A new plan is in the works to construct a natural gas pipeline that would run approximately 190 miles through Maryland. Lawmakers said in January they are anxious to see the Delmarva Pipeline built, but still want to exercise caution.
Starting in Cecil County, MD, and terminating in Accomack County, VA, the proposed Delmarva Pipeline is nearly the length of Maryland’s Eastern Shore. North Carolina-based Spectrum Energy wants to piggyback on this infrastructure and build a gas-powered power plant near Denton, MD, according to a report by WBOC 16 News. The combined price tag on the two projects is $1.25 billion, and is funded entirely by private interests based in Baltimore. The target start-up date for the two projects is 2021.
Local Support
Company officials promise the pipeline would bring down energy costs and bring jobs to the area. According to a 2016 Towson University study, the project would create about 100 jobs in Wicomico and Somerset Counties by 2026. In addition, the proposed power plant in Denton, MD would result in 350 construction jobs and 25-30 permanent jobs.
According to lawmaker Carl Anderton:
…it’s great. You know, anytime we can multiply our infrastructure for energy production, it’s something you really want.
Anderton, who claims to also support solar power and offshore wind, is skeptical about the sustainability of renewable energy to stand on its own if “the sun goes down or the wind’s not blowing.”
However, Senator Stephen Hershey emphasized the need to balance infrastructure build-out with costs to the environment. Said Hershey:
We have to make sure we’re taking all the possible steps to protect that.
Similarly, Democratic Delegate Sheree Sample-Hughes indicated the need to keep the well-being and concerns of citizens “at the forefront.”
Grassroots Opposition
The pipeline project has encountered considerable opposition from the grassroots group “No! Eastern Shore Pipeline.” The group has cited concerns about how all fossil fuels add to global warming, and asserted natural gas is not a cleaner alternative to propane or oil.
Jake Burdett, a supporter of No! Eastern Shore Pipeline, wants a complete transition to renewable fuels in Maryland by 2035, and argues that in the near-term, climate change impacts will be devastating and not reversible for residents of the Chesapeake Bay area, “the third most at-risk area in the entire country for sea level rise.”
In addition to driving climate change, hydraulic fracturing and the construction of the pipeline along the rural and historic Eastern Shore poses serious threats of fouling ground and surface water through sediment run-off and leaks. The possibility of pipeline explosions also puts nearby communities at risk.
Assessing Risks
H4 Capital Partners, the company contracted to build the pipeline, registered as a corporation in May of 2017, and this may be the first pipeline project it has undertaken. H4’s public relations spokesperson Jerry Sanders claimed that the environmental risks posed by the pipeline — which will drill under rivers and wetlands — will be nothing like those encountered by pipelines such as the Keystone XL. Said Sanders, “It is a gas, not a liquid…[so] you don’t have leak-type issues.”
The actual record about pipeline leaks and explosions suggests otherwise, notably summarized here by FracTracker Alliance in 2016, for combined oil and natural gas projects. That research indicates that since 2010, there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion. Additional records of natural gas transmission and distribution pipeline accidents, and hazardous liquid pipeline accidents collected by PHMSA (Pipeline and Hazardous Materials Safety Administration) have been summarized by the Pipeline Safety Trust.
It is unclear whether Maryland’s Department of the Environment (MDE) has completed an analysis of threats to wetlands and other water bodies, or is relying on industry and perhaps residents to do that work for them. Said MDE spokesperson Jay Apperson, “MDE would encourage the project proponents to come in early and often for discussions of routes so that we can… avoid and minimize impacts to these important natural resources.”
Delmarva Pipeline Map
Therefore, in the map below, we have done an analysis of the Delmarva Pipeline route – which we estimated from documents – and calculated the number of times the proposed pipeline crosses wetlands and streams along its route from northern Maryland to its terminus in Accomack County, VA.
In all, there were 172 stream crossings and 579 traverses of wetlands mapped by the US Fish and Wildlife Service’s National Wetland Inventory. Be sure to zoom in on the map above to view the detail. These wetland and stream crossings included:
in Virginia:
88 forested wetlands
13 emergent wetlands
27 riverine wetlands
9 ponds
And in Maryland:
276 forested wetlands
90 riverine wetlands
35 emergent wetlands
13 estuarine wetlands
11 ponds
5 lakes
Rather than focusing on threats to these natural resources or environmental justice issues associated with the nearly 200-mile pipeline, industry is utilizing a different tactic, preferring to view the project as an “economic justice issue [that] would allow the area to have access to low-cost fuels.”
For the Eastern Shore residents of Maryland and Virginia, it remains to be seen whether potential lower energy costs justify the risks of contaminated waterways, property damage, and a shifting shoreline associated with climate change driven by use of fossil fuels.
By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance
When people think about oil and gas extraction in Pennsylvania, they think about the tens of thousands of oil and gas wells in the state. It makes sense, because that’s where the process starts. However, while oil and other liquids can be shipped in tanker trucks, all of the producing gas wells in the state – whether they are small conventional wells or the giants of the Marcellus and Utica – must be connected by a network of pipelines.
Moving hydrocarbons from the well to processing facilities to power plants and residential customers all occurs within this giant midstream system, and the cumulative impact that pipelines have on the state is formidable. Let’s take a closer look at where the oil and gas pipelines are located in PA, their safety records, and major data gaps. Additionally, we’ve made available a detailed, interactive map of Pennsylvania pipelines and other important features such as water crossings.
Pipeline routes are everywhere in Pennsylvania
According to the Pipeline and Hazardous Materials Safety Administration (PHMSA), there were 92,407 miles of pipelines carrying natural gas and liquid petroleum products in Pennsylvania in 2017. That distance is equivalent to 151 round trips between Philadelphia and Pittsburgh on the Pennsylvania Turnpike, or more than three trips around the globe at the equator. This figure includes 78,022 miles of distribution lines (which takes gas from public utilities to consumers), 10,168 miles of transmission lines (which move gas between various processing facilities), 3,111 miles of petroleum liquid routes, and 1,105 miles of natural gas gathering lines (which take the gas from wells to midstream processing facilities).
Of note – The last category’s estimate is almost certainly a drastic underestimation. As of June 7th, there were 3,781 unconventional well pads in Pennsylvania, according the Pennsylvania Department of Environmental Protection (DEP), and all of the pads need to be connected to gathering lines. A 2014 report by the Nature Conservancy estimates that 19 acres of land are cleared for each well pad, which would work out to 3.1 miles of gathering lines for a typical 50-foot right-of-way. Multiplied out, 3,781 wells pads would require a total of 11,721 miles of gathering lines – well over PHMSA’s estimate of a 1,105 miles (See Table 1 for estimate comparisons).
Table 1. Varying estimates of gathering lines in Pennsylvania.*
Source
Unconventional Well Pads
Average Gathering Line Length (Miles)
Statewide Total Estimated Miles
Nature Conservancy
3,781
3.1
11,721
Bradford County
3,781
3.5
13,234
PHMSA
3,781
0.3
1,105
*Estimates based on Nature Conservancy and Bradford County data are based on calculating the average length of segments, then multiplying by the number of well pads in the state to find the statewide total. The PHMSA estimate was calculated in reverse, by dividing the purported total of gathering lines by the number of well pads to find the average mileage.
Figure 1: Location of gathering lines (2014) and oil and gas wells (2018) in Bradford County, Pennsylvania. Note the pockets of newer wells that are not connected to the older gathering line network.
In 2014, the FracTracker Alliance digitized a published map of gathering lines in Bradford County, allowing us to analyze the data spatially (Figure 2). These efforts yield similar results, with gathering lines averaging 3.5 miles in length. Not counting segments of transmission lines included in the data, such as Stagecoach, Sunoco, and Kinder Morgan’s Tennessee Gas Pipeline, there were 1,003 miles of gas gathering lines just in Bradford County in 2014.
Almost all of this data is based only on unconventional oil and gas activity, and therefore ignores the more than 96,000 conventional oil and gas (O&G) wells active in the state. We do not have a reasonable estimate on the average length of gathering line segments are for this network. It is reasonable to assume that they tend to be shorter, as conventional wells are often closer together than unconventional well pads, but they must still network across vast portions of the state.
Table 2. Estimated length of gathering lines for conventional wells in Pennsylvania by variable average lengths
Average Length (Miles)
Conventional Wells
Total Miles
0.5
96,143
48,072
1.0
96,143
96,143
1.5
96,143
144,215
2.0
96,143
192,286
2.5
96,143
240,358
3.0
96,143
288,429
If the average gathering line for conventional wells in Pennsylvania is at least 1 mile in length, then the total mileage of gathering lines would exceed all other types of gas and petroleum pipelines in the state. Conversely, for the PHMSA figure of 1,105 miles to be accurate, the average gathering line for all conventional wells and unconventional well pads in Pennsylvania would be 0.011 miles, or only about 58 feet long.
Pipelines are dangerous
As pipelines impact residents in many ways, there are numerous reason why communities should try to understand their impacts – including basic planning, property rights, sediment runoff into streams, to name a few. Perhaps the most significant reason, however, is the potential for harmful incidents to occur, which are more common than anyone would like to think (See Table 3). Some of these incidents are quite serious, too.
Table 3. Nationwide pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018
Report
Events
Fatalities
Injuries
Explosions
Evacuees
Total Damages
Gas Distribution
909
92
432
220
16,949
$348,511,528
Gas Transmission / Gathering
1,031
23
94
49
8,557
$1,085,396,867
Hazardous Liquids
3,368
10
24
14
2,467
$2,531,839,207
Grand Total
5,308
125
550
283
27,973
$3,965,747,602
As of the July 13, 2018 download date, the PHMSA report covers 3,116 days.
Incidents Per Day
This means that nationally per day there are 1.7 pipeline incidents, almost 9 people evacuated, and $1,272,704 in damages, including the loss of released hydrocarbons.
On average, there is a fatality every 25 days, an injury every six days, and an explosion every 11 days. The location of those explosions obviously has a lot to do with the casualty count and aggregate property damage.
How do Pennsylvania pipelines hold up? As one might expect from a state with so many pipelines, Pennsylvania’s share of these incidents are significant (See Table 4).
Table 4. Pennsylvania pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018
Report
Events
Fatalities
Injuries
Explosions
Evacuees
Total Damages
Gas Distribution
29
8
19
12
778
$6,769,061
Gas Transmission / Gathering
30
0
2
2
292
$51,048,027
Hazardous Liquids
49
0
0
1
48
$9,115,036
Grand Total
108
8
21
15
1,118
$66,932,124
Within Pennsylvania, an incident is reported to PHMSA every 29 days, an injury or fatality can be expected every 107 days, and the daily average of property damage is $21,480.
The issue with under-reported gathering lines notwithstanding, PHMSA lists Pennsylvania with 92,407 miles of combined gas and hazardous liquid pipelines, which is roughly 3.3% of the nationwide total, and there is no reason to believe that PHMSA’s issue with accounting for gathering lines is unique to the Keystone State.
Just 2% of the total number of incidents are in Pennsylvania. In terms of impacts, however, the state has seen more than its fair share – with 6.4% of fatalities, 3.8% of injuries, 5.3% of explosions, and 3.9% of evacuations. Property damage in Pennsylvania accounts for just 1.7% of the national total, making it the only category examined above for which its share of impacts is less than expected, based on total pipeline miles.
Pipeline location data not widely available
Pipeline data is published from a variety of public agencies, although almost none of it is really accessible or accurate.
For example the Department of Homeland Security (DHS) publishes a number of energy-related datasets. While they do not publish gas pipelines, they do have a 2012 dataset of natural gas liquid routes, which is a significant portion of the hazardous liquid inventory. From an analytical point of view, however, this dataset is essentially worthless. Many of these pipelines are so generalized that they don’t make a single bend for multiple counties, and the actual location of the routes can be miles from where the data are represented. Communities cannot use this as a tool to better understand how pipelines interact with places that are important to them, like schools, hospitals, and residential neighborhoods. The dataset is also incomplete – the original Mariner East natural gas pipeline, which has been around for decades, isn’t even included in the dataset.
Figure 2: This text appears to viewers of PHMSA’s public pipeline viewer.
Another data source is PHMSA’s National Pipeline Mapping System Public Viewer. While this source is rich in content, it has several intentional limitations that thwart the ability of the public to accurately analyze the pipeline network and understand potential impacts:
Data can only be accessed one county at a time, which is impractical for long interstate transmission routes,
Data can not be be downloaded, and
The on-screen representation of the routes disappears when users zoom in too far.
Within Pennsylvania, the Department of Environmental Protection (DEP) maintains the Pennsylvania Pipeline Portal, which contains a lot of information about various recent pipeline projects. However, with the sole exception of the Mariner East II project, the agency does not provide any geospatial data for the routes. The reason for this is explained on the Mariner East II page:
These shapefiles are the GIS data layers associated with the permits that have been submitted for the proposed pipeline project. These shapefiles are not required as part of a permit application and are not commonly submitted but were provided to the Department by Sunoco Pipeline, L.P.
The files were accepted by the Department to aid in the review of the application material given the large scale of the project. The shapefiles ease the review by displaying some information contained in the hardcopy of the plans and application in a different format.
The Department of Conservation and Natural Resources (DCNR) does make oil and gas infrastructure data available, including pipelines, where it occurs on state forest land.
Pennsylvania Pipelines Map
Considering the risks posed by pipelines, their proliferation in Pennsylvania, and this critical juncture in their development with an implicit opportunity to document impacts, FracTracker believes it is important now to develop an accurate interactive statewide map of these projects, fortify it with essential data layers, and facilitate citizen reporting of the problems that are occurring.
Other than the Mariner East II route and the state forest data available from DCNR, all of the pipeline routes on our Pennsylvania Pipeline Map, below, have been painstakingly digitized – either from paper maps, PDFs, or other digital media – to make geospatial data that can analyzed by interacting with other datasets. These layers are only as good as their sources, and may not be exact in some cases, but they are orders of magnitude better than data produced by public agencies such as DHS.
Figure 3: FracTracker’s Pennsylvania Pipeline Map. View fulll screen to explore map further, view water crossings, and other details not visible at the statewide map view.
Data Layers on Pennsylvania Pipelines Map
Incidents
PHMSA incidents (7-13-2018). Pipeline incidents that were reported to the Pipeline and Hazardous Material Safety Administration. These reports contain significant information about the incidents, including location coordinates, and are shown on the map with white circles.
Note that a few of the location coordinates appear to be erroneous, as two reports appear outside of the state boundary.
Spills
Mariner East II – Inadvertent Returns (6-1-2018). This data layer shows inadvertent returns – or spills – related to the construction of the Mariner East II pipeline. This is a combination of two reports, including one where the spills that impacted waterways, and those categorized as upland spills. These are represented on the map by orange dots that vary in size depending on the amount of fluid that spilled. Some of the locations were provided as latitude / longitude coordinates, while others are estimates based on the description. In a few cases, the latitude value was adjusted to intersect the pipeline route. In each case, the adjusted location was in the correct county and municipality.
Water Crossings
Known Stream & Wetland Crossings (2018). This shows the locations where the known pipeline routes intersect with streams and other wetlands on the National Wetland Inventory. These are organized by our four pipeline layers that follow, including FracTracker Vetted Pipelines (1,397 crossings), DCNR Pipelines (184 crossings), PHMSA Gas Pipelines (6,767 crossings), and Bradford County Gathering Lines (867 crossings). These crossings are shown as diamonds that match the colors of the four listed pipeline layers.
Vetted Pipelines
FracTracker Vetted Pipelines (2018). This pipeline layer is an aggregation of pipeline routes that have been digitized in recent years. Much of this digitization was performed by the FracTracker Alliance, and it is an available layer on our mobile app. These are largely newer projects, and contain some routes, such as the Falcon Ethane Pipeline System, that have not been built yet. In some cases, multiple versions of the pipeline routes are printed, and we may not have the final version of the route in all circumstances. FracTracker Vetted Pipelines are represented with a red line.
DCNR Pipelines
DCNR Pipelines (2018). This includes pipeline routes on state forest lands, and is shown as green lines on the map.
PHMSA Pipelines
PHMSA Gas Pipelines (2018). This includes data digitized from the PHMSA Public Pipeline Viewer. This source contains gas and liquid pipelines, but only gas pipelines are included in this analysis. These routes are shown in a bright purplish pink color.
Bradford Lines
Bradford County Gathering Lines (2014). This layer was digitized by the FracTracker Alliance after Bradford County published a printed map of gathering lines within the county in 2014. It is the only county in Pennsylvania that we have gathering line data for, and it is shown on the map as a yellow line.
Nearby Waterways
Streams & Wetlands with 1/2 Mile of Pipelines (2018). This clipped layer of the National Wetlands Inventory is provided for visual reference of the wetlands near known pipeline routes. Due to the large amount of data, this layer is only visible when users zoom in to a scale of 1:500,000, or about the size of a large county.
By Matt Kelso, Manager of Data and Technology
This article is the first in a two-part series on Pennsylvania pipelines. Stay tuned!
FracTracker Alliance recently created a set of maps showing population variation along the route of the Mariner East 2 Pipeline, which I refer to as the “Dragonpipe.” FracTracker’s maps dramatically reveal a route that runs through many centers of dense population, and seems to avoid relatively nearby areas with far lower population density. The maps are based on US Census 2010 block-level data.
The take-away lesson from these maps is this: Sunoco has put the Dragonpipe in a very bad location.
As an example, here is a map of the pipeline route as it passes through Berks, Chester, and Delaware counties in Pennsylvania:
Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.
The dark brown areas in the map above denote the most densely populated locations, displayed as the number of people per square mile. The lighter the color, the lower the population density. The black line is the pipeline route.
In the upper left-hand part of the map, note that the route passes through the suburbs of Reading, in Berks County. Further south in the same map, notice how it passes directly through population centers in Chester and Delaware counties.
Let’s examine this pattern more closely.
Why was this route chosen in the first place?
For Sunoco’s convenience
In many areas, from a standpoint of impacts on local communities, the pipeline route is actually the worst possible track that Sunoco could have chosen; it puts more people at risk than any other path, given the same starting- and endpoints. Why in the world did they choose this route?
The answer is this: for Sunoco’s corporate convenience. The Dragonpipe, for most of its length, runs side-by-side Mariner East 1 (ME1), an existing 80+ year-old pipeline designed to carry gasoline and heating oil to customers in the central and western parts of Pennsylvania. From this standpoint, the location of the old pipeline makes sense; it had to be sited near populated areas. That’s where the customers for gasoline and heating oil were located back in the 1930s.
However, the flip-side of Sunoco’s corporate convenience may also mean unnecessary risks to tens of thousands of Pennsylvania residents.
The old pipeline connected the centers of population in the 1930s, areas that are now much more populous when they were nearly ninety years ago. In the southeastern part of Pennsylvania, the character of the area has also changed dramatically. When the original pipeline was built, the landscape along ME1’s route through Delaware and Chester counties was predominantly farmland. Today, that area has changed to densely-settled suburbs, with homes, schools, businesses, hospitals, and shopping centers directly adjacent to the pipeline’s right-of-way.
The Exton area provides a prime example of how this transition to suburbia has set the stage for potential disaster along the pipeline route. The following image shows a detailed view of the population density near Exton. As you can see, the pipeline route sticks to high-density areas (shown in dark brown) the entire way, even though lower-density options (shown in orange and yellow) exist nearby.
Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.
Sunoco — like any corporation — has a moral obligation to conduct its business in a safe manner. This includes choosing a safe route for a pipeline that has inherent dangers and risks. However, Sunoco apparently did not choose to do so. Moreover, by law, Sunoco has an obligation to make human safety paramount. In the settlement Sunoco reached last August with Clean Air Council, Delaware Riverkeeper Network, and Mountain Watershed Association, Sunoco agreed to consider alternative routing for the pipeline in this area. Then, despite their promises, Sunoco simply bypassed that part of the agreement. Rather than explore alternatives to the proposed route, Sunoco dismissed the alternatives as “not practicable” because they did not involve the right-of-way that was already in use for Mariner East 1.
Sunoco seemed to have made their sole priority in considering a pipeline route whether the company has an existing pipeline there already. A better route would reduce by hundreds the number of people who could be killed or injured if there were a leak and explosion.
Pipelines leak
Pipelines can and do leak. Mariner East 1, in its short career as a pipeline carrying NGLs, has already leaked several times. It is just good luck that the leaks were stopped before any product ignited. (See most recent report of ME1 and ME2 issues.) The Atex pipeline, a pipeline of similar size and content that runs down to the Gulf Coast, ruptured and exploded near Follansbee, WV, in just its second year of operation. And there’s no reason to believe such an incident would never happen with the Dragonpipe.
Sunoco has an obligation to do what it can to minimize the injuries, death, and destruction caused by an event like the Follansbee explosion. The Follansbee incident occurred in a forested area. The explosion destroyed several acres of trees, but no-one was killed. The result would have been far different if had the explosion been in a densely populated area.
Just as the maps above show how the Philadelphia suburbs and those of Reading are threatened, other FracTracker maps show the threats to suburbs of Pittsburgh and Harrisburg, below. Click to expand.
A call for change
Indeed, across the state, the Dragonpipe route gets dangerously and notably close to population centers. Such a path may be a convenient and financially beneficial option for Sunoco, but it is an unacceptable risk for Pennsylvania’s citizens to bear.
About the Author: George Alexander publishes the Dragonpipe Diary (www.dragonpipediary.com), covering all aspects the Mariner East pipeline project, including technology, risks, legal issues, economics, and the people and groups involved. He recently retired from a career in journalism and marketing.
An earlier version of this essay was published in Mr. Alexander’s blog, Dragonpipe Diary, on June 29, 2018.
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2018/07/ME2-Dragonpipe-Map-Feature.jpg400900Guest Authorhttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngGuest Author2018-07-20 13:32:312021-04-15 15:01:14Population density maps: Lessons on where NOT to put a pipeline
The Origins & Work of Lebanon Pipeline Awareness, Inc. in Lebanon County, PA by Michael Schroeder, Lebanon Pipeline Awareness, Inc.
Nestled in a mostly agricultural region blessed with some of the most fertile, non-irrigated farmland in the world, Lebanon County, Pennsylvania sits square in the crosshairs of a Pipeline Revolution – smack-dab in between the Marcellus Shale fracking zones in northern and western PA and the processing and export facilities of the Eastern seaboard. This Pipeline Revolution began in earnest more than four years ago, in spring 2014, when Williams/Transco announced plans to build a 200-mile, 42-inch diameter, high-pressure (1,480 p.s.i.) underground natural gas pipeline with the Orwellian-sounding name “Atlantic Sunrise” as a shortcut to whisk fracked natural gas to points south – mainly Cove Point just south of Baltimore – for export. See map below for more context.
That’s the north-south axis of the crosshairs. East-west, for starters, is the 8-inch diameter, cast-iron Mariner East pipeline, which has traversed the state since the late 1930s, carrying gasoline from the Philadelphia region to the Pittsburgh area. Also around spring 2014, Mariner East’s owner-operator, Sunoco Logistics, announced its Mariner East expansion project: to stop carrying gasoline, reverse the flow, and start streaming natural gas liquids (NGLs – mainly propane, ethane, and butane) from the fracking zones of western PA to the Marcus Hook export facility outside Philadelphia. Also planned were several new larger-volume pipelines to be laid in the same easement – Mariner East 2 and 2X – along with their corresponding pump stations.
The two major transmission pipeline projects cross on private land atop a forested hill in Lebanon County’s South Londonderry Township – making “in the crosshairs” an apt metaphor for where we stand in relation to the Pipeline Revolution.
In response to Williams/Transco’s announcement in spring 2014, activists in neighboring Lancaster County organized the grassroots citizens’ group Lancaster Against Pipelines. We soon followed suit, holding our first organizing meeting in April in humble surroundings, an artist’s loft in downtown Lebanon. After a democratic vote,we called ourselves Lebanon Against Pipelines and began meeting bi-weekly with a core group of 8-10 people.
Initial organizing meeting of Lebanon Against Pipelines (soon changed to Lebanon Pipeline Awareness), downtown Lebanon, April 2014
By summer 2014, we adopted what we felt was a more positive and publicly acceptable name in our strongly conservative county, one more in keeping with our core mission of raising public awareness about the immensely destructive power of fracking and pipelines: Lebanon Pipeline Awareness.
Making Plans
Over the next year, a core leadership emerged. With the pro-bono help of a local attorney, we became a 501c(3) non-profit corporation with officers and a board of directors, making it possible to apply for much-needed grants after our meager, mostly self-funded beginnings.
Realizing the importance of strength in numbers, from the outset we reached out to collaborate with other groups. We’ve had many key allies in this fight, especially our sister organization, Concerned Citizens of Lebanon County (CCLC). Focused on Sunoco’s Mariner East projects, CCLC has focused mainly on the judicial system to challenge the absurd notion that this project merits status as a “public utility” – most notably by pursuing civil action against Sunoco for not obtaining the proper permits before building its new pump station in West Cornwall Township.
Bringing About Change
How have we worked to raise public awareness? In most every way we can think of, given our limited resources.
We still lack a website, but we have developed and curated a highly active Facebook presence (with nearly 800 “likes” at present). We’ve designed, printed, and distributed widely an attractive tri-fold brochure and our own eye-catching logo. We’ve set up tables at most every available community event (National Night Out in Campbelltown; Historic Old Annville Day; the Lebanon County Fair; and others). We’ve organized protests and demonstrations, often in tandem with Lancaster Against Pipelines and other allied groups. We have sponsored film screenings, public safety forums, speakers from allied organizations, and informational meetings for local landowners and other concerned citizens.
Public protest with Lancaster Against Pipelines, Annville town square, December 2015
We’ve attended local municipal meetings to encourage local authorities to pass resolutions opposing the pipelines traversing their municipalities – in two cases successfully. We’ve filed dozens of Right-To-Know requests, developing a rich archive of construction violations and disseminating our findings publicly. We’ve brought our concerns to the county commissioners’ meetings, prompting them to write letters of concern to state and federal officials and add an informational “pipelines” tab to their website. We have developed a robust presence in local media outlets – issuing press releases and writing letters to the editor and op-ed pieces, and inviting reporters to the events we sponsor – including local newspapers (like the Lebanon Daily News), regional digital media platforms (like NPR’s StateImpact), local TV and radio stations, and more. We’ve even hosted a few tours for national photographers and reporters.
Working with Others
In our interactions with local governmental authorities, we consistently act respectfully and courteously and try hard not to blindside anyone. Before attending a public meeting, we’ll send a courtesy note to the relevant authority, detailing our concerns and summarizing what we’ll be saying and asking for. When speaking at public meetings, we’re civil, crisp, and respectful – though, when necessary, we have engaged in peaceful acts of public protest (like duct-taping our mouths shut when prevented from speaking at a township meeting because we’re not township residents).
We’ve also met with all of our state representatives, either in individual meetings or during town hall-style meetings with constituents. We’ve expressed our concerns to members of Governor Tom Wolf’s staff, his Pipeline Infrastructure Task Force and other Department of Environmental Protection officials, the Susquehanna River Basin Commission, the Federal Energy Regulatory Commission, and other public bodies.
Innovative Pipeline Monitoring Program
Citizen pipeline monitoring badge
More recently, with pipeline construction well underway, we’ve developed a pipeline construction monitoring program, undergoing rigorous training and developing official badges to identify ourselves and our organization. We also register all of our monitors with the county commissioners’ office (to prevent imposters from engaging in nefarious acts in our name). (See badge, right)
And it’s made a difference.
I remember well our first outreach efforts in summer 2014 at events like National Night Out in Campbelltown, where we were met with a fair amount of open hostility. “Why do you oppose American energy independence?” people would ask. “What about all the jobs the pipelines will bring to local workers?” After four years of respectfully but insistently hammering on these issues, the public tenor has shifted. Very rarely do we encounter outright hostility anymore. The public has grown increasingly receptive to our message – especially now that construction has begun and folks can see that what we’ve predicted is now coming to pass.
Respect and Reciprocity
We’ve worked very hard to cultivate a respectable public persona and reputation, and we’ve largely succeeded. As best as we can tell, the predominant public perception is that Lebanon Pipeline Awareness is run by a group of dedicated and well-informed volunteers with an important message to share. In fact, two of our leaders were singled out last year by the local newspaper for recognition as providing a positive impact for our community. Our core group, which generally meets twice a month, has expanded to include upwards of 15 committed local activists.
We’ve also worked hard to always couple our anti-pipeline message with a positive message about renewable energy – repeatedly emphasizing that wind, solar, geothermal, and other green energies represent an increasingly viable alternative for energy and for jobs.
In It for the Long Haul
So that’s where we in Lebanon Pipeline Awareness stand at the beginning of our fifth year. Because we have every reason to expect this insane pipeline buildout to intensify, we know we’re in it for the long haul. Our goals for the coming year are to expand our membership; build on and extend our alliances even further; intensify our outreach efforts and our pipeline construction monitoring program; and continue to host public meetings for concerned property owners and citizens.
CHISPA Flyer – Click to enlarge
We also plan to expand our activities to include direct action campaigns like CHISPA – “Challenge in the Streets to Pipelines in PA” – where every Friday afternoon from 4-6 p.m. we’ll be lining five miles of westbound Route 422 from Lebanon to Annville with volunteers bearing provocative protest signs that challenge the thousands of passing motorists to think in fresh ways about issues like climate change, jobs, eminent domain, property rights, renewable energies, and more.
Lebanon Pipeline Awareness is but one of dozens of grassroots citizens’ organizations that have emerged across Pennsylvania over the past decade to resist the Fracking and Pipeline revolutions and insist that we follow “a better path” (the name of an emergent coalition of anti-fracking and anti-pipeline groups from across Pennsylvania). We have lost many battles against our vastly more deep-pocketed and powerful adversaries, but we’ve also made a substantial and positive difference.
Will we win the war? Yes, eventually, as global climate disruption makes increasingly clear that our most pressing need as a species is to leave the remaining stocks of fossil fuels in the ground. In the meantime, win or lose, our efforts continue – and will continue as long as these insane Fracking and Pipeline revolutions continue to imperil humankind and the web of life that sustains us all.
In August 2016, Shell Pipeline announced plans to develop the Falcon Ethane Pipeline System, a 97-mile pipeline network that will carry more than 107,000 barrels of ethane per day through Pennsylvania, West Virginia, and Ohio, to feed Shell Appalachia’s petrochemical facility currently under construction in Beaver County, PA.
FracTracker has covered the proposed Falcon pipeline extensively in recent months. Our Falcon Public EIA Project explored the project in great detail, revealing the many steps involved in risk assessments and a range of potential impacts to public and environmental health.
Shell’s response to these events has invariably focused on their intent to build and operate a pipeline that exceeds safety standards, as well as their commitments to being a good neighbor. In this article, we investigate these claims by looking at federal data on safety incidents related to Shell Pipeline.
Contrary to claims, records show that Shell’s safety record is one of the worst in the nation.
The “Good Neighbor” Narrative
Maintaining a reputation as a “good neighbor” is paramount to pipeline companies. Negotiating with landowners, working with regulators, and getting support from implicated communities can hinge on the perception that the pipeline will be built and operated in a responsible manner. This is evident in cases where Shell Pipeline has sold the Falcon in press releases as an example of the company’s commitment to safety in public comments.
Figure 1. Shell flyer
A recent flyer distributed to communities in the path of the Falcon, seen in Figure 1, also emphasizes safety, such as in claims that “Shell Pipeline has a proven track record of operating safely and responsibility and remains committed to engaging with local communities regarding impacts that may arise from its operations.”
Shell reinforced their “good neighbor” policy on several occasions at a recent Shell-sponsored information meeting held in Beaver County, stating that, everywhere they do business, Shell was committed to the reliable delivery of their product. According to project managers speaking at the event, this is achieved through “planning and training with first responders, preventative maintenance for the right-of-way and valves, and through inspections—all in the name of maintaining pipeline integrity.”
Shell Pipeline also recently created an informational website dedicated to the Falcon pipeline to provide details on the project and emphasize its minimal impact. Although, curiously, Shell’s answer to the question “Is the pipeline safe?” is blank.
U.S. Pipeline Incident Data
Every few years FracTracker revisits data on pipeline safety incidents that is maintained by the Pipeline and Hazardous Materials Safety Administration (PHMSA). In our last national analysis we found that there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion.
These numbers were based on U.S. data from 2010-2016 for natural gas transmission and gathering pipelines, natural gas distribution pipelines, and hazardous liquids pipelines. It is also worth noting that incident data are heavily dependent on voluntary reporting. They also do not account for incidents that were only investigated at the state level.
Shell Pipeline has only a few assets related to transmission, gathering, and distribution lines. Almost all of their pipeline miles transport highly-volatile liquids such as crude oil, refined petroleum products, and hazardous liquids such as ethane. Therefore, to get a more accurate picture of how Shell Pipeline’s safety record stacks up to comparable operators, our analysis focuses exclusively on PHMSA’s hazardous liquids pipeline data. We also expanded our analysis to look at incidents dating back to 2002.
Shell’s Incident Record
In total, PHMSA data show that Shell was responsible for 194 pipeline incidents since 2002. These incidents spilled 59,290 barrels of petrochemical products totaling some $183-million in damages. The below map locates where most of these incidents occurred. Unfortunately, 34 incidents have no location data and so are not visible on the map. The map also shows the location of Shell’s many refineries, transport terminals, and off-shore drilling platforms.
Open the map fullscreen to see more details and tools for exploring the data.
PHMSA’s hazardous liquid pipeline data account for more than 350 known pipeline operators. Some operators are fairly small, only maintaining a few miles of pipeline. Others are hard to track subsidiaries of larger companies. However, the big players stand out from the pack — some 20 operators account for more than 60% of all pipeline miles in the U.S., and Shell Pipeline is one of these 20.
Comparing Shell Pipeline to other major operators carrying HVLs, we found that Shell ranks 2nd in the nation in the most incidents-per-mile of maintained pipeline, seen in table 1 below. These numbers are based on the total incidents since 2002 divided by the number of miles maintained by each operator as of 2016 miles. Table 2 breaks Shell’s incidents down by year and number of miles maintained for each of those years.
Table 1: U.S. Pipeline operators ranked by incidents-per-mile
Operator
HVL Incidents
HVL Pipeline Miles
Incidents Per Mile (2016)
Kinder Morgan
387
3,370
0.115
Shell Pipeline
194
3,490
0.056
Chevron
124
2,380
0.051
Sunoco Pipeline
352
6,459
0.049
ExxonMobile
240
5,090
0.048
Colonial Pipeline
244
5,600
0.044
Enbride
258
6,490
0.04
Buckeye Pipeline
231
7,542
0.031
Magellan Pipeline
376
12,928
0.03
Marathan Pipeline
162
5,755
0.029
Table 2: Shell incidents and maintained pipeline miles by year
Year
Incidents
Pipeline Miles
Total Damage
Notes
2002
15
no PHMSA data
$2,173,704
2003
20
no PHMSA data
$3,233,530
2004
25
5,189
$40,344,002
Hurricane Ivan
2005
22
4,830
$62,528,595
Hurricane Katrina & Rita
2006
10
4,967
$11,561,936
2007
5
4,889
$2,217,354
2008
12
5,076
$1,543,288
2009
15
5,063
$11,349,052
2010
9
4,888
$3,401,975
2011
6
4,904
$2,754,750
2012
12
4,503
$17,268,235
2013
4
3,838
$10,058,625
2014
11
3,774
$3,852,006
2015
12
3,630
$4,061,340
2016
6
3,490
$6,875,000
2017
9
no PHMSA data
$242,800
2018
1
no PHMSA data
$47,000
As of 3/1/18
Cause & Location of Failure
What were the causes of Shell’s pipeline incidents? At Shell’s public informational session, it was said that “in the industry, we know that the biggest issue with pipeline accidents is third party problems – when someone, not us, hits the pipeline.” However, PHMSA data reveal that most of Shell’s incidents issues should have been under the company’s control. For instance, 66% (128) of incidents were due to equipment failure, corrosion, welding failure, structural issues, or incorrect operations (Table 3).
Table 3. Shell Pipeline incidents by cause of failure
Cause
Incidents
Equipment Failure
51
Corrosion
37
Natural Forces
35
Incorrect Operation
25
Other
20
Material and/or Weld Failure
15
Excavation Damage
11
Total
194
However, not all of these incidents occurred at one of Shell’s petrochemical facilities. As Table 4 below illustrates, at least 57 incidents occurred somewhere along the pipeline’s right-of-way through public areas or migrated off Shell’s property to impact public spaces. These numbers may be higher as 47 incidents have no mention of the property where incidents occurred.
Table 4. Shell Pipeline incidents by location of failure
Location
Incidents
Contained on Operator Property
88
Pipeline Right-of-Way
54
Unknwon
47
Originated on Operator Property, Migrated off Property
3
Contained on Operator-Controlled Right-of-Way
2
Total
194
On several occasions, Shell has claimed that the Falcon will be safely “unseen and out of mind” beneath at least 4ft of ground cover. However, even when this standard is exceeded, PHMSA data revealed that at least a third of Shell’s incidents occurred beneath 4ft or more of soil.
Many of the aboveground incidents occurred at sites like pumping stations and shut-off valves. For instance, a 2016 ethylene spill in Louisiana was caused by lightning striking a pumping station, leading to pump failure and an eventual fire. In numerous incidents, valves failed due to water seeping into systems from frozen pipes, or large rain events overflowing facility sump pumps. Table 5 below breaks these incidents down by the kind of commodity involved in each case.
Table 5. Shell Pipeline incidents by commodity spill volumes
Commodity
Barrels
Crude Oil
51,743
Highly Volatile Liquids
6,066
Gas/Diesel/Fuel
1,156
Petroleum Products
325
Total
59,290
Impacts & Costs
None of Shell’s incidents resulted in fatalities, injuries, or major explosions. However, there is evidence of significant environmental and community impacts. Of 150 incidents that included such data, 76 resulted in soil contamination and 38 resulted in water contamination issues. Furthermore, 78 incidents occurred in high consequence areas (HCAs)—locations along the pipeline that were identified during construction as having sensitive environmental habitats, drinking water resources, or densely populated areas.
Table 6 below shows the costs of the 194 incidents. These numbers are somewhat deceiving as the “Public (other)” category includes such things as inspections, environmental cleanup, and disposal of contaminated soil. Thus, the costs incurred by private citizens and public services totaled more than $80-million.
Table 6. Costs of damage from Shell Pipeline incidents
Private Property
Emergency Response
Environmental Cleanup
Public (other)
Damage to Operator
Total Cost
$266,575
$62,134,861
$11,024,900
$7,308,000
$102,778,856
$183,513,192
A number of significant incidents are worth mention. For instance, in 2013, a Shell pipeline rupture led to as much as 30,000 gallons of crude oil spilling into a waterway near Houston, Texas, that connects to the Gulf of Mexico. Shell’s initial position was that no rupture or spill had occurred, but this was later found not to be the case after investigations by the U.S. Coast Guard. The image at the top of this page depicts Shell’s cleanup efforts in the waterway.
Another incident found that a Shell crude oil pipeline ruptured twice in less than a year in the San Joaquin Valley, CA. Investigations found that the ruptures were due to “fatigue cracks” that led to 60,000 gallons of oil spilling into grasslands, resulting in more than $6 million in environmental damage and emergency response costs. Concerns raised by the State Fire Marshal’s Pipeline Safety Division following the second spill in 2016 forced Shell to replace a 12-mile stretch of the problematic pipeline, as seen in the image above.
Conclusion
These findings suggest that while Shell is obligated to stress safety to sell the Falcon pipeline to the public, people should take Shell’s “good neighbor” narrative with a degree of skepticism. The numbers presented by PHMSA’s pipeline incident data significantly undermine Shell’s claim of having a proven track record as a safe and responsible operator. In fact, Shell ranks near the top of all US operators for incidents per HVL pipeline mile maintained, as well as damage totals.
There are inherent gaps in our analysis based on data inadequacies worth noting. Incidents dealt with at the state level may not make their way into PHMSA’s data, nor would problems that are not voluntary reported by pipeline operators. Issues similar to what the state of Pennsylvania has experienced with Sunoco Pipeline’s Mariner East 2, where horizontal drilling mishaps have contaminated dozens of streams and private drinking water wells, would likely not be reflected in PHMSA’s data unless those incidents resulted in federal interventions.
Based on the available data, however, most of Shell’s pipelines support one of the company’s many refining and storage facilities, primarily located in California and the Gulf states of Texas and Louisiana. Unsurprisingly, these areas are also where we see dense clusters of pipeline incidents attributed to Shell. In addition, many of Shell’s incidents appear to be the result of inadequate maintenance and improper operations, and less so due to factors beyond their control.
As Shell’s footprint in the Appalachian region expands, their safety history suggests we could see the same proliferation of pipeline incidents in this area over time, as well.
NOTE: This article was amended on 4/9/18 to include table 2.
The Mariner East 2 (ME2) pipeline, currently being built by Sunoco Pipeline (Energy Transfer Partners), is a massive 350-mile long pipeline that, if completed, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.
ME2 has faced numerous challenges from concerned citizens since Sunoco first announced plans for the project in 2014. Fights over taking private property by eminent domain, eyebrow raising permit approvals with known technical deficiencies, as well as nearly a hundred drilling mud spills — inadvertent returns (IRs) — at horizontal directional drilling (HDD) sites have occurred since work began in 2017.
This article and the accompanying map brings us up-to-date on the number, location, and status of ME2’s HDD spills. We also summarize the growing list of violations and settlements related to these events. Finally, we highlight the most recent concerns related to ME2’s construction: sinkholes emerging along the pipeline’s path in karst geological formations.
Map of ME2 Updated HDDs, IRs & Karst
The map below shows an updated visual of ME2’s IRs, as of the DEP’s latest tally on March 1, 2018. Included on this map are HDDs where DEP ordered Sunoco reevaluate construction sites to prevent additional spills. Also identified on this map are locations where Sunoco was ordered to notify landowners in close proximity to certain HDDs prior to additional drilling. Finally, the below map illustrates how sinkholes are not a problem unique to one site of construction but are, in fact, common to many areas along ME2’s route. These topics are discussed in greater depth below.
Open the map full-screen to view additional layers not available in the embedded version below.
HDD IR in Washington County
(image: Observer-Reporter)
Despite these issues, and despite Sunoco being cited for 33 violations, ME2 was allowed to proceed under an August 7th agreement that stated Sunoco must reevaluate their HDD plans to minimize additional spills. These studies were to include re-examining the site’s geology and conducting seismic surveys. Sites for reevaluation were selected based on factors such as proximity water supplies, nearby streams and wetlands, problematic geologic conditions, and if an IR had occurred at that site previously. Of ME2’s 230 HDDs, 64 were ordered for reevaluation — 22 of these were selected due to prior IRs occurring at the site.
The DEP mandated that Sunoco’s reevaluation studies be put out for public comment. A table of which HDD studies are currently out for comment can be found here. DEP’s settlement also required Sunoco to notify landowners in proximity to certain HDDs prior to commencing construction due to elevated risks. Of the 64 HDD sites under review, Sunoco must notify 17 residents within 450ft of an HDD site, and 22 residents within 150ft of other sites. The HDD reevaluation sites are shown on the FracTracker map above. Below is an illustration of one site where Sunoco is required to notify landowners within 450ft.
One issue residents have raised with these notifications is that Sunoco is allowed to offer landowners the option to connect their homes to a water buffalo during drilling as an alternative to using their groundwater well. The catch is that, if their well does become contaminated, they would also waive their right to have Sunoco drill them a new replacement well.
“Egregious Violations”
In January 2018, the DEP again suspended ME2’s construction, this time indefinitely revoking their permits, due to even more IRs. DEP also cited Sunoco for “egregious and willful” permit violations —mainly executing HDDs at sites where they had no permission to do so. The DEP noted of their decision that, “a permit suspension is one of the most significant penalties DEP can levy.”
Nevertheless, Sunoco was again allowed to resume construction on February 8, 2018, after paying a $12.6 million fine. The DEP press release accompanying the decision assured the public that, “Sunoco has demonstrated that it has taken steps to ensure the company will conduct the remaining pipeline construction activities in accordance with the law and permit conditions, and will be allowed to resume.”
A few weeks later, Sunoco ran a full-page advertisement in the Harrisburg Patriot-News, shown above, lauding their safety record. Among other notables, the piece boasts, “State and federal regulators spent more than 100 inspection days during 2017 on the Mariner East project, more inspection days than on any other pipeline in Pennsylvania.” Critics have noted that the inordinate number of inspections are due to the comedy of errors associated with ME2’s construction.
Karst Formations & Sinkholes
Which brings us to the current ME2 debacle. Last week, the PA Public Utility Commission (PUC) ordered a temporary shutdown of Mariner East 1 (ME1), another natural gas liquids pipeline owned by Sunoco/ETP. ME1 was built in the 1930s and its right-of-way is being used for most of ME2’s route across the state. This latest construction setback comes in the wake of numerous sinkholes that emerged beginning in December along Lisa Drive in West Whitehead Township, a suburb of Philadelphia in Chester County.
The most recent of these sinkholes grew into a 20ft-deep, 15ft-wide chasm that exposed portions of ME1 and came within 10ft of a house. It is worth noting that, until only a few days ago, ME1 was an operational 8in pipeline with a potential impact radius (aka “blast zone”) of some 500ft. The PUC ordered that Sunoco must now run a line inspection on ME1 for a mile upstream and a mile downstream from the sinkhole sites along Lisa Drive, seen in the image below. Note the proximity of these sinkholes to Amtrak’s Keystone rail lines (connecting Pittsburgh to Philadelphia), under which ME2 also runs. The Federal Railway Administration only recently learned of the sink holes from a nearby resident.
The Lisa Drive sinkholes are being credited to Sunoco executing an HDD in an area known to have karst geological formations. Sunoco has been ordered by the PUC to conduct more geophysical testing and seismic analyses of the area because of this. Karst is often called the “Swiss cheese” of geology — notorious for caves, sinkholes, and underground rivers. As these geological formations change shape, pipelines can bend and settle over time, ultimately leading to potentially dangerous gas leakages or explosions. For instance, the 2015 Atex-1 pipeline explosion in Follansbee, WV, was ultimately determined by the Pipeline and Hazardous Materials Safety Administration (PHSA) as having been caused by ground settling. That explosion released some 24,000 barrels of ethane, burning more than five acres of surrounding land.
The US Geological Survey (USGS) maintains fairly detailed maps of rock formations for most states, including formations known to have karst. In PA, there are a number of “carbonate” rock families known for karst features and settlement issues: limestone and dolostone, and, to a lesser extent, shale. Meanwhile, the PA Department of Conservation and Natural Resources (DCNR) has maintained a record of karst “features” — sinkholes and surface depressions — documented since 1985. A great explanation of the different types of karst features can be found here.
Underestimating the Risks
What is concerning about the Lisa Drive sinkholes is that Sunoco had supposedly already conducted additional karst geological reviews of the area as part of the August DEP settlement, subsequently ranking a nearby HDD (#PA-CH-0219) as “low risk” for running into karst issues—despite knowing the HDD runs through a karst formation with sinkholes and surface depressions in the area. For the HDD that runs the length of Lisa Drive (#PA-CH-0256), the study rated its risk as “very low.” These two HDDs are shown below, along with the area of ME1 now under structural review.
The likely result of these inaccurate assessments led to two IRs at Lisa Drive, one in October and another in November 0f 2017. DEP’s writeup of these events note that the total volume of drilling muds spilled remains unknown because Sunoco didn’t report the incident. Then, only a month later, sinkholes emerged in the same locations. An image of the November HDD IR is shown below.
It is important to note two additional things of Sunoco’s karst study, an except of which is seen in their map of the West Whiteland area below. First, Lisa Drive is just on the edge of a karst limestone formation. USGS data suggest the location is actually mica schist, but the USGS data is also only a rough estimate of different formations. This underscores why pipeline companies must be required to conduct detailed geotechnical analysis of all HDD sites at the onset of their projects.
The other notable aspect of Sunoco’s study is that it does not fully represent all rock formations known to have karst features. In Sunoco’s map, we see orange shading for limestone, but this does not include dolostone that underlies the many surface depressions and sinkholes surrounding West Whiteland. FracTracker’s map includes these formations for greater accuracy.
Interestingly, as Anya Litvak of the Pittsburgh Post-Gazette observed in her reporting on the Lisa Drive incident, Sunoco’s updated karst assessment ranked the entire route of the ME2 pipeline through the state as “low to very low” risk for potential issues. Furthermore, Sunoco has tried to downplay the Lisa Drive incident, stating that “all areas have been secured,” and that additional incidents are unlikely to occur.
But the overall relationship between Mariner East 2’s IRs, HDD sites, and known karst features tells a very different story than Sunoco’s about the potential risks of ME2. In addition to the concerns about new sinkholes near Lisa Drive, FracTracker found the following in our analysis:
7 sinkholes and 386 surface depressions are within 1,500ft of a ME2 HDD site.
Of the 230 HDDs, 87 are located in carbonate rock areas (52 in limestone/dolostone, 35 in shale).
Of the 99 IRs, 39 have occurred in carbonate rock areas (23 in limestone/dolostone, 16 in shale).
In other words, nearly half of the IRs caused by ME2 HDDs were located in areas known to have karst formations. Worth noting is that an additional 15 occurred in sandstone formations, also known to cause settlement over time. The remaining IRs are split across nine other formation types.
Considering that the DEP’s current review of Sunoco’s ability to safely execute future HDDs are based on the same karst study that missed the Lisa Drive HDD and ranked nearby HDDs as a “low” risk, one can only assume that additional spills will occur. There are many more HDD sites yet to be drilled, and also not likely studied fully for potential karst risks. As illustrated by the continuing saga of spills, violations, and omissions, it is clear that Sunoco has not maintained a high standard of construction in building ME2 from the onset.
We thank Eric Friedman from the Middletown Coalition for Community Safety for supplying photos of the Lisa Drive site used in this article.
By Kirk Jalbert, FracTracker Alliance
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2018/03/ME2_sinkholes_header.jpg400900FracTracker Alliancehttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngFracTracker Alliance2018-03-12 21:06:462021-04-15 15:01:23Mariner East 2: More Spills & Sinkholes Too?
Pittsburgh, Pennsylvania – Jan. 29 – FracTracker Alliance has released a detailed environmental impact assessment (EIA), including digital maps, of the Falcon Ethane Pipeline being built to feed Shell Appalachia’s ethylene cracker plant in Beaver County, PA.
FracTracker’s Falcon Public EIA Project offers a rich series of interactive maps and articles detailing the Falcon’s proposed route through PA, WV, and OH, likely impacts to waterways, potential blast zones, ecological footprint, proximity to hazardous industrial areas, and more.
Given the issues associated with Mariner East 2 – a PA-based natural gas liquids pipeline whose history has been fraught with citations, public scrutiny is a crucial facet of pipeline construction. The Falcon Public EIA Project represents the first time that public stakeholders have been given such a significant amount of time and detail to investigate a proposed pipeline, including access to specific location information. Public comments are being accepted by the PA Department of Environmental Protection on the Falcon’s permit until February 20th.
“Companies are generally not required to publicly disclose GIS data when applying for permits,” remarked Kirk Jalbert, project lead and Manager of Community Based Research and Engagement at FracTracker. “While concerned citizens can stitch together paper maps provided by companies in their applications, that process can be complex and very labor intensive.”
Early access to what is being proposed for the Falcon pipeline will enable nearby communities to better understand how its construction and the associated ethane cracker facility, which will produce 1 million tons of ethylene annually for making plastics, will affect their lives. Upon analyzing the data, FracTracker uncovered a number of particularly noteworthy statistics, for example:
There are 97.5 miles of pipeline proposed to be built through 22 townships in 3 states.
2,000 properties have been surveyed; 765 easements executed.
Falcon will intersect 319 streams and 174 wetlands, with hundreds more proximate to work areas.
550 family residences, 20 businesses, 240 groundwater wells, 12 public parks, 5 schools, 6 daycare centers, and 16 emergency response centers are within potential risk areas.
“Extreme levels of risk and injustice are commonplace in petrochemical pipeline siting, as well as in where their contents come from and how they get used. This project provides context for the importance of reducing these impacts, both for curtailing environmentally unfriendly plastics as well as for moving away from fossil fuel dependencies,” said Brook Lenker, Executive Director of FracTracker.
The Falcon Public EIA Project is meant to expand public dialogue about what should be included in EIAs and how they should apply to petrochemical pipelines. The project also serves as a model for how regulatory agencies can be more transparent with data when engaging the public. This is especially important in the case of the Falcon pipeline, which will be exempt from Federal Energy Regulatory Commission (FERC) scrutiny and, therefore, not be subject to a full environmental impact assessment.
https://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2018/01/Falcon-Public-EIA-Project-Feature-1.jpg400900FracTracker Alliancehttps://www.fractracker.org/a5ej20sjfwe/wp-content/uploads/2021/04/2021-FracTracker-logo-horizontal.pngFracTracker Alliance2018-01-29 07:45:292021-04-15 15:01:56Wingspan of the Falcon Pipeline
In this segment of the Falcon Public EIA Project, we first focus on the route of the pipeline and prior routes that were considered. We take a closer look at the properties along the route that required easement agreements from landowners. Finally, we locate facilities that will be built as part of the project, such as metering stations and shut-off valves, as well as the pipeline’s construction areas and access roads.
Quick Falcon Facts
97.5 miles of proposed pipeline (an additional 200+ miles surveyed during the process)
2,000 parcels of land surveyed; 765 easements executed; 469 will be needed to execute the route
1,273 acres required for construction space; 650 acres for the permanent right-of-way
Map of Falcon pipeline routes, properties, and facilities
The following map will serve as our guide in breaking down these first components. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible at closer zoom levels. Click the “details” tab in full-screen mode to read how the different layers were created.
Pipeline operators must consider a variety of factors when searching for a viable right of way (ROW) for their project—the continuous stretch of land needed to construct, maintain, and operate the pipeline. This process begins with reviewing data and maps made available by federal, state, and local agencies in order to identify features that would complicate the project. These might include such things as protected wetlands, drinking water sources, abandoned mines, or heavily populated areas.
A second step is to conduct manual field surveys along their planned route. During this stage, engineers do precise measurements to determine how the pipeline will cross individual properties as well as locate site-specific concerns that need to be accounted for, such as the presence of endangered species or archeological sites. FracTracker previously produced a guide to pipeline surveying, which can be found here.
The process of finding a viable pipeline route can undergo dozens of revisions and take months or years to complete. The example image seen below, taken from our interactive map at the top of the page, shows a few of the many different 50ft. ROWs considered by Shell. These were documented every few months as the data changed.
A section of the Falcon route with prior routes considered
The most recent route is highlighted in red, totaling 97.5 miles (Shell’s original press releases stated 94 miles). Segments that represent alternative routes considered in certain places are shown in blue (these earlier divergences total 19 miles). Other areas surveyed at some point in the process are shown in dotted purple (totaling 91.3 miles). Given that the route has changed very little in recent months, as well as the fact that Shell has submitted their permit applications for project, we believe that the route in red is likely the route proposed to regulatory agencies.
Note that, in the interactive map, there is an additional “Air Liquide” pipeline (this is the name of a gas products company) proposed by Shell that will run from the ethane cracker south for about .5 miles. Based on comments made by Shell at public hearings, we assume this will be a nitrogen pipeline feeding the plant from an unknown source.
Acquiring Easements
Perhaps the most significant factor that can determine a pipeline route is finding landowners amenable to having their land surveyed and, ultimately, willing to sign easements to allow the pipeline on their property. In some instances, pipeline companies can be granted eminent domain as a “public utility” to take land by force (ME2). However, Shell has stated publicly that eminent domain in not an option for Falcon, due to the fact that the pipeline services a private facility. FracTracker previously produced a guide for landowners who might be approached by pipeline operators seeking to survey their properties.
The Falcon pipeline will have a permanent ROW of 50ft that will cross 10 municipalities in Pennsylvania, 12 townships in Ohio, as well as northern Hancock County, West Virginia. More than 2,000 individual parcels of land were surveyed across this region. Of those 2,000, Shell approached landowners for 765 unique parcels at some point in the process to obtain easements, either for the pipeline ROW itself or for access roads.
To date, Shell has executed 572 easements. Of these, 469 will be needed to execute the current proposed route. However, as of this time, 14 parcels along the proposed route are still listed as “landowner contacted,” meaning that the easement has not yet been executed. The image below is a page from Shell’s permit applications to the PA DEP listing properties pending in Pennsylvania.
Pending PA easements from Shell’s permit applications
Media sources have reported on some of the details of Shell’s Pipeline easement agreements. In some instances, contracts stated a transactional price of $10 per linear foot as a “placeholder” to get the process started. In other cases, Shell has paid landowners as much as $75 per linear foot of pipeline. These agreements also state that Shell reserved the right to “lay, construct, test, maintain, inspect, operate, repair, renew, relocate, replace, substitute, change the size of, upgrade, alter, mark, protect and remove or abandon in place” any pipelines on the property. Below is an example of how our interactive map represents these parcels and their status. For instance, executed easements are in green and pending or stalled agreements in yellow.
Parcels along the Falcon route and their easement status
Valves & Metering Stations
Pipelines require a number of facilities to properly manage the flow and pressure of gas from one end of the line to another. For instance, metering stations are installed to measure how much gas is in the pipeline system at given points. Falcon has five “pads” where metering stations will be located. Three of these are co-located at the origin points of the pipeline (the MarkWest separator facilities) and a fourth at the ethane cracker end-point. However, the fifth meter stations will be located where the two legs of the pipeline meet in northeast Raccoon Township, Beaver County, PA. This site is called the “Junction” meter pad.
Shut-off valves will also placed along the route—18 in all for Falcon—in order to section off lengths of the pipeline that can be turned off as needed. These valves will be located at fairly regular intervals of 8-10 miles in most places, but are also found just before and after sensitive locations, such as the Oho River crossing and areas and where the lines juncture.
The Risks of Proximity
Metering stations and shut-off valves bring particular risks. For instance, when valves are closed at a section of pipeline for maintenance, or in the event of an emergency, excess gasses must vented to relieve pressure. This is one reason why communities have become concerned about the location of these facilities, such as with a Mariner East 2 pipeline valve in West Goshen Township, PA. Similarly, the Falcon pipelines’ valve in New Somerset, OH, is especially close to residential areas, seen below.
A proposed Falcon shut-off valve site in New Somerset, Ohio
Workspaces & Access Roads
Finally, pipeline operators must identify in their permit applications the “workspace” needed for construction. Shell’s temporary ROW for workspace is approximately 100ft in most stretches along the Falcon’s route, similar to what is shown in the image below. Site-specific conditions, such as road, railroad crossings, and buildings make the workspace narrower in some instances, but much larger workspaces will be needed around sites like metering stations and shut-off valves.
A typical pipeline workspace; this one from the Mariner East 2
The locations of access roads must also be identified in permit applications. Access roads come in two categories and typically require a 25ft ROW. Temporary access roads are used during the construction process and often utilize existing private driveways, farm roads, or are built after clearing land acquired in the easement process. Permanent roads allow long-term access to facilities, such as valves and pumping stations, as well as for bringing in equipment to maintain the pipeline’s ROW. Shell’s plan proposes 111 temporary access roads (28 miles) and 21 permanent access roads (2.3 miles).
Shell’s permit applications state that the total disturbed workspace needed for construction and access roads is approximately 1,273 acres. About half of this will remain cleared for the permanent right-of-way and permanent access roads.
A Closer Look
When a pipeline project is subject to regulatory review, alternative routes are typically offered up by the operator for consideration in weighing different costs and benefits. Major reroutes typically deviate from the proposed route for significant distances in order to avoid significant impediments such as large cities or protected lands. Minor alternatives are shorter in length and used to avoid specific areas of concern, such as a protected wetland. An alternative route might also be selected in order to utilize an existing ROW from other pipelines.
Ohio River Crossing
As noted, there are a number of places along the Falcon route where we see examples of major route changes. Many of these reroutes appear to be due to landowners along the preferred path not signing easements for one reason or another. One of the more significant change occurred at the location where the Falcon crosses the Ohio River in Hancock County, West Virginia, seen below. For many months, Shell’s maps showed a planned crossing south of the current proposed route, but later took a dramatic diversion to the north, apparently due to an easement not having been executed for a single property. What is notable about the new route is that it utilizes property owned by the popular Mountaineer Casino, Racetrack, and Resort.
The current and former Falcon route crossing the Ohio River
Fort Cherry Golf Course Reroute
In another instance, we see a reroute near the Fort Cherry Golf Course in McDonald, Washington County, PA. An earlier route took the Falcon straight through the course, whereas the current proposed route goes further east, disrupting a smaller number of fairways. Notice in the image below that a temporary access road for the pipeline’s construction will also still utilize Fort Cherry Golf Course’s driveway.
The current and former Falcon routes crossing the Ft. Cherry Golf Course
Montour Trail Intersections
Finally, we bring attention to what appears to be some of the few remaining properties with easements not yet settled in order to begin construction. As noted in the excerpt from Shell’s permit application at the top of this page, a number of parcels owned by the Montour Trail Council have a status of: “in negotiation and depended on submitted crossing permit applications,” presumably meaning they would agree to the easement if PA DEP approved Shell’s permits.
Falcon intersections with the Montour Trail
The Montour Trail is a 46-mile long multi-use non-motorized recreational rail-trail located in Washington and Allegheny County, PA, used by more than 400,000 people annually. It also makes up part of the Great Allegheny Passage (GAP), a trail system that stretches over 335 miles from Pittsburgh to Washington, DC. The trail is managed by the nonprofit Montour Trail Council with support from state agencies such as the Pennsylvania Department of Conservation and Natural Resources (DCNR).
We were surprised to find that the Montour Trail will be crossed by the Falcon in 9 locations: 5 by the pipeline itself, 3 by temporary access roads, and 1 by a permanent access road, as illustrated in the image above. Two of the pipeline intersections will be executed using HDD boring. The trail and its intersection with the Falcon can be seen by activating these layers on FracTracker’s interactive map, as illustrated in the image above.
In this section of the Falcon Public EIA Project, we explore the hydrological and geological conditions of the pipeline’s construction areas. We first identify the many streams, wetlands, and ponds the Falcon must cross, as well as describe techniques Shell will likely use in these water crossings. The second segment of this section highlights how the areas in the Falcon’s path are known for their complex geological features, such as porous karst limestone and shallow water tables that can complicate construction.
Quick Falcon Facts
Intersects 319 streams; 361 additional streams located only 500ft from construction areas
Intersects 174 wetlands; 470 additional wetlands located only 500ft from construction areas
Majority of crossings will be open cuts and dry-ditch trenching
A total of 19 horizontal directional drilling (HDD) sites; 40 conventional boring sites
25 miles of pipeline overlap karst limestone formations, including 9 HDD sites
240 groundwater wells within 1/4 mile of the pipeline; 24 within 1,000ft of an HDD site
Map of Falcon water crossings and hazards
The following map will serve as our guide in breaking down the Falcon’s risks to water bodies. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible as you zoom in. A number of additional features of the map are not shown by default, but can be turned on in the “layers” tab. These include information on geological features, water tables, soil erosion characteristics, as well as drinking reservoir boundaries. Click the “details” tab in full-screen mode to read how the different layers were created.
The parts of Pennsylvania, West Virginia, and Ohio where the Falcon pipeline will be built lie within the Ohio River Basin. This landscape contains thousands of streams, wetlands, and lakes, making it one of the most water rich regions in the United States. Pipeline operators are required to identify waters likely to be impacted by their project. This two-step process involves first mapping out waters provided by the U.S. Geological Survey’s national hydrological dataset. Detailed field surveys are then conducted in order to locate additional waters that may not yet be accounted for. Many of the streams and wetlands we see in our backyards are not represented in the national dataset because conditions can change on the ground over time. Yet, plans for crossing these must also be present in pipeline operator’s permit applications.
Streams
Streams (and rivers) have three general classifications. “Perennial” streams flow year-round, are typically supplied by smaller up-stream headwaters, and are supplemented by groundwater. In a sense, the Ohio River would be the ultimate perennial stream of the region as all smaller and larger streams eventually end up there. “Intermittent” streams flow for only a portion of the year and are dry at times, such as during the summer when water tables are low. Finally, “ephemeral” streams flow only during precipitation events.
These classifications are important because they can determine the extent of aquatic habitat that streams can support. Working in streams that have no dry period can put aquatic lifeforms at elevated risk. For this and other reasons, many states further designate streams based on their aquatic life “use” and water quality. In Pennsylvania, for instance, the PA DEP uses the designations: Warm Water Fishes (WWF), Trout Stocked (TSF), Cold Water Fisheries (CWF) and Migratory Fishes (MF). Streams with exceptional water quality may receive an additional designation of High Quality Waters (HQ) and Exceptional Value Waters (EV).
Wetlands
Similar to streams, wetlands also have unique designations. These are based on the U.S. Fish and Wildlife Services’ national wetlands inventory. Wetlands are generally defined as “lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface or the land is covered by shallow water.” As such, wetlands are categorized by their location (such as a tidal estuary or an inland wetland that lacks flowing water), its substrate (bedrock, sand, etc.), and plant life that might be present. While there are hundreds of such categories, only four pertain to the wetlands present in the regions where the Falcon pipeline will be built. Their designations roughly translate to the following:
Palustrine Emergent (PEM): Marshes and wet meadows hosting perennial small trees, shrubs, mosses, or lichens
Palustrine Shrub (PSS): Similar to PEMs, but characterized by also having well-established shrubs
Palustrine Forested (PFO): Similar to PEMs and PSSs, but having trees larger than 6 meters high
Palustrine Unconsolidated Bottom (PUB) and Palustrine Opem Water (POW) (aka ponds)
Pipeline operators are required to report the crossing length of each wetland they will encounter, as well as the area of permanent and temporary disturbance that would occur in each of these wetlands. When building the pipeline, operators are required to ensure that all measures are taken to protect wetlands by minimizing impacts to plant life, as well as by taking “upland protective measures” to prevent sedimentation runoff during precipitation events. When undergoing FERC EIA scrutiny, operators are also required to limit the width of wetland construction areas to 75 feet or less.
Crossing Methods
Open-Cut Trenching
Pipeline operators use a variety of methods when crossing streams, wetlands, and ponds. Shorter length crossings often employ a rudimentary trench. After the cuts, construction crews attempts to repair damage done in the process of laying the pipeline. For longer crossings, operators can use boring techniques to go underneath water features.
Open-cut trenching
There are two general types of trenches. The first, “open-cut” crossings, are typically used for smaller waterbodies, such as in intermittent streams where flow may not be present during time of construction, or when construction can be completed in a short period of time (typically 24-48 hours). In this process, a trench is laid through the water body without other provisions in place.
The second type, “dry-ditch” crossing, are required by FERC for waterbodies up to 30 feet wide “that are state-designated as either coldwater or significant coolwater or warmwater fisheries, or federally-designated as critical habitat.” In these spaces, pumps are used to transfer stream flow around the area where trenching occurs. In places where sensitive species are present, dry-ditches must include a flume to allow these species to pass through the work area.
Conventional Boring
Conventional boring consists of creating a tunnel for the pipeline to be installed below roads, waterbodies, and other sensitive resources. Bore pits are excavated on either sides of the site. A boring machine is then used to tunnel under the resource and the pipeline is pushed through the bore hole.
Horizontal Directional Drilling
In more difficult or lengthy crossings, operators may choose to bore under a water feature, road, or neighborhood. Horizontal directional drilling (HDD) involves constructing large staging areas on either side of the crossing. A large drill bit is piloted through the ground along with thousands of gallons of water and bentonite clay for lubricant (commonly referred to as drilling muds). HDDs are designed to protect sensitive areas, but operators prefer not to use them as HDDs can be expensive and require in-depth planning in order for things to go well.
Bentonite sediment pollutes a stream at a Mariner East HDD spill site
(source: Washington, PA, Observer-Reporter)
An example of what happens when things are rushed can be seen in Sunoco’s Mariner East 2 pipeline. The PA DEP has cited Sunoco for over 130 inadvertent returns (accidental releases of drilling muds) since construction began. These spills led to damaged water wells and heavy sedimentation in protected streams, as exemplified in the image above. Making matters worse, Sunoco later violated terms of a settlement that required them to re-survey before recommencing construction. See FracTracker’s article on these spills.
Footprint of the Falcon
The overwhelming majority of Falcon’s water body crossings will be executed with either open-cut or dry-ditch methods. There are 40 locations where conventional boring will be used, but only a 3 are used for crossing water resources. Shell intends to use 19 HDDs and, of these, only 13 are used for crossing water bodies of some kind (the longest of which crosses the Ohio River). All other conventional and HDD boring locations will be used to cross under roads and built structures. This is not entirely unusual for pipelines. However, we noted a number of locations where one would expect to see HDDs but did not, such as in the headwaters of the Ambridge and Tappen Reservoirs, as was seen in the images above.
Stream Impacts
Shell identified and/or surveyed a total of 993 stream sections in planning for the Falcon’s construction. As shown on FracTracker’s map, the pipeline’s workspace and access roads will directly intersect 319 of these streams with the following classifications: perennial (96), ephemeral (79), and intermittent (114). An additional 361 streams are located only 500ft from construction areas.
A number of these streams have special designations assigned by state agencies. For instance, in Pennsylvania, we found 10 stream segments listed as Trout Stocked (TS), which are shown on our interactive map.
Crossing HQ headwater streams of the Ambridge Reservoir
Perhaps more concerning, the Falcon will cross tributaries to the Service Creek watershed 13 times. These feed into three High Quality Cold Water Fishes (HQ/CWF) headwater streams of the Ambridge Reservoir in Beaver County, PA, shown in the image above. They also support the endangered Southern Redbelly Dace (discussed in greater depth here). On the eastern edge of the watershed, the Falcon will cross the raw water line leading out of the reservoir.
The reservoir supplies 6.5 million gallons of water a day to five townships in Beaver County (Ambridge, Baden, Economy, Harmony, and New Sewickley) and four townships in Allegheny County (Leet, Leetsdale, Bell Acres & Edgeworth). This includes drinking water services to 30,000 people.
We found a similar concern in Ohio where the Falcon will cross protected headwaters in the Tappan Reservoir watershed at six different locations. The Tappan is the primary drinking water source for residents in Scio. Below is a page from Shell’s permit applications to the PA DEP outlining the crossing of one of the Ambridge Reservoir’s CWF/HQ headwater streams.
Wetland Impacts
Shell identified a total of 682 wetland features relevant to Falcon’s construction, as well as 6 ponds. Of these, the pipeline’s workspace and access roads will directly intersect 174 wetlands with the following classifications: PEM (141), PSS (13), PFO (7), PUB (10), POW (3). An additional 470 of these wetlands, plus the 6 ponds, are located only 500ft from construction areas.
Example 1: Lower Raccoon Creek
A few wetland locations stand out as problematic in Shell’s construction plans. For instance, wetlands that drain into Raccoon Creek in Beaver County will be particularly vulnerable in two locations. The first is in Potter Township, where the Falcon will run along a wooded ridge populated by half a dozen perennial and intermittent streams that lead directly to a wetland of approximately 14 acres in size, seen below. Complicating erosion control further, Shell’s survey data shows that this ridge is susceptible to landslides, shown in the first map below in dotted red.
Landslide areas along Raccoon Creek wetlands and streams
This area is also characterized by the USGS as having a “high hazard” area for soil erosion, as seen in this second image. Shell’s engineers referenced this soil data in selecting their route. The erosion hazard status within 1/4 mile of the Falcon is a layer on our map and can be activated in the full-screen version.
High erosion hazard zones along Raccoon Creek
Shell’s permit applications to the PA DEP requires plans be submitted for erosion and sedimentation control of all areas along the Falcon route. Below are the pages that pertain to these high hazard areas.
Example 2: Independence Marsh
The other wetland area of concern along Raccoon Creek is found in Independence Township. Here, the Falcon will go under the Creek using horizontal drilling (highlighted in bright green), a process discussed in the next section. Nevertheless, the workspace needed to execute the crossing is within the designated wetland itself. An additional 15 acres of wetland lie only 300ft east of the crossing but are not accounted for in Shell’s data.
This unidentified wetland is called Independence Marsh, considered the crown jewel of the Independence Conservancy’s watershed stewardship program. Furthermore, the marsh and the property where the HDD will be executed are owned by the Beaver County Conservation District, meaning that the CCD signed an easement with Shell to cross publicly-owned land.
Independence Marsh, unidentified in Shell’s survey data
Groundwater Hazards
The Falcon’s HDD locations offer a few disturbing similarities to what caused the Mariner East pipeline spills. Many of Sunoco’s failures were due to inadequately conducted (or absent) geophysical surveys prior to drilling that failed to identify karst limestone formations and shallow groundwater tables, which then led to drilling muds entering nearby streams and groundwater wells.
Karst Limestone
Karst landscapes are known for containing sinkholes, caves, springs, and surface water streams that weave in and out of underground tunnels. Limestone formations are where we are most likely to see karst landscapes along the Falcon’s route.
In fact, more than 25 of the Falcon’s 97 pipeline miles will be laid within karst landscapes, including 9 HDD sites. However, only three of these HDDs sites are identified in Shell’s data as candidates for potential geophysical survey areas. The fact that the geology of the other 10 HDD sites will not be investigated is a concern.
One site where a geophysical survey is planned can be seen in the image below where the Falcon crosses under PA Highway 576. Note that this image shows a “geological formations” layer (with limestone in green). This layer shows the formation types within 1/4 mile of the Falcon and can activated in the full-screen version of our interactive map.
A potential HDD geophysical survey area in karst limestone
Water Tables
We also assessed the Falcon’s HDDs relative to the groundwater depths and nearby private groundwater wells. The USGS maintains information on minimum water table depths at different times of the year. In the image below we see the optional “water table depth” layer activated on the FracTracker map. The groundwater at this HDD site averages 20ft on its western side and only 8ft deep on the eastern side.
Shallow groundwater and private wells near a planned HDD site
Groundwater Wells
Also seen in the above image is the “groundwater wells” layer from the FracTracker map. We found 240 private water wells within 1/4 mile of the Falcon. This data is maintained by the PA Department of Natural Resources as well as by the Ohio Department of Natural Resources. Comparable GIS data for West Virginia were not readily available thus not shown on our map.
While all of these wells should be assessed for their level of risk with pipeline construction, the subset of wells nearest to HDD sites deserve particular attention. In fact, Shell’s data highlights 24 wells that are within 1,000 feet of a proposed HDD site. We’ve isolated the groundwater wells and HDD sites in a standalone map for closer inspection below. The 24 most at-risk wells are circled in blue.
In this segment of the Falcon Public EIA Project we begin to explore the different ways that pipelines are assessed for potential risk to populated areas. We outline a methods dictated by the Pipeline and Hazardous Materials Safety Administration (PHMSA) called Class Locations. This methods identifies occupied structures in proximity to a pipeline.
Quick Falcon Facts
67% of the Falcon route will qualify as Class 1, 27% as Class 2, and 3% as Class 3.
More than 557 single family residences and 20 businesses within 660ft of the pipeline.
Three recreational parks and a planned luxury housing development also at risk.
Map of Falcon Class Locations
The following map will serve as our guide in breaking down the Falcon’s Class Locations. Expand the map full-screen to explore its contents in greater depth. Some layers only become visible as you zoom in. A number of additional layers are not shown by default, but can be turned on in the “layers” tab. Click the “details” tab in full-screen mode to read how the different layers were created.
Pipeline “Class locations” determine certain aspects of how a pipeline is constructed. Essentially, a pipeline’s route is segmented into lengths that are each given different classifications as outlined in PHMSA guidelines. In general terms, a segment’s Class is established by first calculating a buffer that extends 220 yards (660ft) on either side of the pipeline’s center in 1-mile continuous lengths. This buffer area is then analyzed for how many building structures are present. Classes are then assigned to each 1-mile segment using the follow criteria:
Class 1: a segment with 10 or fewer buildings intended for human occupancy
Class 2: a segment with more than 10, but less than 46 buildings intended for human occupancy
Class 3: a segment with 46 or more buildings intended for human occupancy, or where the pipeline lies within 100 yards of any building, or small well-defined outside area occupied by 20 or more people on at least 5 days a week for 10 weeks in any 12-month period (i.e. schools, businesses, recreation areas, churches)
Class 4: a segment where buildings with four or more stories aboveground are prevalent
The finer details of these calculations and their adjustments are complex, however. For instance, Class locations can be shortened to less than 1-mile lengths if building densities change dramatically in an certain area. The example image below shows one of the ways available to operators for doing this, called the “continuous sliding” method:
Calculating Class Locations
(source: PHMSA)
Class location designations may also be adjusted over time as densities change. For instance, if new homes were built in proximity to a previously constructed pipeline, the operator may be required to reduce their operating pressure, strengthen the pipeline, or conduct pressure tests to ensure the segment would technically meet the requirements of a higher Class. Alternatively, operators can apply for a special permit to avoid such changes.
What Class Locations Dictate
Pipeline segments with higher Classes must meet more rigorous safety standards, which are enforced either by PHMSA or by their state equivalent, such as the Pennsylvania Utility Commission. These include:
Soil depth: Class 1 locations must be installed with a minimum soil depth of 30 inches (18 inches in consolidated rock). Class 2, 3, and 4 locations require a minimum soil depth of 36 inches (24 inches in consolidated rock)
Shut-off valves: Class locations determine the maximum distance from shut-off valves to populated areas, as follows: Class 1 (10 miles), Class 2 (7.5 miles), Class 3 (4 miles), and Class 4 (2.5 miles).
Operating pressure: Classes also regulate the maximum allowable operating pressure (MAOP) of pipeline segments
Structural integrity: Classes determine where thicker walled materials must be used to withstand higher pressures, as well as different structural testing methods used in safety inspections
By replicating the 600 foot buffer from the Falcon’s centerline (used as the standard distance for determining Class Locations) we found that 67% of the Falcon route will qualify as Class 1, 27% as Class 2, and 3% as Class 3. These are represented on our interactive maps as green, yellow, and orange segments, respectively. An additional segment is marked as having an “unknown” Class on our maps (shaded in gray). This is the stretch crossing the Ohio River, where Shell’s Class location analysis has not been updated to reflect the route change that occurred in the summer of 2017.
Residential Structures
In total, there are 557 single family residences, 20 businesses, and a church within the 660ft buffer. Shell’s data also identify non-occupied structures along the route, such as sheds, garages, and other outbuildings. There are 535 such structures, but we did not have the time to replicate the locations of these sites. It is also important to note that the points on our interactive map represent only those identified by Shell, which we believe is an incomplete assessment of occupied structures based on our quick review of satellite maps.
Three residential structures lie directly within the 50-foot right-of-way. One of these homes, located in a Class 2 segment in Independence Township, is shown below. The Falcon will come as close as 20 feet to the edge of the structure and surround the home on three sides.
An occupied residence in the right-of-way
Neighborhoods in the following five communities account for the entirety of Falcon’s Class 3 locations. These would be considered the most “at risk” areas along the route in terms of proximity to the number of occupied structures. For instance, below is a satellite view of the Class 3 section of Raccoon Township.
Rumley Township, Harrison OH
Knox Township, Jefferson County OH
Raccoon Township, Beaver County PA
Independence Township, Beaver County PA
Mount Pleasant Township, Washington County PA
Raccoon Township residences & Municipal Park in a Class 3
Recreational Areas
In the above image we also see the location of Raccoon Township Municipal Park (in purple), home to a number of ballfields. Two similar recreation areas are located in the 660ft Class Location buffer: Mill Creek Ballpark, in Beaver County PA, and Clinton Community Park, in Allegheny County PA.
However, the Raccoon Township park is notable in that the Falcon cuts directly through its property boundary. Shell intends to bore under the park using HDD techniques, as stated in their permit applications, “to avoid disturbance to Beaver County baseball field/recreational park,” also stating that, “this HDD may be removed if the recreational group will allow laying the pipeline along the entrance roadway.”
New Housing Developments
One discovery worth attention is that the Falcon runs straight through an under-construction luxury housing development. Located in Allegheny County, PA, its developer, Maronda Homes, bills this growing community as having “picturesque landscapes, waterfront views and a peaceful collection of homes.” Shell mentions this development in their permit applications, stating:
Maronda Homes is in the planning and design stage of a very large housing development and SPLC [Shell Pipeline LC] worked closely with the developer and the Project was rerouted to avoid most of the housing sites.
It stands to reason that this neighborhood will eventually rank as one of the densest Class 3 areas along the Falcon route. Whether or not the pipeline is updated with higher safety standards as a result remains to be seen. The image below illustrates where the Falcon will go relative to lots marked for new homes. This property lots diagram was obtained from Shell’s GIS data layer and can be viewed on the FracTracker interactive map as well.
The Falcon intersects a luxury home development
1/31/18 Note: the Pittsburg Post-Gazette obtained newer lot line records for a portion of the Maronda Farms during their investigation into this story. These new records appear to have some alterations to the development, as seen below.
Maronda Farms, updated lot lines
Issues with Setbacks
There are no setback restrictions for building new homes in proximity to a pipeline. Parcels will eventually be sectioned off and sold to home buyers, begging the question of whether or not people in this community will realize a hazardous liquid pipeline runs past their driveways and backyards. This is a dilemma that residents in a similar development in Firestone, Colorado, are now grappling with following a recent pipeline explosion that killed two people, seen below, due to inadequate building setbacks.
A pipeline explodes in a Colorado home development
(source: InsideEnergy, CO)
Interestingly, we researched these same Maronda Farms parcels in FracTracker’s Allegheny County Lease Mapping Project only to discover that Maronda Homes also auctioned off their mineral rights for future oil and gas drilling. New homeowners would become victims of split-estate, where drilling companies can explore for oil and gas without having to seek permission from property owners, amplifying their level of risk.