Tag Archive for: All

Electric Vehicles: Better Wheels

The wheel may have been influenced by nature, but today, the inverse is true. The anthropogenic automobile stimulates climate change and the environmental ravages correlated with a heating planet. Twenty-eight percent of all greenhouse gas emissions in the US come from transportation – more than any other economic sector. As the climate crisis spirals out of control, the most sustainable modes of moving around require our attention, and our investment. In part, we need better ‘wheels.’

Electric cars, or EVs, while not the all-out cure for atmospheric ills, are a preferred substitute to autos powered by internal combustion. Quiet and clean, they lack tailpipes and tailpipe pollutants, but have abundant pep. Think instant acceleration. And EVs put the ‘E’ in efficiency. For example, the 2020 Kia e-Niro is EPA-rated at 112 miles per gallon equivalent or MPGe; the Chevy Bolt, 119. Other models are likewise impressive.

Misperceptions remain. So-called “range anxiety” is worrying about being unable to get to a destination or return home — that batteries will be depleted and leave the driver stranded. With an expanding nationwide charging network, such stress is unfounded. Companies like EVgo and ChargePoint offer apps that point to charging stations at convenience stores and retailers near and far. Tesla maintains their own extensive system of chargers. It won’t be long until electrons are as accessible as gasoline.

“Filling” an EV is quick and easy. Rapid charging devices can restore up to 80% of vehicle range in 20 to 60 minutes, depending on the make and model of the car. By the time one grabs a meal or coffee, the vehicle is ready to roll. Prefer to charge at home, in between trips? Residential chargers can do the job in roughly nine hours, with installation of a 220-volt AC household unit.

Meanwhile, battery range grows. The Hyundai Kona travels 258 miles between plug-ins; a Tesla Model 3 (long-range version), 322 miles. Almost any destination is possible.

 

 

 

 

By almost every environmental measure, electric vehicles surpass their fossil-fueled cousins, but the need for lithium – a primary ingredient in EV batteries – brings a variety of challenges.

Bloomberg reports that approximately 27 million passenger electric vehicles were in use globally in 2019. By 2040, the number could leap to 500 million. Is there enough lithium to support such growth?

Projections from S&P Global suggest the worldwide supply of lithium could triple by 2025, with new mines, brine extraction, and anticipated output from “existing projects.” Australia is the world’s largest producer of lithium, but as new sources have been identified, the country now ranks fifth  in known reserves, behind Bolivia, Argentina, Chile, and the US, respectively. China rounds out the list of the top six suppliers.

Innovation, efficiency, and new finds may extend the era of lithium-powered EVs, but fears of someday reaching “Peak Lithium” isn’t far-fetched, although lessons from the prediction of “Peak Oil” impart caution to forecasting.

And it’s not only a question of whether it can be obtained technologically, but can it be done sustainably and equitably? Mining today requires a commitment to environmental justice. Much of the known lithium deposits are in low and middle-income countries, which, for centuries, have been treated as sacrifice zones for the material desires of highly industrialized nations. Research commissioned by Earthworks points to EV batteries as the most significant driver of accelerated minerals demand, but notes that recycled sources can significantly reduce demand. Not all demand will likely be fulfilled through recycling, so responsible sourcing is critical.

Addressing the profound human and environmental dimensions of mineral demand – for batteries and other aspects of the renewable energy transition – the Initiative for Responsible Mining Assurance (IRMA) was established in 2006 and aspires to “certify social and environmental performance at mine sites globally using an internationally recognized standard . . . developed in consultation with a wide range of stakeholders.”

Such programs provide transparency and accountability, but non-governmental organizations, governments, manufacturers, and product customers using these materials must remain vigilant, informed, and outspoken. Society collectively must assure that exploitation is relegated to history. Communities in the fairway of mining must be vested partners; benefactors, not victims.

But accessing minerals, no matter how well-intentioned, is a messy enterprise. The lithium conundrum underscores the need to look beyond the convenience of automobiles, to a future oriented around energy efficiency, mass transit, and welcoming places that thrive at a human – and a more humane – scale, where walking and biking is the norm. Examples abound, but in the United States, in particular, neighborhood reinvestment infused with inclusive and creative ideas may propel us to greener days. Even better, it might instigate a new and profound harmony amongst people, and the generous nature that surrounds them.

EVs are a bridge to span decades, not the trail to tomorrow. But the bridge has to be reachable. A federal tax credit of up to $7500 may be available, depending on how many units of that model have sold. Some states also offer rebate and credit incentives as EVs become more common, they will likely become more affordable, at least rivaling gasoline and diesel counterparts.

The wave is coming. In January, General Motors announced its vision “. . . of an all-electric future . . . offering zero-emissions vehicles across a range of price points.” The company’s plan also focuses on charging infrastructure, consumer acceptance, and an emphasis on high-quality jobs. The Biden Administration is also championing EVs, promising 500,000 charging stations across America and electrification of the entire federal vehicle fleet.

If climate change is deflating – if not roughening – our human journeys, electric vehicles can serve as the temporary spare to get us where we need to be. The ride will be better, not perfect. . . a helpful cog in climate healing.

By Brook Lenker, Executive Director, FracTracker Alliance

Support this work

DONATE

Stay in the know

Oil and Gas Wells on California State Lands

The fossil fuel industry has historically taken advantage of the nation’s mineral estate for private profit, while outsourcing the public health debts of degraded environmental quality to Frontline Communities. While President Biden has recently ordered the Department of Interior to put a 60-day halt on permitting new oil and gas drilling permits on federal lands, no such policy exists for state lands in California. Governor Newsom’s administration has allowed the California Geological Energy Management Division to issue rework and new drilling permits on California state lands, bringing the total number of operational oil and gas wells on state lands up to a total of 178, almost half of which are “idle.” This number pales in comparison to the number of California oil and gas wells on federal lands; a total of 6,997 operational wells.

FracTracker Alliance has mapped out the operational oil and gas wells located on state lands in California, using the California Protected Areas Database. The areas containing the highest concentrations of oil and gas wells on state lands include two sensitive ecosystem environments. Figure 1 shows the 102 operational oil and gas wells located in Southern California’s Bolsa Chica Ecological Preserve. The wells are part of the Huntington Beach oil field. The preserve shares marine habitat with a marine protected area (MPA) and is habitat for numerous rare and several endangered species. More sensitive habitat also threatened by oil and gas extraction; Figure 2 shows the oil and gas production wells on the Sacramento River Delta, just upriver of the Bay Area. It is habitat for several threatened and endangered species such as the Delta Smelt and Giant Garter Snake.

California needs Governor Newsom to take a stand against the further exploitation of California’s public lands. A ban on permitting new wells on state land and a commitment to plug existing wells would set an example for Biden’s administration to make the current 60-day freeze a permanent policy.

Figure 1. The Bolsa Chica Ecological Preserve hosts over 100 operational oil and gas wells that put the preserve’s ecological habitat at risk.

 

Figure 2. There are 50 operational oil and gas wells permitted on California state lands in the Sacramento River Delta.

 

See more California maps and articles here.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Support this work

DONATE

Stay in the know

Industrial Impacts in Michigan: A Photo Essay & Story Map

Southwest Detroit and neighboring South Rockwood in Monroe County could not be more different demographically, but one thing they have in common is a consistent battle with the extractives industry.

With environmental advocates Theresa Landrum and Doug Wood, FracTracker created a Story Map to document what this infrastructural buildout in Southeastern Michigan looks like from the air, how it has displaced entire neighborhoods, and how it has forever changed their quality of life, in the name of short-term profiteering.

 

 “Marathon is a prime example of corporate polluters continuing
to choose profit over safeguards for our public health.”
– Congresswoman Rashida Tlaib

 

Each year, FracTracker Alliance gives out its Community Sentinel Award for Environmental Stewardship. We had an amazing group of candidates this year, and the four winners are extremely brave, persistent, insightful, and collaborative activists representing diverse communities all over the country.

I have had the good fortune to interact with two of the winners – Theresa Landrum and Brenda Jo McManama – quite frequently over my time at FracTracker. This year’s Sentinel Award winners and all its previous recipients are passionate and persistent fighters for environmental justice in their own backyards and around the United States.

It is around this time of year that all the negativity involved in the fight against fossil fuel industries dissolves away for me as I find myself inspired and humbled by the Sentinel winners. Theresa and Brenda Jo constantly inspire me and FracTracker to strive to do more, do better, and remain cleareyed as to whom we serve. All the Community Sentinel nominees are exemplars of what it is to walk authentically and humbly through life.

However, I am going to spend the next couple paragraphs speaking specifically about Ms. Landrum, because it is she that I have come to know and work quite well with since COVID-19 was something we thought would be gone by June.

I had heard so many amazing things about Ms. Landrum from a common comrade, Mr. Doug Wood, whom FracTracker has written about  with respect to the silica sand mining he is fighting and dubious pro-mining legislation being pushed in Michigan’s Statehouse, but I had never met her in person. That changed on a scorching hot day this past June, when Doug, Theresa, and I met (socially distanced) in the shadow of Marathon Petroleum’s refinery at Detroit’s Kemeny Recreation Center, just a couple stones throws across I-75 (see images below).

Incidentally, this is the same refinery that Congresswoman Rashida Tlaib (D, MI-13) has been railing against for years, including in a statement she issued on yet another incident at
the refinery
:

“Marathon is a prime example of corporate polluters continuing to choose profit over safeguards for our public health. It is time to say enough is enough of Marathon’s constant disregard of the health and safety of residents who live, work, and visit the surrounding communities. Marathon has perpetrated numerous incidents detrimental to our communities and must be held accountable – they clearly cannot be trusted to protect our health. I look forward to discussing the need to hold Marathon and other entities who poison our community accountable and solutions to make our communities breathe and live free at the upcoming congressional field hearing I am hosting with other members of Congress, experts, and grassroots activists here in Detroit.”

 

Scroll horizontally to see additional images: 

  1. Southeastern Michigan Environmental Activists Doug Wood and Theresa Landrum at Detroit’s 48217 Kimeny Park with Marathon’s Refinery in the Background, June, 2020
  2. Anti-Frac Sand mine signage created by Monroe County, Michigan activist Doug Wood, June, 2020
  3. No Dumping signage erected by Marathon Oil in Detroit’s Oakwood Neighborhood adjacent to the company’s oil refinery
  4. Concerned Citizen and Sylvania Minerals mine neighbor Doug Wood

 

It did not take more than 30 seconds for me to realize that Theresa was an authentic and persistent fighter for her community, and that she belongs on the Mt. Rushmore of EJ advocates – as does Doug Wood and all of the Community Sentinel nominees past, present, and future.

After meeting at the recreation center, I followed Theresa around with my drone, capturing footage and images of the worst actors in the 48217 zip code of Southwest Detroit, as well as of River Rouge and Ecorse. This turned out to be the first of three trips to meet with Theresa throughout the summer and fall of 2020.

During each trip and across dozens of phone conversations, Theresa explained to me what industry has done to Southwest Detroit, how she has gone about combatting it, and the way that Lansing treats Wayne County.

It struck me that much of her experience overlaps with the stories I have heard in disparate demographics, from soybean farmers in LaSalle County, Illinois, to dairy farmers in Western Wisconsin, all the way to coalminers in Central Appalachia.

Their stories illustrate the near universal tale of how industry needs and welfare demands take precedence over the rights of citizens. It is the story of globalization, shareholder returns, and political/economic elites ignoring, mocking, or being deaf and blind to the needs of their constituents and the crimes being committed in the name of progress and Gross Domestic Product (GDP).

One thing Theresa and I have spent quite a bit of time discussing is the overlap in environmental justice across demographics, and how superficial differences have been weaponized to divide us, leaving only corporations and their political handmaids to benefit. Industry beneficiaries and politicians have colluded to declare in the words of Thomas Frank’s latest book “The People, No!” Yet, it is people like Theresa, Doug, Brenda Jo, and all the other environmental activists we celebrate who are and will be instrumental in bridging those divides, and guiding the citizenry to pivot, to identify and defeat the real Leviathan – the Hydrocarbon Industrial Complex in all its manifestations and with all its tentacles spread out across this country.

The best way I know how to return the favor to folks like Theresa is to continue to do what FracTracker does best, and what I hope I am doing well, which is documenting the infrastructure and landscapes that are or have been in the crosshairs of industry, whether it be steel, coal, oil, or in the case of our name – fracked natural gas.

I have been working with Theresa and Doug on a Story Map that illustrates the scale and scope of industrial impacts in southeastern Michigan, from US Steel’s Zug Island to Sylvanian Mineral’s frac sand mine in South Rockwood. As I mentioned above, we have outlined the plight of Doug and Dawn Wood in their fight against their neighbor Sylvanian Minerals. However, with respect to Southwest Detroit, it is critical that we give a bit of background to the region’s cultural significance. For that, I am going to refer to Ms. Landrum’s own words, shared below:

A Historical Perspective of Wayne County Michigan’s Tri-Cities Region

By Theresa Landrum

During the first and second waves of the early 20th Century Great Migration, African Americans came from the South to Michigan’s communities of Ecorse (48229), River Rouge (48218), and Southwest Detroit (48217), AKA the “Triple Cities,” seeking factory jobs in the surrounding industries; U.S. Steel (formerly Great Lakes Steel), Ford Motor Company, Zug Island, Dana Corporation, and BASF Chemicals. During this time, many white men enlisted in the armed forces, and employers needed workers – so companies recruited southern African Americans to fill the jobs.

This region is one of the first African American settlements in Michigan after World War II, where Black people could actually buy homes, which helped establish metro Detroit’s Black middle class.

By the 1930s and 40s it was a self-sustaining area rich with opportunities, a mecca for Black-owned businesses, like gas stations, stores, jazz clubs, restaurants, hotels, laundromats, dry cleaners, and much more. It was also the home of Black professionals: doctors, pharmacists, policemen, florists, bakers, dentists, teachers, lawyers, and realtors thrived here, and was the site of one of Michigan’s first Black hospitals, Sidney A. Sumby Memorial Hospital, built by Black doctors.

The thread that ties these three communities/zip codes together is their formation of (what was then) Ecorse Township. Their division came after the City of Detroit expressed interest in annexing the River Rouge area. River Rouge incorporated into a village to ward this off, but Detroit was able to annex the Southwest 48217 area in 1922, thus segmenting Ecorse Township into three parts.

Fast forward to the 1950s, when Detroit’s landscape changed forever with the government’s declaration of “Eminent Domain” that claimed many African American homes for construction of the I-75 Expressway, which runs right through the center of Southwest Detroit’s (SWD) 48217 community. As I-75 was constructed, Ohio Oil (which officially became Marathon Oil in 1962) also increased its footprint in the area by acquiring nearly 100 acres and destroying a wetland habitat to expand its storage tank farm, which to date has over 100 storage tanks.

Marathon expanded again in 2007 with the announcement of the $2.2 billion Detroit Heavy Upgrade Project (DHOUP), where they would transition to refining dirty tar-sands from Alberta, Canada. This increased production to 120,000 barrels of crude per day, and thus increased the expulsion of harmful, pollutive emissions into the nearby neighborhoods. The project was completed in 2012, which also resulted in Marathon buying over 400 homes in the SWD 48217 (Oakwood Heights) area, further encroaching into residential communities.

 

Theresa was a recipient of the 2020 Community Sentinel Award for Environmental Stewardship, presented by FracTracker Alliance and Halt the Harm Network. Read more about her story here.

The Thoughts of Dawn & Doug Wood About Living Next to a Frac Sand Mine

I asked Dawn and Doug Wood to send me their thoughts on what it is like living next to Sylvanian Minerals and US Silica’s frac sand mine in South Rockwood, Michigan. I extracted (and clarified where necessary) the excerpts below that clearly illustrate their frustrations with their community, local, and federally elected officials, as well as the mine operators:

 

“[The] list of insurmountable mini-nightmares of living next to a frac sand mine [is endless at this point]. [Ten] years ago, they wanted to annex this quarry. [Our] village government has exercised no control over this corporation. [T]he village and the quarry refuse to do any air monitoring, [and] the residents who voted [in favor of] this quarry continue to be silent against any controls over this quarry. Residents seem to fear retaliation if they speak out against [the] village/quarry, [and to this day we] can’t quite explain the community’s lack of outrage … [We] have been shaking our head for years about this … It’s like the pandemic, it is invisible, yet it is killing people … [and] we are living in a polluted community, so our lungs are already taxed [which amplified the impacts of COVID]. [We] have been petitioning for air monitors and dust controls for four years, [and to add insult to injury] after ten years of this bull- – – -, the industry proposes Senate Bill 431 to totally strip communities of their controls, allowing mines to expand whenever they want, and new quarries to just be approved wherever they want [which has prompted the industry to correctly assume] they are entitled.  PURE MICHIGAN is the state slogan. We think that’s PURE BULL- – – -!!”

A Southwestern Detroit and Neighboring Monroe County Industrial Impacts Story Map

Southwest Detroit and neighboring South Rockwood in Monroe County could not be more different demographically, but one thing they have in common is a consistent battle with the extractives industry.

We built this Story Map to identify the industrial bad actors and census-level indicators such as mean annual income, and most importantly, to present a growing library of georeferenced drone footage and imagery we have collected over the years.

There have been dozens of other industrial projects foisted on the Triple Cities area of Detroit during this period and to the present day. The goal of this Story Map was to document with drone photography what this infrastructural buildout looks like from the air, how it has displaced and been incorporated directly into neighborhoods – and in the case of Sylvanian Mineral’s South Rockwood facility operating adjacent to good people like the Woods – how it has forever changed their quality of life, in the name of short-term profiteering.

We will continue to “infill” and expand this Story Map in the coming months and years, especially throughout greater Wayne County and the surrounding counties, as southeastern Michigan continues to act as a chokepoint for all manner of industrial and fossil fuel operators and activities. Furthermore, this collaborative effort with Ms. Landrum demands her community’s involvement and acceptance. We also strive to make this project a valuable resource for Michigan-based environmental NGOs and the state’s excellent journalists, like Steve Neavling at Detroit MetroTimes, and Evan Kutz at Great Lakes Beacon.

We plan to update this Map with more culturally significant imagery from the Detroit Public Library and The Wayne State Walter Reuther Library to include media focusing on labor strife, police violence, and the rich tradition and history of the region’s artistic heritage. Additionally, we will expand the depth and breadth of our drone imagery library, as well as continue our nascent effort to collect the stories of regional elders who speak to Southwest Detroit as one of the fulcrums of African American culture, and who explore how industrial colonialism has decimated much the area’s sense of place and community pride.

However, I am confident and hopeful that with progressive voices like Congresswoman Tlaib, committed journalists like those previously mentioned, and activists like Ms. Landrum passing the torch to a younger generation of activists, Southwest Detroit’s condition will take a turn for the better.

Footnote on Michigan’s Senate Bill 431

We wrote about the impacts that SB 431 would have on Michigan’s community and ecosystems last summer, when we were outlining some of the industry’s efforts in Statehouses across the country to weaken environmental regulations – and in some cases, the democratic process itself.  SB 431, in particular, would have made the process of operating a sand and gravel mine in Michigan much easier, by way of removing local participation. As the Metamora Land Preservation Alliance (MLPA) wrote in opposition to the bill, this legislation would have allowed for “uncontrolled gravel mining” throughout the state. However, in a bit of good news, a large coalition of Michigan environmental organizations was able to defeat this bill with the MLPA, writing the following on its Facebook page:

“KILLER GRAVEL BILLS DEFEATED!!! 

SENATE BILLS 431/849 DEFEATED! 

NO SENATE VOTE THIS YEAR – BILLS ARE DEAD!

After almost 18 months of battling in Lansing – Senate Bills 431 & 849 (sponsored by Senator Hollier (D) Detroit) – have been defeated. They will not be coming up for a vote this calendar year, and by Senate rules they will therefore expire. Thus ending, for this year, the dire threat of uncontrolled gravel mining, endangerment of our groundwater, and loss of control of how our communities grow and develop. Make no mistake – this was a serious threat to Michigan’s citizens and communities – and it was a no-holds-barred fight in Lansing.”

Wins for communities over corporations like this are rare, indeed, and should be celebrated.  Congratulations to the Woods, MLPA, and all the Michigan communities and organizations that pushed back against this bill. You are true Community Sentinels!

Industrial Impacts in Michigan:

A Photo Essay & Story Map

View map fullscreen

 

By Ted Auch, PhD, Great Lakes Program Coordinator

and

Theresa Landrum, of Detroit, Michigan, 48217. The Original United Citizens of Southwest Detroit; 48217 Community and Environmental Health Organization; Michigan Advisory Council on Environmental Justice; Sierra Club Detroit Chapter, MEJC Clean Air Council; Michigan PFAS action response team

Support this work

DONATE

Stay in the know

 

Environmental Health Fellowship Opening – Summer 2021

This paid, remote fellowship will provide a graduate student with the opportunity to deepen their academic understanding of environmental issues affecting the heavily-fracked region of Southwestern Pennsylvania. The fellow will work in close collaboration with their FracTracker supervisor and their academic advisor.

This position was developed in partnership with the Community Foundation for the Alleghenies and The Heinz Endowments.

 

Fellowship Details

Title: FracTracker Alliance Environmental Health Fellow
Eligibility: Current graduate students
Fellowship Period: 12 weeks (6/7/21 – 8/27/21)
Application Deadline:  April 2nd, 2020
Compensation: $15/hour, 37.5 hours per week
Location: Remote, reporting to the Pittsburgh FracTracker office

Fellowship Description

This paid, remote fellowship will provide a graduate student with the opportunity to deepen their academic understanding of environmental issues affecting the heavily-fracked region around Southwestern Pennsylvania. The fellow will work in close collaboration with their FracTracker supervisor and their academic advisor.

FracTracker Alliance is a national, Pennsylvania-based environmental nonprofit organization that provides visual and technical tools to protect communities from the impacts of unconventional oil and gas development. FracTracker is a premier resource on unconventional oil and gas issues in the United States, and has appeared in the New York Times, Rolling Stone, the LA Times, The Guardian, USA Today, and more. The organization has received over 1.25 million visitors on www.fractracker.org, where FracTracker staff regularly contribute maps and articles on pressing unconventional oil and gas issues.  

Fellows will perform research and geo-spatial data collection, processing, and analysis with a focus on environmental health issues associated with oil, gas, and petrochemical development. Specific projects and research interests will be identified by the fellow in consultation with FracTracker staff and the fellow’s graduate program advisor. While multiple projects might be undertaken, a signature capstone project and blog post on the FracTracker website will be the primary foci of the experience. The fellow will also have the opportunity to present their work to various audiences in the format of their choice.

This position is not eligible for health benefits, but approved travel expenses for relevant research, meetings, and fieldwork will be reimbursed. This remote position reports to the Pittsburgh FracTracker office. Depending on the state of the COVID-19 pandemic, it may be possible to conduct some meetings in person.

This position was developed in partnership with the Community Foundation for the Alleghenies and The Heinz Endowments with the goal to bring high quality environmental and public health students to the region; to strengthen the region’s public health capacity to address issues impacting environmental, health, equity and sustainability outcomes; and to provide highly meaningful experience for students with strong academic backgrounds and in consultation with academic advisement.

Apply today to:

  • Conduct independent study relevant to your coursework
  • Deepen your understanding of environmental health issues and solutions
  • Learn and Apply GIS skills
  • Obtain valuable resume-building experience
  • Make new connections in the field of environmental health through participation in a cohort of Environmental Health Fellows from partnering organizations

This position is not eligible for health benefits, but approved travel expenses for relevant research, meetings, and fieldwork will be reimbursed. This position reports to the Pittsburgh FracTracker office. Depending on the state of the COVID-19 pandemic, fellows will likely work 100% remotely.

Responsibilities

The responsibilities of the fellow will revolve around their capstone project. They may also be asked to assist with daily work and time sensitive projects of the organization. Responsibilities will vary, but may include:

  • Spatial analyses and mapping using GIS software
  • Data mining, cleaning, and management
  • Field research (e.g. mobile app documentation, interviews, air or water monitoring, etc.)
  • Meetings with staff, partners, and/or experts
  • Written contributions to the FracTracker blog at www.fractracker.org
  • Translation of data into information and stories for the blog
  • Developing educational outreach materials

Qualifications

This fellowship is dedicated to current graduate students only. The candidate should possess the following qualifications:

  • Interest in protecting public health from risks associated with unconventional oil and gas and/or petrochemical development
  • Working knowledge of geographic information systems (GIS) and Microsoft Office products (especially Word and Excel)
  • Ability to assist with researching spatial data availability from internal and external sources; collect, assimilate, analyze, and interpret data and draw sound conclusions; prepare oral and written reports
  • Attention to detail
  • Excellent written and oral English communication and research skills
  • Ability to tackle challenging problems with minimal guidance
  • Experience presenting data and information in creative, visually compelling ways is a plus

Completed studies in environmental or public health, environmental science, environmental policy or environmental law, environmental engineering, chemistry, biology, economics, marketing, or nonprofit management are desired, but not mandatory.

To Apply 

To apply, please fill out the form below. The application deadline is Friday, April 2nd, 2021 at 5pm. 

Selected candidates will be contacted for an interview with FracTracker staff members. First-round interviews will take place between April 12th – April 23rd.

Once the fellow has been selected, all first-round candidates will be notified regarding the result of their application by April 30th.

Second-round interviews will take place between May 3rd – May 7th, with the final candidate being selected by May 10th at the latest. All first-round candidates will be notified regarding the result of their application at that time.

If you have questions, please don’t hesitate to contact Shannon Smith at smith@fractracker.org.

FracTracker is an equal opportunity employer. We are committed to providing equal employment opportunities without regard to race, creed, color, religion, national origin, sex, marital status, citizenship status, age, veteran status, or disability.

This form is currently closed for submissions.

Want to learn more about FracTracker’s internship, fellowship, and visiting scholars programs? Click here.

Brook Lenker, Matthew Kelso, and intern Gianna Calisto counting oil trains as they passed through Pittsburgh, PA

Brook Lenker, Matt Kelso, and intern Gianna Calisto counting oil trains as they passed through Pittsburgh, PA

Utica and Marcellus shale plays in the Appalachian Basin map

Fracking Waste in the Appalachian Basin – A Story Map

 

The production of fracking waste in the Appalachian Basin puts public health and safety at risk.

 

Fracking produces more than just oil and gas — billions of gallons of highly toxic waste are also created in the process. Regulatory loopholes have led to limited oversight into how this waste is tracked and treated, putting public health and safety at risk.

The maps below explore issues related to fracking waste from the Marcellus and Utica Shale regions of Pennsylvania, Ohio, New York, and West Virginia.

We suggest viewing this map fullscreen (click the link to do so)

View the map fullscreen

 

This mapping platform is an evolving tool based on available data — yet the opaqueness of the fracking industry limits our ability to map and analyze the full scope of the problem of fracking waste in the Appalachian Basin.

Unfortunately, even after sifting through thousands of data points, we’re left with many outstanding questions — what are the chemical components of the waste created? Where is it all sent? Where are its byproducts sent? What facilities are being planned and proposed? How much illegal dumping occurs?

The production of fracking waste in the Appalachian Basin will continue to create environmental and public health threats for decades after the industry leaves the region. Wells can continue to generate wastewater for years and contaminated equipment sent to landfills will leach toxins into the environment. Furthermore, with the industry’s history of failing to restore land after it has been used for oil and gas operations, we can expect abandoned fracking sites to become an increasing source of pollution in the Appalachian Basin in the coming decades. It’s imperative that the public have access to accurate and detailed data on fracking waste to protect the health of workers and residents.

By Erica Jackson, Community Outreach & Communications Specialist, FracTracker Alliance

Support this work

DONATE

Stay in the know

 

Channels of Life: The Gulf Coast Buildout in Texas

It’s been a little over a year since I visited the Texas Gulf Coast to document the oil, gas, and petrochemical landscape with our partners at LightHawk and Scott Humphries, an amazing pilot and Houston native.

Much has happened since then – in regard to and because of – the Gulf Coast’s petrochemical industry.

The fossil fuel landscape along the Gulf Coast is broad, and its impact is heavy.

The area has seen a massive build out over the last five years. New plastics and steel manufacturing facilities and pipelines from the Permian Basin that transport crude to ever-expanding tank farms and marine terminals – all with the blessings of local economic development groups and local government, despite known present and potential hazards.

As these developments continue, communities and workers pay the price. An incident in early December, 2020 left workers injured after a condensate fire at a Citgo tank farm in Corpus Christi. Before that, a pipeline explosion on August 20th in the Corpus Christi Ship Channel resulted in four deaths, with only two of those bodies recovered.

Channels of Life, below, is a short video looking at what is already on the ground, and what is on the horizon. Whether you are pleasure-boating in the channels or driving down the highway, you only see the edge of industrial sprawl that already exists. The depth of the incursion is not visible from the ground. Further down in an interactive Story Map, we give you a rare look from above, while pinpointing various incidents and facilities of concern. Partnering with LightHawk, we flew from Port Aransas, up the La Quinta Channel to the Nueces Delta, and ending at Refinery Row, giving you a bird’s-eye view of the sprawling fossil fuel landscape.

How much more industrial saturation can the Coastal Bend’s public health and ecosystem withstand before it is all sacrificed?

Is it destined to become a sacrifice zone for increasing corporate wealth and prestige?

 

 

Channels of Life

In many parts of Texas – as well as in Louisiana and New Mexico – oil, gas, and petrochemical facilities abut schools, backyards, and playgrounds. The Gulf Coast contains 95% of the country’s ethylene capacity and roughly half of the country’s petroleum refining and natural gas processing capacity. This development has propelled a new wave of petroleum and petrochemical infrastructure in recent years. There are 129 planned or recently completed petrochemical facilities in TX and LA alone.

This buildout has enormous consequences for the country’s greenhouse gas emissions, including intensifying climate change; increasing production of (often radioactive) waste and the need for its disposal; and discharging dangerous pollution into frontline communities where health has already been compromised by industry activities.

As the sacrifice builds and the losses mount, economic development corporations advertise the area as prime real estate for more facilities and infrastructure – even as markets steadily move away from fossil fuels. Exports are a tenuous lifeline for an industry drowning in an oversupply of oil and gas, but advocates like the Port of Corpus Christi Authority insist on proposing, financing, and constructing new crude oil and liquefied natural gas (LNG) export terminals along the Gulf Coast, including the BlueWater and GulfLink terminals.

Even with access to global markets, the outlook for this Gulf Coast petrochemical expansion doesn’t look great. Countries that planned to import the US’ fossil fuels are withdrawing interest, citing climate concerns. Major projects are being abandoned, like the petrochemical facility Project Falcon that SABIC had planned to build near Aransas Pass. Frontline communities that have suffered devastating health impacts from the industry for too long are calling out environmental racism and causing major delays for new facilities.

These Texan sites are further captured in the Story Map below, as are the footprints of countless other existing and proposed petrochemical infrastructure sites, from the frac sand mines south of San Antonio down into Corpus Christi Bay, the mushrooming industry along the La Quinta Channel, up the Gulf Coast to Freeport, and finally along the always hectic Houston Ship Channel that empties out into Galveston Bay.

Group shot in front of airplane

Left to Right: Corpus Christi native and Coastal Alliance to Protect Our Environment (CAPE) member Dewey Magee, FracTracker Alliance’s Ted Auch, and LightHawk pilot Scott Humphries stand outside Scott’s Beechcraft Bonanza A-36 at McCampbell-Porter Airport in Aransas Pass, TX, November 11th, 2019. Photo by Errol Summerlin

 

Skyline landscape shot of Corpus Christi, TX

The View of Corpus Christi’s Petrochemical Corridor along La Quinta Channel and Tule Lake Shipping Channel from 200’ above McCampbell-Porter Airport in Aransas Pass, TX, November 11th, 2019. Photo by Ted Auch, FracTracker Alliance

 

I reached out to pilot and native Houstonian Scott Humphries for his thoughts on what he expected and what he gleaned from our flight. He wrote the following:

Question #1: What about our proposed flight interested you as a Texan and/or Houstonian – or just more generally – what interested you about this mission?

I’ve always tried to be environmentally conscious, and always try to have, “think globally, act locally” rummaging around in my head, but this mission (and affiliating with LightHawk generally) presented an opportunity for me to try to (hopefully) have a little more impact than just personally recycling, outlawing Styrofoam cups at our office, etc. Separately, as a longtime Houstonian, I’ve always been proud to live and work in what many refer to as the “Energy Capital of the World.” This mission seemed a useful way to do some small part to help make sure that title continues to be held responsibly.

Question #2: After conducting the flights, or as they were happening, did you learn anything, or have any thoughts that surprised you or realizations about anything particular?

I have flown along the Gulf Coast (including to/from Houston/Corpus Christi) many, many times, and if you’d asked me before this mission, I would have said, ‘Sure, there’s a decent amount of industry along that part of the coast.’ What surprised me while we were flying was two things: (1) there’s not just a decent amount of industry along that part of the coast; rather, along that route, even flying low, you’re rarely – if ever – out of sight of a significant facility of some kind, and (2) the size of the facilities – in other circumstances I’d have been flying much higher and wouldn’t get a good sense of the size of the pads.  Flying as we were at just over 1000′, it was striking how massive the various plants were, both in Corpus Christi Bay and along the coast.

Another perspective on this flight and the area we flew over comes from Kevin Sims, Aransas Bay Birding Charters Operator whose Whooping Crane and Pink Spoonbill photos we feature in the story map below. Kevin has been plying the waters in and around Aransas Wildlife Refuge since 1972, and when I contacted him about using some of his photos, he told me the following:

“We need the desalination plants, but the planned discharge points are going to cripple our ecology and the business that rely on it for tourism. They could’ve discharged offshore, but instead they are discharging into the bay, and if it gets too salty the crab populations will plummet, and everything around here depends on crabs and shrimp. If we have a constant influx of brine it could really cripple us. I went to a fantastic meeting from Texas A&M, and their science told them that if red fish larvae migrated into the [Aransas Pass] shipping channel and hit a wall of salty water, they wouldn’t go further, and their population would crash. But despite these facts, they’ve chosen to discharge into the La Quinta Channel, and that is bad news! They were having fairly regular meetings on all of these proposals prior to COVID, but once COVID hit, they went all remote, and less people knew when the meetings were, and the meeting details weren’t widely disseminated … So, the next thing we knew, everything was passed, and they’re gonna [sic] go ahead and do [all of] it. 

My perspective comes from a lifetime of fishing and observing the Whooping Crane, and watching them progress from 157 eighteen years ago, to 507 at the present time. Well, I feel this will threaten an endangered species that they’ve been trying to bring back from the brink of extinction since the 1940s. I can remember my dad showing me the cranes in the mid-70s, and there were only 52-55. All of the projects you are mapping have the potential to decimate all the progress made, not to mention money spent on Whooping Crane recovery. From my perspective, it’s a catch-22, ‘cause [sic] the big cities take the water out of the river, and they don’t have the inflows into the bays that they did in the past. We also don’t have the rains that we used to have. The desalination plants would relieve some of that pressure if they would just put that brine offshore. The other species of concern to my industry is the Pink Spoonbills, but the Whooping Crane is the main draw.”

Channels of Life: The Gulf Coast Buildout in TX

A Story Map

This Story Map illustrates the impacts of oil and gas infrastructure from San Antonio down to Corpus Christi, and then up the Gulf Coast to Houston.

The map displays aerial photographs of infrastructure, from frac sand mines and refineries, to chemical plants and offshore drill rig construction sites. This map includes CO2 emissions from oil and gas infrastructure from 2010 – 2018 (weighted by total CO2 during this period in orange), and/or oil refineries and their myriad products (weighted by capacity in black [barrels/day oil equivalents]).

The Story Map also presents detailed information and locations for proposed petrochemical infrastructure in the Corpus Christi Bay region, courtesy of Errol Summerlin and our partners at Coastal Alliance to Protect Our Environment (CAPE). These proposals include dredging projects needed to accommodate more traffic from larger tanker ships, as well as desalination facilities that would collectively intake 758 million gallons of Corpus Christi Bay water each day, and discharge 507 million gallons of brine per day, with an average of 95 and 64 million gallons of desalinated water produced daily, respectively.

The perforated yellow line is the flight path we took with our LightHawk partners. When the viewer scrolls into any given region, they will see SkyTruth incident alerts within five miles of our flight path. The two examples cited at the beginning of this article are just a couple of the nearly 760 such incidents in just the Corpus Christi Shipping Channel since 2011, according to data provided by SkyTruth.

The most recent data in this map is Whooping Crane locations and number counts in TX as of November 2020, courtesy of The Cornell Lab of Ornithology’s eBird data portal. This data speaks to the concerns of Mr. Sims and many of his colleagues who rely on the Whooping Crane’s attraction to birders internationally, and it also highlights that the projects photographed and in the works across Corpus Christi Bay will not just negatively affect the human communities, but will have far reaching impacts on the ecosystems of the western Gulf, and the industries that have relied on these ecosystems for all manner of ecosystems services.

We recommend viewing this map in full screen

 

Looking forward

Decades of oil and gas development have created a dependency on extractive industries, which has in turn hindered community health and stability.

The Port of Corpus Christi’s controversial dock expansion and Harbor Bridge replacement project at the southern end of Refinery Row has taken over community land and eclipsed their fight to protect their neighborhoods and their public health. Even after an environmental review, the preferred route cuts through these neighborhoods that are surrounded by industry, interstates, and waste treatment facilities – isolated from other residences, and subjected to heavy pollution, noise, and constant hazard.

But with interest and investments declining in the fossil fuel industry and overproduction keeping prices low, the future of the Gulf Coast, its people, environment, and industrial landscape is uncertain – but resistance to extractive industry is strong.

Several activists and environmental coalitions are fighting this project and the industrial onslaught for the health of their communities. For more information on how to support their vision, visit our friends at Coastal Alliance to Protect our Environment (CAPE) and Texas Environmental Justice Advocacy Services (TEJAS).

 

Thank You

This video, Story Map and article were produced with much gratitude and appreciation for our partners at LightHawk, as well as the support and resources of Scott Humphries, Kevin Sims, and Errol Summerlin.


Support this work

DONATE

Stay in the know

CA Setbacks Map

People and Production: Reducing Risk in California Extraction

Executive Summary

New research shows that low-income communities and communities of color that are most impacted by oil and gas extraction (Frontline Communities) in California are at an elevated risk for preterm birth, low birth weight, and other negative birth outcomes. This is in addition to the elevated risks of cancer; risks for respiratory, cardiovascular, and pulmonary disorders; and risks for eyes, ears, nose, throat, and skin irritation that Frontline Communities face, among others. Public health interventions including setback requirements for oil and gas drilling are necessary to address the environmental health endemics documented in Frontline Communities. 

This report focuses on the two immediate stakeholders impacted by oil and gas well drilling setbacks: Frontline Communities and oil and gas operators. First, using U.S. Census data this report helps to define the Frontline Communities most impacted by oil and gas extraction. Then, using GIS techniques and California state data, this report estimates the potential impact of a setback on California’s oil production. Results and conclusions of these analyses are outlined below.

  • Previous statewide and regional analyses on proximity of oil and gas extraction to various demographics, including analyses included in Kern County’s 2020 draft EIR, have inadequately investigated disparate impacts, and have published erroneous results.
  • This analysis shows that approximately 2.17 million Californians live within 2,500’ of an operational oil and gas well, and about 7.37 million Californians live within 1 mile. 
  • California’s Frontline Communities living closest to oil and gas extraction sites with high densities of wells are predominantly low income households with non-white and Latinx demographics.
  • The majority of oil and gas wells are located in environmental justice communities most impacted by contaminated groundwater and air quality degradation resulting from oil and gas extraction, with high risks of low-birth weight pregnancy outcomes.
  • Adequate Setbacks for permitting new oil and gas wells will reduce health risks for Frontline Communities.
  • Setbacks for permitting new oil and gas wells will not decrease existing California oil and gas production.
  • Phasing out wells within setback distances will further decrease health risks for Frontline Communities.
  • Phasing out wells by disallowing rework permits within a 2,500’ setback distance will have a minimal impact on overall statewide oil production, estimated at an annual maximum loss of 1% by volume.
  • Setbacks greater than 2,500’ in combination with other public health interventions are necessary to reduce risk for Frontline Communities.
  • Based on the peer reviewed literature, a setback of at least one mile is recommended.

 

Introduction

The energy focused on instituting policies to protect the health of Frontline Communities in California from the negative impacts of oil and gas extraction is at an all-time high. In August 2020, Assembly Bill 345 was heard in the State Senate’s Natural Resources Committee, but was blocked from reaching the Senate floor for a vote. The bill would have required the Geologic Energy Management Division in the Department of Conservation (CalGEM) to establish a minimum setback distance between oil and gas production and related activities and sensitive receptors like homes, schools, and hospitals. While this strong effort to establish health and safety setbacks through the state legislature may have failed, the movement has paved the way for local actions. Additionally, California is in the midst of a statewide public health rule-making process to address the health impacts of oil and gas extraction currently experienced by Frontline Communities. 

In related advocacy, Frontline Community groups in California recommended a minimum 2500’ setback based on scientific studies, including a 2015 report by the California Council on Science and Technology which identified “significant” health risks at a distance of one-half mile from drill sites. A recent grand jury report from Pennsylvania recommended 5,000’ setbacks, with 2,500’ as a minimum requirement to address the most impacted communities. Additionally, the state of Colorado has recently adopted 2,000’ setbacks for homes and schools, while the existing 2,000’ setback has had minimal impacts on oil and gas production. 

In September 2020, Governor Newsom declared the deadline for the first draft of the pre-regulatory rule-making report will be the first of January 2021. FracTracker Alliance has therefore completed an updated assessment of  the Frontline Communities most impacted by oil and has projected the potential impact on oil and gas extraction operations. An interactive map of oil and gas activity and Frontline Communities is shown below in Figure 1. The map identifies the operational (active, idle, and new) oil and gas wells located within 2,500’ and 1 mile buffer zones from sensitive receptors, defined as homes, schools, licensed daycares and healthcare facilities.

The impacts of oil and gas drilling do not stop at 2,500’, as regional groundwater contamination and air quality degradation of ozone creation and PM2.5 concentrations are widespread hazards of oil and gas extraction. Phasing out wells within 2,500’ of homes will reduce the negative health effects for the Frontline Communities bearing the brunt of the risks associated with living near oil and gas wells, as well as reduce regional environmental hazards. These risks include over 24 categories of health impacts and symptoms associated with 14 bodily systems, including eyes, ears, nose, and throat; mental health; reproduction and pregnancy; endocrine; respiratory; cardiovascular and pulmonary; blood and immune system; kidneys and urinary system; general health; sexual health; and physical health among others. The most regularly documented health outcomes include mortality, asthma and respiratory outcomes, cancer risk including hematological (blood) cancer, preterm birth, low birth weight and other negative birth outcomes.

The interactive map below in Figure 1 shows the operational oil and gas wells located within 2,500’ of sensitive receptors, including homes, schools, healthcare facilities, prisons, and permitted daycares. Overall in the state of California, 16,724 operational (8,618 active, 7,786 idle, and 320 new) wells are located within the 2,500’ setback. Of the total ~105,000 operational (62,000 active, 37,400 idle, and 6,000 new), about 16% are within the setback. These wells accounted for 12.8% of the total oil/condensate produced in California in 2019. Table 1 below shows the counties where these wells are located, by well permit status. It bears noting that these figures on well location and production represent only a snapshot of current industry activity. As discussed below, current setback proposals would provide a phase out period for existing wells that would greatly reduce any immediate impact on production. Further, directional and even horizontal drilling is common in California, meaning operators can relocate their surface drilling equipment to safer distances and still access oil and gas reserves to maintain production.   

 

Table 1. Status of wells within the 2,500’ setback zone, by county. The table shows the counts of wells located within the 2,500’ setback from homes and other sensitive receptors, broken out by the status of the wells.

  Well Count by Status
County Active New Idle
Kern 3,501 234 2,171
Los Angeles 2,580 29 3,006
Orange 914 13 816
Ventura 534 7 600
Santa Barbara 198 17 241
Los Angeles Offshore 168 2 51
Glenn 133   76
San Joaquin 97   71
Monterey 88 9 95
Fresno 86 6 137
Sutter 73   71
Tulare 65 1 30
Colusa 47   80
Tehama 38   34
Solano 30 0 65
Sacramento 22 1 38
San Bernardino 14   29
Humboldt 12   11
Alameda 7   3
Contra Costa 5 1 16
San Benito 3   4
San Luis Obispo 2   14
Yolo 1   13
Grand Total 8,618 320 7,786

 

View map fullscreen

Figure 1. Map of California operational oil and gas wells with 2,500’ and one mile setback distances. One mile setbacks are included as a minimum recommendation of this report based on peer reviewed literature. This report recommends the state of California consider one mile as a minimum setback distance to protect Frontline Communities. As you zoom into the map additional, more detailed layers will appear.

Methods (Quick Overview)

In this article we conducted spatial analyses using both the demographics of Frontline Communities and the amount of oil produced from wells near Frontline Communities. This assessment used CalGEM data (updated 10/1/20) to map the locations of operational oil and gas wells and permits, as shown above in Figure 1. The analyses of oil production data utilized CalGEM’s annual production data reporting barrels of oil/condensate. GIS analyses were completed using ESRI ArcGIs Pro Ver. 2.6.1 with data projected in NAD83 California Teale Albers.

Wells within 2,500’ and 1 mile of sensitive receptors were determined using GIS techniques. This report defines sensitive receptors as residences, schools, licensed child daycare centers, healthcare facilities. Sensitive receptor datasets were downloaded from California Health and Human Services, and the California Department of Education

We used block group level “census designated areas” from American Community Survey (2013-2018) demographics to estimate counts of Californians living near oil and gas extraction activity. Census block groups were clipped using the buffered datasets of operational oil and gas wells. A uniform population distribution within the census blocks was assumed in order to determine the population counts of block groups within 2,500’ of an operational oil and gas well, 2,500’ to 1 mile from an operational well, and beyond 1 mile from an operational well. Census demographics and total population counts were scaled using the proportion of the clipped block groups within the setback area (Areal percentage = Area of block group within [2,500’; 2,500’-1 mile; Beyond 1 mile] of an operational well / Total area of block group). 

This conservative approach provided a general overview of the count and demographics of Californians living near extraction operations, but does little to shed light on most impacted Frontline Communities; specifically urban areas with dense populations near large oil fields. More granular analyses at the local level were necessary to address the spatial bias resulting from non-uniform census block group dimensions and population density distributions, as well as the distribution of operational oil and gas wells within the census block groups. Consequently, we conducted further analysis utilizing customized sample areas for each oil field, which were selected manually using remote sensing data. Full census blocks were used to summarize the actual areas and the urban populations constituting the majority of Frontline Communities. 

In the localized, static maps that follow, the census blocks included in the population summaries are shown in pink, while the surrounding census blocks are shown in blue. As seen in Table 2, census data for this initial environmental justice assessment was limited to “Race” (Census Table XO2), “Hispanic or Latino Origin” (Census Table XO3) and several other indicators including “Annual Median Income of Households” (Census Table X19) and “Poverty” (Census Table X17).

Results and Discussion

California Statewide Analysis

Demographics

As a baseline, it is important to provide statewide estimations to track the total number of Californians living near oil and gas extraction operations. This analysis showed that about 2.17 million Californians live within 2,500’ of an operational oil and gas well, and about 7.37 million Californians live within 1 mile. The demographics of these communities at and between these distances is shown below in Table 2, alongside demographic estimates of the California population living beyond 1 mile from an oil and gas well. Census block groups closer to oil and gas wells have higher proportions of Non-white (calculated by subtracting “White Only” from “Total Population”) and Latinx (“Hispanic or Latino Origin”) populations, as well as higher proportions of low-income households, based on both median annual income and poverty thresholds. The analysis show that communities living closer to oil and gas wells have higher percentages of non-white and Latinx populations when compared to the population living beyond 1 mile from an operational oil and gas wells. Communities closer to oil and gas wells are also more likely to be closer to the poverty threshold with lower median annual household incomes.

 

Table 2. The table shows statewide demographics at multiple distances from operational oil and gas wells. Included are estimates of the non-white and Latinx proportions of the populations within set distances from operational oil and gas wells. The percentage of populations within several poverty thresholds were also summarized, along with median annual household income and age.

  Distance from an operational oil and gas well
Indicators of Disparity Within 2,500′ 2,500′ – 1 Mile Beyond 1 Mile (Statewide)
Demographics:  Non-white 44.44% 43.56% 39.16%
Demographics:  Latinx 43.25% 44.97% 37.79%
Poverty:  Under Poverty Threshold 15.01% 14.97% 14.12%
Poverty:  Under 1.5X Poverty Threshold 24.31% 24.85% 23.25%
Poverty:  Under 2X Poverty Threshold 33.59% 34.25% 32.17%
Median Annual Household Income < $40k 30.09% 30.73% 28.72%
Median Annual Household Income <$75k 53.53% 54.36% 51.76%
Age:  0-5 years 6.08% 6.12% 6.37%
Age:  <18 years 21.54% 22.12% 23.39%
Age:   65+ 13.17% 13.11% 13.68%
Demographics: White only 55.56% 56.44% 60.84%

 

CalEnviroScreen

CalGEM operational wells data was also overlaid on CalEnviroScreen 3.0 (CES) indicators of environmental health. CES is provided by the Office of Environmental Health Hazard Assessment (OEHHA), on behalf of the California Environmental Protection Agency (CalEPA).

CalEnviroScreen data, like U.S. Census data, is also aggregated at the census block group level. While this data can also suffer from the same spatial bias as the statewide analysis above, CES is still very useful to visualize and map the regional pollution burden to assess disparate impacts. The results of the analysis are shown below in Table 3. Counts of operational oil and gas wells for ranges of CES percentile scores. Higher percentiles represent increased environmental degradation or negative health impacts as specified. Of note, the majority of operational oil and gas wells are located in census tracts with the worst scores for air quality degradation and high incidence of low birth weight.

The large number of wells located in the 60-80th percentile rather than the worst (80-100th percentile) is a result of spatial bias, and the many factors that are aggregated to generate the CES Total Scores. These factors include relative affluence and other indicators of socio-economic status. The majority of the worst (80th-100 percentile for Total CES Score) census block groups are located in low-income urban census block groups, many in Northern California cities that do not host urban drilling operations.

This spatial bias results from edge effects of census block groups, where communities living near oil and gas extraction operations may not live in the same census block groups as the oil and gas wells, and are therefore not counted. The authors would recommend future analyses be designed that use CES data to assess disparate impacts in the census block groups most impacted by oil and gas extraction. Neighboring census block groups that do not physically contain operational wells still suffer the consequences of proximity.

For the asthma rankings, the majority of wells are located in the best CES 3.0 percentile (0-20th percentile) for Asthma. While there is much urban drilling in Los Angeles, the spatial bias in this type of analysis gives more weight to the majority of oil and gas wells that are located in rural areas, which historically have much lower asthma rates. This is a result of the very high incidence of asthma in cities without urban drilling such as the Bay Area and Sacramento (80-100th percentile).

 

Table 3. Counts of operational oil and gas wells in select CalEnviroScreen 3.0 indicators census tracts.

  Operational Well Counts by CES3.0 Percentile
  0-20%ile 20-40%ile 40-60%ile 60-80%ile 80-100%ile
PM2.5 Air Quality Degradation 5,708 4,237 16,614 7,089 69,987
Ozone Air Quality Degradation 2,238 5,435 6,107 9,898 79,957
Contaminated Drinking Water 1,019 1,675 53,452 6,214 41,206
High Incidence of Low Birth Weight 10,186 13,368 14,995 3,236 58,036
High Incidence of Asthma 40,247 19,827 18,902 4,867 19,792
Total CES 3.0 1,583 5,756 15,671 65,356 12,985

 

Spatial Bias

Using census data to assess the demographics of those communities most affected by oil and gas drilling can produce misleading results both because of how census designated areas (census tracts and block groups) are designed and because of the uneven distribution of residents within tracts. For example, the majority of Californians who live closest to high concentrations of oil and gas extraction, such as the Kern River oil field, do so in residentially zoned cities and urban settings. In most Frontline Communities the urban census designated areas do not actually contain many wellsites. Instead urban census designated areas are located next to the “estate” and “industrial” (including petroleum extraction) zoned census designated areas that contain the well-sites. 

Estate and industrially zoned census designated areas contain the majority of well-sites in Kern County. They are much larger than residentially zoned areas with very low population densities and higher indicators of socioeconomic status. Population centers within the estate zoned areas are often located on the opposite end and farther from well sites than the lower income communities and communities of color living in the neighboring, residentially-zoned census designated areas (e.g., Lost Hills and Shafter). In these cases the statewide demographic summaries above misrepresent the Frontline Communities who are truly closest to extraction operations. Localized environmental justice demographics assessments can also be manipulated in this way.

For instance, The 2020 Kern County draft EIR (chapter 7 PDF pp. 1292-1305) used well counts aggregated by census tracts to conclude that wells in Kern County were not located in disparately impacted communities. Among other requirements for scientific integrity, the draft Kern EIR fails to take into account how the shape, size, and orientation of census designated areas affect the results of an environmental justice assessment. In addition, the EIR uses low-resolution data summarized at the census tract level. Census tracts are much too large to be used to investigate localized health impacts or disparities. Using these blatantly inadequate methods, the draft EIR even claimed Kern County’s oil and gas wells are predominantly located in higher income, white communities, which is outright wrong. For more specific criticisms of the Draft EIR read the FracTracker analysis of the 2020 Kern County EIR.

Results from these types of analyses can be very misleading. Using generalized methods of attributing wells to specific census designated areas does little to identify the communities most impacted by the localized environmental degradation resulting from oil and gas extraction operations, particularly when large census areas such as census tracts are used. 

This report therefore takes a different approach, focusing directly on California’s most heavily drilled communities. To understand who and which communities are most harmed by the large-scale industrial oil and gas extraction operations in California, spatial analyses must be refined to focus individually on the communities closest to the highest density extraction operations. For the analyses below, census block groups within 2,500’ of ten different Frontline Communities, all located near some of California’s largest oil and gas fields, were manually identified. The selected block groups’ major population centers were all located within the 2,500’ buffers. Unlike the statewide analysis above, the localized analyses below do not assume homogenous population distributions. Using these methods, FracTracker has identified and demographically described some of the most vulnerable California communities most at risk to the impacts of oil and gas extraction. In the maps below, the “case” census block groups used to generate descriptive demographic summaries of at risk communities bordering extraction operations are outlined in pink, while surrounding census block groups are outlined in light blue.

Well Density

The analyses above are important to understand some of the public health risks of living near oil and gas drilling in California. Yet the methods above used statewide aggregation of well counts and static buffers that do not not show the spectrum of risk resulting from well density. Numerous Frontline Communities in California are within 1 mile or even 2,500’ of literally thousands of oil and gas wells. Conversely, there are many census areas in California that have been included within the spatial analysis of the full state, as described above, located near a single low producing well. Therefore the above methods conservatively summarize demographics and dilute the signal of disparate impacts for low income communities of color. Those methods are not able to differentiate between such scenarios as living near one low-producing well in the Beverly Hills golf course versus living in the middle of the Wilmington Oil Field. 

As with any toxin, the dosage determines the intensity of the poison. In environmental sciences, increasing exposure to toxins by increasing the number of sources of a toxin can increase the dosage and therefore the severity of the health impact. The impact of well density has been documented in numerous epidemiological studies as a significant indicator of negative health outcomes, including recently published reports from Stanford University and The University of California – Berkeley linking adverse birth outcomes with living near oil and gas wells in California (Tran et. al 2020, Gonzalez et. al 2020). Therefore the rest of this report focuses on the Frontline Communities living near large oil extraction operations–i.e., oil fields with high densities of operational oil and gas wells. 

 

Kern County

Toggle between the sections below by clicking in the upper left corner of the title bar. 

The City of Shafter, California, is located near more than 100 operational wells in the North Shafter oil field, as shown below in the map in Figure 2. Technically, the wells are located within a donut-shaped census block group (outlined in blue) that surrounds the limits of the urban census block groups (outlined in pink). Shafter’s population of nearly 20,000 is over 86% Latinx, but the surrounding “donut” with just 2,000 people is about 70% Latinx, much wealthier, and with very low population density. The other neighboring rural census areas housing the rest of the Shafter oil field wells follow this same trend. 

An uninformed analysis, such as the Kern County EIR, would conclude that the 2,000 individuals who live within the blue “donut” are at the highest risk, because they share the same census designated area as the wells. Notably, the only population center of this census block group (or census tracts, which follow this same trend) is at the opposite end of the block group, farthest from the Shafter oil field. Instead, the most at-risk community is the urban community of Shafter with high population density; the census block groups within the pink hole of the donut contain the communities and homes nearest the North Shafter field.

Figure 2. The City of Shafter, California is located just to the south of the North Shafter oil field. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries. 

The cities of Lost Hills, Arvin, and Taft are all very similar to Shafter. The cities have densely populated urban centers located within or directly next to an oil field. In the maps below in Figures 3 readers can see the community of Lost Hills next to the Lost Hills oil field. Lost Hills, like the densely populated cities of Arvin and Taft, are located very close to large scale extraction operations. Census block groups that include the most impacted area of Lost Hills is outlined in pink, while surrounding low population density census block groups are shown in blue. The majority of the areas outlined in blue are zoned as “estate” and “agriculture” areas. The outlines of the city boundaries are also shown, along with 2,500’ and 1 mile setback distances from currently operational oil and gas wells.

Lost Hills is another situation where a donut-shaped census area distorts the results of low resolution demographics assessments, such as the one conducted by Kern County in their 2020 Draft EIR (PDF pp. 1292-1305). Almost all of the wells within the Lost Hills oil fields are just outside of a 2,500’ setback, but the incredibly high density of extraction operations results in the combined impact of the sum of these wells on degraded air quality. While stringent setback distances from oil and gas wells are a necessary component of environmental justice, a 2,500’ setback on its own is not enough to reduce exposures and risk for the Frontline Community of Lost Hills. For these Frontline Communities, a setback needs to be much larger to reduce exposures. In fact, limiting a public health intervention to a setback requirement alone is not sufficient to address the environmental health inequities in Lost Hills, Shafter, and other similar communities. 

Lost Hill’s nearly 2,000 residents are over 99% Latinx, and over 70% of the households make less than $40,000 in annual income (which is substantially less than the annual median income of Kern County households [at $52,479]). The map in Figure 3 shows that the Lost Hills public elementary school is located within 2,500’ of the Lost Hills oil field and within two miles of more than 2,600 operational wells, in addition to the 6,000 operational wells in the rest of the field. 

The City of Arvin has 8 operational oil and gas wells within the city limits, and another 71 operational wells within 2 miles. Arvin, with nearly 22,000 people, is over 90% Latinx, and over 60% of the households make less than $40,000 in annual income. 

Additionally the City of Taft, located directly between the Buena Vista and Midway Sunset Fields, has a demographic profile with a Latinx population at least 10% higher than the rest of southern Kern County. 

Lost Hills, Arvin, and Taft are among the most impacted densely populated  areas of Kern County and represent the most Kern citizens at risk of exposure to air quality degradation from oil and gas extraction.

In all of these cases, if only census tract well counts are considered, like in the 2020 Kern County draft EIR, these Frontline Communities will be completely disregarded. Census tracts are intentionally drawn to separate urban/residential areas from industrial/estate/agricultural areas. The census areas that contain the oil fields are very large and sparsely populated, while neighboring census areas with dense population centers, such as these small cities, are most impacted by the oil and gas fields.

Figure 3. The Unincorporated City of Lost Hills in Kern County, California is located within 2,500’ of the Lost Hills Oil Field. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries. 

The City of Bakersfield is a unique scenario. It is the largest city in Kern County and as a result suburban developments surround parts of the city. Urban flight has moved much of the wealth into these suburbs. The suburban sprawl has occurred in directions including North toward the Kern River oil field, predominantly on the field’s western flank in Oildale and Seguro. In the map below in Figure 4, these areas are located just to the north of the Kern River.

This is a poignant example of the development of cheap land for housing developments in an area where oil and gas operations already existed; an issue that needs to be considered in the development of setbacks and public health interventions and policies. This small population of predominantly white, middle class neighborhoods shares similar risks as the lower-income Communities of Color who account for the majority of Bakersfield’s urban center. Even though these suburban communities are less vulnerable to the oppressive forces of systemic racism, real estate markets will continue to prioritize cheap land for development, moving communities closer to extraction operations. 

Regardless of the implications of urban sprawl and suburban development, it is important to no disregard the risks to  the demographics of the at-risk areas of the city of Bakersfield are predominantly Non-white (31%) and Latinx (60%), particularly as compared to the city’s suburbs (15% Non-white and 26% Latinx). About 33,000 people live in the city’s northern suburbs, and another 470,000 live in Bakersfield’s urban city center just to the south of the 16,500 operational wells in the Kern River, Front, and Bluff oil fields. The urban population of Bakersfield is a large Frontline Community exposed to the local and regional negative air quality impacts of the Kern River and numerous other surrounding oil fields.

Figure 4. Map of the city of Bakersfield in Kern County, California located between several major oil fields including the Kern Front oil field. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.  

 

Southern California

The City of Ventura and the proximity of the Ventura oil field is a similar situation to cities in Kern. The urban center of Ventura is bisected by the Ventura oil field’s nearly 1,200 operational wells. While over 70% of the city’s population is Latinx, the very sparsely populated census areas also containing portions of the oil field are 34% Latinx. 

In the map below in Figure 5, take note of the population distribution within the portion of the city closest to the oil field versus the census areas to the east. While a statewide or less granular analysis would assume an evenly distributed population density, in this localized analysis, it is clear that the most vulnerable Frontline Communities are the urban centers closest to the oil fields. Even though the census blocks to the east contain oil and gas wells, the populations are less at risk because the population centers are located farther from the oil field.

Figure 5. Ventura Oil Field in Ventura, California census areas within the 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries. 

Los Angeles

In Los Angeles County, Inglewood, Wilmington, Long Beach, and Los Angeles City are some of the largest oil and gas fields. There are many areas in Los Angeles where a single low-producing well is located in an upper middle class suburb, on a golf course, or next to the Beverly Hills High School. 

While all well sites present sources of exposure to volatile organic compounds (VOCs) and other air toxics, these four oil fields have incredibly high densities of oil and gas wells in urban neighborhoods. The demographics of the Frontline Communities located within 2,500’ of these major fields are presented below in Table 4. These areas are additionally lower income communities; for example, over 50% of annual household incomes in the census areas surrounding the Los Angeles City oil field are below $40,000, while the Los Angeles County median annual income is over $62,000. 

Table 4. Demographics for Frontline Communities living within 2,500’ of Los Angeles’s major oil and gas fields along with counts of operational wells in the fields are shown in the table. The demographic “Latinx” is the count of “Hispanic or Latino Origin” population, and “non-white” was calculated by subtracting “white only” from “total population.”

 

Oil Field Well Count Non-white (%) Latinx (%)
Inglewood 914 62% 11%
Wilmington 2,995 56% 63%
Long Beach 687 50% 30%
Los Angeles City 872 69% 59%
Ventura 1,193 10% 72%

 

Toggle between the sections below by clicking in the upper left corner of the title bar. 

Figure 6. Inglewood Oil Field Frontline Community, Inglewood, California census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

Figure 7. Wilmington Oil Field Frontline Community, Wilmington, California census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

Figure 8. Long Beach Oil Field Frontline Community, Long Beach, California census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

Figure 9. Los Angeles City Oil Field Frontline Community census areas within a 2,500’ setback area. The map shows the 2,500’ setback distance in tan, as well as the census block groups in both pink and blue. Pink block groups show the urban case populations used to generate the demographic summaries.

 

Production

The creation of public health policies such as 2,500’ setbacks to help protect Frontline Communities is controversial in California as many state legislators are still beholden to the oil and gas industry. The industry itself pushes back strongly against any proposal that could affect their bottom line, no matter how insignificant the financial impact may be. When AB345 was proposed, the industry’s lobbying organization Western States Petroleum Association claimed that institution of 2500’ setbacks would immediately shut down at least 30% of California’s total oil production. This number is an outright fabrication. 

As shown in Table 1 above, a 2,500’ setback would impact the less than 9,000 active and new wells; 42% in Kern County and 29% in Los Angeles County. Ventura and Orange Counties are a distant 3rd and 4th, respectively. These counts are further broken down by field in Table 5 below. Statewide these wells accounted for just 12.8% of California’s current oil production by volume (as reported in barrels of oil/condensate by CalGEM), which is much smaller than the wholly unsubstantiated 30% decline claimed by industry.

 

Table 5. Counts of wells by well status for operational (active, idle, and new) oil and gas wells located within a 2,500’ setback.  Fields include the count of wells within the 2,500’ setback and the amount of oil produced from those wells within the setback. The percentage of total oil from that field is also included.

 

Oil Field County Well Count Well Ct % of Total 2019 Oil Prod (BBLS) Oil Prod % of Total
Wilmington Los Angeles 2,514 83% 2,292,669 22%
Kern River Kern 1,338 9% 2,121,071 12%
Inglewood Los Angeles 891 97% 1,806,354 96%
Midway-Sunset Kern 1,892 10% 1,614,081 8%
Ventura Ventura 287 24% 1,202,764 31%
Long Beach Los Angeles 687 100% 1,036,506 100%
Brea-Olinda Los Angeles 695 97% 967,223 95%
Huntington Beach Orange 528 83% 753,494 42%
Placerita Los Angeles 448 100% 508,182 100%
Santa Fe Springs Los Angeles 304 99% 421,719 72%
Cat Canyon Santa Barbara 115 10% 418,697 36%
Beverly Hills Los Angeles 156 100% 351,877 100%
McKittrick Kern 334 18% 346,738 10%
Montebello Los Angeles 227 98% 318,657 97%
Fruitvale Kern 286 80% 316,184 75%
San Ardo Monterey 180 13% 313,339 4%
Torrance Los Angeles 219 100% 307,413 100%
Seal Beach Los Angeles 175 88% 282,790 74%
Shafter, North Kern 70 78% 267,256 66%
Edison Kern 520 41% 261,098 39%
Brentwood Contra Costa 4 100% 230,868 100%
Oxnard Ventura 124 82% 214,884 100%
Sansinena Los Angeles 162 100% 207,474 100%
Poso Creek Kern 320 16% 193,533 4%
Rosecrans Los Angeles 94 100% 174,720 100%
Rio Bravo Kern 80 74% 166,444 82%
Richfield Orange 231 100% 165,426 100%
Coyote, East Orange 81 100% 163,639 100%
San Vicente Los Angeles 48 100% 162,940 100%

 

In the case that setback regulations are crafted both to prohibit new drilling and to phase out existing operations within the setback distance, the industry would have the opportunity to respond with measures that preserve the majority of production volumes, particularly in the Central Valley. For example, in Kern County, the overwhelming majority of new wells drilled in 2020 are directional or horizontal; these drilling technologies would allow operators to access the same below ground resources from surface locations that are further away from and safer for communities. Further, for existing wells within the 2,500’ setback, current proposals would institute a phase out period. Existing wells could be allowed to continue to operate under the terms of their current permits but not allowed to expand or rework their operations to increase or extend production; alternatively (or in addition), well operators could continue for a prescribed timeframe formulated to allow them to recoup their investment (called “amortization”). 

Los Angeles

It is clear that the oil fields of Los Angeles would be the most impacted if setbacks phased out the wells responsible for the highest risk to Frontline Communities. The majority of Los Angeles’s urban oil fields are located entirely within 2,500’ of homes, schools, healthcare facilities and daycares. 

As shown above in Table 5, wells within the setback produce 96% of the oil in the Inglewood fields, 84% in the Long Beach field, and 100% of the oil in several other smaller fields. With the phase out of these wells, oil extraction would cease in these fields. Most of these fields produce very low volumes of oil and already have high counts of idle wells, 28% idle in Wilmington, 25% in Inglewood, and 56% in Long Beach for example. The sole outlier of this trend is the Wilmington field. The majority of production in the Wilmington field comes from wells located in the Long Beach harbor, enough of them located outside of the 2,500’ setback such that while 83% of the Wilmington field wells are within the 2,500’ setback, these wells account for only 22% of the field’s overall production. 

Kern County

The situation in Kern County is quite the opposite of Los Angeles, where the majority of operational wells are located within 2,500’ of homes, residences, and other sensitive receptors like healthcare facilities. In Kern, the overwhelming majority of wells are located beyond 2,500’ and even 1 mile from sensitive receptors. While the Midway-Sunset and Kern River fields have the most wells within the 2,500’ setback area, those wells make up a small percentage of the total operational wells in the fields. As can be seen in the map in Figure 1, wells within the 2,500’ setback zone in the large Kern oil fields are entirely located on the borders of the fields. Overall, a 2,500’ setback in Kern County would only affect 7.1% of active/new wells, accounting for 5.97% of the county’s production.  

The oil and gas industry and operators in states including Texas, Colorado, North Dakota, Pennsylvania, Ohio, West Virginia, New Mexico, and Oklahoma are very vocal of their ability to avoid surface disturbance and target oil and gas pools located under sensitive receptors (homes, schools, healthcare facilities, endangered species habitat etc.) using directional drilling. According to the industry, directional drilling has been used for nearly a century to extract resources from areas where surface disruption would impact sensitive communities and habitats. 

The same is true for California, especially in Kern County and especially recently. An October 2020 draft environmental impact report by the Kern County Planning and Natural Resource Department disclosed that in a dataset of 9,803 wells drilled from 2000 to 2020 by the California Resources Corporation, the majority of wells were drilled directionally (46%) or horizontally (10%), as opposed to vertically. More recent wells in the County have utilized directional and horizontal drilling even more heavily: a 2020 dataset of wells drilled county-wide indicates that 76% were drilled directionally and an additional 7% were drilled horizontally; only 17% were drilled vertically. These statistics indicate that, even if all wells neighboring Frontline Communities in Kern County were to be phased out (itself a small percentage of the total number of wells in the county), there would only be a small impact on Kern County oil production owing to the prevalence of non-vertical techniques that allow operators the flexibility to access reserves from different surface locations. As noted previously, if all oil production from within the 2,500’ setback zone were to be immediately eliminated statewide, it would mean a maximum decrease of just 12.8% of California’s current annual oil production. But the availability of directional and horizontal drilling in Kern County, where the lion’s share of all drilling statewide occurs, means it is more likely that the decrease in production will be significantly less than 12.8% and likely much less than 10%. 

Existing Well Phase Out

Any assertion that a 2,500’ setback would immediately affect oil production is baseless because current setback proposals would institute a phase out period for existing wells. For example, existing permitted wells could be allowed to continue to operate under the terms of their current permits but not allowed to expand or rework their operations to increase or extend production. Alternatively, under a policy approach known as amortization, well operators could continue for a prescribed timeframe formulated to allow them to recoup their investment.   

If wells within the setback distance are phased out pursuant to a “no rework” policy, operators would be afforded some time to maximize production in order to ensure that operators receive a sufficient return on their investment under the terms of their existing permits before they shut down. Under such an approach, older wells with increasing risks of fugitive emissions through leaks at the surface and well casing failures could be sequentially phased out by placing a ban on rework permits not required for maintenance or safety. CalGEM permitted well reworks, including sidetracks and deeper drills, increase production and the lifespan of wells. The catalog of rework permits can be found on the CalGEM website.

Based on CalGEM’s production data from 2018 and 2019, a phase out effectuated by disallowing well reworks would result in an annual reduction of less than 1% of total oil production. Of the 52,997 wells reporting  oil/condensate production volumes in 2018, 338 received a rework permit in the same year. In 2019, of the 48,860 wells reporting oil production volumes, 285 received rework permits. By volume, the wells that received rework permits accounted for 0.87% of oil production in 2018 and just 0.04% in 2019. 

Conclusion

The oil and gas industry in California has consistently pushed back against Frontline Communities who demand public health protections against emissions from oil and gas operations. This occurs even when there will be little to no impact reducing production. It is an industry policy to refuse any concessions and oppose all measures, even to protect public health, by leveraging the industry’s wealth at every level of the political hierarchy. 

Fatefully, 2020 has resulted in multiple wins for public health in California. While the failure of AB345 made it clear that the California state legislature is still beholden to the fossil fuel industry, the momentum has continued. Community grassroots groups in Ventura County successfully passed a 1,500’ setback ordinance for occupied dwellings and 2,500’ setbacks for sensitive receptor sites including healthcare facilities and schools. Just south of Ventura, the County of Los Angeles is also in the midst of a rule-making process that is considering multiple setbacks, including 1,000’ to 2,500’ distances. And a committee of the Los Angeles City Council just voted to develop a proposal that would phase out oil drilling across the city as a non-conforming use. 

While Ventura and Los Angeles are making progress, Kern County is creating a new process to streamline oil and gas well permitting and has even proposed to decrease the existing zone-specific 300’ setbacks from homes to 210’. 

Kern County Frontline Communities and the rest of California also deserve the same consideration as residents of Ventura and Los Angeles Counties. The research is clear that a setback of at least one mile in addition to more site specific public health interventions are necessary to reduce the negative health impacts resulting from these industrial operations within and neighboring Frontline Communities. 

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Support this work

DONATE

Stay in the know

Documenting emissions from new oil and gas wells in California

 

Working with the environmental nonprofit Earthworks, FracTracker Alliance filmed emissions from oil and gas sites that have been issued permits in California under Governor Gavin Newsom since the beginning of 2019. Using state-of-the-art technology called optical gas imaging (OGI), we documented otherwise invisible toxic pollutants and greenhouse gas emissions (GHGs) being released from oil and gas wells and other infrastructure. This powerful technology provides further evidence of the negative consequences that come from each issued permit. Every single permit approval enabled by decisions made under Newsom can have substantial, visible impacts on local and regional air quality, contributes to climate change, and potentially exposes communities to health-harming pollution.

Despite a stated commitment to transition rapidly off fossil fuels, California has issued 7,625 permits to drill new oil and gas wells and rework existing wells since the beginning of 2019 — that is, on Governor Gavin Newsom’s watch. This expansion of the industry has clear implications for climate change and public health, as this article will demonstrate.

 

Intro

In collaboration with Consumer Watchdog, FracTracker Alliance has been periodically reporting on the number and locations of oil and gas wells permitted by Governor Newsom in California. In July of 2019, we showed how the rate of fracking under Governor Newsom had doubled, as compared to counts under former Governor Brown. Since then we have continued tracking the numbers and updating the California public via multiple news stories, blog reports, and with a map of new permits on NewsomWellWatch.com, where permitting data for the third quarter of 2020 has just been posted.

Now again, the rate of new oil and gas well permits issued by the California Geologic Energy Management division (CALGEM) continues to increase even faster in 2020, with permits issued to drill new oil and gas production wells nearly doubling since 2019. But what exactly does this mean for Frontline Communities and climate change? To answer this question, FracTracker Alliance and Consumer Watchdog teamed up with Earthworks’ Community Empowerment Project (CEP).

CEP’s California team worked with community members and grassroots groups to film emissions of methane and other volatile organic compounds (VOCs) emitted from oil and gas extraction sites, including infrastructure servicing oil and gas production wells such as the well-heads, separators, compressors, crude oil and produced water tanks, and gathering lines. Emissions of GHGs, such as methane, are a violation of the California Air Resources Board’s (CARB) California oil and gas rule (COGR), California Code of Regulations, Title 17, Division 3, Chapter 1, Subchapter 10 Climate Change, Article 4, § 95669, Leak Detection and Repair.

The emissions were filmed by a certified thermographer with a FLIR (Forward Looking Infrared) GF320 camera that uses optical gas imaging (OGI) technology. The OGI technology allows the camera to film and record visualizations of VOC emissions based on the absorption of infrared light. It is the exact same technology required by the U.S. EPA under the rule for new source performance standards and the by California Air Resources Board for Leak Detection and Repair (LDAR) to properly inspect oil and gas infrastructure. The video footage clearly shows the presence of a range of VOCs, methane, and other gases that are otherwise invisible to the naked eye.

The footage shown below is in greyscale and can appear grainy when the camera is being operated in high sensitivity modes, which is sometimes necessary to visualize certain pollution releases. The descriptions preceding each video explain what the trained camera operator saw and documented. A map of these sites is presented at NewsomWellWatch.com.

Newsom Well Watch interactive map

Navigate to the next slide using the arrows at the bottom of the map.

 

Find the story map, and more by clicking the image below.

 

Case Studies on Permitted Sites

Cat Canyon Tunnell Well Pad.

Earthworks’ California CEP thermographer visited this site in December of 2019, and just happened to arrive while the operator (oil and gas company) was conducting activities underground, including drilling new wells and reworking existing wells. In 2019 the operator, Vaquero Energy, was approved to drill 10 new cyclic steam wells and rework 23 existing oil and gas production wells at this site.

The footage shows significant emissions coming from an unknown source near the wellheads on the well pad; most likely these emissions were coming directly from the open boreholes of the wells. The emissions potentially include a cocktail of VOCs and GHGs such as methane, ethane, benzene, and toluene. This footage provides a candid view of what is released during these types of activities. The pollution shown appears to be the result of an uncontrolled source commonly resulting from drilling and reworking wells

Additionally, inspectors are rarely, if ever, present during these types of activities to ensure that they are conducted in accordance with regulations. The CEP camera operator reported the emissions and provided the OGI video to the Santa Barbara County Air Pollution Control District. By the time the inspector arrived, however, the drilling crew had ceased operations. The inspector did not detect any of these emissions, and as a result the operator was not held accountable for this large pollution release.

In the footage below, the emissions can be seen traveling over the fenceline of the well pad, swirling and mixing with the wind. This site is a clear example of what to look for in the following videos, since the emissions are so obvious. Fortunately, there are no homes or buildings in close proximity to this site, which potentially limited direct pollution exposure — although the pollution still degrades air quality and can pose an occupational health risk to oil field workers.

 

South Los Angeles Murphy Drill Site

The Murphy Drill Site in Los Angeles has been a long-standing nuisance and source of harmful pollution for neighbors in Jefferson Park. The site houses 31 individual operational wells, including 9 enhanced oil recovery injection wells and 22 oil and gas production wells, as shown below in the map in Figure 1. The wells are operated by Freeport-McMoran, while the site is owned by the Catholic archdiocese of Los Angeles. The site is within 200 feet of homes, playgrounds and a health clinic. There are over 16,000 residents within 2,500’ of the site, as well as a special needs high school, an elementary school, a hospice facility, and a senior housing complex.

Map of the California Murphy drill site

Figure 1. Map of the Murphy drill site

The neighborhoods near the Murphy Site are plagued with strong chemical odors, including those linked to oil and gas operations (such as the “rotten egg” smell of health-harming hydrogen sulfide), most likely from the toxic waste incinerators on site. Community members have suffered from respiratory problems, chronic nosebleeds, skin and eye irritation, and headaches. The operators have received multiple violations, including for releasing emissions at concentrations 400% over the allowable limit of methane and VOCs. Some of these violations were the direct result of complaints from the community and the Earthworks CEP team, which filmed pollution from the site on multiple occasions. Yet despite receiving “Notices of Violations” and fines, Freeport-McMoran has been allowed to continue operations. In OGI footage, emissions are visible continuously escaping from a vent on the equipment. While this leak has been addressed by regulators, each new visit to this site tends to result in finding new uncontrolled emissions sources.

 

South Los Angeles Jefferson Drill Site

The Jefferson drill site is very similar situation to the Murphy Site. The sites have the same operator, Freeport-McMoran, and surrounding neighborhoods in both locations have suffered from exposure to toxic pollution as well as odors, truck traffic, and noise. The Jefferson site has 49 operational wells, including 15 enhanced oil recovery wells, as shown below in Figure 2. In 2013 the operator reported using over 130,000 pounds of corrosive acids and other toxic chemicals for enhanced oil recovery operations. Regardless, an environmental impact report has never been completed for this site.

Map of the Jefferson drill site in South Los Angeles

Figure 2. Map of the Jefferson drill site in South Los Angeles.

 

The site is located 3 feet from the nearest home, and the surrounding residential buildings are considered “buffers” for the rest of the neighborhood, which also includes an elementary school about 700 feet away. The site was nearly shut down by the City of Los Angeles in 2019, but is currently still operational. In 2019 the site was even issued a permit to rework an existing well in order to increase production from the site. The footage below shows a large, consistent release of pollution from equipment on the well pad. The plume appears above the site and is visible against the background of the sky. The Earthworks CEP team reported the pollution to the South Coast Air Quality Management District (SCAQMD), which conducted an inspection, stopped the leak, and issued a notice of violation and a fine. It is not clear exactly how long this pollution problem had gone unnoticed or unaddressed, and it is not unlikely that another leak will occur without being quickly identified.

 

Wilmington E&B Resources WNF-I Site on Main St

The WNF-I drilling site is located in Carson in the City of Los Angeles. Operated by E&B Natural resources in the Wilmington oil and gas field, the site houses 35 operational oil and gas wells, including 12 enhanced oil recovery wells and a wastewater disposal well. There is also extensive above-ground infrastructure on the well site, including a large, high-volume tank battery used to store oil and wastewater produced from numerous oil and gas wells in the area.

Using OGI, Earthworks identified a large pollution release from the top of the largest tank. In the video footage, the plume or cloud of gases (likely methane and VOCs) can be seen hovering over the site and slowly dispersing over the fence-line into the communities of West Carson and Avalon Village. Despite clear operational problems, CalGEM approved this site for two rework permits in 2019 and then three re-drills (known as sidetracks) of existing wells in 2020 in order to increase production. The SCAQMD reports that they have inspected this facility, but it is not clear whether this major uncontrolled source has been stopped.

 

Long Beach Signal Hill Drill Site

At an urban drilling site in the neighborhood of Signal Hill in Los Angeles County, Earthworks filmed and documented pollution releases from numerous pieces of equipment. The site includes 15 operational oil and gas wells operated by Signal Hill Petroleum and The Termo Company. Emissions of gases (likely methane and VOCs) were documented on infrastructure from both operators. At this site, Signal Hill Petroleum received a permit in April 2019 to rework an operational well to increase production. That well is located less than 70’ from a home.

While this site is located within Los Angeles County, it is outside the jurisdiction of the city itself. Any local protections for drilling sites within the Los Angeles city limits are not afforded to communities such as Signal Hill. This area that includes the Signal Hill oil field and the Signal Hill portion of the Long Beach oil field, where many well sites are unmaintained and oversight is limited — conditions that in turn can result in corrosion and pollution leaks. The SCAQMD inspected this site and reported that these uncontrolled sources of emissions have been addressed by the operator, but it is not clear if the emission have stopped.

Midway-Sunset Crail Tank Farm

This tank farm, located in Kern County, services a number of wells operated by Holmes Western Oil Corporation on the outskirts of the Mid-Way Sunset Field. Of the wells serviced by this site, permits were issued to four active oil and gas production wells in 2019. The permits authorized the operator to rework the wellbores in order to increase production. The site contains nine operational oil and gas wells, including eight production wells pumping oil to the surface and one wastewater disposal well. There are multiple homes near this site, within 400’ to the west and within 300’ to the northeast.

For each gallon of oil produced, another ten gallons of contaminated wastewater are brought to the surface. Using diesel or gas generators this wastewater is pumped back into the ground. California regulators have a bad track record of managing underground injection of wastewater, which is now under the U.S. EPA’s oversight. The groundwater in this area of Kern County is largely contaminated and considered a sacrifice zone.

The emissions from this site are from the pressure release valves on the tops of multiple tanks. The tanks store both crude oil and wastewater. The infrared spectrum allows the camera to film the tank levels, which are nearly full. As the tanks fill with more crude oil and hydrocarbon contaminated wastewater the head space of the tank pressurizes with more VOC’s. This footage was also filmed at night when emissions are typically much lower. During the day heat from the sun (radiative energy) heats the tanks and increases the head space pressure resulting in greater emissions. While the San Joaquin Valley Air Pollution Control District (SJVAPCD) was notified of these uncontrolled sources of emissions, their own inspections of the site did not identify an actionable offense on the part of the operator and these uncontrolled emissions continue to be released.

 

Tank Emissions

Crude oil and wastewater storage tanks are a common source of fugitive emissions and represent the majority of emissions presented in this report. Some tanks and well-sites use best practices that include closed vapor recovery systems to prevent venting tanks from leaking, but the vast majority do not and vent directly to the atmosphere. In all cases, tanks and pipeline infrastructure use pressure release valves to vent emissions when pressure builds too high. This venting is permitted as strictly an emergency activity to prevent hazardous build-up of pressure. Vents are even designed to open and reset themselves automatically. Consequently, tank venting is a common practice and operators seem to often leave these valves open.

While the recently enacted California Oil and Gas Rule (COGR) places limits on GHG emissions from all oil and gas facilities, internal policy of the San Joaquin Air Valley Air Pollution Control District has previously exempted tanks at low-producing well sites from having to be kept in a leak-free condition, creating a regulatory conflict that air districts and CARB need to resolve. This type of emissions source is also difficult for regulators to identify during inspections, for a number of reasons. These valves are typically located on the tops of large tanks where they are difficult to access and view, and inspections and sampling can only occur by chance (i.e., when the valve in open). Further, these valves can be immediately closed by operators during or upon notification of an upcoming inspection.

New Permits: Moving in the Wrong Direction

When Earthworks CEP uses OGI cameras to inspect an oil and gas site in California, finding and documenting pollution releases is so common that it is the default expectation. Because of access and proximity limitations, it is possible that more pollution is being released from sites than CEP can identify. All of these examples of pollution, including releases of methane and VOCs, add up to potentially degrade air quality and expose Frontline Communities to health risks — as well as many others just like them. This summary represents a small collection of leaking well sites visited by Earthworks CEP, which have coincidentally received new permits to operate and rework existing wells since January 1, 2019. CEP has also documented many other hazardous cases, such as the Jewett 1-23 site in Arvin (shown in the footage below), that is persistently exposing elementary school students to VOCs. These sites surely make up only a small proportion of the polluting oil and gas sites in California that harm climate and health.

From the initial drilling of an oil and gas well, during production, and into subsequent reworks, all phases of a well’s lifetime result in unpermitted and undocumented fugitive emissions. Regulating emissions from oil and gas extraction operations has not been effective in California. Regardless of notices of violations and fines, polluting facilities and well sites continue to operate and even receive new permits. Even the COGR rule, lauded as the most stringent GHG emissions regulation in the nation is technically unable to eliminate or even identify these uncontrolled sources. It is clear that the only ways to reduce exposures to these emissions for Frontline Communities is to institute protective setbacks and stop permitting the drilling of new wells and the reworking of aging wells.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Support this work

DONATE

Stay in the know

Incinerators: Dinosaurs in the world of energy generation

 

In this article, we’ll take a look at the current trend in “re-branding” incineration as a viable option to deal with the mountains of garbage generated by our society. Incineration can produce energy for electricity, but can the costs—both economically, and ecologically—justify the benefits? What are the alternatives?

Changes in our waste stream

In today’s world of consumerism and production, waste disposal is a chronic problem facing most communities worldwide. Lack of attention to recycling and composting, as well as ubiquitous dependence on plastics, synthetics, and poorly-constructed or single-use goods has created a waste crisis in the United States. So much of the waste that we create could be recycled or composted, however, taking extraordinary levels of pressure off our landfills. According to estimates in 2017 by the US Environmental Protection Agency (EPA), over 30 percent of municipal solid waste is made up of organic matter like food waste, wood, and yard trimmings, almost all of which could be composted. Paper, glass, and metals – also recyclable – make up nearly 40 percent of the residential waste stream. Recycling plastic, a material which comprises 13% of the waste stream, has largely been a failed endeavor thus far.

Why say NO to incinerators?

  • They are bad for the environment, producing toxic chlorinated byproducts like dioxins. Incineration often converts toxic municipal waste into other forms, some of which are even more toxic than their precursors.
  • They often consume more energy than they produce and are not profitable to run.
  • They add CO2 to the atmosphere.
  • They promote the false narrative that we can “get something” from our trash
  • They detract from the conversation about actual renewable energy sources like wind power, solar power, and geothermal energy that will stop the acceleration of climate chaos.

Figure 1: A breakdown of the 267.78 million tons of municipal waste that were generated in the US in 2017. Source: figure developed by FracTracker Alliance, based on 2017 EPA data. Source: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

Nevertheless, of the approximately 400 million tons of plastic produced annually around the world, only about 10% of it is recycled. The rest winds up in the waste stream or as microfragments (or microplastics) in our oceans, freshwater lakes, and streams.

Figure 2: Increase in global plastics production, 1950-2015, Source: Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. Available at: http://advances.sciencemag.org/content/3/7/e1700782 Referenced in https://ourworldindata.org/plastic-pollution

According to an EPA fact sheet, by 2017, municipal solid waste generation increased three-fold compared with 1960. In 1960, that number was 88.1 million tons. By 2017, this number had risen to nearly 267.8 million tons. Over that same period, per-capita waste generation rose from 2.68 pounds per person per day, to 4.38 pounds per person per day, as our culture became more wed to disposable items.

The EPA provides a robust “facts and figures” breakdown of waste generation and disposal here.  In 2017, 42.53 million tons of US waste was shipped to landfills, which are under increasing pressure to expand and receive larger and larger loads from surrounding area, and, in some cases, hundreds of miles away.

How are Americans doing in reducing waste?

On average, in 2017, Americans recycled and composted 35.2% of our individual waste generation rate of 4.51 pounds per person per day.  While this is a notable jump from decades earlier, much of the gain appears to be in the development of municipal yard waste composting programs. Although the benefits of recycling are abundantly clear, in today’s culture, according to a PEW Research Center report published in 2016, just under 30% of Americans live in communities where recycling is strongly encouraged. An EPA estimate for 2014 noted that the recycling rate that year was only 34.6%, nationwide, with the highest compliance rate at 89.5% for corrugated boxes.

Figure 3. Percent of Americans who report recycling and re-use behaviors in their communities, via Pew Research center
Historically, incineration – or burning solid waste – has been one method for disposing of waste. And in 2017, this was the fate of 34 million tons—or nearly 13%– of all municipal waste generated in the United States. Nearly a quarter of this waste consisted of containers and packaging—much of that made from plastic.  The quantity of packaging materials in the combusted waste stream has jumped from only 150,000 tons in 1970 to 7.86 million tons in 2017.  Plastic, in its many forms, made up 16.4% of all incinerated materials, according to the EPA’s estimates in 2017.

Figure 4: A breakdown of the 34.03 tons of municipal waste incinerated for energy in the US in 2017

What is driving the abundance of throw-away plastics in our waste stream?

Sadly, the answer is this: The oil and gas industry produces copious amounts of ethane, which is a byproduct of oil and gas extraction. Plastics are an “added value” component of the cycle of fossil fuel extraction. FracTracker has reported extensively on the controversial development of ethane “cracker” plants, which chemically change this extraction waste product into feedstock for the production of polypropylene plastic nuggets. These nuggets, or “nurdles,” are the building blocks for everything from fleece sportswear, to lumber, to packaging materials. The harmful impacts from plastics manufacturing on air and water quality, as well as on human and environmental health, are nothing short of stunning.

FracTracker has reported extensively on this issue. For further background reading, explore:

A report co-authored by FracTracker Alliance and the Center for Environmental Integrity in 2019 found that plastic production and incineration in 2019 contributed greenhouse gas emissions equivalent to that of 189 new 500-megawatt coal power plants. If plastic production and use grow as currently planned, by 2050, these emissions could rise to the equivalent to the emissions released by more than 615 coal-fired power plants.

Figure 5: Projected carbon dioxide equivalencies in plastics emissions, 2019-2050. Source: Plastic and Climate https://www.ciel.org/plasticandclimate/

Just another way of putting fossil fuels into our atmosphere

Incineration is now strongly critiqued as a dangerous solution to waste disposal as more synthetic and heavily processed materials derived from fossils fuels have entered the waste stream. Filters and other scrubbers that are designed to remove toxins and particulates from incineration smoke are anything but fail-safe. Furthermore, the fly-ash and bottom ash that are produced by incineration only concentrate hazardous compounds even further, posing additional conundrums for disposal.

Incineration as a means of waste disposal, in some states is considered a “renewable energy” source when electricity is generated as a by-product. Opponents of incineration and the so-called “waste-to-energy” process see it as a dangerous route for toxins to get into our lungs, and into the food stream. In fact, Energy Justice Network sees incineration as:

… the most expensive and polluting way to make energy or to manage waste. It produces the fewest jobs compared to reuse, recycling and composting the same materials. It is the dirtiest way to manage waste – far more polluting than landfills. It is also the dirtiest way to produce energy – far more polluting than coal burning.

Municipal waste incineration: bad environmentally, economically, ethically

Waste incineration has been one solution for disposing of trash for millennia. And now, aided by technology, and fueled by a crisis to dispose of ever-increasing trash our society generates, waste-to-energy (WTE) incineration facilities are a component in how we produce electricity.

But what is a common characteristic of the communities in which WTEs are sited? According to a 2019 report by the Tishman Environmental and Design Center at the New School, 79% of all municipal solid waste incinerators are located in communities of color and low-income communities.  Incinerators are not only highly problematic environmentally and economically. They present direct and dire environmental justice threats.

Waste-to-Energy facilities in the US, existing and proposed

Click here to view this map full-screen

Activate the Layers List button to turn on Environmental Justice data on air pollutants and cancer occurrences across the United States.  We have also included real-time air monitoring data in the interactive map because one of the health impacts of incineration includes respiratory illnesses. These air monitoring stations measure ambient particulate matter (PM 2.5) in the atmosphere, which can be a helpful metric.

What are the true costs of incineration?

These trash incinerators capture energy released from the process of burning materials, and turn it into electricity. But what are the costs? Proponents of incineration say it is a sensible way to reclaim or recovery energy that would otherwise be lost to landfill disposal. The US EIA also points out that burning waste reduces the volume of waste products by up to 87%.

The down-side of incineration of municipal waste, however, is proportionally much greater, with a panoply of health effects documented by the National Institutes for Health, and others.

Dioxins (shown in Figures 6-11) are some of the most dangerous byproducts of trash incineration. They make up a group of highly persistent organic pollutants that take a long time to degrade in the environment and are prone to bioaccumulation up the food chain.

Dioxins are known to cause cancer, disrupt the endocrine and immune systems, and lead to reproductive and developmental problems. Dioxins are some of the most dangerous compounds produced from incineration. Compared with the air pollution from coal-burning power plants, dioxin concentrations produced from incineration may be up to 28 times as high.

2,3,7,8-Tetrachlorodibenzo-p-dioxin

2,3,7,8-Tetrachlorodibenzofuran

3,3′,4,4′,5,5′-Hexachlorobiphenyl

Figures 6-11: Dioxin chemical structures via US EPA. Source: https://www.epa.gov/dioxin/learn-about-dioxin
 

Federal EPA regulations between 2000 and 2005 resulted in the closure of nearly 200 high dioxin emitting plants. Currently, there are fewer than 100 waste-to-energy incinerators operating in the United States, all of which are required to operate with high-tech equipment that reduces dioxins to 1% of what used to be emitted. Nevertheless, even with these add-ons, incinerators still produce 28 times the amount of dioxin per BTU when compared with power plants that burn coal.

Even with pollution controls required of trash incinerators since 2005, compared with coal-burning energy generation, incineration still releases 6.4 times as much of the notoriously toxic pollutant mercury to produce the equivalent amount of energy.

Energy Justice Network, furthermore, notes that incineration is the most expensive means of managing waste… as well as making energy. This price tag includes high costs to build incinerators, as well as staff and maintain them — exceeding operation and maintenance costs of coal by a factor of 11, and nuclear by a factor of 4.2.

Figure 12. Costs of incineration per ton are nearly twice that of landfilling. Source: National Solid Waste Management Association 2005 Tip Fee Survey, p. 3.
Energy Justice Network and others have pointed out that the amount of energy recovered and/or saved from recycling or composting is up to five times that which would be provided through incineration.

Figure 13. Estimated power plant capital and operating costs. Source: Energy Justice Network

The myth that incineration is a form of “renewable energy”

Waste is a “renewable” resource only to the extent that humans will continue to generate waste. In general, the definition of “renewable” refers to non-fossil fuel based energy, such as wind, solar, geothermal, wind, hydropower, and biomass. Synthetic materials like plastics, derived from oil and gas, however, are not. Although not created from fossil fuels, biologically-derived products are not technically “renewable” either.

ZeroWasteEurope argues that:

Biogenic materials you find in the residual waste stream, such as food, paper, card and natural textiles, are derived from intensive agriculture – monoculture forests, cotton fields and other “green deserts”. The ecosystems from which these materials are derived could not survive in the absence of human intervention, and of energy inputs from fossil sources. It is, therefore, more than debatable whether such materials should be referred to as renewable.

Although incineration may reduce waste volumes by up to 90%, the resulting waste-products are problematic. “Fly-ash,” which is composed of the light-weight byproducts, may be reused in concrete and wallboard. “Bottom ash” however, the more coarse fraction of incineration—about 10% overall—concentrates toxins like heavy metals. Bottom-ash is disposed of in landfills or sometimes incorporated into structural fill and aggregate road-base material.

How common is the practice of using trash to fuel power plants?

Trash incineration accounts for a fraction of the power produced in the United States. According to the United States Energy Information Administration, just under 13% of electricity generated in the US comes from burning of municipal solid waste, in fewer than 65 waste-to-energy plants nation-wide. Nevertheless, operational waste-to-incineration plants are found throughout the United States, with a concentration east of the Mississippi.

According to EnergyJustice.net’s count of waste incinerators in the US and Canada, currently, there are:

    • 88 operating
    • 41 proposed
    • 0 expanding
    • 207 closed or defeated

Figure 14. Locations of waste incinerators that are already shut down. Source: EnergyJustice.net)
Precise numbers of these incinerators are difficult to ascertain, however. Recent estimates from the federal government put the number of current waste-to-energy facilities at slightly fewer: EPA currently says there are 75 of these incinerators in the United States. And in their database, updated July 2020, the United States Energy Information Administration (EIA), lists 63 power plants that are fueled by municipal solid waste. Of these 63 plants, 40—or 66%—are in the northeast United States.

Regardless, advocates of clean energy, waste reduction, and sustainability argue that trash incinerators, despite improvements in pollution reduction over earlier times and the potential for at least some electric generation, are the least effective option for waste disposal that exists. The trend towards plant closure across the United States would support that assertion.

Let’s take a look at the dirty details on WTE facilities in three states in the Northeastern US.

Review of WTE plants in New York, Pennsylvania, and New Jersey

A. New York State

In NYS, there are currently 11 waste-to-energy facilities that are operational, and two that are proposed. Here’s a look at some of them:

The largest waste-to-energy facility in New York State, Covanta Hempstead Company (Nassau County), was built in 1989. It is a 72 MW generating plant, and considered by Covanta to be the “cornerstone of the town’s integrated waste service plan.”

According to the Environmental Protection Agency’s ECHO database, this plant has no violations listed. Oddly enough, even after drawing public attention in 2009 about the risks associated with particulate fall-out from the plant, the facility has not been inspected in the past 5 years.

Other WTE facilities in New York State include the Wheelabrator plant located in Peekskill (51 MW), Covanta Energy of Niagara in Niagara Falls (32 MW), Convanta Onondaga in Jamesville (39 MW), Huntington Resource Recovery in Suffolk County (24.3 MW), and the Babylon Resource Recovery Facility also in Suffolk County (16.8 MW). Five additional plants scattered throughout the state in Oswego, Dutchess, Suffolk, Tioga, and Washington Counties, are smaller than 15 MW each. Of those, two closed and one proposal was defeated.

B. Pennsylvania

In Pennsylvania, six WTE facilities are currently operating. Two have been closed, and six defeated.

C. New Jersey

And in New Jersey, there are currently four operating WTE facilities. Essex County Resource Recovery Facility, is New Jersey’s largest WTE facility. It opened in 1990, houses three burners, and produces 93 MW total.

Union County Resource Recovery Facility, which opened in 1994, operates three burners, producing 73 MW total. Covanta Camden Energy Recovery Center opened in 1991. It has 13 burners, producing a total of 46 MW. Wheelabrator Gloucester LP (Westville, NJ) opened in 1990. The two burners there produce 21 MW of power. Covanta Warren Energy is the oldest and smallest WTE facility in New Jersey. It produced 14 MW of energy and opened in 1988. Operations are currently shut down, but this closure may not be permanent.

Throw-aways, burn-aways, take-aways

Looming large above the arguments about appropriate siting, environmental justice, financial gain, and energy prices, is a bigger question:

How can we continue to live on this planet at our current rates of consumption, and the resultant waste generation?

The issue here is not so much about the sources of our heat and electricity in the future, but rather “How MUST we change our habits now to ensure a future on a livable planet?”

Professor Paul Connett (emeritus, St. Lawrence University), is a specialist in the build-up of dioxins in food chains, and the problems, dangers, and alternatives to incineration. He is a vocal advocate for a “Zero Waste” approach to consumption, and suggests that every community embrace these principles as ways to guide a reduction of our waste footprint on the planet. The fewer resources that are used, the less waste is produced, mitigating the extensive costs brought on by our consumptive lifestyles. Waste-to-energy incineration facilities are just a symptom of our excessively consumptive society.

Dr. Connett suggests these simple but powerful methods to drastically reduce the amount of materials that we dispose — whether by incineration, landfill, or out the car window on a back-road, anywhere in the world:

    • Source separation
    • Recycling
    • Door-to-door collection
    • Composting
    • Building Reuse, Repair and Community centers
    • Implementing waste reduction Initiatives
    • Building Residual Separation and Research centers
    • Better industrial design
    • Economic incentives
    • Interim landfill for non-recyclables and biological stabilization of other organic materials

Connett’s Zero Waste charge to industry is this: “If we can’t reuse, recycle, or compost it, industry shouldn’t be making it.” Reducing our waste reduces our energy footprint on the planet.

In a similar vein, FracTracker has written about the potential for managing waste through a circular economics model, which has been successfully implemented by the city of Freiburg, Germany. A circular economic model incorporates recycling, reuse, and repair to loop “waste” back into the system. A circular model focuses on designing products that last and can be repaired or re-introduced back into a natural ecosystem.
 

This is an important vision to embrace. Every day. Everywhere.

Recommended resources

Figure 17: Illustration of common waste streams from “The Story of Plastic” (https://www.storyofplastic.org/)

By Karen Edelstein, Eastern Program Coordinator


Support this work

DONATE

Stay in the know

Energy Security, International Investment, and Democracy in the US Shale Oil & Gas Industry

 

FracTracker’s Ted Auch coauthored a recent article in the journal Democracy & Security that considers the US shale oil and gas industry through a national security lens.

This paper was authored by Bryan T. Stinchfield , Ted Auch & Eve Bratman. 

Article Abstract

Proponents of the US shale oil and gas industry argued that American citizens’ economic prosperity and national security were at stake if the industry was not rapidly expanded. Following copious amounts of a certain type of “patriotic” rhetoric, the industry grew rapidly. Simultaneously, foreign ownership of US shale industry infrastructure occurred in tandem with calls for new policies and laws to limit US citizens’ democratic rights with regard to the industry’s activities. As a result, we argue that the development of the US shale industry has weakened national security by creating negative security externalities and eroding democratic values. We offer implications for other democratic societies rich in natural resources.

Figure 1. Vicious cycle within the US shale industry.

The intent of some of the industry’s proponents is to criminalize protest, peaceful and otherwise. When peaceful protests are intentionally lumped in with not-peaceful protests, the effect is a weakening of democracy.


Energy Security, International Investment, and Democracy: The Case of the United States Shale Oil and Gas Industry

Bryan T. Stinchfield , Ted Auch & Eve Bratman

To cite this article: Bryan T. Stinchfield , Ted Auch & Eve Bratman (2020): Energy Security, International Investment, and Democracy: The Case of the United States Shale Oil and Gas Industry, Democracy and Security, DOI: 10.1080/17419166.2020.1811969

To link to this article: https://doi.org/10.1080/17419166.2020.1811969


Support this work

DONATE

Stay in the know