has been done to-date.

Andreas showing us the site where he says 80,000 metric tonnes of solid  drilling waste was mixed with residential waste and then disposed of in a field on a hilltop. Residents have tested the site and found troubling levels of arsenic and radioactive elements, but to Andreas’ knowledge no governmental or company testing has been done to-date.

Andreas and community members all conveyed their support of domestic energy production but said they were disappointed in how the oil and gas industry has conducted itself historically in the region. They are very frustrated with how difficult it is to get their concerns heard, a sentiment echoed in many boomtowns across the US. One local politician even discussed the intentionally misleading statements made by the German state governments around environmental health issues. These residents are dedicated and driven despite the barriers, however. They are investigating and studying the problems directly at times, as well as searching for other technologies that can help improve their methods – such as the use of drones to measure air quality.

Badbergen, Lower Saxony, Germany Workshop

Fracking-freies Artland hosted our next workshop in Badbergen Germany. In addition to our presentation about drilling experiences in the US, these community gatekeepers led a presentation summarizing the work and struggles that have been occurring in their region due to both historic and modern drilling. The level of community engagement and activism here was quite impressive, mirroring that of NY State’s anti-drilling groups. These members help to inform the rest of the community about environmental and drilling issues, as Exxon is now considering fracking here again.[9]

Schoonebeek Tour, Netherlands

Our final border crossing brought us to the Schoonebeek region in the Netherlands. While the Groningen gas field is by far the largest of the fields in this Western European country, Schoonebeek is the only active field being drilled unconventionally in the Netherlands.

OES-Europe-Home

Interestingly, the entire field was recently shut down by NAM Shell/Exxon JV to fix this wastewater pipeline. It was discovered that the pipeline was leaking wastewater in nine places due to corrosion caused by the high sulfur content of the wastewater.

Upon starting our tour we were informed of the fact that the Dutch have an even higher extraction tax than the UK! The Netherlands retains a 50% State Profit Share for revenue and taxes the remaining production at a rate of 20% on the first $225,000 in revenue and “25% on the excess.” In comparison, the highest production tax rate on oil and gas drilling in the US is in Alaska at 35%. Most states have significantly lower severance taxes.[10]

Political support for higher taxes on the extractives industry may be explained by the fact that the state owns all subsurface mineral rights in these European countries. Regardless of other influences on perception, such high taxes disproves the notion here in the US that energy companies “won’t do business in a state [or country] with a newly-enacted punitive severance tax.” What do the states do with this extra revenue? The Netherlands and many Northern European countries have invested these monies for the rainy day when the oil and gas supply is depleted or extraction is no longer justifiable. The best examples are Norway’s $850 billion Government Pension Fund and Netherland’s $440 billion pension fund or $169,000 and $26,000 per capita, respectively.

Additional support for severance taxes is likely due to these countries’ history with oil and gas exploration. They are familiar with the boom-bust cycles that come with the initial expectations and long-term reality on the ground. When the music stops, Europeans are determined not to be the ones left standing.


About the Our Energy Solutions Project

This trip to Europe and our previous expeditions to Florida, North Carolina, Argentina, and Uruguay are part of a larger, collaborative project with Ecologic Institute US called Our Energy Solutions. OES is creating an informed global community of engaged citizens, organizations, businesses, governments, and stakeholders to develop ideas and solutions to keep our society moving forward while preserving our planet for the future. Learn more at: ourenergysolutions.org.

On a more personal note, our sincerest thanks goes out to the many groups and individuals that we met on our Europe tour, including those we did not directly mention in this article. We are forever indebted to all of the people with whom we met on these OES trips for sharing their time and knowledge with us.

Endnotes and References

  1. Dr. Short is currently advising local anti-fracking groups in the UK and county councils on the human rights implications of unconventional (extreme) energy extraction processes such as fracking.
  2. Dr. Short and collaborators were recently granted an opportunity to put fracking on trial at hearings to be held by The Permanent Peoples’ Tribunal (PPT) in the UK and the US.
  3. Much of the ammunition used by the anti- or undecided fracking community in the UK – and the EU writ large – is coming from proofs of concept in states like Pennsylvania, Ohio, New York, and North Dakota.
  4. Gosden, Emily. 8/13/15. Fracking: new powers for ministers to bypass local councils. The Telegraph. Accessed 10/25/15.
  5. Strachan, Peter. Russell, Alex. Gordon, Robert. 10/15/15. UK government’s delusional energy policy and implications for Scotland. OilVoice. Accessed 10/25/15.
  6. California, instead, imposes a statewide assessment fee.
  7. European Commission. 1/22/14. Fracking: minimum principles for the exploration and production of hydrocarbons using high-volume hydraulic fracturing. Eur-Lex. Accessed 10/26/15.
  8. A practice that is supposedly now being investigated for soil contamination issues.
  9. Exxon originally wrote in the local/regional paper that there was to be no unconventional shale drilling (fracking), but now the company is reconsidering.
  10. Please note that the cited article was last updated in 2012. Some tax rates have changed since the time that the article was published, but the table still adequately represents an estimation of production taxes by state.

Parked Oil Trains in Berks County, PA

By
Matt Kelso, Manager of Data & Technology
Kirk Jalbert, Manager of Community Based Research & Engagement

The Risks of Crude Oil Trains

As new oil fields boomed across North America in recent years, drillers looked for ways to get the product to refineries thousands of miles away. One solution was to use the nation’s rail infrastructure to ship hundreds of thousands of barrels of crude oil per day. The flow of oil was so great that thousands of additional tanker cars were ordered to get the oil to market. And yet, this solution of transporting crude by rail brought additional problems. Shipping large quantities of highly volatile and combustible crude oil on often antiquated rail lines has resulted in numerous accidents, at times spectacular in scale. In recent months, however, thousands of these oil tankers have been sitting idle on the tracks around the country, partially due to dropping oil prices, leading refineries to opt for cheaper imported oil and less expensive ways to get the domestic product to market such as through pipelines.

Communities Along the Tracks

The interactive story map below investigates a stretch of oil trains that have been parked for months in close proximity to homes, schools, and busy intersections in Berks County, Pennsylvania. Altogether, 30,494 people live in the seven communities through which the tracks in question pass. We began this project in response to concerns from residents who contacted FracTracker for assistance in understanding why these trains were located in their community, what hazards they might pose, and to help people bring this story to the public to foster meaningful discussions about the risks of parked oil trains.

Berks_staticmap


FracTracker has covered the risks of oil trains in a series of other articles. Click here to learn more.

Maps of Updated Central Penn Pipeline Emphasize Threats to Residents and Environment

By Sierra Shamer, Guest Author

The Atlantic Sunrise Project or Central Penn Line is a natural gas pipeline Williams Companies has proposed for construction through eight counties of Central Pennsylvania. Williams intends to connect the Atlantic Sunrise to their two Transco pipelines, which extend from the northeast to the Gulf of Mexico. FracTracker discussed and mapped this controversial project as part of a blog entry in June of 2014; since then, the Atlantic Sunrise Project has been, and continues to be, a focus of unprecedented opposition. While supporters of the pipeline stress how it may enhance energy independence, economic growth, and job opportunities, opponents cite Williams’ poor safety records, their threats of eminent domain, and environmental hazards. This article provides details and maps pertaining to these threats and concerns.

Atlantic Sunrise: Project Overview

The Atlantic Sunrise Project would add 183 miles of new pipeline through the construction of the Central Penn Line North and the Central Penn Line South. The proposed Central Penn Line North (CPLN) begins in Susquehanna County, continues through Wyoming and Luzerne counties, and meets with the Transco Pipeline in Columbia County. With a 30 inch in diameter, it would allow for a maximum pressure of 1,480 psi (pounds per square inch). The proposed Central Penn Line South (CPLS) begins at the Transco Pipeline in Columbia County, and continues through Northumberland, Schuylkill, and Lebanon counties, ending in Lancaster. It would be 42 inches in diameter with a maximum pressure of 1,480 psi. The Atlantic Sunrise project also involves the construction of two new compressor stations, one in Clinton Township, Wyoming County, and the other in Orange Township, Columbia County. Finally, to accommodate the daily 1.7 million dekatherms (1 dekatherm equals 1,000 cubic feet of gas or slightly more than 1 million BTUs in energy) of additional natural gas that would flow through the system, the project proposes the expansion of 10 existing compressor stations along the Transco Pipeline in Pennsylvania, Maryland, Virginia, and North Carolina. Although the Atlantic Sunrise Pipeline would be entirely within Pennsylvania, it is permitted and regulated by the Federal Energy Regulatory Committee (FERC) because through its connection to the Transco Pipeline, it transports natural gas over state lines.

Updated Central Penn Pipeline Route

On March 31, 2015, Williams filed their formal application to FERC docket #CP15-138. Along with the formal application came changes to the pre-filing route of the pipeline that was submitted in the spring of 2014. The route of the Central Penn Line North has been modified since then by 21%, while the Central Penn Line South has been rerouted by 57%.

Williams’ application comprised of hundreds of attached documents, including pipeline alignment sheets for the entire route. Here is one example: 

alignment_sheet_example

These alignment sheets show the extent of William’s biological investigation, the limits of disturbance, the occurrence of stream and wetland crossings, and any road or foreign pipeline crossings. Absent from the alignment sheets, however, is the area around the right-of-way that will be endangered by the presence of the pipeline. This is colloquially known as the “burn zone” or “hazard zone”.

What are “Hazard Zones”?

A natural gas pipeline moves flammable gas under extreme pressure, creating a risk of pipeline rupture and potential explosion. The “potential impact radius” or “hazard zone” is the approximate area within which there will be immediate damage in the case of an explosion. Should this occur, everything within the hazard zone would be incinerated and there would be virtually no chance of escape or survival. Based on pipeline diameter and pressure, the hazard zone can be calculated using the formula: potential impact radius = 0.69 * pipeline diameter * (√max pressure ).

Based on this formula, the hazard zone for the Central Penn Line North, with its diameter of 30 inches and maximum pressure of 1,480 psi, is approximately 796 feet (243 meters) on either side of the pipeline. The hazard zone for Central Penn Line South, with its diameter of 42 inches and maximum pressure of 1480 psi, is 1,115 feet (340 meters) on either side.

Many residents are unaware that their homes, workplaces, and schools are located within the hazard zone of the proposed Atlantic Sunrise Pipeline. Williams does not inform the public about this risk, primarily communicating with landowners along the right-of-way. The interactive, zoomable map (below) of the currently proposed route of the Atlantic Sunrise, Central Penn North and South pipelines depicts the pipeline right-of-way, as well as the hazard zones. The pipeline route was digitized using the alignments sheets included in Williams’ documents submitted to FERC. You can use this map to search home, work, and school addresses to see how the pipeline will affect residents’ lives and the lives of their communities.

Click in the upper right-hand corner of the map to expand to full-screen view, with a map legend.

Affected Communities

Landowners & Eminent Domain

Landowners along the right-of-way are among the most directly and most negatively impacted by the Atlantic Sunrise Pipeline, and other similar projects. Typically, people first become aware that a pipeline is intended to pass through their property when they receive a notice in the mail. Landowners faced with this news are on their own to negotiate with the company, navigate the FERC permitting and public comment process, and access unbiased and pertinent information. They face on-going stress, experiencing pressure from Williams to sign easement agreements, concern about the effects of construction on their property, and fear of living near explosive infrastructure. They must also consider costs of legal representation, decreases in property value, and limited options for mortgage and refinancing.

Sometimes, landowners in a pipeline’s right-of-way choose to not allow the company onto their property to conduct a survey. Landowners may also refuse to negotiate an agreement with the pipeline company. In response, the pipeline company can threaten to seize the property through the power of eminent domain, the federal power allowing private property to be taken if it is for the “public use.”

The law of eminent domain states that landowners whose properties are condemned must be fairly compensated for their loss. However, most landowners feel that in order to be fairly compensated by the company, they must hire their own land appraiser and attorney. This decision can be costly, however, and may not be an option for many people. The legitimacy of Williams’ intent to use eminent domain is contested by opponents of the project, who cite how “public use” of the property provides no positive local impacts. The Atlantic Sunrise Pipeline is intended to transport gas out of Pennsylvania through the Transco, so the landowners in its path will not benefit from it at all. Further, it connects to a network of pipelines leading to current export terminals in the Gulf of Mexico, as well as controversial planned export facilities like Cove Point, MD .

Throughout Pennsylvania, communities have responded to the expansion of pipelines, and to the threats of large companies like Williams. The need for landowner support has been addressed by organizations such as the Shalefield Organizing Committee, Energy Justice Network, the Clean Air Council, the Gas Drilling Awareness Coalition, and We Are Lancaster County. These organizations have worked to provide information, increase public awareness, engage with FERC, and develop resistance to the exploitation of Pennsylvania’s resources and residents. Director Scott Cannon of the Gas Drilling Awareness Coalition has documented firsthand the impacts of unconventional drilling in Pennsylvania through a short film series called the Marcellus Shale Reality Tour. The most recent in the series relates the stories of two landowners impacted by the Atlantic Sunrise Pipeline in the short film Atlantic Sunrise Surprise.

Environmental Review

Theoretically, environmental review of this proposed pipeline would be extensive. Primary decision-making on the future of the Atlantic Sunrise rests with FERC. Due to the National Environmental Policy Act of 1969 (NEPA), all projects overseen by federal agencies are required to prepare environmental assessments (EAs) or environmental impact assessments (EIAs). Because FERC regulates interstate pipelines, EA’s or EIA’s are required in their approval process. These assessments are conducted to accurately assess the environmental impacts of projects and to ensure that the proposals comply with federal environmental laws such as the Endangered Species Act, and the Clean Air and Water Acts. On the state level, the Pennsylvania Department of Environmental Protection (PA DEP) issues permits for wetlands and waterways crossings and for compressor stations on regional basis.

Core Habitats, Supporting Landscapes

The route of the Atlantic Sunrise Pipeline will disturb numerous areas of ecological importance, including many documented in the County Natural Heritage Inventory (CNHI). The PA Department of Conservation and Natural Resources conducted the inventory to be used as a planning, economic, and infrastructural development tool, intending to avoid the destruction of habitats and species of concern. The following four maps show the CNHI landscapes affected by the current route of the Atlantic Sunrise pipeline (Figures 1-4).

Figure 1

Figure 1. Columbia & Northumberland counties

Figure 3. Lebanon County

Figure 2. Lebanon & Lancaster counties

Figure 3. ddd

Figure 3. Threatened Core Habitats

Figure 4. Schuyklill

Figure 4. Schuyklill & Lebanon counties

The proposed pipeline would disrupt core habitats, supporting landscapes, and provisional species-of-concern sites. According to the Natural Heritage Inventory report, core habitats “contain plant or animal species of state or federal concern, exemplary natural communities, or exceptional native diversity.” The inventory notes that the species in these habitats will be significantly impacted by disturbance activities. Supporting landscapes are defined as areas that “maintain vital ecological processes or habitat for sensitive natural features.” Finally, the provisional species of concern sites are regions where species have been identified outside of core habitat and are in the process of being evaluated. The Atlantic Sunrise intersects 16 core habitats, 12 supporting landscapes, and 6 provisional sites.

Active Mine Fires

Map5-GlenBurn

Figure 5. Glen Burn Mine Fires

The current route of the Atlantic Sunrise intersects the Cameron/Glen Burn Colliery, considered to be the largest man-made mountain in the world and composed entirely of waste coal. This site also includes a network of abandoned mines, three of which are actively burning (Figure 5).

The pipeline right-of-way is roughly a half-mile from the closest burning mine, Hickory Swamp. These mine fire data were sourced from a 1988 report by GAI Consulting Inc. The time frame for the spread of the mine fires is unknown, and dependent on environmental factors. Mine subsidence — when voids in the earth created by mines cause the surface of the earth to collapse — is another issue of concern. Routing the pipeline through this unstable area adds to the risk of constructing the pipeline through the Glen Burn region.

Looking Ahead

The Atlantic Sunrise Project has received an unprecedented level of resistance that continues to grow as awareness and information about the threats and hazards develops. While Williams, FERC, and the PA DEP negotiate applications and permits, work is also being done by many non-profit, research, and grassroots organizations to investigate the environmental, cultural, and social costs of this pipeline. We will follow up with more information about this project as it becomes available.


This article was written by Sierra Shamer, an environmental mapper and activist. Sierra is a member of the Shalefield Organizing Committee and holds two degrees from the University of Maryland, Baltimore County: a B.A. in environmental studies and an M.S. in geography and environmental systems.

The Curious Case of the Shrinking Utica Shale Play

Oil, Gas, and Brine Oh My!
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

It was just three years ago that the Ohio Geological Survey (OGS) and Department of Natural Resources (DNR) were proposing – and expanding – their bullish stance on the potential Utica Shale oil and gas production “play.” Back in April 2012 both agencies continue[d] to redraw their best guess, although as the Ohio Geological Survey’s Chief Larry Wickstrom cautioned, “It doesn’t mean anywhere you go in the core area that you will have a really successful well.”

What we found is that the OGS projections have not held up to their substantial claims. And here is why…

Background

The Geological Survey eventually parsed the Utica play into pieces:

  • a large oil component encompassing much of the central part of the state,
  • natural gas liquids from Ashtabula on the Pennsylvania border southwest to Muskingum, Guernsey, and Noble Counties, and
  • natural gas counties, primarily, along the Ohio River from Columbiana on the Pennsylvania-West Virginia border to Washington County in the Southeast quarter of the state.
Columbus Dispatch Utica Shale "play" map

Columbus Dispatch Utica Shale “play” map

Fast forward to the first quarter of 2015 and we have a very healthy dataset to begin to model and validate/refute these projections. Back in 2009 Wickstrom & Co. only had 53 Utica Shale laterals, while today Ohio is host to 962 laterals from which to draw our conclusions. The preponderance of producing wells are operated by Chesapeake (463), Gulfport (118), Antero Resources (62), Eclipse Resources (41), American Energy Utica (36), Consol (35), and R.E. Gas Development (34), with an additional 13 LLCs and 10 publicly traded companies accounting for the remaining 173 producing laterals. A further difference between the following analysis and the OGS one is that we looked at total production and how much oil and gas was produced on a per-day basis.

Analysis

Using an interpolative geostatistical technique known as Empirical Bayesian Kriging and the 962 lateral dataset, we modeled total and per day oil, gas, and brine production for Ohio’s Utica Shale between 2011 and Q1-2015 to determine if the aforementioned map redrawing holds up, is out-of-date, and/or is overly optimistic as is generally the case with initial O&G “moving target” projections.

Days of Activity & Brine Production

The most active regions of the Utica Shale for well pad activity has been much of Muskingum County and its border with Guernsey and Noble counties; laterals are in production every 1 in 2.1-3.4 days. Conversely, the least active wells have been drilled along the Harrison-Belmont border and the intersection between Harrison, Tuscarawas, and Guernsey counties.

Brine is a form of liquid drilling waste characterized by high salt loads and total dissolved solids. The laterals that have produced the most brine to date are located in a large section of Monroe County and at the intersection of Belmont, Monroe, and Noble counties, with total brine production amounting to 23,292 barrels or 734,000-978,000 gallons (Fig. 1).

Total Ohio Utica Shale Production Days 2011 to Q1-2015

Total Ohio Utica Shale Oil Production 2011 to Q1-2015

Total Ohio Utica Shale Gas Production 2011 to Q1-2015

Total Ohio Utica Shale Brine Production 2011 to Q1-2015

Figure 1. Total Ohio Utica Shale Oil, Gas, and Brine Production 2011 to Q1-2015

This area is also one of the top three regions of the state with respect to Class II Injection volumes; the other two high-brine production regions are Morrow and Portage counties to the west and southwest, respectively (Fig. 2).

Layout & Volume (2010 to Q1-2015, Gallons) of Ohio’s Active Class II Injection Wells

Figure 2. Layout & Volume (2010 to Q1-2015, Gallons) of Ohio’s Active Class II Injection Wells

However, on a per-day basis we are seeing quite a few inefficient laterals across the state, including Devon Energy’s Eichelberger and Richman Farms laterals in Ashland and Medina counties. Ashland and Medina are producing 230-270 barrels (8,453-9,923 gallons) of brine per day. In Carroll County, one of Chesapeake’s Trushell laterals tops the list for brine production at 1,843 barrels (67,730 gallons) per day. One of Gulfport’s Bolton laterals in Belmont County and EdgeMarc’s Merlin 10PPH in Washington County are generating 1,100-1,200 barrels (40,425-44,100 gallons) of brine per day.

Oil & Gas Production

Since the last time we modeled production the oil hotspots have shrunk. They have also become more discrete and migrated southward – all of this in contrast to the model proposed by the OGS in 2012. The areas of greatest productivity (i.e., >26,000 barrels of oil) are not the central part of the state, but rather Tuscarawas, Harrison, Guernsey, and Noble counties (Fig. 1). The intersection of Harrison, Tuscarawas, and Guernsey counties is where oil productivity per-day is highest – in the range of 300-630+ barrels (Fig. 3). The areas that the OGS proposed had the highest oil potential have produced <600 barrels total or <12 barrels per day.

Per Day Ohio Utica Shale Oil Production 2011 to Q1-2015

Per Day Ohio Utica Shale Gas Production 2011 to Q1-2015

Per Day Ohio Utica Shale Brine Production 2011 to Q1-2015

Figure 3. Per-Day Ohio Utica Shale Oil, Gas, and Brine Production 2011 to Q1-2015

The OGS natural gas region has proven to be another area of extremely low oil productivity.

Natural gas productivity in the Utica Shale is far less extensive than the OGS projected back in 2012. High gas production is restricted to discreet areas of Belmont and Monroe counties to the tune of 947,000-4.1 million Mcf to date – or 5,300-18,100 Mcf per day. While the OGS projected natural gas and natural gas liquid potential all the way from Medina to Fairfield and Perry counties, we found a precipitous drop-off in productivity in these counties to <1,028 Mcf per day (<155,000 Mcf total from 2011 to Q1-2015) or a mere 6-11% of the Belmont-Monroe sweet spot.

Conclusion: A Shrinking Utica Shale Play

Simply put, the OGS 2012 estimates:

  • Have not held up,
  • Are behind the times and unreliable with respect to citizens looking to guestimate potential royalties,
  • Were far too simplistic,
  • Mapped high-yield sections of the “play” as continuous when in fact productive zones are small and discrete,
  • Did not differentiate between per day and total productivity, and
  • Did not address brine waste.

These issues should be addressed by the OGS and ODNR on a more transparent and frequent basis. Combine this analysis with the disappointing returns Ohio’s 17 publicly traded drilling firms are delivering and one might conclude that the structural Utica Shale bubble is about to burst. However, we know that when all else fails these same firms can just “lever up,” like their Rocky Mountain brethren, to maintain or marginally increase production and shareholder happiness. Will these Red Queens of the O&G industry stay ahead of the Big Bank and Private Equity hounds on their trail?

Public Herald’s #fileroom Update

Crowdsourcing Digital PA Oil & Gas Data

FracTracker Alliance worked with Public Herald this spring to update and map oil and gas complaints filed by citizens to the Pennsylvania Department of Environmental Protection (PA DEP) as of March 2015. The result is the largest release of oil and gas records on water contamination due to fracking in PA. Additionally, Public Herald’s investigation revealed evidence of Pennsylvania state officials keeping water contamination related to fracking “off the books.”

Project Background

The mission of Public Herald, an investigative news non-profit formed in 2011, is two-fold: truth + creativity. Their work uses investigative journalism and art to empower readers and hold accountable those who put the public at risk. For this project, Public Herald aims to improve the public’s access to oil and gas information in PA by way of file reviews and data digitization. Public Herald maintains an open source website called #fileroom, where people can access a variety of digital information originally housed on paper within the PA DEP. This information is collected and synthesized with the help of donors, journalists and researchers in a collective effort with the community. To date, these generous volunteers have already donated more than 2,000 hours of their time collecting records.

The site includes complaints, permits, waste, legal cases, and gas migration investigations (GMI) conducted by the PA DEP. Additionally, there is a guide on how to conduct file reviews and how to access information through the “Right-to-Know” law at the PA DEP. They have broken down complaints and permits by county; wastes and GMI categories by cases, all of which include test results from inspections; and correspondence and weekly reports.

Some partners and contributors to the file team include Joshua Pribanic as the co-founder and Editor-in Chief, Melissa Troutman as co-founder and Executive Director, John Nicholson, who collects and researches for several databases, Nadia Steinzor as a contributor through Earthworks, and many more. Members of FracTracker working on this project include Matt Kelso, Samantha Rubright, and Kirk Jalbert.

#fileroom’s update expands the number of complaint data records collected to 18 counties – and counting!


View Map Fullscreen

Oil Train Response 2015

November 13-15, 2015

Wyndham Pittsburgh University Center, Pittsburgh, Pennsylvania
Coordinated by FracTracker Alliance and ForestEthics

Couldn’t make it?
Watch Friday’s Presentations
Or check out the conversation on Twitter: #oiltrain15

About the Event

Over the past few years, oil train traffic across the continent has increased rapidly with more than 500,000 rail cars moving oil in 2014 alone, according to the Association of American Railroads. The recent Lac-Mégantic, Quebec disaster and subsequent accidents illustrate the severity of this issue. There is a pressing need to determine true hazards facing our communities and to develop solutions to prevent further disasters. Across the United States and Canada, the issue of oil trains has quickly risen onto the agenda of community leaders, safety experts, researchers, and concerned citizens. There is much to discover and share about protecting people and vulnerable places from the various risks these trains pose. Oil Train Response 2015 provides two invaluable forums on this most pressing problem and provides information and insights for every audience.

November 13, 2015

Community Risks & Solutions Conference
Presented by The Heinz Endowments

November 14 & 15, 2015

Activist Training Weekend
Presented by ForestEthics

 

Conference – November 13th

Friday, Nov 13th: 7:30 AM – 5:00 PM. View Agenda

The one-day conference presented by The Heinz Endowments invites all interest groups to hear from experts about the scale and scope of this challenge, as well as updates on the current regulatory and legal frameworks; consider case studies about the actions/measures taken by various communities in response; and, participate in discussion sessions to explore solutions to better safeguard communities. Elected officials, regulators, and emergency response professionals from Pennsylvania and beyond are especially encouraged to attend to take advantage of this important learning and networking opportunity.

Training – November 14-15th

Saturday, Nov. 14th: Training 7:30 AM – 5:00 PM. Reception 6:00 – 8:00 PM
Sunday, Nov. 15th: Training 7:30 AM – 2:00 PM

A two-day training presented by ForestEthics will equip grassroots and NGO leaders from across the nation with better skills to take back to their communities, and provide critical opportunities for attendees to share winning strategies with each other. In the process of sharing, the conference will help to build both the oil train movement and support the broader environmental and social justice movements. Areas of strategic focus will include: organizing, communications, spokesperson training, data management for organizers, legal strategies, and crowd-sourced train tracking. It will also provide a structured forum for advocates fighting specific oil terminal proposals in places like Philadelphia, Baltimore, and Albany to develop shared strategies and tactics and provide all participants with the skills, knowledge and contacts they will need to carry on this work once they return home.

Oil trains are a major environmental justice issue. The conference and training will speak directly to environmental justice concerns and be inclusive of communities of color, economically disadvantaged urban and rural regions, and communities already experiencing environmental inequities. To this end, need-based travel scholarships will be provided. We are committed to developing the agenda in close consultation with our allies and attendees so that it meets their needs.

Please contact us with questions or requests: anne@forestethics.org.


Many thanks to Paul Heckbert & Randy Sargent of CMU for supplying the oil train photo (top).