Data driven discussions about gas extraction and related topics.

JOSHUA DOUBEK / WIKIMEDIA COMMONS

Groundwater risks in Colorado due to Safe Drinking Water Act exemptions

Oil and gas operators are polluting groundwater in Colorado, and the state and U.S. EPA are granting them permission with exemptions from the Safe Drinking Water Act.

FracTracker Alliance’s newest analysis attempts to identify groundwater risks in Colorado groundwater from the injection of oil and gas waste. Specifically, we look at groundwater monitoring data near Class II underground injection control (UIC) disposal wells and in areas that have been granted aquifer exemptions from the underground source of drinking water rules of the Safe Drinking Water Act (SDWA). Momentum to remove amend the SDWA and remove these exemption.

Learn more about Class II injection wells.

Aquifer exemptions are granted to allow corporations to inject hazardous wastewater into groundwater aquifers. The majority, two-thirds, of these injection wells are Class II, specifically for oil and gas wastes.

What exactly are aquifer exemptions?

The results of this assessment provide insight into high-risk issues with aquifer exemptions and Class II UIC well permitting standards in Colorado. We identify areas where aquifer exemptions have been granted in high quality groundwater formations, and where deep underground aquifers are at risk or have become contaminated from Class II disposal wells that may have failed.

Of note: On March 23, 2016, NRDC submitted a formal petition urging the EPA to repeal or amend the aquifer exemption rules to protect drinking water sources and uphold the Safe Drinking Water Act. Learn more

Research shows injection wells do fail

co_classiiwellexplosion

Class II injection well in Colorado explodes and catches fire. Photo by Kelsey Brunner for the Greeley Tribune.

Disposal of oil and gas wastewater by underground injection has not yet been specifically researched as a source of systemic groundwater contamination nationally or on a state level. Regardless, this issue is particularly pertinent to Colorado, since there are about 3,300 aquifer exemptions in the US (view map), and the majority of these are located in Montana, Wyoming, and Colorado. There is both a physical risk of danger as well as the risk of groundwater contamination. The picture to the right shows an explosion of a Class II injection well in Greeley, CO, for example.

Applicable and existing research on injection wells shows that a risk of groundwater contamination of – not wastewater – but migrated methane due to a leak from an injection well was estimated to be between 0.12 percent of all the water wells in the Colorado region, and was measured at 4.5 percent of the water wells that were tested in the study.

A recent article by ProPublica quoted Mario Salazar, an engineer who worked for 25 years as a technical expert with the EPA’s underground injection program in Washington:

In 10 to 100 years we are going to find out that most of our groundwater is polluted … A lot of people are going to get sick, and a lot of people may die.

Also in the ProPublic article was a study by Abrahm Lustgarten, wherein he reviewed well records and data from more than 220,000 oil and gas well inspections, and found:

  1. Structural failures inside injection wells are routine.
  2. Between 2007-2010, one in six injection wells received a well integrity violation.
  3. More than 7,000 production and injection wells showed signs of well casing failures and leakage.

This means disposal wells can and do fail regularly, putting groundwater at risk. According to Chester Rail, noted groundwater contamination textbook author:

…groundwater contamination problems related to the subsurface disposal of liquid wastes by deep-well injection have been reviewed in the literature since 1950 (Morganwalp, 1993) and groundwater contamination accordingly is a serious problem.

According to his textbook, a 1974 U.S. EPA report specifically warns of the risk of corrosion by oil and gas waste brines on handling equipment and within the wells. The potential effects of injection wells on groundwater can even be reviewed in the U.S. EPA publications (1976, 1996, 1997).

As early as 1969, researchers Evans and Bradford, who reported on the dangers that could occur from earthquakes on injection wells near Denver in 1966, had warned that deep well injection techniques offered temporary and not long-term safety from the permanent toxic wastes injected.

Will existing Class II wells fail?

For those that might consider data and literature on wells from the 1960’s as being unrepresentative of activities occurring today, of the 587 wells reported by the Colorado’s oil and gas regulatory body, COGCC, as “injecting,” 161 of those wells were drilled prior to 1980. And 104 were drilled prior to 1960!

Wells drilled prior to 1980 are most likely to use engineering standards that result in “single-point-of-failure” well casings. As outlined in the recent report from researchers at Harvard on underground natural gas storage wells, these single-point-of-failure wells are at a higher risk of leaking.

It is also important to note that the U.S. EPA reports only 569 injection wells for Colorado, 373 of which may be disposal wells. This is a discrepancy from the number of injection wells reported by the COGCC.

Aquifer Exemptions in Colorado

According to COGCC, prior to granting a permit for a Class II injection well, an aquifer exemption is required if the aquifer’s groundwater test shows total dissolved solids (TDS) is between 3,000 and 10,000 milligrams per liter (mg/l). For those aquifer exemptions that are simply deeper than the majority of current groundwater wells, the right conditions, such as drought, or the needs of the future may require drilling deeper or treating high TDS waters for drinking and irrigation. How the state of Colorado or the U.S. EPA accounts for economic viability is therefore ill-conceived.

Data Note: The data for the following analysis came by way of FOIA request by Clean Water Action focused on the aquifer exemption permitting process. The FOIA returned additional data not reported by the US EPA in the public dataset. That dataset contained target formation sampling data that included TDS values. The FOIA documents were attached to the EPA dataset using GIS techniques. These GIS files can be found for download in the link at the bottom of this page.

Map 1. Aquifer exemptions in Colorado


View map fullscreen | How FracTracker maps work

Map 1 above shows the locations of aquifer exemptions in Colorado, as well as the locations of Class II injection wells. These sites are overlaid on a spatial assessment of groundwater quality (a map of the groundwater’s quality), which was generated for the entire state. The changing colors on the map’s background show spatial trends of TDS values, a general indicator of overall groundwater quality.

In Map 1 above, we see that the majority of Class II injection wells and aquifer exemptions are located in regions with higher quality water. This is a common trend across the state, and needs to be addressed.

Our review of aquifer exemption data in Colorado shows that aquifer exemption applications were granted for areas reporting TDS values less than 3,000 mg/l, which contradicts the information reported by the COGCC as permitting guidelines. Additionally, of the 175 granted aquifer exemptions for which the FOIA returned data, 141 were formations with groundwater samples reported at less than 10,000 mg/l TDS. This is half of the total number (283) of aquifer exemptions in the state of Colorado.

When we mapped where class II injection wells are permitted, a total of 587 class II wells were identified in Colorado, outside of an aquifer exemption area. Of the UIC-approved injection wells identified specifically as disposal wells, at least 21 were permitted outside aquifer exemptions and were drilled into formations that were not hydrocarbon producing. Why these injection wells are allowed to operate outside of an aquifer exemption is unknown – a question for regulators.

You can see in the map that most of the aquifer exemptions and injection wells in Colorado are located in areas with lower TDS values. We then used GIS to conduct a spatial analysis that selected groundwater wells within five miles of the 21 that were permitted outside aquifer exemptions. Results show that groundwater wells near these sites had consistently low-TDS values, meaning good water quality. In Colorado, where groundwater is an important commodity for a booming agricultural industry and growing cities that need to prioritize municipal sources, permitting a Class II disposal well in areas with high quality groundwater is irresponsible.

Groundwater Monitoring Data Maps

Map 2. Water quality and depths of groundwater wells in Colorado
Groundwater risks in Colorado - Map 2
View live map | How FracTracker maps work

In Map 2, above, the locations of groundwater wells in Colorado are shown. The colors of the dots represent the concentration of TDS on the right and well depth on the left side of the screen. By sliding the bar on the map, users can visualize both. This feature allows people to explore where deep wells also are characterized by high levels of TDS. Users can also see that areas with high quality low TDS groundwater are the same areas that are the most developed with oil and gas production wells and Class II injection wells, shown in gradients of purple.

Statistical analysis of this spatial data gives a clearer picture of which regions are of particular concern; see below in Map 3.

Map 3. Spatial “hot-spot” analysis of groundwater quality and depth of groundwater wells in Colorado
Groundwater risks in Colorado - Map 3
View live map | How FracTracker maps work

In Map 3, above, the data visualized in Map 2 were input into a hot-spots analysis, highlighting where high and low values of TDS and depth differ significantly from the rest of the data. The region of the Front Range near Denver has significantly deeper wells, as a result of population density and the need to drill municipal groundwater wells.

The Front Range is, therefore, a high-risk region for the development of oil and gas, particularly from Class II injection wells that are necessary to support development.

Methods Notes: The COGCC publishes groundwater monitoring data for the state of Colorado, and groundwater data is also compiled nationally by the Advisory Committee on Water Information (ACWI). (Data from the National Groundwater Monitoring Network is sponsored by the ACWI Subcommittee on Ground Water.) These datasets were cleaned, combined, revised, and queried to develop FracTracker’s dataset of Colorado groundwater wells. We cleaned the data by removing sites without coordinates. Duplicates in the data set were removed by selecting for the deepest well sample. Our dataset of water wells consisted of 5,620 wells. Depth data was reported for 3,925 wells. We combined this dataset with groundwater data exported from ACWI. Final count for total wells with TDS data was 11,754 wells. Depth data was reported for 7,984 wells. The GIS files can be downloaded in the compressed folder at the bottom of this page.

Site Assessments – Exploring Specific Regions

Particular regions were further investigated for impacts to groundwater, and to identify areas that may be at a high risk of contamination. There are numerous ways that groundwater wells can be contaminated from other underground activity, such as hydrocarbon exploration and production or waste injection and disposal. Contamination could be from hydraulic fracturing fluids, methane, other hydrocarbons, or from formation brines.

From the literature, brines and methane are the most common contaminants. This analysis focuses on potential contamination events from brines, which can be detected by measuring TDS, a general measure for the mixture of minerals, salts, metals and other ions dissolved in waters. Brines from hydrocarbon-producing formations may include heavy metals, radionuclides, and small amounts of organic matter.

Wells with high or increasing levels of TDS are a red flag for potential contamination events.

Methods

Groundwater wells at deep depths with high TDS readings are, therefore, the focus of this assessment. Using GIS methods we screened our dataset of groundwater wells to only identify those located within a buffer zone of five miles from Class II injection wells. This distance was chosen based on a conservative model for groundwater contamination events, as well as the number of returned sample groundwater wells and the time and resources necessary for analysis. We then filtered the groundwater wells dataset for high TDS values and deep well depths to assess for potential impacts that already exist. We, of course, explored the data as we explored the spatial relationships. We prioritized areas that suggested trends in high TDS readings, and then identified individual wells in these areas. The data initially visualized were the most recent sampling events. For the wells prioritized, prior sampling events were pulled from the data. The results were graphed to see how the groundwater quality has changed over time.

Case of Increasing TDS Readings

If you zoom to the southwest section of Colorado in Map 2, you can see that groundwater wells located near the injection well 1 Fasset SWD (EPA) (05-067-08397) by Operator Elm Ridge Exploration Company LLC were disproportionately high (common). Groundwater wells located near this injection well were selected for, and longitudinal TDS readings were plotted to look for trends in time. (Figure 1.)

The graphs in Figure 1, below, show a consistent increase of TDS values in wells near the injection activity. While the trends are apparent, the data is limited by low numbers of repeated samples at each well, and the majority of these groundwater wells have not been sampled in the last 10 years. With the increased use of well stimulation and enhanced oil recovery techniques over the course of the last 10 years, the volumes of injected wastewater has also increased. The impacts may, therefore, be greater than documented here.

This area deserves additional sampling and monitoring to assess whether contamination has occurred.


Figures 1a and 1b. The graphs above show increasing TDS values in samples from groundwater wells in close proximity to the 1 Fassett SWD wellsite, between the years 2004-2015. Each well is labeled with a different color. The data for the USGS well in the graph on the right was not included with the other groundwater wells due to the difference in magnitude of TDS values (it would have been off the chart).

Groundwater Contamination Case in 2007

We also uncovered a situation where a disposal well caused groundwater contamination. Well records for Class II injection wells in the southeast corner of Colorado were reviewed in response to significantly high readings of TDS values in groundwater wells surrounding the Mckinley #1-20-WD disposal well.

When the disposal well was first permitted, farmers and ranchers neighboring the well site petitioned to block the permit. Language in the grant application is shown below in Figure 2. The petitioners identified the target formation as their source of water for drinking, watering livestock, and irrigation. Regardless of this petition, the injection well was approved. Figure 3 shows the language used by the operator Energy Alliance Company (EAC) for the permit approval, which directly contradicts the information provided by the community surrounding the wellsite. Nevertheless, the Class II disposal well was approved, and failed and leaked in 2007, leading to the high TDS readings in the groundwater in this region.

co_classiipetition

Figure 2. Petition by local landowners opposing the use of their drinking water source formation for the site of a Class II injection disposal well.

 

co_eac_uicpermit

Figure 3. The oil and gas operation EAC claims the Glorietta formation is not a viable fresh water source, directly contradicting the neighboring farmers and ranchers who rely on it.

co_fieldinspectionreport_leak

Figure 4. The COGCC well log report shows a casing failure, and as a result a leak that contaminated groundwater in the region.

Areas where lack of data restricted analyses

In other areas of Colorado, the lack of recent sampling data and longitudinal sampling schemes made it even more difficult to track potential contamination events. For these regions, FracTracker recommends more thorough sampling by the regulatory agencies COGCC and USGS. This includes much of the state, as described below.

Southeastern Colorado

Our review of the groundwater data in southeastern Colorado showed a risk of contamination considering the overlap of injection well depths with the depths of drinking water wells. Oil and gas extraction and Class II injections are permitted where the aquifers include the Raton formation, Vermejo Formation, Poison Canyon Formation and Trinidad Sandstone. Groundwater samples were taken at depths up to 2,200 ft with a TDS value of 385 mg/l. At shallower depths, TDS values in these formations reached as high as 6,000 mg/l, and 15 disposal wells are permitted in aquifer exemptions in this region. Injections in this area start at around 4,200 ft.

In Southwestern Colorado, groundwater wells in the San Jose Formation are drilled to documented depths of up to 6,000 feet with TDS values near 2,000 mg/l. Injection wells in this region begin at 565 feet, and those used specifically for disposal begin at below 5,000 feet in areas with aquifer exemptions. There are also four disposal wells outside of aquifer exemptions injecting at 5,844 feet, two of which are not injecting into active production zones at depths of 7,600 and 9,100 feet.

Western Colorado

In western Colorado well Number 1-32D VANETA (05-057-06467) by Operator Sandridge Exploration and Production LLC’s North Park Horizontal Niobara Field in the Dakota-Lokota Formation has an aquifer exemption. The sampling data from two groundwater wells to the southeast, near Coalmont, CO, were reviewed, but we can’t get a good picture due to the lack of repeat sampling.

Northwestern Colorado

http://digital.denverlibrary.org/cdm/ref/collection/p16079coll32/id/346073

A crew from Bonanza Creek repairs an existing well in the McCallum oil field. Photo by Ken Papaleo / Rocky Mountain News

In Northwestern Colorado near Walden, CO and the McCallum oil field, two groundwater wells with TDS above 10,000 ppm were selected for review. There are 21 injection wells in the McCallum field to the northwest. Beyond the McCallum field is the Battleship field with two wastewater disposal wells with an aquifer exemption. West of Grover, Colorado, there are several wells with high TDS values reported for shallow wells. Similar trends can be seen near Vernon. The data on these wells and wells from along the northern section of the Front Range, which includes the communities of Fort Collins, Greeley, and Longmont, suffered from the same issue. Lack of deep groundwater well data coupled with the lack of repeat samples, as well as recent sampling inhibited the ability to thoroughly investigate the threat of contamination.

Trends and Future Development

Current trends in exploration and development of unconventional resources show the industry branching southwest of Weld County towards Fort Collins, Longmont, Broomfield and Boulder, CO.

These regions are more densely populated than the Front Range county of Weld, and as can be seen in the maps, the drinking water wells that access groundwaters in these regions are some of the deepest in the state.

This analysis shows where Class II injection has already contaminated groundwater resources in Colorado. The region where the contamination has occurred is not unique; the drinking water wells are not particularly deep, and the density of Class II wells is far from the highest in the state.

Well casing failures and other injection issues are not exactly predictable due to the variety of conditions that can lead to a well casing failure or blow-out scenario, but they are systemic. The result is a hazardous scenario where it is currently difficult to mitigate risk after the injection wells are drilled.

Allowing Class II wells to expand into Front Range communities that rely on deep wells for municipal supplies is irresponsible and dangerous.

The encroachment of extraction into these regions, coupled with the support of Class II injection wells to handle the wastewater, would put these groundwater wells at particular risk of contamination. Based on this analysis, we recommend that regulators take extra care to avoid permitting Class II wells in these regions as the oil and gas industry expands into new areas of the Front Range, particularly in areas with dense populations.


Feature Image: Joshua Doubek / WIKIMEDIA COMMONS

Article by: Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

 

October 31, 2017 Edit: This post originally cited the Clean Water Act instead of the Safe Drinking Water Act as the source that EPA uses to grant aquifer exemptions.

Changes to PA Maps feature image

Recent Changes to Pennsylvania Maps

Recently, the Pennsylvania Department of Environmental Protection (DEP) started to offer additional data resources with the introduction of the Open Data Portal. This development, along with the continued evolution of the ArcGIS Online mapping platform that we utilize has enabled some recent enhancements in our mapping of Pennsylvania oil and gas infrastructure. We’ve made changes to the existing Pennsylvania Shale Viewer for unconventional wells, and created a Conventional and Historical Wells in Pennsylvania map.

Unconventional Wells

Rather than defining the newer, industrial-scaled oil and gas wells by specific geological formations, configuration of the well, or the amount of fluid injected into the ground during the hydraulic fracturing process, Pennsylvania’s primary classification is based on whether or not they are considered to be unconventional.

Unconventional Wells – An unconventional gas well is a bore hole drilled or being drilled for the purpose of or to be used for the production of natural gas from an unconventional formation. An unconventional formation is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.

PA Shale Viewer (Unconventional Drilling)

View map fullscreen | How FracTracker maps work

The previous structure of the PA Shale Viewer had separate layers for permits, drilled wells, and violations. This version replaces the first two layers with a single layer of unconventional locations, which we have called “Unconventional Wells and Permits” for the sake of clarity. The violations layer appears in the same format as before. When users are zoomed out, they will see generalized layers showing the overall location of O&G infrastructure and violations in the state, which were formed by creating a one mile buffer around these features. As users zoom in, the generalized layers are then replaced with point data showing the specific wells and violations. At this point, users can click on individual points and learn more about the features they see on the map.

PA Shale Viewer Zoomed In

Figure 1. PA Shale Viewer zoomed in to see individual wells by status

O&G locations are displayed by their well status, as of the time that FracTracker processed the data, including: Abandoned, Active, Operator Reported Not Drilled, Plugged OG Well, Proposed but Never Materialized, and Regulatory Inactive Status. Note that just because a well is classified as Active does not mean that it has been drilled, or even necessarily permitted. These milestones, along with whether or not it has been plugged, can be determined by looking for entries in the permit issue date, spud date, and plug date entries in the well’s popup box.

Conventional and Historical Wells

The map below shows known conventional wells in Pennsylvania along with additional well locations that were digitized from historical mining maps.

Conventional Oil and Gas Wells Map

View map fullscreen | How FracTracker maps work

Although there are over 19,000 unconventional oil and gas locations in Pennsylvania, this figure amounts to just 11% of the total number of wells in the state that the DEP has location data for, the rest being classified as conventional wells. Furthermore, in a state that has been drilling for oil and gas since before the Civil War, there could be up to 750,000 abandoned wells statewide.

The DEP has been able to find the location of over 30,000 of these historical wells by digitizing records from old paper mining maps. This layer has records for 16 different counties, but well over half of these wells are in just three counties – Allegheny, Butler, and Washington. It looks like it would take a lot more work to digitize these historical wells throughout the rest of the state, but even when that happens, we will probably still not know where the majority of the old oil and gas wells in the state are located.


By Matt Kelso, Manager of Data & Technology

Forest fragmentation in PA

Forest Fragmentation and O&G Development in PA’s Susquehanna Basin

In this forest fragmentation analysis, FracTracker looked at existing vegetation height in the northern portion of Pennsylvania’s Susquehanna River Basin. The vegetation height data is available from LANDFIRE, a resource used by multiple federal agencies to assess wildfire potential by categorizing the vegetation growth in 30 by 30 meter pixels into different categories. In the portion of Pennsylvania’s Susquehanna Basin where we looked, there were 29 total categories based on vegetation height. For ease of analysis, we have consolidated those into eight categories, including roads, developed land, forest, herbs, shrubs, crops, mines and quarries, and open water.

Methods

We compared the ratio of the total number of each pixel type to the type that was found at vertical and horizontal wells in the region. In this experiment, we hypothesized that we would see evidence of deforestation in the areas where oil and gas development is present. Per our correspondence with LANDFIRE staff, the vegetation height data represents a timeframe of about 2014, so in this analysis, we focused on active wells that were drilled prior to that date. We found that the pixels on which the horizontal wells were located had a significantly different profile type than the overall pixel distribution, whereas conventional wells had a more modest departure from the general characteristics of the region.

Figure 1 - Vegetation profile of the northern portion of Pennsylvania's Susquehanna River Basin. The area is highly impacted by O&G development, a trend that is likely to continue in the coming years.

Figure 1 – Vegetation profile of the northern portion of Pennsylvania’s Susquehanna River Basin. The area is highly impacted by O&G development, a trend that is likely to continue in the coming years.

In Figure 1, we see that the land cover profile where vertical wells (n=6,198) are present is largely similar to the overall distribution of pixels for the entire study area (n=40,897,818). While these wells are more than six times more likely to be on areas classified as mines, quarries, or barren, it is surprising that the impact is not even more pronounced. In terms of forested land, there is essentially no change from the background, with both at about 73%. However, the profile for horizontal wells (n=3,787) is only 51% forested, as well as being four times more likely than the background to be categorized as herbs, which are defined in this dataset as having a vegetation height of around one meter.

Why Aren’t the Impacts Even More Pronounced?

While the impacts are significant, particularly for horizontal wells, it is a bit surprising that evidence of deforestation isn’t even more striking. We know, for example, that unconventional wells are usually drilled in multi-well pads that frequently exceed five acres of cleared land, so why aren’t these always classified as mines, quarries, and barren land, for example? There are several factors that can help to explain this discrepancy.

First, it must be noted that at 900 square meters, each pixel represents almost a quarter of acre, so the extent of these pixels will not always match with the area of disturbance. And in many cases, the infrastructure for older vertical wells is completely covered by the forest canopy, so that neither well pad nor access road is visible from satellite imagery.


View map fullscreenHow FracTracker maps work

The map above shows horizontal and vertical wells in a portion of Centre County, Pennsylvania, an area within our study region. Note that many of the vertical wells, represented by purple dots, appear to be in areas that are heavily forested, whereas all of the horizontal wells (yellow dots) are on a defined well pad in the lower right part of the frame. Panning around to other portions of Centre County, we find that vertical wells are often in a visible clearing, but are frequently near the edge, so that the chances of the 30 by 30 meter pixel that they fall into is much more likely to be whatever it would have been if the well pad were not there.

We must also consider that this dataset has some limitations. First of all, it was built to be a tool for wildfire management, not as a means to measure deforestation. Secondly, there are often impacts that are captured by the tool that were not exactly on the well site. For this reason, it would make sense to evaluate the area around the well pad in future versions of the analysis.

Figure 2 - A close up of a group of wells in the study area. Note that the disturbed land (light grey) does not always correspond exactly with the well locations.

Figure 2 – A close up of a group of wells in the study area. Note that the disturbed land (light grey) does not always correspond exactly with the well locations.

In Figure 2, we see a number of light grey areas –representing quarries, strip mines, and gravel pits –with an O&G well just off to the side. Such wells did not get classified as being on deforested land in this analysis.

And finally, after clarifying the LANDFIRE metadata with US Forest Service personnel involved in the project, we learned that while the map does represent vegetation cover circa 2014, it is actually build on satellite data collected in 2001, which has subsequently been updated with a detailed algorithm. However, the project is just beginning a reboot of the project, using imagery from 2015 and 2016. This should lead to much more accurate analyses in the future.

Why Forest Fragmentation Matters

The clearing of forests for well pads, pipelines, access roads, and other O&G infrastructure that has happened to date in the Susquehanna Basin is only a small fraction of the planned development. The industry operates at full capacity, there could be tens of thousands of new unconventional wells drilled on thousands of well pads in the region through 2030, according to estimates by the Nature Conservancy. They have also calculated an average of 1.65 miles of gathering lines from the well pad to existing midstream infrastructure. With a typical right-of-way being 100 feet wide, these gathering lines would require clearing 20 acres. It isn’t unusual for the total disturbance for a single well pad and the associated access road to exceed ten acres, making the total disturbance about 30 acres per well pad. Based on the vegetation distribution of the region, we can expect that 22 of these acres, on average, are currently forested land. Taking all of these factors into consideration, a total disturbance of 100,000 to 200,000 acres in Pennsylvania’s Susquehanna River Basin due to oil and gas extraction, processing, and transmission may well be a conservative estimate, depending on energy choices we make in the coming years.

This forest fragmentation has a number of deleterious effects on the environment. First, many invasive plant species, such as bush honeysuckle and Japanese knotweed, tend to thrive in recently disturbed open areas, where competing native plants have been removed. The practice also threatens numerous animal species that thrive far from the forest’s edge, including a variety of native song birds. The disturbed lands create significant runoff into nearby rivers and streams, which can have an impact on aquatic life. And the cumulative release of carbon into the atmosphere is staggering – consider that the average acre of forest in the United States contains 158,000 pounds of organic carbon per acre. As the area is 73% forested, the total cumulative impact could result in taking 5.8 to 11.6 million tons of organic carbon out of forested storage. Much of this carbon will find its way into the atmosphere, along with the hydrocarbons that are purposefully being extracted from drilling operations.

Underground Gas Storage map by Drew Michanowicz

Underground Gas Storage Wells – An Invisible Risk in the Natural Gas Supply Chain

The largest accidental release of methane in U.S. history began October 23, 2015 with the blowout of an underground natural gas storage well in Aliso Canyon about 20 miles west of Los Angeles. By the time the well was plugged 112 days later, more than 5.0 billion cubic feet of methane and other pollutants had been released to the atmosphere. It was a disaster for the climate, the environment, California’s energy supply, and the more than 11,000 people that were forced to evacuate.

A new study from the Harvard T. H. Chan School of Public Health – Center for Health and the Global Environment shows that more than one in five of the almost 15,000 active underground gas storage (UGS) wells in the US could be vulnerable to serious leaks due to obsolete well designs – similar in design to the well that failed at the Aliso Canyon storage facility.

Published today in the journal Environmental Research Letters, the study presents a national baseline assessment of underground storage wells in the U.S. and indicates the need for a better understanding of the risks associated with the obsolescence of aging storage wells. The study also highlights the widespread nature of certain age-related risk factors, but indicates that some of the highest priority wells may be located in PA, OH, NY, and WV.

The study shows that the average construction year of largely unregulated active UGS wells in the US is 1963, with potentially obsolete wells that were not originally designed for storage operating in 160 facilities across 19 states. Some of the wells were constructed over 100 years ago – a time period that precedes many modern well containment systems such cement isolation and the use of multiple casings. Some of the oldest active UGS wells were not designed for two-way flow of gas, and therefore may not exhibit sufficient material-grade or redundant precautionary systems to prevent containment loss, as was evident at Aliso Canyon.

An Interview with the Author

Sam, Matt, and Kyle of FracTracker caught up with lead author and former FracTracker colleague, Dr. Drew Michanowicz, now with the Center for Health and Global Environment within the Harvard T. H. Chan School of Public Health to find out more about their study.

When we spoke with Drew, he began the interview by posing the first question to us:

Did you know that about 15% of the natural gas produced in the US is injected back into the ground each year?

While we had all heard of underground gas storage before, we had to admit that we never thought of the process like that before. In other words, some of the natural gas in the US is being produced twice from two different reservoirs before being consumed. And because many of these storage systems utilized depleted oil and gas reservoirs, many of the same pre- and post-conditioning processes, such as dehydrating and compressing, are necessary to bring the gas to market.

The following questions and answers from Drew expand upon the study’s findings:

Q: What prompted you and your colleagues to investigate this topic?

A: After the Aliso Canyon incident, we became interested in the question: ‘Is Aliso Canyon Unique?’ Interestingly, there were plenty of early warning signs at that facility that corrosion issues on very old repurposed wells were becoming a significant issue. Almost a year before the well blowout, Southern California gas went on record in front of California’s Public Utility Commission stating that they needed a rate increase to implement a necessary integrity management plan for their wells, and to be able to move beyond operating in a reactive mode. That unfortunately prophetic document really got us interested in better understanding why their infrastructure was in the state it was in. And like any major accident like this, a logical next step is to assess the prevalence of hazardous conditions elsewhere in the system, in the hope to prevent the next one.

From our research, it appears that a very large portion of the UGS sector may be facing similar obsolescence issues compared to Aliso, such as decades-old wells not originally designed for two-way flow. Our work here, however, is a simplified assessment that focused only on passive barriers or the fixed structures such as the steel pipes likely present in a well. Much more work is needed to fully understand the active-type safety measures in place such as safety valves, tubing/packers, and overall integrity management plans – all important factors for manage risks.

Q: We see that your team developed a well-level database of over 14,000 active UGS wells across 29 states. Because data-collation is a big part of our work here, can you describe that data collection process?

A: Very early on we also realized that underground gas storage was exempt from the Safe Drinking Water Act’s Underground Injection Control (UIC) program – similar to exemption with hydraulic fracturing and the Energy Policy Act of 2015, AKA the Halliburton Loophole. This meant in part that very little aggregate well data was available from the Federal Government or by third-party aggregators like FracTracker and DrillingInfo. Reminiscent of my former extreme data-paucity days at FracTracker, we knew we needed to build a database basically from scratch to effectively perform a hazard assessment that incorporated a spatial component.

We began by gathering what data we could from the U.S. Energy Information Administration (EIA), which gave us good detail at the field or facility level, but the fields were generalized to a county centroid. So to fully evaluate these infrastructure, we needed to figure out how to join the facility-level data to the well data for each state. We relied on NETL’s Energy Data eXchange to identify state-level wellbore data providers where applicable. Once we collected all of the state data, we created a decision-tree framework to join the individual wells to the EIA field names in order to produce a functional geodatabase. Because we had to manage data from so many sources, we had to devote quite a bit of effort to data QA/QC, and that is reflected in the methods and results of the paper. For example, some of our fields and wells had to be joined via visual inspection of company system maps, because of missing identifier information.

Q: We see that some of the oldest repurposed wells you mapped are located in PA, OH, NY, and WV. Was that a surprise to you?

A: That was a surprise considering this story started for us in California, and even more surprising was that some are more than 100 years old. Now, a bit of caution here is warranted when thinking about the age of any engineered system. On the one hand, something that functions for a very long time is an indication that the system was very well suited for its task, and likely has been very well taken care of – think of an antique automobile like a fully functional 1916 Model T Ford, for example. On the other hand, age and construction year relates to the integrity of an engineered system through two processes by:

  1. providing information to how long a system has been exposed to natural degradation processes such as corrosion, and stresses from thermal and abrasive cycles; and by
  2. proxying for knowledge and regulatory safety standards at the time of construction which informs the design, materials, technologies likely used.

To go back to the car example, while an old classic car may still be operational, it may not have certain safety features like antilock brakes, airbags, or safety belts, and generally will not be able to go as fast as a modern car. Therefore, a gas storage well’s integrity is at least indirectly related to its construction year when considering the multitude of technological and safety improvements have occurred over the years. This is how we have been thinking about well integrity from a 5,000 foot perspective. Needless to say, more research is needed to understand the causal effect of age on well integrity.

Q: So if we understand you correctly, these older wells can be maintained with sufficient management practices, but there may be inherent safety features missing on these older wells that don’t adhere to todays’ standards?

A: That’s right. So what we can say about some of these aging wells is that some will not reflect certain modern fail-safe engineering such as sufficient casing design strength and multiple casings or barriers along the full length. And these are permanent structural elements vestigial to the well’s original design, and therefore cannot be undone or redesigned away. In other words, it makes much more sense to drill a new well with new materials than attempt to significantly alter an old well. And the gas storage wells built today are designed with redundant fail-safe systems including multiple barriers and real-time pressure sensors.

But back to my earlier point about lack of federal regulations to set a minimum safety standard – because of that, there is also much uncertainty surrounding how many of these facilities have been dealing with safety and risk management. That is a future direction of this work – to really try to fill in some of regulatory gaps between states and the impending Federal guidelines and identify some best practices to help inform policy makers specifically at the state level.

Drew put together a map to highlight where some of these active storage wells are in PA, OH, NY, and WV:

Underground Gas Storage map

This area map of PA, WV, OH, and NY displays where active underground natural gas storage operations are located. The small white points represent active storage wells that have a completion, SPUD, or permit date that occurs after the field was designated for storage indicating that these wells are more likely to have been designed for storage operations. The green points are active storage wells that predate storage operations, indicating that these wells may not have been designed for storage.

There are 121 storage fields connected to at least 6,624 active gas storage wells across these four states. A portion of wells in this region were not included in this final count because they did not contain sufficient status or date information. Pennsylvania has the most individual storage fields of any state with 47, while Ohio boasts the most active storage wells of any state in the country with 3,318 across its 22 active fields. Of the 6,624 active UGS wells across these four states, 1,753 predate storage designation indicating that these wells were likely not originally designed for storage. These ‘repurposed’ wells have a median age of 84 years, with 210 wells constructed over 100 years ago (red points). The 100 year cutoff is not arbitrary, as the year 1917 marks the advent of cement zonal isolation techniques, indicating that these wells may be of the highest priority in terms of design deficiencies related to well integrity, and they are primarily located across the four states pictured above.

Top Counties with Obsolete1/Repurposed2 Wells

  1. Westmoreland, PA (86/93)
  2. Ashland, OH (50/217)
  3. Richland, OH (31/99)
  4. Greene, PA (25/76)
  5. Hocking, OH (18/99)

1Obsolete wells are repurposed wells constructed before 1916
2Repurposed wells predate the storage facility

Additional Notes

The well that failed at Aliso Canyon was originally drilled in 1954 for oil production. In 1972, it was repurposed for underground gas storage, which entails both production and injection cycles in a single well. The problem seems to be that because it was not originally constructed to store natural gas, only a single steel pipe separated the flow of gas and the outside rock formation. That meant the well’s passive structural integrity was vulnerable to a single point-of-failure along a portion of its casing. When part of the subsurface well casing failed, there were no redundancies or safety valves in place to prevent or minimize the blow out.

  • More information related to the Aliso Canyon incident and this study is available here.
  • More info on the Center for Health and the Global Environment can be found here.
Ethanol and fracking

North American Ethanol’s Land, Water, Nutrient, and Waste Impact

Corn Ethanol and Fracking – Similarities Abound

Even though it is a biofuel and not a fossil fuel, in this post we discuss the ways in which the corn ethanol production industry is similar to the fracking industry. For those who may not be familiar, biofuel refers to a category of fuels derived directly from living matter. These may include:

  1. Direct combustion of woody biomass and crop residues, which we recently mapped and outlined,
  2. Ethanol1 produced directly from the fermentation of sugarcanes or indirectly by way of the intermediate step of producing sugars from corn or switchgrass cellulose,
  3. Biodiesel from oil crops such as soybeans, oil palm, jatropha, and canola or cooking oil waste,2 and
  4. Anaerobic methane digestion of natural gas from manures or human waste.

Speaking about biofuels in 2006, J. Hill et al. said:

To be a viable substitute for a fossil fuel, an alternative fuel should not only have superior environmental benefits over the fossil fuel it displaces, be economically competitive with it, and be producible in sufficient quantities to make a meaningful impact on energy demands, but it should also provide a net energy gain over the energy sources used to produce it.

Out of all available biofuels it is ethanol that accounts for a lion’s share of North American biofuel production (See US Renewables Map Below). This trend is largely because most Americans put the E-10 blends in their tanks (10% ethanol).3 Additionally, the Energy Independence and Security Act of 2007 calls for ethanol production to reach 36 billion gallons by 2022, which would essentially double the current capacity (17.9 billion gallons) and require the equivalent of an additional 260 refineries to come online by then (Table 1, bottom).

US Facilities Generating Energy from Biomass and Waste along with Ethanol Refineries and Wind Farms


View map fullscreen | How FracTracker maps work

But more to the point… the language, tax regimes, and potential costs of both ethanol production and fracking are remarkably similar. (As evidenced by the quotes scattered throughout this piece.) Interestingly, some of the similarities are due to the fact that “Big Ag” and “Big Oil” are coupled, growing more so every year:

The shale revolution has resulted in declining natural gas and oil prices, which benefit farms with the greatest diesel, gasoline, and natural gas shares of total expenses, such as rice, cotton, and wheat farms. However, domestic fertilizer prices have not substantially fallen despite the large decrease in the U.S. natural gas price (natural gas accounts for about 75-85 percent of fertilizer production costs). This is due to the relatively high cost of shipping natural gas, which has resulted in regionalized natural gas markets, as compared with the more globalized fertilizer market. (USDA, 2016)

Ethanol’s Recent History

For background, below is a timeline of important events and publications related to ethanol regulation in the U.S. in the last four decades: 

Benefits of Biofuels

[Bill] Clinton justified the ethanol mandate by declaring that it would provide “thousands of new jobs for the future” and that “this policy is good for our environment, our public health, and our nation’s farmers—and that’s good for America.” EPA administrator Carol Browner claimed that “it is important to our efforts to diversify energy resources and promote energy independence.” – James Bovard citing Peter Stone’s “The Big Harvest,” National Journal, July 30, 1994.

Of the 270 ethanol refineries we had sufficient data for, we estimate these facilities employ 235,624 people or 873 per facility and payout roughly $6.18-6.80 billion in wages each year, at an average of $22.9-25.2 million per refinery. These employees spend roughly 423,000 hours at the plant or at associated operations earning between $14.63 and $16.10 per hour including benefits. Those figures amount to 74-83% of the average US income. In all fairness, these wages are 13-26% times higher than the farming, fishing, and forestry sectors in states like Minnesota, Nebraska, and Iowa, which alone account for 33% of US ethanol refining.

Additional benefits of ethanol refineries include the nearly 179 million tons of CO2 left in the field as stover each year, which amounts to 654,532 tons per refinery. Put another way – these amounts are equivalent to the annual emissions of 10.7 million and 39,194 Americans, respectively.

Finally, what would a discussion of ethanol refineries be without an estimate of how much gasoline is produced? It turns out that the 280 refineries (for which we have accurate estimates of capacity) produce an average of 71.93 million gallons per year and 20.1 billion gallons in total. That figure represents 14.3% of US gasoline demand.

Costs of Biofuels

Direct Costs

Biofuel expansions such as those listed in the timeline above and those eluded to by the likes of the IPCC have several issues associated with them. One of which is what Pimentel et al. considered an insufficient – and to those of us in the fracking NGO community, familiar sounding – “breadth of relevant expertise and perspectives… to pronounce fairly and roundely on this many-sided issue.”

The above acts and reports in the timeline prompted many American farmers to double down on corn at the expense of soybeans, which caused Indirect Land Use Change (ILUC); the global soy market skyrocketed. This, in turn, prompted the clearing and/or burning of large swaths of the Amazonian rainforests and tropical savannas in Brazil, the world’s second-leading soy producer. More recently, large swaths of Indonesia and Malaysia’s equally biodiverse peatland forests have been replaced by palm oil plantations (Table 2 and Figure 3, bottom). In the latter countries, forest displacement is increasing by 2.7-5.3% per year, which is roughly equal to the the rate of land-use change associated with hydraulic fracturing here in the US4 (Figure 1).


Figures 1A and 1B. Palm Oil Production in A) Indonesia and B) Malaysia between 1960 and 2016.

There is an increasing amount of connectivity between disparate regions of the world with respect to energy consumption, extraction, and generation. These connections also affect how we define renewable or sustainable:

In a globalized world, the impacts of local decisions about crop preferences can have far reaching implications. As illustrated by an apparent “corn connection” to Amazonian deforestation, the environmental benefits of corn-based biofuel might be considerably reduced when its full and indirect costs are considered. (Science, 2007)

These authors pointed to the fact that biofuel expectations and/or mandates fail to account for costs associated with atmospheric – and leaching – emissions of carbon, nitrogen, phophorus, etc. during the conversion of lands, including diverse rainforests, peatlands, savannas, and grasslands, to monocultures. Also overlooked were:

  • The ethical concerns associated with growing malnourishment from India to the United States,
  • The fact that 10-60%5 more fossil fuel derived energy is required to produce a unit of corn ethanol than is actually contained within this very biofuel, and
  • The tremendous “Global land and water grabbing” occuring in the name of natural resource security, commodification, and biofuel generation.

Sacrificing long-term ecological/food security in the name of short-term energy security has caused individuals and governments to focus on taking land out of food production and putting it into biofuels.

The rationale for ethanol subsidies has continually changed to meet shifting political winds. In the late 1970s ethanol was championed as a way to achieve energy independence. In the early 1980s ethanol was portrayed as salvation for struggling corn farmers. From the mid and late 1980s onward, ethanol has been justified as saving the environment. However, none of those claims can withstand serious examination. (James Bovard, 1995)

This is instead of going the more environmentally friendly route of growing biofuel feedstocks on degraded or abandoned lands. An example of such an endeavor is the voluntary US Conservation Reserve Program (CRP), which has stabilized at roughly 45-57 thousand square miles of enrolled land since 1990, even though the average payout per acre has continued to climb (Figure 2).

The Average Subsidy to Farmers Per Acre of Conservation Reserve Program (CRP) between 1986 and 2015.

Figure 2. The Average Subsidy to Farmers Per Acre of Conservation Reserve Program (CRP) between 1986 and 2015.

The primary goals of the CRP program are to provide an acceptable “floor” for commodity prices, reduce soil erosion, enhance wildlife habitat, ecosystem services, biodiversity, and improve water quality on highly erodible, degraded, or flood proned croplands. Interestingly CRP acreage has declined by 27% since a high of 56 thousand square miles prior to the Energy Independence and Security Act of 2007 being passed. Researchers have pointed to the fact that corn ethanol production on CRP lands would create a carbon debt that would take 48 years to repay vs. a 93 year payback period for ethanol on Central US Grasslands.

To quote Fred Magdoff in The Political Economy and Ecology of Biofuels:

Alternative fuel sources are attractive because they can be developed and used without questioning the very workings of the economic system — just substitute a more “sustainable,” “ecologically sound,” and “renewable” energy for the more polluting, expensive, and finite amounts of oil. People are hoping for magic bullets to “solve” the problem so that capitalist societies can continue along their wasteful growth and consumption patterns with the least disruption. Although prices of fuels may come down somewhat — with dips in the business cycle, higher rates of production, or a burst in the speculative bubble in the futures market for oil — they will most likely remain at historically high levels as the reserves of easily recovered fuel relative to annual usage continues to decline.

Indirect Costs: Ethanol, Fertilizers, and the Gulf of Mexico Dead Zone

This is the Midwest vs. the Middle East. It’s corn farmers vs. the oil companies. – Dwaney Andreas in Big Stink on the Farm by David Greising

Sixty-nine percent6 of North America’s ethanol refineries are within the Mississippi River Basin (MRB). These refineries collectively rely on corn that receives 1.9-5.1 million tons of nitrogen each year, with a current value of $1.06-2.91 billion dollars or 9,570-26,161 tons of nitrogen per refinery per year (i.e. $5.42-14.81 million per refinery per year). These figures account for 27-73% of all nitrogen fertilizer used in the MRB each year. More importantly, the corn acreage receiving this nitrogen leaches roughly 0.81-657 thousand tons of it directly into the MRB. Such a process amounts to 5-44% of all nitrogen discharged into the Gulf of Mexico each year and 1.7-13.8 million tons of algae responsible for the Gulf’s growing Dead Zone.

Midwest/Great Plains US Ethanol Refineries and Crop Residue Production

Leaching of this nitrogen is analogous to flushing $45.7-371.6 million dollars worth of precious capital down the drain. Put another way, these dollar figures translate into anywhere between 55% and an astonishing 4.53 times Direct Costs to the Gulf’s seafood and tourism industries of the Dead Zone itself.

These same refineries rely on corn acreage that also receives 0.53-2.61 million tons of phosphorus each year with a current value of 0.34-1.66 billion dollars. Each refinery has a phosphrous footprint in the range of 2,700 to 13,334 tons per year (i.e., $1.72-8.47 million). We estimate that 25,399-185,201 tons of this fertilizer phosphorus is leached into the the MRB, which is equivalent to 19% or as much as 1.42 times all the phosphorous dischared into the Gulf of Mexico per year. Such a process means $16.13-117.60 million is lost per year.

Together, the nitrogen and phosphorus leached from acreage allocated to corn ethanol have a current value that is between 75% and nearly 6 times the value lost every year to the Gulf’s seafood and tourism industries.

Indirect Costs: Fertilizer and Herbicide Costs and Leaching

The 270 ethanol refineries we have quality production data for are relying on corn that receives 367,772 tons of herbicide and insecticide each year, with a current value of $6.67 billion dollars or 1,362 tons of chemical preventitive per refinery per year (i.e. $24.7 million per refinery per year). More importantly the corn acreage receiving these inputs leaches roughly 15.8-128.7 thousand tons of it directly into surrounding watersheds and underlying aquifers. Leaching of these inputs is analogous to flushing $287 million to $2.3 billion dollars down the drain.

What’s Next?

During the recent Trump administration EPA, USDA, DOE administrator hearings, the Renewable Fuel Standard (RFS) was cited as critical to American energy independence by a bipartisan group of 23 senators. Among these were Democratic senator Amy Klobuchar and Republican Chuck Grassley, who co-wrote a letter to new EPA administrator Scott Pruitt demanding that the RFS remains robust and expands when possible. In the words of Democratic Senator Heidi Heitkamp – and long-time ethanol supporter – straight from the heart of the Bakken Shale Revolution in North Dakota:

The RFS has worked well for North Dakota farmers, and I’m fighting to defend it. As we’re doing today in this letter, I’ll keep pushing in the U.S. Senate for the robust RFS [and Renewable Volume Obligations (RVOs)] we need to support a thriving biofuels industry and stand up for biofuels workers. Biofuels create good-paying jobs in North Dakota and help support our state’s farmers, who rely on this important market – particularly when commodity prices are challenging.

Furthermore, the entire Iowa congressional delegation including the aforementioned Sen. Grassley joined newly minted USDA Secretary Sonny Perdue when he told the Iowa Renewable Fuels Association:

You have nothing to worry about. Did you hear what he said during the campaign? Renewable energy, ethanol, is here to stay, and we’re going to work for new technologies to be more efficient.

How this advocacy will play out and how the ethanol industry will respond (i.e., increase productivity per refinery or expand the number of refineries) is anybody’s guess. However, it sounds like the same language, lobbying, and advertising will continue to be used by the Ethanol and Unconventional Oil and Gas industries. Additional parallels are sure to follow with specific respect to water, waste, and land-use.

Furthermore, as both industries continue their ramp up in research and development, we can expect to see productivity per laborer to continue on an exponential path. The response in DC – and statehouses across the upper Midwest and Great Plains – will likely be further deregulation, as well.

From a societal perspective, an increase in ethanol production/grain diversion away from people’s plates has lead to a chicken-and-egg positive feedback loop, whereby our farmers continue to increase total and per-acre corn production with less and less people. In rural areas, mining and agriculture have been the primary employment sectors. A further mechanization of both will likely amplify issues related to education, drug dependence, and flight to urban centers (Figures 4A and B).

We still don’t know exactly how efficient ethanol refineries are relative to Greenhouse Gas Emissions per barrel of oil. By merging the above data with facility-level CO2 emissions from the EPA Facility Level Information on Greenhouse gases Tool (FLIGHT) database we were able to match nearly 200 of the US ethanol refineries with their respective GHG emissions levels back to 2010. These facilities emit roughly:

  • 195,116 tons of CO2 per year, per facility,
  • A total of 36.97 million tons per year (i.e., 2.11 million Americans worth of emissions), and
  • 22,265 tons of CO2 per barrel of ethanol produced.

Emissions from ethanol will increase to 74.35 million tons in 2022 if the Energy Independence and Security Act of 2007’s prescriptions run their course. Such an upward trend would be equivalent to the GHG emissions of somewhere between that of Seattle and Detroit.

What was once a singles match between Frackers and Sheikhs may turn into an Australian Doubles match with the Ethanol Lobby and Farm Bureau joining the fray. This ‘game’ will only further stress the food, energy, and water (FEW) nexus from California to the Great Lakes and northern Appalachia.

We are on a thinner margin of food security, just as we are on a thinner margin of oil security… The [World] Bank implicitly questions whether it is wise to divert half of the world’s increased output of maize and wheat over the next decade into biofuels to meet government “mandates.” – Ambrose Evans-Pritchard in The Telegraph

Will long-term agricultural security be sacrificed in the name of short-term energy independence?

US and Global Corn Production and Acreage between 1866 and 2015.

Figure 3. US and Global Corn Production and Acreage between 1866 and 2015.

Figures 4A and 4B. A) Number of Laborers in the US Mining, Oil and Gas, Agriculture, Forestry, Fishing, and Hunting sector and B) US Corn Production Metrics Per Farm Laborer between 1947 and 2015.

Ethanol Tables

Table 1. Summary of our Corn Ethanol Production, Land-Use, and Water Demand analysis

Gallons of Corn Ethanol Produced Per Year 17,847,616,000
Bushels of Corn Needed 6,374,148,571
Percent of US Production 44.73%
Land Needed 104,372,023 acres
“” 163,081 square miles
Percent of Contiguous US Land 5.51%
Percent of US Agricultural Land 11.28%
Gallons of Water Needed 49.76 trillion (i.e. 3.55 million swimming pools)
Gallons of Water Per Gallon of Oil 2,788
Average and Total Site/Industry Capacity
Average Corn Ethanol Production Per Existing or Under Construction Facility (n = 257) 69,717,250
Gallons of Corn Ethanol Produced Per Year 17,847,616,000
Difference Between 2022 Energy Independence and Security Act of 2007 36 Billion Gallon Mandate 18,152,384,000
# of New Refineries Necessary to Get to 2022 Levels 260
Percent Increase Over Current Facility Inventory 1.7
IEA 2009 World Energy Outlook 250-620% Increase Predictions for 2030
250% 44,619,040,000
# of New Refineries Necessary 640
Percent Increase Over Current Facility Inventory 150.00
620% 110,655,219,200
# of New Refineries Necessary 1,587
Percent Increase Over Current Facility Inventory 520.00

Table 2. Global Population Growth and Corn and Soybean Productivity Trends.

Percent Change Metric
+1.13% Global Population Growth Trend
Corn (Bushels Per Acre)
+1.15% Per Year United States
+1.20% Per Year Global
Soybean (Tons Per Acre)
+0.9% Per Year United States
+1.5% Per Year Brazil
Palm Oil (Tons)
+5.1% Per Year Indonesia
+2.7% Per Year Malaysia

References and Footnotes

  1. Ethanol as defined in the Ohio Revised Code (ORC) Corporation Franchise Tax 5733.46 means “fermentation ethyl alcohol derived from agricultural products, including potatoes, cereal, grains, cheese whey, and sugar beets; forest products; or other renewable resources, including residue and waste generated from the production, processing, and marketing of agricultural products, forest products, and other renewable resources that meet all of the specifications in the American society for testing and materials (ASTM) specification D 4806-88 and is denatured as specified in Parts 20 and 21 of Title 27 of the Code of Federal Regulations.”
  2. A) Pyrolysis is included in the biofuel category and involves the anaerobic decay of cellulose rich feedstocks such as switchgrass at high temperatures producing synthetic diesel or syngas, and
    B) According to many researchers biofuels made from waste biomass or crops grown on degraded and abandoned lands with warm-season prairie grasses and legumes incur little or no carbon debt and provide “immediate and sustained Greenhouse Gas (GHG) advantages” by rehabilitating soil health and capturing, rather than emitting by way of increased fertilizer use, various forms of nitrogen including N2O, NO3, and NO2.
  3. According to Fred Magdoff, the ethanol complex is lobbying for “more automobile engines capable of using E-85 (85 percent ethanol, 15 percent gasoline) for which there are currently 2,710 fueling stations across the country although 56% of them are in just nine states: 1) Wisconsin (117), 2) Missouri (107), 3) Minnesota (335), 4) Michigan (174), 5) Indiana (172), 6) Illinois (221),  7) Iowa (193), 8) Texas (99), and 9) Ohio (97). Some states are mandating a mixture greater than 10 percent. Ethanol can’t be shipped together with gasoline in pipelines because it separates from the mixture when moisture is present, so it must be trucked to where it will be mixed with gasoline.” The E-85 blend comes with its own costs including higher emissions of CO, VOC, PM10, SOx, and NOx than gasoline.
  4. McClaugherty, C., Auch, W. Genshock, E. and H. Buzulencia. (2017). Landscape impacts of infrastructure associated with Utica shale oil and gas extraction in eastern Ohio, Ecological Society of America, 100th Annual Meeting, Baltimore, MD, August, 2015.
  5. Hill et al. recently indicated “Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more.”
  6. An additional 9-10 refineries or 73% of all ethanol refineries are within 25 miles of the Mississippi River Basin.

By Ted Auch, PhD, Great Lakes Program Coordinator, FracTracker Alliance

Cover photo, left: Oil and gas well pad, Ohio. Photo by Ted Auch.
Cover photo, right: A typical ethanol plant in West Burlington, Iowa. Photo by Steven Vaughn.


Data Downloads

Click on the links below to download the datasets used to create the maps in this article.

  1. Detailed US Ethanol water, land, chemical fertilizer, and herbicide demand
  2. Estimates of North American Ethanol Refinery’s water and land-use demand
PA Oil & Gas Fines feature image

Pennsylvania Oil & Gas Fines Analysis

In March 2017, FracTracker Alliance conducted a review of the available Pennsylvania oil and gas fine data released publicly by the PA Department of Environmental Protection (DEP) to identify trends in industry-related fines over time and by particular operators. In total, the DEP has assessed nearly $36 million in fines to oil and gas extraction and pipeline operators since January 1, 2000. Such fines are associated with over 42,000 violations issued1 by DEP in that time frame, covering 204,000 known oil and gas locations,2 as well as 91,000 miles of pipelines3 within the Commonwealth.

Understanding the Data Structure

The amount of money that the Pennsylvania Department of Environmental Protection (DEP) fines oil and gas (O&G) operations is included in the DEP’s compliance report published on their website. Even though fines data are made available, they are not necessarily straight-forward, and caution must be taken not to over-estimate the total number of assessed fines.

Records of fines are associated with enforcement identification codes on the compliance report. A single fine is often applied to numerous violations, and the full amount of the fine is listed on every record in this subset. Therefore, the total dollar amount of fines assessed to O&G companies appears overstated. For example, if a $400,000 fine were assessed to settle a group of 10 violations, that figure will appear on the report 10 times, for an apparent aggregate of $4,000,000 in fines. To get an accurate representation of fines assessed, we need to isolate fines associated with particular enforcement ID numbers, which are used administratively to resolve the fines.

This process is further complicated by the fact that, on occasion, such enforcement ID numbers are associated with more than one operator. This issue could result from a change in the well’s operator (or a change of the operator’s name), a group of wells in close proximity that are run by different operators, or it might point to an energy extraction company and a midstream company sharing responsibility for an incident. Sometimes, the second operator listed under an enforcement ID is in fact “not assigned.” The result is that we cannot first summarize by operator and then aggregate those subtotals without overstating the total amount of the assessed fines. In all, 62 of the enforcement ID numbers apply to more than one operator, but this figure amounts to less than one percent of the nearly 15,000 distinct enforcement ID numbers issued by DEP.

Conventional & Unconventional Violations & Fines

Oil and gas wells in Pennsylvania are categorized as either conventional or unconventional, with the latter category intended to represent the modern, industrial-scaled operations that are commonly referred to as “fracking wells.” Contrastingly, conventional wells are supposed to be the more traditional O&G wells that have been present in Pennsylvania since 1859. The actual definition of these wells leaves some blurring of this distinction, however, as almost all O&G wells now drilled in Pennsylvania are stimulated with hydraulic fracturing to some degree, and some of the conventional wells are even drilled horizontally – just not into formations that are technically defined as unconventional. For the most part, however, unconventional remains a useful distinction indicating the significant scale of operations.

Table 1. Summary of oil and gas wells, violations, and fines in Pennsylvania

Category Conventional Unconventional (blank) Total
Wells 193,655 10,291 0 203,946
Violations 27,223 6,126 9,026 42,375
Fines $7,000,203 $13,689,032 $21,563,722 $35,949,495*
Fines per Violation 257 2,235 2,389 848
Fines per Well 36 1330  – 176.27
Violations per Well 0.14 0.60  – 0.21
Wells per Violation 7.11 1.68  – 4.81
* The total fine amount issued is not a summary of the three preceding categories, as some of the fines appear in multiple categories

Ninety-five (95)% of the state’s 204,000 O&G wells are classified as conventional, so it should not be surprising to see that this category of wells accounts for a majority of violations issued by the department. However, fines associated with these violations are less frequent, and often less harsh; the $7 million in fines for this category accounts for only 19% of the total assessed penalties. In contrast, the total penalties that have been assessed to unconventional wells in the state are nearly twice that of conventional wells, despite accounting for just 5% of the state’s well inventory

On the 54,412 records on the compliance report, 10,518 (19%) do not indicate whether or not it is an unconventional well. The list of operators includes some well-known conventional and unconventional drilling operators, and hundreds of names of individuals or organizations where O&G drilling is not their primary mode of business (such as municipal authorities and funeral homes). This category also contains violations for midstream operations, such as pipelines and compressor stations. Altogether, 3,795 operators have entries that were not categorized as either conventional or unconventional on the compliance report, and 124 of these operators were issued fines. One additional complication is that some of the violations and fines that fall into this category are cross-referenced in the conventional and unconventional categories, as well.

The resulting impact of these factors is that the blank category obscures the trends for violations and fines in the other two categories. While tempting to reclassify well data in this category as either conventional or unconventional, this would be a tall task due to the sheer number of records involved, and would likely result in a significant amount of errors. Therefore, the FracTracker Alliance has decided to present the data as is, along with an understanding of the complexities involved.

Most Heavily Fined Operators

Despite the numerous caveats listed above, we can get a clear look at the aggregated fines issued to the various O&G operators in the state by constructing our queries carefully. Table 2 shows the top 12 recipients of O&G-related fines assessed by DEP since 2000. Ten of these companies are on the extraction side of the business, and the total number of well permits issued4 to these companies since 2000 are included on the table. By looking at the permits instead of the drilled wells, we discover the operator that was originally associated with the drilling location, whereas the report of drilled wells associates the current operator associated with the site, or most recent operator in the event that the location is plugged and abandoned.

Stonehenge Appalachia and Williams Field Services operate in the midstream sector. Combining the various business name iterations and subsidiaries would be an enormous task, which we did not undertake here, with the exception of those near the top of the list. This includes Vantage Energy Appalachia, which was combined with records from Vantage Energy Appalachia II, and the compliance history of Rice Energy is the sum of three subsidiaries, the drilling company Rice Drilling B, and two pipeline companies, Rice Midstream Holdings and Rice Poseidon Midstream.

Table 2. Top 12 operators that have been assessed oil and gas-related fines by DEP since 2000

Operator Total Fines Conventional Permits Unconventional Permits Violations Fines / Violation Fines / Permit
Range Resources Appalachia LLC $5,717,994 2,104 2,206 819 $6,982 $1,327
Chesapeake Appalachia LLC $3,120,123 18 3,072 754 $4,138 $1,010
Rice Energy* $2,336,552 442 165 $14,161 $5,286
Alpha Shale Res LP $1,681,725 3 62 31 $54,249 $25,873
Stonehenge Appalachia LLC $1,500,000  – 294 $5,102
Cabot Oil & Gas Corp $1,407,275 19 902 726 $1,938 $1,528
CNX Gas Co LLC $1,274,330 1,613 677 387 $3,293 $556
WPX Energy Appalachia LLC $1,232,500 347 159 $7,752 $3,552
Chevron Appalachia LLC $1,077,553 2 604 113 $9,536 $1,778
Vantage Energy Appalachia LLC** $1,059,766 3 300 35 $30,279 $3,498
Williams Field Services Co, LLC $872,404  – 158 $5,522
XTO Energy Inc $739,712 1,962 461 383 $1,931 305
* Fines for Rice Energy here represent the sum of three subsidiaries, the drilling company Rice Drilling B, and two pipeline companies, Rice Midstream Holdings and Rice Poseidon Midstream.

** Fines for Vantage Energy Appalachia were combined with records from Vantage Energy Appalachia II.

Predictably, many of the entries on this list are among the most active drillers in the state, including Range Resources and Chesapeake Appalachia. However, Alpha Shale Resources has the dubious distinction of leading the pack with the highest amount of fines per violation, as well as the highest amount of fines per permit. Fitting in with the theme, the story here is complicated by the fact that Alpha had a joint venture with Rice, before selling them their stake in a group of wells and midstream operations that were fined $3.5 million by DEP.5 On this compliance report, the fines from this incident are split between the two companies.

Fines Issued Over Time

It is worth taking a look at how O&G related fines have varied over time, as well (Figure 1, shown in millions of dollars). Numerous factors could contribute to changes in trends, such as the number of available DEP inspectors,6 the amount of attention being paid to the industry in the media, differing compliance strategies employed by various political administrations, or changes in practices in the field, which could in turn be impacted by significant fines issued in the past.

PA Oil & Gas Fines Analysis chart

Figure 1. O&G Fines Issued by DEP, 2000 through 2016

The notable spike in fines issued from 2010 to 2012 corresponds with the peak of unconventional drilling in the state – 4,908 of these industrial scaled wells were drilled during those three years, amounting to 48% of all unconventional wells in PA. In contrast, only 504 unconventional wells were drilled in 2016, or around a quarter of the total for 2011. In this context, the reduction in fines since the early part of the decade seems reasonable.

The association with the number of unconventional wells falls apart a bit in the years 2013 to 2014, however. These two years saw an average of 1,293 unconventional wells drilled, but the fines issued amounted to only 35% of the 2011 total.

Considerable strides have been made in the public accessibility of oil and gas data available from the PA DEP since FracTracker started requesting and reviewing this information in 2009. Still, there are many gaps in the datasets, such as geolocation details for 10 of the 20 largest fines issued by the department. FracTracker hopes external analyses like this one will help to close such gaps and identify operators who, too, need to improve their compliance records.

References & Footnotes

  1. Pennsylvania Department of Environmental Protection (PA DEP) Oil and Gas (O&G) Compliance Database.
  2. PA DEP O&G Spud Database. Note: Starting date 1/1/1800 captures unknown spud (wells drilled) dates.
  3. Pipeline Hazardous Materials and Safety Administration (PHMSA) Pipeline Data Mart Reports.
  4. PA DEP Permits Issued Database.
  5. State Impact PA. (2016). Rice Energy fined $3.5 million for wellsite and pipeline violations.
  6. PennEnvironment Research & Policy Center. (2017). Fracking Failures 2017, Oil and Gas Industry Environmental Violations in Pennsylvania.

Oil & Gas Fines White Paper

This analysis is also available for download in a printer-friendly, white paper format:

Download White Paper (PDF)

2017 PA Oil & Gas Fines Analysis by FracTracker Alliance


Cover Photo by Pete Stern, Loyalsock, PA

34 states with active drilling activity in US map

34 states have active oil & gas activity in U.S. based on 2016 analysis

Each year, FracTracker Alliance compiles a national well file to try to assess how many wells have been drilled in the U.S. We do this by extracting data from the various state regulatory agencies that oversee drilling in oil and gas producing states. We’re a little late posting the results of our 2016 analysis, but here it is.

Based on data from 2014-2015, 34 states * saw drilling activity, amounting to approximately 1.2 million facilities across the U.S. – from active production wells, to natural gas compressor stations, to processing plants.

The process we used to count these wells and related facilities for the 2016 analysis changed a bit this time around, which obviously impacts the total number of wells in the dataset. 2016’s compilation was created in consultation with Earthworks, for the purpose of informing the Oil and Gas Threat Map project. The scope was more restrictive than previous editions (see our 2014 and 2015 analyses), focusing only on wells that we were reasonably confident were actively producing oil and gas wells, thus excluding wells with inactive or uncertain statuses, as well salt water disposal (SWD) and other Class II injection (INJ) well types.

There are facilities included in this dataset that we don’t normally tally, as well (See Table 1 below). Earthworks was able to determine the latitude and longitude coordinates of a number of compressors and other processing plants, which are included in the dataset below and final map.

In all, the facility counts are reduced from about 1.7 million in 2015 to about 1.2 million in 2016, but this is more a reflection of the definition than substantial changes in the active well inventory in the U.S. You can explore this information by state, and additional results of this project, using Earthworks’ Threats Maps. Additionally, the national well file is available to download below.

Download 2016 National Well File Data

* The zip file separates out TX wells from the rest of the states due to the significant number of TX facilities.

You’ll notice that we don’t refer to the wells in this analysis as “fracked” wells. The primary reason for not using such terminology is because no one common definition exists across those states for what constitutes a hydraulically fractured well. In PA, for example, such wells are considered “unconventional” because drilling occurs in an unconventional formation and usually involves some sort of well stimulation. Contrastingly, in CA, often drillers use “acidizing” not fracking – a similar process that breaks up the ground using acidic injected fluids instead of the high pressure seen in traditional fracking. As such, we included all active oil and gas production instead of trying to limit the analysis to just wells that have been stimulated. We will likely continue to use this process until a federal or national definition of what constitutes a “fracked” well is determined.

Table 1. Facilities by State and Type

State Count of Facilities by Type Grand Total
Compressor Processor Well
AK 7 3,356 3,363
AL 17 7,016 7,033
AR 231 8 13,789 14,028
AZ 40 40
CA 7 21 92,737 92,765
CO 426 49 50,881 51,356
FL 2 102 104
ID 6 6
IL 5 48,748 48,753
IN 7,374 7,374
KS 9 90,526 90,535
KY 5 11,769 11,774
LA 6,486 94 2,555 9,135
MI 19 16,525 16,544
MO 2 687 689
MS 6 4,556 4,562
MT 5 9,768 9,773
ND 19 13,024 13,043
NE 1 16,202 16,203
NM 902 37 57,839 58,778
NV 176 176
NY 12,244 12,244
OH 29 10 90,288 90,327
OK 856 96 29,042 29,994
OR 56 56
PA 452 11 103,680 104,143
SD 408 408
TN 15,956 15,956
TX 758 315 397,776 398,849
UT 18 20,608 20,626
VA 9,888 9,888
WI 1 1
WV 20 16,118 16,138
WY 325 48 38,538 38,911
Grand Total 10,472 825 1,182,278 1,193,575
* NC facilities are not included because the state did not respond to multiple requests for the data. This exclusion likely does not significantly affect the total number of wells in the table, as historically NC only had 2 oil and gas wells.

Hypothetical Impacts of Unconventional Drilling In Allegheny County

With tens of thousands of wells scattered across the countryside, Southwestern Pennsylvania is no stranger to oil and gas development. New, industrial scale extraction methods are already well entrenched, with over 3,600 of these unconventional wells drilled so far in that part of the state, mostly from the well known Marcellus Shale formation.

Southwestern Pennsylvania is also home to the Pittsburgh Metropolitan Area, a seven county region with over 2.3 million people. Just over half of this population is in Allegheny County, where unconventional drilling has become more common in recent years, along with all of its associated impacts. In the following interactive story map, the FracTracker Alliance takes a look at current impacts in more urban and suburban environments, plus projects what future impacts could look like, based on leasing activity.

hypothetical impacts map

By Matt Kelso, Manager of Data & Technology

Oil and gas production on public lands

Interactive maps show nearness of oil and gas wells to communities in 5 states

As an American, you are part owner of 640 million acres of our nation’s shared public lands managed by the federal government. And chances are, you’ve enjoyed a few of these lands on family picnics, weekend hikes or summer camping trips. But did you know that some of your lands may also be leading to toxic air pollution and poor health for you or your neighbors, especially in 5 western states that have high oil and gas drilling activity?

A set of new interactive maps created by FracTracker, The Wilderness Society, and partner groups show the threatened populations who live within a half mile of  federal oil and gas wells – people who may be breathing in toxic pollution on a regular basis.

Altogether, air pollution from oil and gas development on public lands threatens at least 73,900 people in the 5 western states we examined. The states, all of which are heavy oil and gas leasing areas, include ColoradoNew MexicoNorth DakotaUtah and Wyoming.

Close up of threat map in Colorado

Figure 1. Close up of threat map in Colorado

In each state, the data show populations living near heavy concentrations of wells. For example just northeast of Denver, Colorado, in the heavily populated Weld County, at least 11,000 people are threatened by oil and gas development on public lands (Figure 1).

Western cities, like Farmington, New Mexico; Gillette, Wyoming; and Grand Junction, Colorado are at highest risk of exposure from air pollution. In New Mexico, especially, concentrated oil and gas activity disproportionately affects the disadvantaged and minorities. Many wells can be found near population centers, neighborhoods and even schools.

Colorado: Wells concentrated on Western Slope, Front Range

Note: The threatened population in states are a conservative estimate. It is likely that the numbers affected by air pollution are higher.

In 2014, Colorado became the first state in the nation to try to curb methane pollution from oil and gas operations through comprehensive regulations that included inspections of oil and gas operations and an upgrade in oil and gas infrastructure technology. Colorado’s new regulations are already showing both environmental and financial benefits.

But nearly 16,000 people – the majority living in the northwestern and northeastern part of the state – are still threatened by pollution from oil and gas on public lands.

Many of the people whose health is endangered from pollution are concentrated in the fossil-fuel rich area of the Western Slope, near Grand Junction. In that area, three counties make up 65% of the total area in Colorado threatened by oil and gas development.

In Weld County, just northeast of Denver, more than 11,000 residents are threatened by air pollution from oil and gas production on federal lands. But what’s even more alarming is that five schools are within a half mile radius of wells, putting children at risk on a daily basis of breathing in toxins that are known to increase asthma attacks. Recent studies have shown children miss 500,000 days of school nationally each year due to smog related to oil and gas production.

State regulations in Colorado have helped improve air quality, reduce methane emissions and promote worker care and safety in the past two years, but federal regulations expected by the end of 2016 will have a broader impact by regulating pollution from all states.

New Mexico: Pollution seen from space threatens 50,000 people

With more than 30,000 wells covering 4.6 million acres, New Mexico is one of the top states for oil and gas wells on public lands. Emissions from oil and gas infrastructure in the Four Corners region are so great, they have formed a methane hot spot that has been extensively studied by NASA and is clearly visible from space.

Nearly 50,000 people in northwestern New Mexico – 40% of the population in San Juan County – live within a half mile of a well. 

Dangerous emissions from those wells in San Juan County disproportionately affect minorities and disadvantaged populations, with about 20% Hispanic, almost 40% Native American, and over 20% living in poverty.

Another hot spot of oil and activity is in southeastern New Mexico stretching from the lands surrounding Roswell to the southern border with Texas. Wells in this region also cover the lands outside of Carlsbad Caverns National Park, potentially affecting the air quality and visibility for park visitors. Although less densely populated, another 4,000 people in two counties – with around 50% of the population Hispanic – are threatened by toxic air pollution.

Wyoming: Oil and gas emissions add to coal mining pollution

Pollution from oil and gas development in Wyoming, which has about as many wells as New Mexico, is focused in the Powder River Basin. This region in the northeast of the state provides 40% of the coal produced in the United States.

Oil and gas pollution threatens approximately 4,000 people in this region where scarred landscapes and polluted waterways are also prevalent from coal mining. 

With the Obama administration’s current pause on federal coal leasing and a review of the federal coal program underway, stopping pollution from oil and gas on public lands in Wyoming would be a major step in achieving climate goals and preserving the health of local communities.

Utah: Air quality far below federal standards

Utah has almost 9,000 active wells on public lands. Oil and gas activity in Utah has created air quality below federal standards in one-third of Utah’s counties, heightening the risk of asthma and respiratory illnesses. Especially in the Uintah Basin in northeastern Utah – where the majority of oil and development occurs – a 2014 NOAA-led study found oil and gas activity can lead to high levels of ozone in the wintertime that exceed federal standards.

North Dakota: Dark skies threatened by oil and gas activity

The geology of western North Dakota includes the Bakken Formation, one of the largest deposits of oil and gas in the United States. As a result, high oil and gas production occurs on both private and public lands in the western part of the state.

Nearly 650 wells on public lands are clustered together here, directly impacting popular recreational lands like Theodore Roosevelt National Park.

The 70,000-plus-acre park – named after our president who first visited in 1883 and fell in love with the incredible western landscape – is completely surrounded by high oil and gas activity. Although drilling is not allowed in the park, nearby private and public lands are filled with active wells, producing pollution, traffic and noise that can be experienced from the park. Due to its remote location, the park is known for its incredible night sky, but oil and gas development increases air and light pollution, threatening visibility of the Milky Way and other astronomical wonders.

You own public lands, but they may be hurting you

Pollution from oil and gas wells on public lands is only a part of a larger problem. Toxic emissions from oil and gas development on both public and private lands threaten 12.4 million people living within a half mile of wells, according to an oil and gas threat map created by FracTracker for a project by Earthworks and the Clean Air Task Force.

Now that we can see how many thousands of people are threatened by harmful emissions from our public lands, it is more important than ever that we finalize strong federal regulations that will help curb the main pollutant of natural gas – methane – from being leaked, vented, and flared from oil and gas infrastructure on public lands.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

We need to clean up our air now

With U.S. public lands accounting for 1/5 of the greenhouse gas footprint in the United States, we need better regulations to reduce polluting methane emissions from the 96,000 active oil and gas wells on public lands.

Right now, the Bureau of Land Management is finalizing federal regulations that are expected by the end of 2016. These regulations are expected to curb emissions from existing sources – wells already in production – that are a significant source of methane pollution on public lands. This is crucial, since by 2018, it is estimated that nearly 90% of methane emissions will come from sources that existed in 2011.

Federal regulations by the BLM should also help decrease the risk to communities living near oil and gas wells and helping cut methane emissions by 40 to 45% by 2025 to meet climate change reduction goals.

Final regulations from the Bureau of Land Management will also add to other regulations from the EPA and guidance from the Obama administration to modernize energy development on public lands for the benefit of the American people, landscapes and the climate. In the face of a changing climate, we need to continue to monitor fossil fuel development on public lands and continue to push the government towards better protections for land, air, wildlife and local communities.


By The Wilderness Society – The Wilderness Society is the leading conservation organization working to protect wilderness and inspire Americans to care for our wild places. Founded in 1935, and now with more than 700,000 members and supporters, The Wilderness Society has led the effort to permanently protect 109 million acres of wilderness and to ensure sound management of our shared national lands.

Comparing Unconventional Drilling in Southwestern PA

By Matt Unger, GIS Intern, FracTracker Alliance

We recently received a request  for unconventional (fracking) drilling data in Southwestern Pennsylvania counties and municipalities. Specifically, the resident wanted to know the following information:

  1. Number of drilled wells in Southwestern PA counties, and in each municipality,
  2. How many wells are producing natural gas in each municipality, and
  3. The number of well violations reported there.

The following counties in Southwestern PA were studied (based on available electronic data): Allegheny, Armstrong, Beaver, Butler, Cambria, Fayette, Greene, Indiana, Somerset, Washington, and Westmoreland.

The well production data was compiled from a production report found on the Pennsylvania DEP Office of Oil and Gas website. This report detailed production values from unconventional gas wells statewide from January 2014 – June 2014. The well violation data was compiled using the Pennsylvania DEP Office of Oil and Gas’s interactive Oil and Gas Compliance report. From here, a compliance report was created using the following criteria: All PA regions, counties, and municipalities, all well operators, unconventional wells only, and wells inspected from 1/1/2000 – 9/9/2014.

Drilling Data Trends

Once all of the data was compiled, we created a spreadsheet that included a ratio of violations/wells for each municipality and county. Below are a few observations that stood out to us, followed by possible explanations for what has been reported.

  • Slightly less than 1/3 of all wells drilled in the 11 counties selected for this analysis have committed some sort of violation (.31).
  • The ratio of violations to wells drilled in Somerset County is 1.38, by far the largest ratio discovered. This means than more than one violation has been cited for every well drilled in that area, but that does not mean that every well carries with it a violation. The second largest ratio would be Cambria County at 1.00.
  • If you break down the numbers and look at municipality trends, the largest violation/wells ratio by municipality is found in Stewart Township, Fayette County (9.00). There have been 18 reported violations in association with the 2 wells drilled in the area.
  • Of the 60 municipalities that recorded no violations, South Buffalo Township in Armstrong County has the most wells drilled with 20.
  • Across the 11 counties studied, Allegheny County has the lowest ratio of violation/wells (.007).
  • Violations were reported in Somerset Township, Somerset County. No wells were drilled in this area, however.
  • Violations were reported in Wayne Township, Greene County, yet no wells were reported to be drilled in the municipality.

Explaining Some Data Caveats

Why is Allegheny County seeing such a low violation/well ratio?

Across the 11 counties studied, Allegheny County has the lowest ratio of violation/wells (.007).

Allegheny is the most populated county studied in Southwestern PA. Oil and gas drillers in the county, therefore, have the largest audience watching them. This may be encouraging the drillers to be more cautious or follow rules and regulations more strictly. Another possible explanation is that inspectors may be more lenient when reporting violations in in Allegheny County. Additionally, drillers operating primarily in Allegheny County may be are more likely to or are more capable of drilling according to the regulations. A final possibility is that Allegheny County is one of the last counties in this region to be heavily drilled, perhaps allowing for more best practices to be implemented on site compared to well pads established early on.

Violations With No Wells?

Violations were reported in Somerset Township, Somerset County. No wells were drilled in this area, however. These violations could have occurred when constructing the well pad. If construction has stopped at this site since the violation, there would not have been any wells drilled. Additionally, there may be an error in the dataset as to the actual location (e.g. county) of the well pad.

Violations were reported in Wayne Township, Greene County, yet no wells were reported to be drilled in the municipality. The PA DEP has informed FracTracker that these violations were actually reported for a well pad located in Center Township, Greene County. The entry for Wayne Township was a recording error on their part. Our data has been updated to reflect the proper number of violations reported in Center Township, as well as the removal of any activity in Wayne Township.

Download the Spreadsheet

The spreadsheet we supplied to this resident can be downloaded as a compliance report.

Updated PA Map

Explore our map of PA unconventional wells and violations by clicking on the map below:

Last updated: September 19, 2014