Data driven discussions about gas extraction and related topics.

Oil Transportation and Accidents by Rail

Lac-Mégantic train explosion on July 6, 2013.  Photo by TSB of Canada.

Lac-Mégantic train explosion on July 6, 2013. Photo by Transportation Safety Board of Canada.

On July 5, 2013, the lone engineer of a Montreal, Maine, and Atlantic (MMA) train arrived in Nantes, Quebec, set both the hand and air brakes, finished up his paperwork. He then left the train parked on the main line for the night, unattended atop a long grade. Five locomotives were pulling 72 tanker cars of oil, each containing 30,000 gallons of volatile crude from North Dakota’s Bakken Formation. During the night, the lead locomotive caught fire, so the emergency responders cut off the engine, as per protocol.  However, that action led to a loss of pressure of the air brakes.  The hand brakes (which were supposed to have been sufficient by themselves) failed, and the train began to run away. By the time it reached Lac-Mégantic early the next morning, the unattended cars were traveling 65 mph.  When the train reached the center of town, 63 tank cars derailed and many of those exploded, tragically killing 47 people in a blaze that took over two days to extinguish.

With that event came a heightened awareness of the risks of transporting volatile petroleum products by rail.  A derailment happened on a BNSF line near Casselton, North Dakota on December 30, 2013. This train was then struck by a train on an adjacent track, igniting another huge fireball, although this one was luckily just outside of town.  On April 30, 2014, a CSX train derailed in Lynchburg, Virginia, setting the James River on fire, narrowly avoiding the dense downtown area of the city of 75,000 people.


North American petroleum transportation by rail. Click on the expanding arrows icon in the top-right corner to access the full screen map with additional tools and description.

Regulators in the US and Canada are scrambling to keep up.  DOT-111 tank cars were involved in all of these incidents, and regulators seek to phase them out over the next two years. These cars account for 69% of the fleet of tank cars in the US, however, and up to 80% in Canada.  Replacing these cars will be a tough task in the midst of the oil booms in the Bakken and Eagle Ford plays, which have seen crude by rail shipments increase from less than 5,000 cars in 2006 to over 400,000 cars in 2013.

This article is the first of several reports by the FracTracker Alliance highlighting safety and environmental concerns about shipping petroleum and related products by rail. The impacts of the oil and gas extraction industry do not end at the wellhead, but are a part of a larger system of refineries, power plants, and terminals that span the continent.

Fracking vs. Ohio’s Renewable Energy Portfolio – A False Distinction

Changes to OH Wind Power

Part I of a Multi-part Series – By Ted Auch, OH Program Coordinator, FracTracker Alliance

Governor Kasich recently signed SB 310 “Ohio’s Renewable Energy Portfolio Standard” and HB 483.1 This action by all accounts will freeze energy efficiency efforts (such as obtaining 25% of the state’s power from renewables by 20252) and impose a tremendous degree of uncertainty on $2.5 billion worth of wind farm proposals in Ohio.

Active & Proposed Wind Projects in the U.S.


The above map describes active and proposed renewable energy projects, as well as energy related political funders and think tanks. We will be relying heavily on this map throughout our Ohio renewable energy series. Click the arrows in the upper right hand corner of the map to view the legend, metadata, and more.

Opposing Views

Sides of the SB 310 and HB 483 Debate

Opposition to SB 310 and HB 483 is coming from the business community3 and activists, while powerful political forces provide support for the bill (see figure right). Opponents feel that renewables and a more diversified energy portfolio are the true “bridge fuel,” and unlike hydrocarbons, renewables provide a less volatile or globally priced source of energy.

HB 483 will change new commercial wind farms setbacks to 1,300 ft. from the base of the turbine to the closest property line – rather than the closest structure. The bill will also change the setback for permitted and existing wind projects to 550 feet from a property line in the name of noise reduction, potential snow damage (Kowalski, 2014; Pelzer, 2014). This imposed distance is curious given that setbacks for Utica oil and gas wells are only 100-200 feet.

OH’s turbine setback requirements instantly went from “middle of the pack” to the strictest in the nation. OH is now in the dubious position of being the first of 29 states with Renewable Energy Standards (RESs) to freeze renewable energy before it even got off the ground. Is the road being intentionally cleared for an even greater reliance on shale gas production and waste disposal in OH?

An Environment of Concerns

As Mary Kuhlman at the Public News Service pointed out, the concern with both bills from the renewable energy industry – including wind giant, Iberdrola – is that the bills will “create a start-stop effect that will confuse the marketplace, disrupt investment, and reduce energy savings for customers.” These last minute efforts to roll back the state’s renewable energy path were apparently inserted with no public testimony; the OH Senate spent no more than 10 minutes on them, and there was overwhelming support in both the House and the Senate.

Ohioans, unlike their elected officials, support the renewable energy standards according to a recent poll (Gearino, 2014). Voters are in favor of such measures to the tune of 72-86%, with the concern being the potential for organic job growth4, reduced pollution, and R&D innovation in OH rather than marginal cost increases.

The elephant in the room is that fossil fuel extraction may not improve residents’ quality of life. Many of the most impoverished counties in this country are the same ones that relied on coal mining in the past and hydrocarbon production presently. The best examples of this “resource curse” are the six Appalachian Mountain and Texas Eagle Ford Shale counties chronicled by The New York Times (Fernandez and Krauss, 2014; Flippen, 2014; Lowrey, 2014).

Ohio Wind Potential

Ohio Wind Speed, Utica Shale Play, and Permitted Utica Wells

Figure 1. OH Wind Speed, Utica Shale Play, & Permitted Utica Wells. Click to enlarge.

According to the American Wind Energy Association (AWEA), OH currently has 425-500 megawatts (MW) worth of operating wind power, which ranks it ahead of only Kentucky in the Appalachian shale gas corridor and #26 nationally.6 Using factors provided by Kleinhenz & Associates, a 428 MW capacity equates to 856-1,284 jobs, $628 million in wages (i.e., $49-73K average), $1.85 billion in sales, and $48.9 million in public revenues.

Seventy-one percent of OH’s capacity is accounted for by the $600 million Iberdrola owned and operated Blue Creek Wind Farm in northwestern OH. The terrestrial wind speeds are highest there – in the range of 14.3-16.8 mph as compared to the slow winds of the OH Utica Shale basin (Figure 1).6 It is worth noting that the recent OH renewable energy legislation would have diminished the Blue Creek project by 279 MW if built under new standards, given that only 12 of the turbines would fall within the new setback criteria.

Ohio Wind Capacity (MW) Added Between 2011 and 2014

Figure 2. OH Wind Capacity (MW) Added Between 2011 and 2014. Click to enlarge.

If OH were to pursue the additional 900 MW public-private partnership wind proposals currently under review by the Ohio Power Siting Board (OPSB), an additional 900,000-1.2 million jobs, $1.3 billion in wages, $3.9 billion in sales, and $102.9 million in revenue would result. These figures are conservative estimates for wind power but would result in markedly more jobs for Ohioans with the component manufacturing and installation capacity already in OH (Figure 2). The shale gas industry, in comparison, relies overwhelmingly on the import of goods, services, capital, and labor for their operations. Additionally, lease agreements with firms like Iberdrola compare favorably with the current going rate for Utica leases in OH; landowners with turbines on their properties receive $8K. Nearby neighbors receive somewhat smaller amounts depending on distance from turbines, noise, and visibility.

OH’s current inventory of wind projects alleviate the equivalent of 45 Utica wells worth of water consumption.7 Considering current wind energy capacity and the proposed 900 MWs, OH will have only tapped into 2.4% of the potential onshore capacity in the Buckeye State. If the state were to exploit 10% more of the remaining wind capacity, the numbers would skyrocket into an additional 5.5-7.1 million jobs, $8.1 million in wages, $23.8 billion in sales, and $627.9 million in public revenues.

Taking the Wind out of the Sails

However, SB 310 and HB 483 took the wind out of Iberdrola and the rest of the AWEA’s membership’s proverbial sails. Their spokesperson noted that “The people (who will be hurt) most are the ones who have spent a couple of million dollars to go through the OPSB process expecting those (renewable-energy) standards to be there.” OH’s increased capacity historically has accounted for approximately 2.3% of increases nationwide.

Equally, hydrocarbon production dependent states like Texas have found time, resources, and regulatory room for wind even as they continue to explore shale gas development. Texas alone – home to 26% of the nation’s active oil and gas wells according to work by our Matt Kelso – accounted for 14% of wind-power installation capacity coming online (Gearino, 2013). This figure stands in contrast to the claims of those that supported SB 310 and HB 483 that increase in renewable energy equate to declines in jobs, tax revenue, and countless other metrics of success. The politics of Texas and the state’s higher reliance on hydrocarbon generation should demonstrate that support for renewables is not a zero-sum game for traditional energy sources.

The average US wind farm has a potential of 300 MWs, with approximately 88 turbines or 3.4 MW per turbine spread across an average footprint of 7,338 acres. The actual footprint of these turbines, however, is in the range of 147-367 acres. Tower and turbine heights are generally 366 and 241 feet, respectively. These projects generate 0.89 jobs per MW and nearly 175,000 labor hours.

Thus, the potential of wind power from a tax revenue, employment, and energy independence standpoint is substantial but will only be realized if OH strengthens and diversifies renewable energy standards in Columbus.

Next in the Series

In the next part of this series we will look at the potential of woody biomass as an energy feedstock in OH.


References

Footnotes

  1. Most of HB 483 focuses on taxation and social programs with the one hydrocarbon provision doubling maximum penalties for gas pipeline violations removed by the Ohio House Finance Committee.
  2. According to Ohio’s Public Utilities Commission “At least 12.5 percent must be generated from renewable energy resources, including wind, hydro, biomass and at least 0.5 percent solar. The remainder can be generated from advanced energy resources, including nuclear, clean coal and certain types of fuel cells…at least one half of the renewable energy used must be generated…in Ohio.”
  3. Supporters include Honda, Whirlpool, Owens-Corning, Campbell Soup Co., and most of the big players in the alternative-energy sector.
  4. Ohio is at the vanguard of wind turbine component manufacturing with its thriving steel industry and more than 60 supply chain companies that would assuredly mushroom with a more robust RES. Ohio is home to 11% of the nations’ wind-related manufacturing facilities making it #1 in the nation.
  5. This is equivalent to 305,278 Ohioans, 18.07 million tons of CO2 or 950,012 Ohioans annual emissions.
  6. Note that the wind speed map includes measurements made at 50 meters in height, while OH turbines are typically installed at 80-100 m hub height, which “is the distance from the turbine platform to the rotor of an installed wind turbine and indicates how high your turbine stands above the ground, not including the length of the turbine blades. Commercial scale turbines (greater than 1MW) are typically installed at 80 m (262 ft.) or higher, while small-scale wind turbines (approximately 10kW) are installed on shorter towers.”
  7. Assuming the following claim from the American Wind Energy Association is true: “The water consumption savings from wind projects in Ohio total more than 248,000,000 gallons of water a year.”
Photo by Lara Marie Rauschert-Mcfarland

Florida’s Geographic and Geologic Challenges

By Maria Rose, Communications Intern, FracTracker Alliance

FracTracker has received numerous emails and phones calls wondering about unconventional drilling activity in Florida. Part of the concern related to fracking in the Sunshine State stems from Florida’s unique geographic and geologic characteristics, including a variety of environmental, geologic, and social issues that make drilling a very different challenge from other states. This article provides a brief compilation and explanation of those issues.

Everglades & Big Cypress National Preserve

Everglades

FL Everglades. Photo: Lara Marie Rauschert-Mcfarland, 2013.

Florida is home to the Everglades and the Big Cypress National Preserve, two locations that have a unique climate, assortment of wildlife, and diversity of fauna. Drilling has occurred in Southwest Florida since the 1940s,2 but it has been contained to traditional vertical drilling, until recently. The transition to more extreme methods of extraction, such as acid or hydraulic fracturing, may have more severe consequences on the fragile environment. The current rules and regulations in place are specific to vertical drilling, not focused on the distinct risks of fracking.2

Citizens have expressed concern that more drilling, and more extreme drilling, may contaminate regional groundwater and disrupt the habitat of the animals in the area. The endangered Florida panther is one species of particular concern; there are plans to drill close to the Florida Panther National Wildlife Refuge on the western edge of the Everglades. Drilling requires a host of preparation and set up, including clearing out areas, building roads, and seismic testing for underground reserves. Both animals and the environment can be disturbed or destroyed by these processes, whether it is from accidental spills from drilling, clearing out forested areas, or road traffic.3

Currently, there are 350,000 acres in southwest Florida leased for seismic testing to determine what areas underground have the most promising oil reserves: 115,00 acres in the greater Everglades by the company Tocala for dynamite blasting, and 234,510 acres in the Big Cypress National Park by Burnett Oil Co., for testing with “thumper trucks”.3 Thumper trucks drop heavy weights on the ground and use the vibrations to estimate oil reserves there. These weights have the potential to fracture the crust over porous limestone formations that hold aquifers, where people get their drinking water.4

 References and Resources

  1. Senator Nelson on Drilling 
  2. Florida Halts Fracking Near Everglades 
  3. Concern Over Plans to Drill for Oil in the Everglades 
  4. Senator Nelson Prevents Oil Drilling in Southwest Florida 

Water

The natural gas drilling industry requires large amounts of water to frack wells, using approximately four million gallons of fresh water per well.4 The water becomes extremely saline from the elements that mix with the water and earth underground. This fluid will also contain frac fluid chemicals added by the industry – some of which are toxic.3 After the drilling process is complete, the resulting waste must then be treated and disposed of properly either via deep well injection sites, limited reuse, recycling, and/or landfills. The potential for contamination of underground aquifers or aboveground mixing with freshwater sources is an important risk to consider.2

Florida has an already sensitive relationship with water. Being so close to the ocean, Florida often bears the brunt of natural disasters such as hurricanes and heavy storms, which all pose threats to freshwater sources above ground. There is also a high water table in Florida that lies directly under and very close to the Sunniland Basin, a layer of fossil fuel rich rock that is of interest to drillers. Drilling in the area, if done hastily, could contaminate a very important fresh water source.1

References and Resources

  1. Legislators Prepare for Potential Fracking in Florida 
  2. Drilling for Natural Gas Jeopardizes Clean Water 
  3. Environment America-Fracking By the Numbers
  4. Oil and Gas Extraction and Hydraulic Fracturing
  5. EPA Oil and Gas Production Wastes

Tourism

For Dr. Karen Dwyer, a concerned citizen of Collier County, the issue of parks and water also ties in to one of Florida’s most important industries: tourism. As Dwyer sees it, if what draws crowds to the state is diminished — the natural beauty of the Everglades and beaches and water — then tourism will falter. The communities impacted by the 2010 BP Gulf Oil Spill can attest to this fact. Small Florida towns near drilling activity  that rely on the income generated by tourism could fall into obscurity.

“People rely on touristy things here,” Dwyer said. “If people aren’t going to come here, we’re going to be a ghost town. If we have a huge accident, we’re not going to have [tourism anymore].”1

Reference:

  1. Interview with Dr. Karen Dwyer, Wednesday June 11th.

Karst Formations

Karst geologic formations visible near a spring. Photo: Richard Gant

Karst geologic formations visible near spring. Photo: Richard Gant

In addition to the unique environmental landscape, need for water, and dependence on tourism, Florida also has a vulnerable geology. The majority of the rock formation underground is made up of sand and limestone, which erodes and dissolves easily both above and below ground from exposure to rainwater. This feature causes karst formations in the rock, leading to sinkholes and fractures in the ground. There is some concern that the drilling processes required to access the gas might disturb the already sensitive environment and cause more stress or damage in areas already affected by sinkholes. Karst geology also has potential for increased aquifer contamination; if the ground is extremely porous, then water — and therefore, other chemicals and radioactive materials — may move through the ground more easily than in other geologies and contaminate water sources.

 References and Resources:

  1. Florida Development and Legislation
  2. USGS – The Science of Sinkholes
  3. Florida Hydraulic Fracturing

Demographics

Environmental justice can be a challenge that accompanies oil and gas drilling at times, defined as the inequitable distributions of environmental burdens. In Florida, we see a potential example of environmental justice, as the drilling completed thus far has dominantly affected low-income communities such as Collier County. Collier County has a large proportion of older, retired families, as well as younger families that may hold multiple jobs and relatively low incomes. In these communities, people are less resistant to the introduction of large, new industries that promise economic growth, since opportunities for such economic stimulation are rare. Similarly, people are less resistant to these issues simply because they may not have enough influence or understanding to reject such risky industries. It is clear then, that impoverished or under-stimulated communities often have to deal with the repercussions – environmentally, economically, and socially – of industry presence more than in places where people can afford and know how to repel industries that may pose environmental risks.

 References and Resources

  1. Florida Census 
  2. Florida County Profile
  3. Environmental Racism

Demographics content originated from interview with Pamela Duran, Monday June 30th.

Offshore oil and gas exploration federally approved

By Karen Edelstein, NY Program Coordinator

Right whale (Eubalaena glacialis) with calf

Background

Drilling in the Atlantic Ocean off the coast of the United States has been off-limits for nearly four decades. However, last Friday, the Obama administration’s Bureau of Ocean Energy Management (BOEM) opened the Atlantic outer continental shelf for oil and gas exploration starting in 2018, with oil production commencing in 2026. In a December 2013 report by the American Petroleum Institute (API) , API estimated that offshore exploration and federal lease sales could generate $195 billion between 2017 and 2035.

Problems for marine mammals, sea turtles, fish

Aside from the inherent risks of catastrophic drilling accidents similar to BP’s Deepwater Horizon in April 2010, open ocean oil and gas exploration can pose severe problems for marine life. Environmentalists have voiced alarm over the techniques used to explore for hydrocarbons deep below the ocean floor. Using “sonic cannons” or “‘seismic airguns,” pulses of sound are directed at the sea bottom to detect hydrocarbon deposits.

Underwater communication by marine mammals, such as whales and dolphins, relies on sound transmission over long distances — sometimes thousands of miles. These animals use sound to navigate, find mates and food, and communicate with each other. Noise pollution by common ships and supertankers is known to disrupt and displace marine mammals, but naval sonar has been documented as a cause of inner ear bleeding, hearing loss, tissue rupture, and beach strandings. According to the Ocean Mammal Institute:

These sonars – both low -frequency (LFAS) and mid -frequency can have a source level of 240 dB, which is one trillion times louder than the sounds whales have been shown to avoid. One scientist analyzing underwater acoustic data reported that a single low frequency sonar signal deployed off the coast of California could be heard over the entire North Pacific Ocean.

Natural Resources Defense Council also expressed concern over naval sonar: “By the Navy’s own estimates, even 300 miles from the source, these sonic waves can retain an intensity of 140 decibels – a hundred times more intense than the level known to alter the behavior of large whales.”

As destructive as naval sonar may be, oil and gas exploration sonic cannons–also known as seismic airguns– (at 216 – 230 dB) create disruptions to marine life many orders of magnitude greater. Fish and sea turtles are also affected, with catch rates of fish decreasing up to 70% when airguns were used in a commercial fishing area, according to a study by the Norwegian Institute of Marine Research.

The intensity and duration of the sonic cannon pulses during oil and gas exploration are an important factor in this equation. According to the Huffington Post, “The sonic cannons are often fired continually for weeks or months, and multiple mapping projects are expected to be operating simultaneously as companies gather competitive, secret data.” Collateral damage for the exploration is far from insignificant, the article continues:

The bureau’s environmental impact study estimates that more than 138,000 sea creatures could be harmed, including nine of the 500 north Atlantic right whales remaining in the world. Of foremost concern are endangered species like these whales, which give birth off the shores of northern Florida and southern Georgia before migrating north each year. Since the cetaceans are so scarce, any impact from this intense noise pollution on feeding or communications could have long-term effects, Scott Kraus, a right whale expert at the John H. Prescott Marine Laboratory in Boston, said.

‘No one has been allowed to test anything like this on right whales,” Kraus said of the seismic cannons. “(The Obama administration) has authorized a giant experiment on right whales that this country would never allow researchers to do.’

North Atlantic right whales are one of the most endangered species of cetaceans in the world.

Map of ranges of marine mammals potentially affected and towns opposing sonic cannon exploration for oil and gas

Although currently, the waters off New Jersey and New England are off-limits for exploration, North Carolina, South Carolina, and Virginia encouraged the federal government to open their off-shore waters for oil and gas surveys. Nevertheless,  many ocean-front communities have come out strongly against the use of sonic cannons and their impacts on marine life. To date, 15 communities from New Jersey to Florida have passed resolutions opposing this form of oil and gas exploration.

FracTracker has mapped the locations of these communities, with pop-up links to the resolutions that were passed, as well as the ranges of 17 marine mammals found along the Atlantic seaboard of the US.  These data come from the International Union for Conservation of Nature (IUCN) 2014 Red List of Threatened Species. You can toggle ranges on and off by going to the “Layers” drop-down menu at the top of the map. The default presentation for this map currently shows only the range of North Atlantic right whales. For a full-screen version of this map, with access to the other marine mammal ranges, click here.

What’s in PA Senate Bill 1378?

State Senator Joseph Scarnati III, from north-central Pennsylvania, has introduced a bill that would redefine the distinction between conventional and unconventional oil and gas wells throughout the state.  In Section 1 of the bill, the sponsors try to establish the purpose of the legislation,  making the case that:

  1. Conventional oil and gas development has a benign impact on the Commonwealth
  2. Many of the wells currently classified as conventional are developed by small businesses
  3. Oil and gas regulations, “must permit the optimal development of oil and gas resources,” as well as protect the citizens and environment.
  4. Previous legislation already does, and should, treat conventional and unconventional wells differently
This diagram shows geologic stata in Pennsylvania.  The Elk Sandstone is between the Huron and Rhinestreet shale deposits from the Upper Devonian period.

This diagram shows geologic stata in Pennsylvania. The Elk Group is between the Huron and Rhinestreet shale deposits from the Upper Devonian period. Click on the image to see the full version. Source: DCNR

Certainly, robust debate surrounds each of these points, but they are introductory in nature, not the meat and potatoes of Senate Bill 1378.  What this bill does is re-categorize some of the state’s unconventional wells to the less restrictive conventional category, including:

  1. All oil wells
  2. All natural gas wells not drilled in shale formations
  3. All shale wells above (shallower than) the base of the Elk Group or equivalent
  4. All shale wells below the Elk Group from a formation that can be economically drilled without the use of hydraulic fracturing or multi-lateral bore holes
  5. All wells drilled into any formation where the purpose is not production, including waste disposal and other injection wells

The current distinction is in fact muddled, with one DEP source indicating that the difference is entirely due to whether or not the formation being drilled into is above or below the Elk Group, and another DEP source indicates that the difference is much more nuanced, and really depends on whether the volumes of hydraulic fracturing fluid required to profitably drill into a given formation are generally high or low.

This table shows the number of wells in each formation in Pennsylvania that has both conventional and unconventional wells drilled into it.  Data source:  DEP, downloaded 7/9/2014.

This table shows the number of distinct wells in each producing formation in Pennsylvania that has both conventional and unconventional wells drilled into it. Data source: DEP, downloaded 7/9/2014.

As one might expect, this ambiguity is represented in the data. The chart at the left shows the number of distinct number of wells by formation, for each producing formation that has both conventional and unconventional wells in the dataset.  Certainly, there could be some data entry errors involved, as the vast majority of Bradford wells are conventional, and almost all of the Marcellus wells are unconventional.  But there seems to be some real confusion with regards to the Oriskany, for example, which is not only deeper than the Elk Group, but the Marcellus formation as well.

While an adjustment to the distinction of conventional and unconventional wells in Pennsylvania is called for, one wonders if the definitions proposed in SB 1378 is the right way to handle it.  If the idea of separating the two is based on the relative impact of the drilling operation, then a much more straightforward metric might be useful, such as providing a cutoff in the amount of hydraulic fracturing fluid used to drill a well.  Further, each of the five parts of the proposed definition serve to make the definition of unconventional wells less inclusive, meaning that additional wells would be subject to the less stringent regulations, and that the state would collect less money from the impact fees that were a part of Act 13 of 2012.

Instead, it is worth checking to see whether the definition of unconventional is inclusive enough.  In May of this year, FracTracker posted a blog about conventional wells that were drilled horizontally in Pennsylvania.


Conventional, non-vertical wells in Pennsylvania. Please click the expanding arrows icon at the top-right corner to access the legend and other map controls. Please zoom in to access data for each location.

These wells require large amounts of hydraulic fracturing fluids, and are already being drilled at depths of only 3,000 feet, and could go as shallow as 1,000 feet.  It’s pretty easy to argue that due to the shallow nature of the wells, and the close proximity to drinking water aquifers, these wells are deserving of even more rigorous scrutiny than those drilled into the Marcellus Shale, which generally ranges from 5,000 to 9,000 feet deep throughout the state.

A summary of the different regulations regarding conventional and unconventional wells can be found from PennFuture.  In general, unconventional wells must be further away from water sources and structures than their conventional counterparts, and the radius of presumptive liability for the contamination of water supplies is 2,500 feet instead of 1,000.

SB 1378 has been re-referred to the Appropriations Committee.

 

OH and WV Shale Gas Water Usage and Waste Injection

By Ted Auch, OH Program Coordinator, FracTracker Alliance

Both Ohio and West Virginia citizens are concerned about the increasing shale exploration in their area and how it affects water quality. Those concerned about the drilling tend to focus on the large quantities of water required to hydraulically fracture – or “frack” – Utica and Marcellus wells. Meanwhile those concerned with water quality cite increases in truck traffic and related spills. Concerns also exist regarding the large volumes of fracking waste injected into Class II Salt Water Disposal (SWD) wells primarily located in/adjacent to Ohio’s Muskingum River Watershed.

Injection Wells & Water Usage

While Pennsylvania and WV have drilled heavily into their various shale plays, OH has seen a dramatic increase in Class II Injection wells. In 2010 OH hosted 151 injection wells, which received 50.1 Million Gallons (MGs) per quarter in total – or 331,982 gallons per well. Now, this area has 1941 injection wells accepting 937.5 MGs in total and an average of 4.3 MGs per well.

In the second quarter of 2010 the Top 10 Class II wells by volume accounted for 45.87% of total fracking waste injected in the state. Fast forward to today, the Top 10 wells account for 38.87% of the waste injected. This means that the industry and OH Department of Natural Resources Underground Injection Control (ODNR UIC) are relying on 128% more wells to handle the 1,671% increase in the fracking waste stream coming from inside OH, WV, and PA. During the same time period, freshwater usage by the directional drilling industry has increased by 261% in WV and 162% in OH.

Quantity of Disposed Waste

With respect to OH’s injection waste story there appear to be a couple of distinct trends with the following injection wells:

— Long Run Disposal #8 in Washington and Myers in Portage counties. The changes reflect a nearly exponential increase in the amount of oil and gas waste being injected, with projected quarterly increases of 6.78 and 5.64 MGs. This trend is followed by slightly less dramatic increases at several other sites: the Devco Unit #11 is up 4.81 MGs per quarter (MGPQ).

— Groselle #2 is increasing at 4.21 MGPQ, and Ohio Oil Gathering Corp II #6 is the same with an increase of 4.03 MGPQ.

— Another group of wells with similar waste statistics is the trio of the Newell Run Disposal #10 (↑2.81 MGPQ), Pander R & P #15 (↑3.23 MGPQ), and Dietrich PH (↑2.53 MGPQ).

— The final grouping are of wells that came online between the fall of 2012 and the spring of 2013 and have rapidly begun to constitute a sizeable share of the fracking waste stream. The two wells that fall within this category and rank in the Top 10 are the Adams #10 and Warren Drilling Co. #6 wells, which are experiencing quarterly increases of 3.49 and 2.41 MGs (Figure 2).

Disposal of Out-of-State Waste

These Top 10 wells also break down into groups based on the degree to which they have, are, and plan to rely on out-of-state fracking waste (Figure 3). Five wells that have continuously received more than 70% of their wastestream from out-of-state are the Newell Run Disposal (94.4), Long Run Disposal (94.7%), Ohio Oil Gathering Corp (94.2%), Groselle (94.3%), and Myers (77.2%). This group is followed by a set of three wells that reflect those that relied on out-of-state waste for 17-30% of their inputs during the early stages of Utica Shale development in OH but shifted significantly to out-of-state shale waste for ≥40% of their inputs. (More than 80% of Pander R & P’s waste stream was from out-of-state waste streams, up from ≈20% during the Fall/Winter of 2010-11). Finally, there are the Adams and Warren Drilling Co. wells, which – in addition to coming online only recently – initially heavily received out-of-state fracking waste to the tune of ≥75% but this reliance declined significantly by 51% and 26% in the case of the Adams and Warren Drilling Co. wells, respectively. This indicates that demand-side pressures are growing in Ohio and for individual Class II owners – or – the expanding Stallion Oilfield Services (which is rapidly buying up Class II wells) is responding to an exponential increase in fracking brine waste internally.

Waste Sources

We know anecdotally that much of the waste coming into OH is coming from neighboring WV and PA, which is why we are now looking into directional well water usage in these two states. WV and PA have far fewer Class II wells relative to OH and well permitting has not increased significantly there. Here in Ohio we are experiencing not just an increase in injection waste volumes but also a steady increase in water usage.  The average Utica well currently utilizes 6.5-8.1 million gallons of fresh water, up from 4.6-5.3 MGs during the Fall/Winter of 2010-11 (Figure 4). Put another way, water usage is increasing on a quarterly basis by 221-333K gallons per well2. Unfortunately, this increase coincides with an increase in the reliance on freshwater (+00.42% PQ) and parallel decline in recycled water (-00.54% PQ). In addition to declining in nominal terms, recycling rates are also declining in real terms given that the rate is a percentage of an ever-increasing volume. Currently the use of freshwater and recycled water account for 6.1 MGs and 0.33 MGs per well, respectively. Given the difference in freshwater and recycled water it appears there is an average 8,319 gallon unknown fluid void per well. The quality of the water used to fill the void is important from a watershed (or drinking water) perspective.  The chemicals used in the process tend to be resistant to bio-degradation and can negatively influence the chemistry of freshwater.

WV Data

WV is experiencing similar increases in water usage for their directionally drilled wells; the average well currently utilizes 7.0-9.6 MGs of fresh water – up from 2.9-5.0 MGs during the Fall/Winter of 2010-11 (↑208%). This change translates into a quarterly increase in the range of 189-353K gallons per well3. The increase coincides with an increase in the reliance on freshwater (+00.34% PQ) and related decline in recycled water (-00.67% PQ). Currently, freshwater and recycled water account for 7.7 MGs and 0.61 MGs per well, respectively. Given the difference in freshwater and recycled water, there is an average of 22,750 gallons of unaccounted for fluids being filled by unknown or proprietary fluids (Figure 5).

The Bigger Picture

This analysis coincides with our ongoing Muskingum River Watershed resilience analysis on behalf of Freshwater Accountability Project’s Leatra Harper and Terry Lodge. Their group represents a set of concerned citizens disputing the “short-term water sale” of freshwater by the increasingly abstruse and proprietary Muskingum Watershed Conservancy District (MWCD) to industry players such as Antero, Gulfport, and American Energy Utica. Pending or approved sales total 120 MGs averaging 1.8 MGs per day at around $4.25 per thousand gallons4. The proximity of this watershed – and location of many Utica wells within its boundaries – to most of the current and proposed WV and OH wells makes it susceptible to excess, irresponsible, or dangerous water withdrawals and waste transport (Figure 6). We will continue to update this analysis in an effort to infuse the MWCD conversation about industry water sales with more holistic watershed resilience and susceptibility mapping with an eye toward getting the state of OH to address issues associated with freshwater valuation which is lacking at the present time.

Figures

Ohio Class II Number and Volumes in 2010 and 2014

Figure 1. Ohio Class II Number and Volumes in 2010 and 2014

Ohio's Top 10 Fracking Waste Class II Injection Wells by Volume

Figure 2. Quarterly volumes accepted by Ohio’s Top Ten Class II Injection Wells with respect to hydraulic fracturing brine waste.

Ohio's Top 10 Fracking Waste Class II Injection Wells by % Out-Of-State

Figure 3. Ohio’s Top Ten Class II Injection Wells w/respect to hydraulic fracturing brine waste.

Average Water Usage by Ohio's Utica Wells By Quarter (Fall 2010 to Spring 2014)

Figure 4. Total water usage per Utica well and recycled Vs freshwater percentage change across Ohio’s Utica Shale wells on a quarterly basis. Data are presented quarterly (Ave. Q3-2010 to Q2-2014)

Average Water Usage by West Virginia's Directional Drilling Wells By Quarter (Summer 2010 to Winter 2014)

Figure 5. Changes in WV water usage for horizontally/hydraulically fractured wells w/respect to recycled water (volume & percentages) & freshwater. Data are presented quarterly (Ave. Q3-2010 to Q2-2014)

OH_WV_Water

Figure 6. Unconventional drilling well water usage in OH (n = 516) and WV (n = 581) (Note: blue borders describe primary Hydrological Units w/the green outline depicting the Muskingum River watershed in OH).


References & Resources

  1. Of a possible 239 Class II Salt Water Disposal (SWD) wells.
  2. The large range depends on whether you start your analysis at Q3-2010 or the aforementioned statistically robust Q3-2011.
  3. The large range depends on whether you start your analysis at Q3-2010 or the more statistically robust Q3-2011.
  4. MWCD water sales approved to date: 1) Seneca Lake for Antero: 15 million gallons at 1.5mm per day, 2) Piedmont Lake for Gulfport: 45 million gallons at 2 million per day, 3) Clendening for American Energy Utica: 60 million gallons at 2 million per day.

Central Penn Pipeline Under Debate

By Karen Edelstein, NY Program Coordinator, FracTracker Alliance

Background

PipelineOver the past month and a half, a new pipeline controversy has been stirring in Pennsylvania. The proposed $2 billion “Central Penn Pipeline” will be built to carry shale gas throughout the country. Starting in Susquehanna County, the 178 mile pipeline will run through Lebanon and Lancaster counties to connect the existing Tennessee Pipeline in the north with the Transco Pipeline in the south.

Oklahoma-based Williams Partners, the company proposing the pipeline, says that the project would help move gas from PA to locations as far south as Georgia and Alabama, in addition to adding relief from higher energy bills. The “Atlantic Sunrise Project,” as it is formally known, would also require the construction of two new 30,000 horse-power compressor stations: “Station 605” along the northern leg of the pipeline in Susquehanna County, as well as “Station 610” on the southern part of the pipeline. The northern part of the proposed pipeline will be 30 inches in diameter and run for about 56 miles; the southern portion will be 42 inches in diameter and about 122 miles long.

According to the US Energy Information Agency (EIA), in 2008, PA had over 8,700 miles of pipeline. Since then, that figure has increased significantly as the shale plays in PA continue to be exploited. Industry maintains that pipelines are the safest method for moving gas from the well to market, and has noted that for safety concerns they have intentionally co-located 36% of the northern part of the pipeline within the rights-of-way of Transco’s or other utility’s pipelines.

Despite the sanguine view of this project by industry, residents have rallied against the pipeline since mid-April, when landowners started getting information packets in the mail about the proposal.

Pipeline Proposal Map

While the exact route of the pipeline has yet to be determined, FracTracker has adapted documents from Oklahoma-based Williams Partners Company to provide this interactive map below. The proposed pipeline is shown in red.

For a full-screen version of this map (with legend), click here.

Proposal Concerns

Public awareness and concern about the pipeline continues to build, as was evident when 1,100 residents attended an open house in Millersville, PA on June 10th hosted by Williams. For more information see this article in Lancaster Online.

The Lancaster County Conservancy has advocated moving the pipeline away from various sensitive habitats including the Tucquan Glen Nature Preserve, Shenk’s Ferry Wildflower Preserve, Fishing Creek, Kelly’s Run, and Rock Springs to preserve the wildlife and beauty of those areas. According to Williams:

The pipeline company must evaluate a number of environmental factors, including potential impacts on residents, threatened and endangered species, wetlands, water bodies, groundwater, fish, vegetation, wildlife, cultural resources, geology, soils, land use, air and noise quality…  More

Despite what the website says, Williams admitted to not analyzing the pipeline route for possible sensitive habitat encroachment, and instead, they will simply follow the existing utility routes.

Williams, according to a report by WGAL Channel 8 in PA “relies on the communities affected to bring up any potential problems.” His statement was backed up when residents in a packed hearing room in Lancaster County voiced their opposition, resulting in Williams Partners now considering extending their pipeline by 2 ½ miles to get around the sensitive natural area at Tucquan Glen. An alternate route to avoid Shenk’s Ferry, however, had not been put forward.

Lancaster Farmland Trust is concerned about the plan for the pipeline to pass through several protected farms, and Lebanon County Commissioner Jo Ellen Litz has also taken a strong stand against the current proposed route. The proposed pipeline would not only go through farmlands, but it is also expected to cross the Appalachian Trail, Swatara State Park, and Lebanon Valley Rails to Trails.

Pipeline impacts are not limited to conservation and agriculture. There is increasing concern that the risks posed by large-diameter, high pressure pipelines such as this one may prevent nearby homeowners from keeping their mortgage loans or homeowner’s insurance. Future purchasers of the property may also encounter difficulty being approved for a mortgage loan or homeowner’s insurance.

While the pipeline company can purchase pipeline easements from property owners, industry can also petition the government to take the land by eminent domain from unwilling property owners. Pipeline rights-of-way acquired through eminent domain for these pipelines could potentially complicate a private property owner’s mortgage financing and homeowner’s insurance.

The final decisions about the siting of the pipeline is ultimately up to FERC, the Federal Energy Regulatory Commission.

Resources

Williams’ original maps of the pipelines can be viewed here: SOUTH | NORTH

Crime and the Utica Shale

By Ted Auch, OH Program Coordinator, FracTracker Alliance

No matter where you live in Ohio you have probably asked yourself if crime trends will be – or have already been – affected by the shale gas boom.

To quantify the relationship between crime rates and oil and gas development, we compared 14 OH counties (that have more than 10 Utica permits) to statewide safety metrics. Ohio State Highway Patrol’s Statistical Analysis Unit provided us with the necessary crime data. From this dataset, we chose to analyze several metrics:

a. three types of arrests,
b. two types of violations and accidents, and
c. misdemeanors and suspended licenses (as proxies for changes in safety).

Image of accident involving truck carrying freshwater for fracking between January 20th and 27th of 2014 during snowstorm adjacent to Seneca Lake, Noble and Guernsey Counties, Ohio adjacent to Antero pad off State Route 147 Map of Senaca Lake, OH frackwater truck accident between January 20th and 27th, 2014. Map of the area including producing or drilled Antero wells (Red Points) and laterals along with State Route 147
Accident involving truck carrying freshwater for fracking between Jan. 20 and 27 of 2014 during snowstorm adjacent to Seneca Lake, Noble and Guernsey Counties, OH adjacent to Antero pad off State Route 147 Map of Senaca Lake, OH Jan 2014 frackwater truck accident including producing or drilled Antero wells (Red Points) and laterals along with State Route 147

Crunching the Data

The data in Table 1 below are corrected for changes in population at the state level (+0.2% per year) and at the county level, with the annualized rate for the counties of interest ranging between -2.2% in Jefferson and -0.05 in Tuscarawas. We used the first four months of 2014 to determine an annualized rate for the rest of 2014. Since the first Utica permit was issued on Sept. 28, 2010, we assumed that the 2009 data would be an close measure for the ambient levels for the nine crime metrics we investigated across Ohio prior to shale gas development.

Statewide Crime Trends

Overturned frac sand trucks in Carroll County, OH May, 2014 (Courtesy of Carol McIntire, The Free Press Standard)

Overturned frac sand trucks in Carroll County, OH May, 2014 (Courtesy of Carol McIntire, The Free Press Standard)

Commercial Vehicle Enforcements (CVE) and Crashes Investigated are the only metrics that increase by 8.9% and 6.9% per year, larger than the statewide averages of 2.8% and 6.0%. Respectively, 10 of the 14 shale gas counties have experienced rates that exceed the state average. Noble, Harrison, Columbiana, Carroll, and Monroe are experiencing annualized CVE increases that are 15-57% higher than Ohio as a whole.

Meanwhile, Crashes Investigated are increasing at a slower pace relative to the state wide average, with Carroll, Noble, and Jefferson counties experiencing >5% rate increases relative to the entire state (Table 1). There is a strong increasing linear relationship between the number of Utica permits and the average percent change in CVE and Crashes Investigated. The former accounts for a combined 66% change in the latter. From a macro perspective, the Utica counties accounted for 19.8% of all OH CVEs in 2009 prior to shale gas exploration and now account for 25.1% of all CVEs.  Crashes Investigated as a percentage of state totals, however, only increased from 21.3% to 21.7%.

The other variable that is significantly and positively correlated with Utica permitting at the present time is the number of Suspended License reports, with the former explaining 22% of the average annual change in the latter since 2009.

Given that we investigated changes in nine public safety metrics we thought it would be worth categorizing the fourteen counties by state wide averages:

  1. Significantly Less Safe (SLS) – >5 of 9 metrics increasing,
  2. Noticeably Less Safe (NLS) – 4 metrics, and
  3. Marginally Less Safe (MLS) – <3 metrics.

Our findings support that about half the Utica counties fall within the SLS category, with Harrison, Jefferson, Columbiana, and Trumbull experiencing higher relative rates across seven or more of the metrics investigated. Trumbell specifically has had public safety rate increases that are greater than the state in all categories but for Suspended Licenses. Guernsey and Washington counties fall within the NLS category; both are seeing elevated Resisting Arrests and CVEs relative to changes in statewide rates. Surprisingly, Carroll County, home to 404 Utica permits as of the middle of May 2014, falls within the MLS category with only two of nine metrics increasing at a rate that exceeds the state’s. However, the two metrics that are worse than the state average (Crashes Investigated (+21.4%) and CVEs (59.8%)) are increasing at a rate that is significantly higher than the other Ohio Utica counties. Additional MLS counties include Belmont, Portage, and Monroe, which are in the upper, middle, and lower third of Utica permits at the present time.

Conclusion

While correlation does not mean causation, there is a significant correlation between certain public safety metrics and Utica permitting in Ohio’s primary shale gas counties, specifically when looking at Crashes Investigated and CVEs. Additionally, many of the Ohio Utica counties are experiencing notable increases in criminal activity. Whether this trend will continue to increase in the long-term is uncertain, but the short-term trends are concerning given that these counties populations are decreasing; there is more criminal activity within a smaller population. Finally, these trends will differ based on whether or not county sheriffs and emergency responders working with the Ohio State Highway Patrol have the necessary resources and manpower to address increasing criminal activity. This issue is of concern to most southeastern Ohioans regardless of their stance on fracking. We will continue to monitor these relationships and are working to generate a map in the coming months that illustrates these trends.

Table 1. Average percent change in select public safety metrics across Ohio’s primary Utica Shale Counties relative to parallel changes across the state of Ohio between 2009 and 2014.

Percent Change Between 2009 and 2014

Arrests

Violations

 

 

County

Felony

Resisting

OVI

Weapons

Drug

Crashes Investigated

CVE

Misdemeanor Issued

Suspended License

Noble (93, 6)

87.7

0

10.5

16.9

16.8

11.2

50.5

11.8

7.4

Harrison (232, 0)

22.3

0

35.8

0

34.3

10.1

34.7

67.1

33.3

Belmont (102, 2)

12.7

5.5

2.2

17.2

20.3

10.5

4.0

16.6

10.2

Jefferson (39, 1)

50.1

3.6

11.6

43.3

45.9

11.3

12.5

42.0

10.4

Columbiana (103, 0)

20.3

-3.8

6.9

28.9

27.1

7.9

17.8

25.9

10.6

Tuscarawas (16, 6)

41.2

28.9

7.0

0

0.8

7.6

12.0

61.4

3.6

Washington (10, 13)

10.1

52.7

-2.7

47.3

19.8

8.3

4.6

19.2

2.6

Stark (13, 17)

7.3

9.4

0.3

46.4

7.2

6.7

2.6

11.1

-0.5

Trumbull (15, 20)

32.9

18.9

8.6

42.9

42.1

9.3

11.5

41.1

9.4

Mahoning (30, 10)

21.4

20.7

3.6

81.4

31.8

6.0

8.5

27.7

10.2

Portage (15, 19)

80.7

4.5

4.1

85.0

40.3

3.5

1.6

15.5

7.6

Guernsey (99, 5)

22.8

32.9

8.1

14.7

10.4

2.7

11.0

10.8

7.6

Carroll (404, 4)

0

0

-20.2

0

-29.1

21.4

59.8

-30.2

3.8

Monroe (80, 0)

0

0

-4.1

0

0

97.4

50.8

20.4

27.0

County

16.5

4.3

3.5

10.3

17.6

6.9

8.9

17.8

5.8

State

17.4

6.7

7.3

16.5

23.6

6.0

2.8

24.5

10.5

% of State 2009

14.0

17.6

19.3

18.7

16.1

21.3

19.8

17.8

18.4

% of State 2014

12.9

15.2

16.7

16.8

14.0

21.7

25.1

13.1

14.5

2014 annualized using the first 4 months of the year.

Number of Permitted Utica wells and Class II Salt Water Disposal (SWD) wells as of May, 2014

Fracturing wells and land cover in California

By Andrew Donakowski, Northeastern Illinois University

Land cover data can play an important role in spatial analysis; satellite or aerial imagery can effectively demonstrate the extent and make-up of land cover characteristics for large areas of land. For fracking analysis, this can be used to explore important spatial relationships between fracking infrastructure and the area and/or ecosystems surrounding them. Working with FracTracker, I have compiled data concerning land cover classifications and geologic rock areas to examine areas that may be particularly vulnerable to unconventional drilling – e.g. fracking.  After computing the makeup of land cover type for each geologic area, I then mapped locations of known fracking wells for further analysis. This is part of FracTracker’s ongoing interest in understanding changes in ecosystem services and plant/soil productivity associated with well pads, pipelines, retention ponds, etc.

Developed

First, by looking at the Developed areas (below), we can see that, for the most part, hydraulic fracturing is occurring relatively far from large population areas. (That is to say, on this map we can see that these types of wells are not found as often in areas where population density is high (<20 people per square mile) or a Developed land cover classification is predominate as they are in areas with a lower Develop land cover percentage).  However, we can also see that there is quite a large cluster of fracking wells in the southern portion of the state, and many cities fall within 5 or 10 mi of some wells.  While there may not be an immediate danger to cities that fall within this radius, we can see that some areas of the state may be more likely to encounter the effects of fracking and its associated infrastructure than others.

Forested

Next, the map depicting Forested land cover areas is, in my opinion, the most aesthetically groovy of the land cover maps; the variations in forested areas throughout the state provide a cool image.  By looking at this data, we can see that much of California’s forested land lies in the northern part of the state, while most fracking wells are located in the south and central parts of the state.

Cultivated

To me, the most interesting map is the one below showing the location of fracking wells in relation to Cultivated lands (which includes pasture areas and cropland).  What is interesting to note is the fertile Central Valley, where a high percentage of land is covered with agriculture and pasture lands (Note: The Central Valley accounts for 1% of US farmland but 25% of all production by value).  Notably, it is also where many fracking wells are concentrated.  When one stops to think about this, it makes sense: Farmers and rural landowners are often approached with proposals to allow drilling and other non-farming activities on their land.  Yet, it also raises a potential area for concern: A lot of crops grown in this area are shipped across the country to feed a significant number of people.  When we consider the uncertainties of fracking on surrounding areas, we must also consider what effects fracking could have beyond the immediate area and think about how fracking could affect what is produced in that area (in this case, it is something as important as our food supply.)

The Usefulness of Maps

Finally, as previously mentioned, mapping the extent of these land coverage can be useful for future analysis.  Knowing now the areas of relatively large concentrations of forested, herbaceous, and wetland (which can be highly sensitive to ecological intrusions) areas can be good to know down the line to see if those areas are retreating or if the overall coverage is diminishing.  Additionally, by allowing individuals to visualize spatial relationships between fracking areas and land coverage, we can make connections and begin to more closely examine areas that may be problematic. The next step will be: a) parsing forest cover into as many of the six major North American forest types and hopefully stand age, b) wetland type, and c) crop and/or pasture species. All of this will allow us to better quantify the inherent ecosystem services and CO2 capture/storage potential at risk in California and elsewhere with the expansion of the fracking industry. As an example of the importance of the intersection between forest cover and the fracking industry we recently conducted an analysis of frac sand mining polygons in Western Wisconsin and found that 45.8% of Trempealeau County acreage is in agriculture while only 1.8% of producing frac sand mine polygons were in agriculture prior to mining with the remaining acreage forested prior to mining which buttresses our anecdotal evidence that the frac sand mining industry is picking off forested bluffs and slopes throughout the northern extent of the St. Peter Sandstone formation.

A Quick Note on the Data

Datasets for this project were obtained from a few different sources.  First, land cover data were downloaded from the National Land cover Classification Database (NLCD) from the Multi-Resolution Land Character Consortium.  Geologic data were taken from the United States Geologic Survey (USGS) and their Mineral Resources On-Line Spatial Data. Lastly, locations of fracking wells were taken from the FracTracker data portal, which, in turn, were taken from SkyTruth’s database.  Once the datasets were obtained, values from the NLCD data were reclassified to highlight land-coverage types-of-interest using the Raster Calculator tool in ArcMap 10.2.1.  Then, shapefiles from the USGS were overlaid on top of the reclassified raster image, and ArcMaps’s Tabulate Area tool was used to determine the extent of land coverage within each geologic rock classification area.  Known fracking wells downloaded from FracTracker.org were added to the map for comparative analysis.

About the Author

Andrew Donakowski is currently studying Geography & Environmental Studies, with a focus on Geographic Information Systems (GIS), at Northeastern Illinois University (NEIU) in Chicago, Ill. These maps were created in conjunction with FracTracker’s Ted Auch and NEIU’s Caleb Gallemore as part of a service-learning project conducted during the spring of 2014 aimed at addressing real-world issues beyond the classroom.

Conventional, Non-Vertical Wells in PA

Like most states, the data from the Pennsylvania Department of Environmental Protection do not explicitly tell you which wells have been hydraulically fractured. They do, however, designate some wells as unconventional, a definition based largely on the depth of the target formation:

An unconventional gas well is a well that is drilled into an Unconventional formation, which is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.


Naturally occurring karst in Cumberland County, PA. Photo by Randy Conger, via USGS.

While Pennsylvania has been producing oil and gas since before the Civil War, the arrival of unconventional techniques has brought greater media scrutiny, and at length, tougher regulations for Marcellus Shale and other deep wells. We know, however, that some companies are increasingly looking at using the combination of horizontal drilling and hydraulic fracturing in much shallower formations, which could be of greater concern to those reliant upon well water than wells drilled into deeper unconventional formations, such as the Marcellus Shale. The chance of methane or fluid migration through karst or other natural fissures in the underground rock formations increase as the distance between the hydraulic fracturing activity and groundwater sources decrease, but the new standards for unconventional wells in the state don’t apply.

The following chart summarizes data for wells through May 16, 2014 that are not drilled vertically, but that are considered to be conventional, based on depth:

These wells are listed as conventional, but are not drilled vertically.

These wells are listed as conventional, but are not drilled vertically.

Note that there have already been more horizontal wells in this group drilled in 2014 than any previous year, showing that the trend is increasing sharply.

Of the 26 horizontal wells, 12 are considered oil wells, five are gas wells, five are storage wells, three are combination oil and gas, and one is an injection well.  These 177 wells have been issued a total of 97 violations, which is a violation per well ratio of 62 percent.  429 permits in have been issued in Pennsylvania to date for non-vertical wells classified as conventional.  Greene county has the largest number of horizontal conventional wells, with eight, followed by Bradford (5) and Butler (4) counties.

We can also take a look at this data in a map view:


Conventional, non-vertical wells in Pennsylvania. Please click the expanding arrows icon at the top-right corner to access the legend and other map controls.  Please zoom in to access data for each location.