Power Plants & Other Facilities Now on Ohio Oil & Gas Map

Over the last few months we’ve been busy working on some updates to our Ohio Oil & Gas Map. Check out what we’ve added recently and explore the map below!

New: Power Plants & ATEX Pipeline

We now have the locations of eight of the credible natural gas power plants proposed in Ohio, along with the jobs they cite during construction and operations. We also now have a complete inventory of 118 existing power plants, including 25 natural gas facilities. Together, these plants would produce 7,660 megawatts, around 957 per facility.

Six of these plants are either in the heart of Ohio’s Utica Shale or within several miles of the 1,200+ mile Appalachia-to-Texas (ATEX) pipeline. ATEX was installed to transport 190,000 barrels per day (BPD) of natural gas liquids (NGLs) from the Marcellus and Utica region to the Texas and Louisiana Gulf Goast refinery corridor. The 360 mile segment of this pipeline that runs from Pennsylvania to south central Jackson County, Indiana is also now shown on the Ohio Oil & Gas Map.

Late Permitting Increases

Cumulative and Monthly Ohio Utica Hydraulic Fracturing Well Permits

Figure 1. Cumulative and monthly hydraulic fracturing well permits in Ohio’s Utica Shale

While many shale plays across the United States are experiencing a period of contraction (with low gas prices often cited as the primary reason), drilling activity in Ohio’s Utica Shale has been experiencing a slow and steady expansion. The region has seen more than 2,700 permitted wells as of the end of January 2017. Incidentally, roughly 59% of these wells are producing either oil or gas as of Q3-2016. For more information on that subject, explore our production map.

The permitting trajectory hit a low of 13-16 permits per month between February and January of 2016. Since the presidential election in November, however, permitting rates have more than doubled (Figure 1).

Ohio Oil & Gas Map

Ohio sits on the western edge of both the Utica and Marcellus Shale formations, but conditions are such that the Marcellus Shale is all but being ignored in Ohio. Explore our updated map of OH drilling activity and related facilities below:


View map fullscreen | How FracTracker maps work

Map Layers

The map above is made up of various datasets, from the location of permits to compressor stations. These “map layers” make up the legend. Below we describe each layer on the map, as well as the data source and date range.


Horizontal Marcellus Permits, Laterals
There have been 40+ permits issued for horizontal wells in Ohio’s Marcellus Shale.

Source:   Ohio Department of Natural Resources
Date Range:  December 2009 – Present


Horizontal Utica Permits
An aggregate of ODNR’s monthly cumulative Utica and Marcellus permits as well as a more detailed weekly Risk Based Data Management System (RBDMS) Microsoft Access inventory. At the present time Ohio is home to 2,160+ permitted Utica Wells with the wells broken out by status. Additionally this layer contains depth, water usage, sand usage, HCl, and Gelling Agent percentage for 249 wells based on data provided to FracFocus. Finally, we have incorporated production in various units from individual industry press releases and the ODNR annual report.

Source:   Ohio Department of Natural Resources
Date Range:  December 2009 – Present


Horizontal Utica Permits actual and straight line laterals
An aggregate of ODNR’s monthly cumulative Utica and Marcellus permits as well as a more detailed weekly Risk Based Data Management System (RBDMS) Microsoft Access inventory. At the present time we have straight line laterals for all drilled, drilling, and producing wells as well as actual PLAT laterals for 341 of the wells.

Source:   Ohio Department of Natural Resources
Date Range:  December 2009 – Present


High Volume Hydraulic Fracturing Gathering Lines
All gathering lines servicing Ohio’s inventory of High Volume Hydraulic Fracturing (HVHF) wells.

Source:   Herbert Hoover Foundation grant
Date Range:  December 2009 – 2015


High Volume Hydraulic Fracturing Well Pads
The well-pads of all Ohio’s drilled or producing High Volume Hydraulic Fracturing (HVHF) wells.

Source:   Herbert Hoover Foundation grant
Date Range:  December 2009 – 2015


High Volume Hydraulic Fracturing Well Pad’s Limits Of Disturbance (LOD)
Limits Of Disturbance (LOD) for all Ohio’s drilled or producing High Volume Hydraulic Fracturing (HVHF) well-pads.

Source: Herbert Hoover Foundation grant
Date Range:  December 2009 – 2015


Compressor Stations and Cracking Facilities
Boundaries of several confirmed High Volume Hydraulic Fracturing (HVHF) servicing cracking and compressor station facilities.

Source:   Herbert Hoover Foundation grant
Date Range:  December 2009 – 2015


Ohio Active Class II Injection Wells
This data speaks to the state’s “Active” Class II Injection wells able to accept hydraulic fracturing waste. There are 240+ Active Wells with 51 having yet to receive waste from hydraulic fracturing. For more on Ohio’s Class II Inventory in depth refer to our recent Ohio Fracking Waste Transport & Disposal Network article.

Source:   Ohio Department of Natural Resources
Date Range:  Historical to October, 2015


Earthquakes of >2.0 Magnitude
This data speaks to the state’s 258 earthquakes with current updates from the Ohio Seismic Network and historical quakes – all >2.0 magnitude. These data come from the department’s inventory. Additionally, we present Ohio earthquakes with <2.0 magnitude courtesy of Environment Canada’s Search the Earthquake Database platform.

Source: Ohio Department of Natural Resources, Division of Geological Survey, The Ohio Seismic Network
Date Range:  Historical to Present

Mariner East Technical Difficulties map

Remaining Questions on Mariner East Technical Deficiencies

In the summer of 2015, Sunoco Logistics submitted applications to the Pennsylvania Department of Environmental Protection (DEP) to build its massive Mariner East 2 pipeline. The ME 2 pipeline would have the capacity to transport 275,000 barrels a day of propane, ethane, butane, and other hydrocarbons from the shale fields of Western Pennsylvania to the Marcus Hook export terminal, located on the Delaware River.

Sunoco’s applications were to satisfy the state’s Chapter 105 (water obstruction and encroachment) and Chapter 102 (erosion/sediment control and earth disturbance) permitting requirements. The DEP responded to Sunoco’s application, issuing 20 deficiency letters totaling more than 550 pages. Sunoco resubmitted their application in the summer of 2016 and the DEP again rejected many of its plans to disturb streams, ponds, and wetlands. In December, Sunoco resubmitted its revised application for a third time, hoping for final approval.

FracTracker Alliance first wrote about ME 2’s risks to watershed in August 2016, following Sunoco’s second application. Readers who want a general overview of the issues may find that article worth reading. In this new article, we dig deeper into the subject. Along with its December application, Sunoco also supplied the DEP with revised GIS files illustrating ME 2’s new route and documents summarizing its impacts to nearby water bodies. We have created a new map utilizing newly available data and provide contextual analysis valuable in determining how Sunoco responds to the DEP’s review of its prior rejected applications.

Detailed Mapping of Water Body Impacts

At the end of December, the DEP finally released Sunoco’s GIS files detailing water bodies that will be impacted by ME 2, as well as Sunoco’s data tables outlining alternative methods that might mitigate certain impacts. Our map (below) combines these new datasets to show the locations where ME 2’s route has changed since Sunoco’s initial application, presumably in response to the DEP’s technical deficiency letter.

Also on this map are water bodies: 1) implicated in ME 2’s environmental impact assessment, 2) determined by the DEP as likely impacted by construction, and 3) identified by Sunoco as having viable construction alternatives to mitigate impacts.

Mariner East 2 Technical Deficiencies Map


View map fullscreenHow FracTracker maps work

By viewing the map fullscreen and zooming in, one can click on a water feature to reveal its data tables (see below example). These tables contain information on the water body’s flow regime, the extent of permanent and temporary impacts, alternative crossing methods that could be used, and what benefits might come from those alternate methods. Also in the tables are a number of designations such as:

  • USGS Fish and Wildlife wetland classification (see guide). Most common are PEM (palustrine emergent wetland), PSS (palustrine scrub-shrub wetland), PFO (palustrine forested wetland), and PuB (palustrine unconsolidated bottom – i.e. ponds).
  • PA DEP stream designation (see guide). Most common are WWF (warm water fishes), CWF (cold water fishes), HQ (high quality), and EV (exceptional value).
  • PA Fish and Boat Commission classifications (see guide). Most common are ATW (approved trout water), STS (stocked trout stream), Class A (class A water), and WTS (wilderness trout stream).

An example water body data table that can be found on the map:
me2-zoom-screenshot2

Our analysis of this new data reveals the number of water crossings in question is significantly higher than what we estimated in August: now totaling 1,222 streams, 34 ponds, and 708 wetlands crossings. This increase is primarily due to Sunoco’s data also containing information on ephemeral and intermittent waters that are not typically accounted for in USGS data (all that was available at the time of our prior analysis).

Defining Impacts

The DEP’s Chapter 105 Joint Permit Application Instructions break down “impacts” into two broad categories: permanent and temporary. These are primarily used to assess environmental impact fees, but are also valuable in determining what parameters Sunoco will be held to during and after ME 2’s construction.

Permanent impacts: are “areas affected by a water obstruction or encroachment that consist of both direct and indirect impacts that result from the placement or construction of a water obstruction or encroachment and include areas necessary for the operation and maintenance of the water obstruction or encroachment located in, along or across, or projecting into a watercourse, floodway or body of water.”

Permanent impacts are calculated using the pipeline’s 50-foot permanent right-of-way. For streams, all bed and banks are to be restored to pre-construction conditions. For ponds and wetlands, permanent impacts are assumed to remain even if the area is considered restored.

Temporary impacts: are “areas affected during the construction of a water obstruction or encroachment that consists of both direct and indirect impacts located in, along or across, or projecting into a watercourse, floodway or body of water that are restored upon completion of construction.” Temporary impacts consist of areas such as temporary workspaces and access roads.

The below table lists the total impacted acres broken down by county. Of interest here is that more than 175 acres would be permanently impacted — equivalent to 134 football fields — with an additional 82 acres temporarily impacted.

Table 1. Impacted Acres by County

County Permanent Impacts (acres) Temporary Impacts (acre)
Allegheny 1.85 0.39
Berks 11.14 4.88
Blair 11.70 6.72
Cambria 20.21 8.48
Chester 10.30 3.92
Cumberland 24.06 7.61
Dauphin 8.12 6.55
Delaware 5.05 3.33
Huntingdon 18.75 8.04
Indiana 11.42 4.73
Juniata 5.25 3.02
Lancaster 4.65 1.66
Lebanon 6.48 2.53
Perry 5.58 2.63
Washington 9.37 2.94
Westmoreland 17.72 12.36
York 3.46 2.16
Total 175.12 81.93

Viable Options to Reduce Impacts

Example of an open cut wet crossing

An open cut wet crossing (image source)

Pipeline companies cross water bodies using a variety of methods depending on their classification. The DEP maintains three general categories for water crossings: minor (in streams less than or equal to 10 feet wide at the water’s edge at the time of construction), intermediate (perennial stream crossings greater than 10 feet wide but less than 100 feet wide at the water’s edge at the time of construction), and major (crossings of more than 100 feet at the water’s edge at the time of construction).

Minor and intermediate crossings often employ rudimentary trenching along “open cut” crossings where the water is either temporarily diverted (wet crossing) or allowed to flow during construction (wet crossing). After the cuts, the company attempts to repair damage done in the process of trenching.

In more sensitive places, such as in exceptional value streams, wetlands, and always in major crossings, a company uses conventional boring to tunnel under a water feature. When boring over long distances, such as under a lake or river, a company turns to Horizontal Directional Drilling (HDD), a more engineered form of boring. An example of HDD boring is seen below (image source):

hdd_crossing_example

We were surprised by the number of water crossings identified by Sunoco as having options to minimize impact. As the table below shows, more than 44% (869) of Sunoco’s crossings have an alternate method identified in the resubmitted applications. In most of these instances, the intended crossing method is either trenching through open cuts or dry crossings. The majority of identified alternatives would reduce impacts simply by altering the trenching route. 53 of the 869 were shown to have feasible conditions for conventional or HDD boring, but Sunoco categorized all of these as impracticable options despite their environmental benefits.

Table 2. Number of Crossings With and Without Viable Alternate Methods

Crossings Assessed but Unimpacted Impacted with No Alternative Impacted with Alternatives Total
Streams 313 925 297 1,535
Ponds 66 3 31 100
Wetlands 963 167 541 1,671
  1,342 1,095 869 3,306

Absorbing the Costs of Environmental Impacts

If executed, these alternative methods would decrease the length of crossings, limit right-of-way encroachments, prevent land fragmentation, and significantly reduce risks to larger water bodies. More likely, Sunoco will pay the impact fees associated with the less complicated crossing methods. We’ve summarized these fees (found in Sunoco’s resubmitted application) in the table below. In total, Sunoco would pay roughly $1.8 million in exchange for nearly 2,000 water body crossings – a fraction of the project’s $2.5 billion estimated cost:

Table 3. Impact Fees for Sunoco’s Preferred Crossings

County Permanent Impacts area (fees) Temporary Impact area (fees) Admin Fees Total Fees
Allegheny $15,200 $1,600 $1,750 $18,550
Berks $89,600 $19,600 $1,750 $110,950
Blair $94,400 $27,200 $1,750 $123,350
Cambria $162,400 $34,000 $1,750 $198,150
Chester $83,200 $16,000 $1,750 $100,950
Cumberland $192,800 $30,800 $1,750 $225,350
Dauphin $65,600 $26,400 $1,750 $93,750
Delaware $40,800 $13,600 $1,750 $56,150
Huntingdon $150,400 $32,400 $1,750 $184,550
Indiana $92,000 $19,200 $1,750 $112,950
Juniata $42,400 $12,400 $1,750 $56,550
Lancaster $37,600 $6,800 $1,750 $46,150
Lebanon $52,000 $10,400 $1,750 $64,150
Perry $44,800 $10,800 $1,750 $57,350
Washington $75,200 $12,000 $1,750 $88,950
Westmoreland $142,400 $50,000 $1,750 $194,150
York $28,000 $8,800 $1,750 $38,550
$1,408,800 $332,000 $29,750 $1,770,550

Conclusion

This week, acting DEP Secretary Patrick McDonnell met with residents who voiced frustration that the agency failed to provide an additional public comment period following Sunoco’s application resubmission. Nevertheless, the DEP is expected to greenlight Sunoco’s plans any day now, adding another to the list of recent pipeline approvals in the region. Sunoco needs its permits now in order to begin clearing trees prior to endangered species bat nesting season, which begins in April.

Meanwhile, communities along the pipeline’s path are preparing for the sudden wave of disruption that may ensue. Some have threatened lawsuits, arguing that the resubmitted application still contains many deficiencies including missing wetlands and private drinking wells that must be accounted for. Indeed, the map and data presented in this article confirms that there is still a lot that the general public does not know about ME 2 – in particular, the extent of water impacts the DEP seems willing to accept and the range of options at Sunoco’s disposal that might mitigate those impacts if it were forced to do so.

Finally, it is encouraging to see that the DEP is becoming more transparent in sharing datasets, compared to other pipeline projects. However, this data is complex and not easily understood without sufficient technical expertise. We are discouraged to think that it is unlikely the public will learn about additional changes to the construction plan until after permits are issued. In order for data to be useful, it must be made available throughout the process, not at the end stages of planning, and done so in a way that it becomes integrated into the agency’s public participation responsibilities.


by Kirk Jalbert, Manager of Community-Based Research & Engagement

louisiana bayou proposed pipeline map

Pipeline Under Debate in Louisiana Bayou

The 30-inch Bayou Bridge Pipeline began operations in April of 2016, with a short leg of pipeline that ran from Nederland, Texas to refineries in Lake Charles, Louisiana. But this 60-mile long pipeline, operated by Sunoco Logistics Partners, was just the first step in a much lengthier, and more controversial, 24-inch diameter pipeline project (jointly owned by Sunoco Logistics Partners, as well as Phillips 66 Partners and Energy Transfer Partners). Nonetheless, Bayou Bridge Pipeline, LLC argues that transport of crude oil by pipeline rather than by tanker or train, is the safest transportation option, as they continue to advocate and justify more pipeline construction in the name of “energy independence.” They compare its necessity to that of FedEx, a mere “delivery system”—one that would carry 280,000 barrels of light or heavy crude across the Acadiana terrain. The company building the pipeline, in fact, distances itself from problems that could result after oil starts flowing:

The pipeline is merely a delivery system, similar to FedEx, to help fill a need that already exists to ship the crude to refiners and market. We do not own the crude in the pipeline,” Alexis Daniel, of Granado Communications Group, a public relations firm in Dallas, wrote in an email response to questions posed to Energy Transfer Partners. Source

Developers hope that second phase of the proposed Bayou Bridge Pipeline will be put into operation during the second half of 2017. It would run 162 miles from Lake Charles, LA to refineries in St James, LA. It would cross the 11 Louisiana parishes and over 700 acres of fragile wetlands, and watersheds that supply drinking water for up to 300,000 people. Pump stations are planned for Jefferson Davis and St. Martin parishes. St. James is located on the western bank of the Mississippi River, about 50 miles upstream of New Orleans. In addition, the proposed pipeline crosses the state-designated Coastal Zone Boundary, an area targeted by Louisiana for special consideration relating to ecological and cultural sustainability.

Map of Proposed Louisiana Bayou Bridge Pipeline


View map fullscreenHow FracTracker maps work

Zoom in closer to the area around the Bayou Bridge Pipeline, and the National Wetlands Inventory data should appear. Use the “Bookmarks” tab to zoom in close to the refinery sites, and also to zoom back out to the full extent of the proposed Bayou Bridge Pipeline.

What’s the connection to the DAPL?

The 2010 BP Gulf oil spill resulted in $18 billion in settlements and penalties. With protests in the news about the impacts the Dakota Access Pipeline (DAPL) could pose to drinking water for the Standing Rock Sioux Reservation should another oil spill occur along the Missouri River, it’s no surprise that environmentalists are also calling for an environmental impact statement about the proposed extension of the Bayou Bridge Pipeline.

Acadiana is already criss-crossed by a dense network of pipelines leading to Gulf Coast refineries. Nonetheless, the process of building the proposed Bayou Bridge pipeline, the Atchafalaya Basin, a major watershed of the Gulf of Mexico, will see additional and significant impacts. Even if the construction process happens without a hitch, 77 acres of wetlands would be permanently affected, and 177 acres would be temporarily affected, along with the wildlife and aquatic species that live there. Within a 5-mile buffer area of the pipeline, National Wetlands Inventory has mapped over 600 square miles of forested wetlands, nearly 300 square miles of estuarine wetlands, and 63 square miles of freshwater emergent wetlands. Essential ecosystem services that the wetlands provide, absorbing floodwaters, could be compromised, leading to increased erosion and sedimentation downstream. Impacts to these wetlands could be greatly magnified into the already environmentally stressed Gulf.

The connection between DAPL and Bayou Bridge is both figurative and literal. Like most new pipelines, concerns about spills loom large in the minds of many. A new pipeline represents more money that is not being directed toward clean energy alternatives.

Energy Transfer Partners, the same company building DAPL, is also building the Bayou Bridge, which the final leg of the Dakota Access Pipeline, 1300 miles to the north. The two pipelines would be connected by a 700+-mile-long stretch of Energy Transfer Partner’s 30-inch Trunkline. This pipeline, which has been a gas transmission line, was proposed in 2012 for conversion from gas to crude transport. The project was cancelled in 2014, and reworked to use 678 miles of the original Trunkline, and also add 66 miles of new pipeline. When it is online, the flow direction of the Trunkline pipeline would reversed to accommodate the south-flowing crude.

Other unanticipated impacts

Interestingly, if crude oil transport to Gulf Coast refineries is diverted to pipelines rather than traditional rail or barge transport, some industry analysts predict that transportation using those modes of conveyance will shift more to the Atlantic and Pacific coasts.

A chance for public input

Environmental groups, including a coalition the comprises the Sierra Club, the Gulf Restoration Network, and the Louisiana Bucket Brigade, the Atchafalaya Basinkeeper, as well as concerned citizens, and landowners (some of whom already have multiple pipelines crossing their properties) are making their resistance to the pipeline heard, loud and clear about the need for a full environmental impact statement that will address the cumulative and indirect impacts of the project.

Note

In response to public outcry, the Louisiana Department of Environmental Quality has agreed to hold a public hearing about the Bayou Bridge Pipeline extension. The meeting will take place at 6 p.m. on January 12 in the Oliver Pollock Room of the Galvez Building, 602 North 5th St. in Baton Rouge.

Update, 6 February 2017. Here’s an article that features information about the January 12 public meeting, which was packed to capacity.

By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

You Are Here feature image

You Are Here!

Oklahoma and Kansas Class II Injection Wells and Earthquakes

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance
In collaboration with Caleb Gallemore, Assistant Professor in International Affairs, Lafayette University

The September 3rd magnitude 5.8 earthquake in Pawnee, Oklahoma, is the most violent example of induced seismicity, or “man-made” earthquakes, in U.S. history, causing Oklahoma governor Mary Fallin to declare a state of emergency. This was followed by a magnitude 4.5 earthquake on November 1st prompting the Oklahoma Corporation Commission (OCC) and U.S. EPA to put restrictions on injection wells within a 10-mile radius of the Pawnee quake.

And then on Sunday, November 6th, a magnitude 5.0 earthquake shook central Oklahoma about a mile west of the Cushing Hub, the largest commercial crude oil storage center in North America capable of storing 54 million barrels of crude. This is the equivalent of 2.8 times the U.S. daily oil refinery capacity and 3.1 times the daily oil refinery capacity of all of North America. This massive hub in the North American oil landscape also happens to be the southern terminus of the controversial Keystone pipeline complex, which would transport 590,000 barrel per day over more than 2,000 miles (Fig. 1). Furthermore, this quake demonstrated the growing connectivity between Class II injection well associated induced seismicity and oil transport/storage in the heart of the US version of Saudi Arabia’s Ghawar Oil Fields. This increasing connectivity between O&G waste, production, and processing (i.e., Hydrocarbon Industrial Complex) will eventually impact the wallets of every American.

North American Oil Refinery Capacity, Pipelines, and Cushing, OK

Figure 1. The Keystone Pipeline would transport 590,000 bpd over more than 2,000 miles.

This latest earthquake caused Cushing schools to close. Magellan Midstream Partners, the major pipeline and storage facility operator in the region, also shut down in order to “check the integrity of our assets.” Compounding concerns about induced seismicity, the Cushing Hub is the primary price settlement point for West Texas Intermediate that, along with Brent Crude, determines the global price of crude oil and by association what Americans pay for fuel at the pump, at their homes, and in their businesses.

Given the significant increase in seismic activity across the U.S. Great Plains, along with the potential environmental, public health, and economic risks at stake, we thought it was time to compile an inventory of Class II injection well volumes. Because growing evidence points to the relationship between induced seismicity and oil and gas waste disposal, our initial analysis focuses on Oklahoma and Kansas. The maps and the associated data downloads in this article represent the first time Class II injection well volumes have been compiled in a searchable and interactive fashion for any state outside Ohio (where FracTracker has compiled class II volumes since 2010). Oklahoma and Kansas Class II injection well data are available to the public, albeit in disparate formats and diffuse locations. Our synthesis makes this data easier to navigate for concerned citizens, policy makers, and journalists.

Induced Seismicity Past, Present, and Future

inducedseismicity_figure

Figure 2. Central U.S. earthquakes 1973-August 15, 2015 according to the U.S. Geological Survey (Note: Based on our analysis this exponential increasing earthquakes has been accompanied by a 300 feet per quarter increase in the average depth of earthquakes across Oklahoma, Kansas, and Texas).

Oklahoma, along with Arkansas, Kansas, Ohio, and Texas, is at the top of the induced seismicity list, specifically with regard to quakes in excess of magnitude 4.0. However, as the USGS and Virginia Tech Seismological Observatory (VTSO)[1] have recently documented, an average of only 21 earthquakes of magnitude 3.0 or greater occurred in the Central/Eastern US between 1973 and 2008. This trend jumped to an average of 99 between 2009 and 2013. In 2014 there were a staggering 659 quakes. The exponential increase in induced seismic events can be seen in Figure 2 from a recent USGS publication titled “High-rate injection is associated with the increase in U.S. mid-continent seismicity,” where the authors note:

“An unprecedented increase in earthquakes in the U.S. mid-continent began in 2009. Many of these earthquakes have been documented as induced by wastewater injection…We find that the entire increase in earthquake rate is associated with fluid injection wells. High-rate injection wells (>300,000 barrels per month) are much more likely to be associated with earthquakes than lower-rate wells.”

hydraulic-fracturing-freshwater-demand

Figure 3. Average freshwater demand per hydraulically fractured well across four U.S. shale plays and the annual percent increase in each of those plays.

This trend suggests that induced seismicity is the new normal and will likely increase given that: 1) freshwater demand per hydraulically fractured well is rising all over the country, from 11-15% per year in the Marcellus and Bakken to 20-22% in the Denver and Midland formations, 2) the amount of produced brine wastewater parallels these increases almost 1-to-1, and 3) the unconventional oil and gas industry is using more and more water as they begin to explore the periphery of primary shale plays or in less productive secondary and tertiary plays (Fig. 3).

Oklahoma

The September, 2016, Pawnee County Earthquake

This first map focuses on the September, 2016 Pawnee, OK Magnitude 5.8 earthquake that many people believe was caused by injecting high volume hydraulic fracturing (HVHF) waste into class II injection wells in Oklahoma and Kansas. This map includes all Oklahoma and Kansas Class II injection wells as well as Oklahoma’s primary geologic faults and fractures.

Oklahoma and Kansas Class II injection wells and geologic faults


View map fullscreenHow FracTracker maps work

Pawnee, Oklahoma 5.8 magnitude earthquake, September, 2016 & Active Class II Injection Wells

Figure 4. The September, 2016 Pawnee, Oklahoma 5.8M earthquake, neighboring active Class II injection wells, underlying geologic faults and fractures.

Of note on this map is the geological connectivity across Oklahoma resulting from the state’s 129 faults and fractures. Also present are several high volume wells including Territory Resources LLC’s Oldham #5 (1.45 miles from the epicenter, injecting 257 million gallons between 2011 and 2014) and Doyle #5 wells (0.36 miles from the epicenter, injecting 61 million gallons between 2011 and 2015), Staghorn Energy LLC’s Hudgins #1 well (1.43 miles from the epicenter, injecting 11 million gallons between 2011 and 2015 into the Red Fork formation), and Cooke Co Production Co.’s Laird #3-35 well (1.41 miles from the epicenter, injecting 6.5 million gallons between 2011 and 2015). Figure 4 shows a closeup view of these wells relative to the location of the Pawnee quake.

Class II Salt Water Disposal (SWD) Injection Well Volumes

This second map includes annual volumes of disposed wastewater across 10,297 Class II injection wells in Oklahoma between 2011 and 2015 (Note: 2015 volumes also include monthly totals). Additionally, we have included Oklahoma’s geologic faults and fractures for context given the recent uptick in Oklahoma and Kansas’ induced seismicity activity.

Annual volumes of class II injection wells disposal in Oklahoma (2011-2015)


View map fullscreenHow FracTracker maps work | Download map data

Oklahoma statistics for 2011 to 2015 (Table 1):

  1. Maximum volume to date (for a single Class II injection well): 105,979,598 barrels, or 4,080,214,523 gallons (68,003,574 gallons per month), for the New Dominion, LLC “Chambers #1” well in Oklahoma County.
  2. Total Volume to Date: 10,655,395,179 barrels or 410,232,714,392 gallons (6,837,211,907 gallons per month).
  3. Mean volume to date across the 10,927 Class II injection wells: approximately 975,144 barrels per well or 37,543,044 gallons (625,717 gallons per month).
  4. This map also includes 632 Class II wells injecting waste into the Arbuckle Formation which is believed to be the primary geological formation responsible for the 5.0 magnitude last week in Cushing.

Kansas

Below is an inventory of monthly oil and gas waste volumes (barrels) disposed across 4,555 Class II injection wells in Kansas between 2011 and 2015. This map will be updated in the Spring of 2017 to include 2016 volumes. A preponderance of this data comes from 2015 with a scattering of volume reports across Kansas between 2011 and 2014.

Monthly Class II injection wells volumes in Kansas (2011-2015)


View map fullscreenHow FracTracker maps work | Download map data

Kansas statistics for 2015 (Table 1):

  1. Maximum volume to date (for a single Class II injection well): 9,016,471 barrels, or 347,134,134 gallons (28,927,845 gallons per month), for the Sinclair Prairie Oil Co. “H.J. Vohs #8” well in Rooks County. This is a well that was initially permitted and completed between 1949 and 1950.
  2. Total Volume to date: 1,060,123,330 barrels or 40,814,748,205 gallons (3,401,229,017 gallons per month).
  3. Mean volume to date across the 4,555 Class II injection wells: approximately 232,738 barrels per well or 8,960,413 gallons (746,701 gallons per month).

Table 1. Summary of Class II SWD Injection Well Volumes across Kansas and Oklahoma

 

 

Sum Average Maximum
No. of Class II
SWD Wells
Barrels Sum To Date Per Year Sum To Date Per Year
Kansas* 4,555 1.06 BB 232,738 9.02 MB
Oklahoma** 10,927 10.66 BB 975,143 195,029 105.98 MB 21.20 MB

* Wells in the counties of Barton (279 wells), Ellis (397 wells), Rooks (220 wells), Russell (199 wells), and Ness (187 wells) account for 29% of Kansas’ active Class II wells.

** Wells in the counties of Carter (1,792 wells), Creek (946 wells), Pontotoc (684 wells), Seminole (476 wells), and Stephens (1,302 wells) account for 48% of Oklahoma’s active Class II wells.

Conclusion

If the U.S. EPA’s Underground Injection Control (UIC) estimates are to be believed, the above Class II volumes account for 19.3% of the “over 2 billion gallons of brine…injected in the United States every day,” and if the connectivity between injection well associated induced seismicity and oil transport/storage continues to grow, this issue will likely impact the lives of every American.

Given how critical the Cushing Hub is to US energy security and price stability one could easily argue that a major accident there could result in a sudden disruption to fuel supplies and an exponential increase in “prices at the pump” that would make the 240% late 1970s Energy Crisis spike look like a mere blip on the radar. The days of $4.15 per gallon prices the country experienced in the summer of 2008 would again become a reality.

In sum, the risks posed by Class II injection wells and are not just a problem for insurance companies and residents of rural Oklahomans and Kansans, induced seismic activity is a potential threat to our nation’s security and economy.

Downloads

FracTracker Induced Seismicity Infographic (print quality)

Oklahoma Class II SWD Injection Well Annual Volumes 2011 to 2015 (Barrels)

Kansas Class II SWD Injection Well Monthly Volumes 2011 to 2015 (Barrels)

Footnotes

[1] To learn more about Induced Seismicity read an exclusive FracTracker two-part series from former VTSO researcher Ariel Conn: Part I and Part II. Additionally, the USGS has created an Induced Earthquakes landing page as part of their Earthquake Hazards Program.

The Dakota Access Pipeline: An Uncertain Future

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance
Eliza Czolowski, Program Associate, PSE Healthy Energy

 

Since April 2016, demonstrators in North Dakota have been protesting a section of the Dakota Access Pipeline (DAPL) being built by Dakota Access LLC, a construction subsidiary of Energy Transfer Partners LP. The proposed pipeline passes just 1.5 miles north of the Standing Rock Sioux Tribal Lands, where it is planned to cross Lake Oahe, the largest Army Corps of Engineers reservoir created on the Missouri River. The tribe argues that the project will not only threaten their environmental and economic well-being, but will also cut through land that is sacred.

Given how quickly circumstances have changed on the ground, we have received numerous requests to post an overview on the issue. This article examines the technical aspects of the DAPL proposal and details the current status of protests at Standing Rock. It includes a discussion of what the Army Corps’ recent denial of DAPL’s permits means for the project as well as looks towards the impacts of incoming Trump administration. We have also created the below map to contextualize DAPL and protest activities that have occurred at Standing Rock.

Standing Rock Protest Map


View map fullscreen | How FracTracker maps work

Background

DAPL is a $3.78 billion dollar project that was initially slated for completion on January 1, 2017. The DAPL is a joint venture of Phillips 66, Sunoco Logistics, and other smaller fossil fuel companies including Marathon Petroleum Corporation, and Enbridge Energy Partners. Numerous banks and investment firms are supporting the project and financing the related infrastructure growth, including Citi Bank, JP Morgan Chase, HSBC, PNC, Community Trust, Bank of America, Morgan Stanley, ING, Tokyo-Mitsubishi, Goldman Sachs, Wells Fargo, SunTrust, Us Bank, UBS, Compass and others.

Its route travels from Northwestern North Dakota, south of Bismarck, and crosses the waterway made up of the Missouri River and Lake Oahe just upriver of the Standing Rock Sioux Tribal Area. From North Dakota the pipeline continues 1,172 miles to an oil tank farm in Pakota, Illinois. DAPL would carry 470,000 barrels per day (75,000 m3/d) of Bakken crude oil with a maximum capacity up to 570,000 barrels per day. That’s the CO2 equivalent of 30 average sized coal fired power plants.

As documented by the NY Times map, in addition to the Missouri River and Lake Oahe, the pipeline crosses 22 other waterways that also require the pipeline to be drilled deep under these bodies of water. But Standing Rock portion is the only section disputed and as of yet unfinished. Now the pipeline project, known by the protesters as “the black snake,” is over 95% complete, despite having no official easement to cross the body of water created by the Missouri River and Lake Oahe. The easement is required for any domestic pipeline to cross a major waterway and because the land on either side of the Army Corps Lake Oahe project is managed by the Army Corps (shown in the protest map). An easement would allow Dakota Access LLC to drill a tunnel for the pipeline under the federally owned lands, including the lake and river.

Safety & Environmental Racism

Proponents of the project tout the opinion that pipelines are the safest method of moving oil large distances. Trucking oil in tankers on highways has the highest accident and spill rates, whereas moving oil by railways presents a major explosive hazard when incidents do occur. Pipeline spills are therefore considered the “safe” alternative. On November 11, Kelcy Warren was interviewed on CBS News, claiming Dakota Access, LLC takes every precaution to reduce leaks and that the likelihood of a leak is highly unlikely. The problem with comparing the risk for each of these transportation methods is that rates of incidence are the only comparison. The resulting hazard and impact is ignored. When pipelines rupture, they present a much larger hazard than trucks and trains. Large volumes of spilled oil result in much greater water and soil contamination.

We know that pipelines do rupture, and quite often. An analysis by the U.S. DOT Pipeline and Hazardous Materials Safety Administration in 2012 shows that there have been 201 major incidents (with volumes over 1,000 gallons) related to liquid leaks in the U.S. over the last ten years that were reported to the Department of Transportation. The “average” pipeline therefore has a 57% probability of experiencing a major leak, with consequences over the $1 million range, in a ten-year period. FracTracker’s recent analysis of PHMSA data shows the systemic issue of pipeline spills: there have been 4,215 pipeline spill incidents just since 2010 resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion! The recent (December 12) spill of 176,000 gallons of crude oil into a stream just 150 miles from the Standing Rock protest site highlights the Tribes’ concerns.

A previously proposed route for the DAPL would have put Bismarck—a city that is 92% white—just downriver of its Missouri River crossing. This initial route was rejected due to its potential threat to Bismarck’s water supply, according to the Army Corps. In addition to being located upriver of Bismarck’s water intake, the route would have been 11 miles longer and would have passed through “wellhead source water protection” areas that are avoided to protect municipal water supply wells. Passing through this “high consequence area” would have required further actions and additional safety measures on the part of Dakota Access LLC. The route would also have been more difficult to stay at least 500 feet away from homes, as required by the North Dakota Public Service Commission. The route was changed and pushed as close to Sioux County as possible, the location of the Standing Rock Indian Reservation.

Protests: The Water Protectors

The Standing Rock Sioux Tribe has taken an active stance against Bakken Oil Development in the past. In 2007, the Reservation passed a resolution to prevent any oil and gas development or pipelines on the Tribal Lands. However, deep concerns about the safety of DAPL led protesters to begin demonstrations at Standing Rock in April, 2016. The Standing Rock Sioux Tribe then sued the Army Corps in July, after the pipeline was granted most of the final permits over objections of three other federal agencies. Construction of it, they say, will “destroy our burial sites, prayer sites and culturally significant artifacts.” A timeline of The Standing Rock Sioux Tribe’s litigation addressing DAPL through this period can be found on the EARTHJUSTICE website.

Photo by Derrick Broze

Photo by Derrick Broze/cc

In August, a group organized on the Standing Rock Indian Reservation called ReZpect Our Water brought a petition to the Army Corps in Washington, D.C. stating that DAPL interferes with their ancestral land and water rights. The Tribe sued for an injunction citing the endangerment of water and soil, cultural resources, and the improper use of eminent domain. The suit argued that the pipeline presents a risk to Sioux Tribe communities who live near or downstream of the pipeline. The Missouri River is the main water source for the Standing Rock Sioux Tribe. In September, members of the Standing Rock Sioux tribe in North Dakota finally made headlines.

Federal Injunction

On September 9, District Judge James Boasberg denied the Standing Rock Sioux Tribes preliminary injunction request to prevent the Army Corps from granting the easement. The Judge ordered Dakota Access to stop work only on the section of pipeline nearest the Missouri river until the Army Corps granted the crossing easement. The excavation of Standing Rock burial grounds and other sacred sites, where direct action demonstrators were clashing with Dakota Access security and guard dogs, was allowed to continue. Later that same day, a joint statement was released by the U.S. Department of Justice, the Department of the Interior, and the U.S. Army:

“We request that the pipeline company voluntarily pause all construction activity within 20 miles east or west of Lake Oahe.”

In the map above the 20-mile buffer zone is shown in light green. Regardless of the request from the three federal agencies to pause construction, Dakota Access’s parent company Energy Transfer Partners LP ignored requests to voluntarily halt construction. Dakota Access LLC has also disregarded the instructions of the federal judge. The Army Corps declared Dakota Access LLC would not receive the easement required to cross the waterway until after 2016, but that has not stopped the company from pushing forward without the necessary permits. The pipeline has been built across all of Cannonball Ranch right up to Lake Oahe and the Missouri River, which can be seen in the map above and in drone footage taken November 2, 2016 showing the well pad for the drill rig has been built.

On November 4 the Army Corps requested Dakota Access LLC voluntarily halt construction for 30 days; then on November 8 (Election Day), Dakota Access ignored the request and announced they would begin horizontally drilling under the waterway within weeks. On November 14 Dakota Access filed a lawsuit against the Army Corps arguing that permits are not legally required. Later that day, the Army Corps responded with a statement that said any construction on or under Corps land bordering Lake Oahe cannot occur because the Army has not made a final decision on whether to grant an easement. In the issued statement, Assistant Secretary of the Army Jo-Ellen Darcy said “in light of the history of the Great Sioux Nation’s dispossession of lands [and] the importance of Lake Oahe to the Tribe,” the Standing Rock Sioux tribe would be consulted to help develop a timetable for future construction plans. The Army Corps has since denied the easement entirely.

Violence Against Protesters

Law enforcement has used physical violence to disrupt demonstrations on public lands and to prevent direct action activities as protesters aim to shut down construction on private land held by Energy Transfer Partners LP. Since September 4, law enforcement agencies led by the Morton County Sheriff’s Department have maintained jurisdiction over the protests. Officers from other counties and states have also been brought in to assist. Morton County and the State of North Dakota do not have the jurisdiction to evict protesters from the camps located on Army Corps land. Well over 500 activists have been arrested.

The majority of clashes with law enforcement have occurred on the roadways exiting the Army Corps lands, or at the access points to the privately owned Cannonball Ranch (shown on the map). Morton County has spent more than $8 million keeping direct action protesters from shutting down excavation and construction activities along the path of the pipeline. Meanwhile, the state of North Dakota has spent over $10 million on additional law enforcement officials to provide assistance to Morton County.

DAPL protests from in-depth documentations at: https://vimeo.com/189249968

DAPL protests from video by UnicornRiot/cc

The first violent confrontation occurred on September 3 after Dakota Access bulldozed an area of Cannonball Ranch identified by the Tribe as a sacred site hosting burial grounds. At that time, the site was actively being contested in court and rulings still had not been made. The Tribe was seeking a restraining order, known as a “preliminary injunction” to protect their cultural heritage. Direct action demonstrators put themselves in the way of bulldozers to stop the destructive construction. In response, Dakota Access LLC security personnel assaulted protesters with pepper spray and attack dogs. The encounter was documented by Democracy Now reporter Amy Goodman.

October 27, the Morton County Sheriff’s Department reinforced with 300 police from neighboring counties and states, raided the frontline camp site making mass arrests. In response, demonstrators reinforced a blockade of the 1806 bridge, shown in the map above. The most violent clash was witnessed on public lands on November 20, 2016 at this bridge, which demarcates Army Corps land. The Police forces’ use of “non-lethal” bean bag rounds, rubber bullets, tear gas, pepper spray, water hoses, LRAD, and explosive flash grenades on peaceful demonstrators has been criticized by many groups. Fire hoses were used on protesters in freezing conditions resulting in dozens of demonstrators needing treatment for hypothermia. In total 300 people were injured according to a release from the standing rock medic and healer council.

Most recently, the Army Corps has targeted the Standing Rock Demonstration by determining that it is no longer safe to stay at the Sacred Stone and Oceti Sakowin camps located on Army Corps property. North Dakota Governor Jack Dalrymple has frequently blasted the Army Corps for not removing the protesters.

As of December 5th, federal authorities consider the protesters to be trespassing on federal lands, leaving protesters vulnerable to various citations and possible arrest. The Army Corps has also said that emergency services may no longer be provided in the evacuation area. The Army Corps has jurisdiction on Army Corps lands, and only federal authorities can remove the protesters from federal lands. There are now more than 5,000 activists demonstrating at Standing Rock, and an additional 2,000 U.S. veterans joined the protest this past week for an action of solidarity. Nevertheless, U.S. authorities have said that there are no plans to forcibly remove activists, despite telling them to leave.

Victory and an Uncertain Future

Perhaps as a result of this mass outcry, the Army Corps announced on December 4th—only a day before trespassing claims would be imposed—that Dakota Access LLC’s permit application to cross under the Missouri River and Lake Oahe had been denied. Jo-Ellen Darcy, the Army’s Assistant Secretary for Civil Works, announced:

“Although we have had continuing discussion and exchanges of new information with the Standing Rock Sioux and Dakota Access, it’s clear that there’s more work to do…The best way to complete that work responsibly and expeditiously is to explore alternate routes for the pipeline crossing.”

To determine alternate routes, the Army Corps has announced it will undertake an environmental impact statement which could take years to complete. While this is a major victory for the “water protectors” demonstrating at Standing Rock, it is not a complete victory. Following the Army Corps’ announcement, the two main pipeline investors, Energy Transfer Partners LP and Sunoco Logistics, responded that they:

“…are fully committed to ensuring that this vital project is brought to completion and fully expect to complete construction of the pipeline without any additional rerouting in and around Lake Oahe. Nothing this Administration has done today changes that in any way.”

In fact, prior to the Army Corps denying the easement, numerous democrats in congress called for President Obama to shut down the pipeline. While President Obama has not heeded these calls to shut down the project entirely, he also has not given the green light for the project either. Instead the President stated that the situation needed to be handled carefully and urged the Army Corps to consider rerouting the pipeline. “We’re monitoring this closely and I think, as a general rule, my view is that there’s a way for us to accommodate sacred lands of Native Americans…. I think right now the Army Corps is examining whether there are ways to reroute this pipeline,” the President said.

trump keystone

The Corps decision to conduct a lengthy environmental impact statement is encouraging but, ultimately, the Trump administration may have the final say on the DAPL easement. President-elect Trump has voiced support for the easement in the past, and on December 5th, just one day following the Army Corps’ decision, Trump spokesman Jason Miller commented:

“That’s something we support construction of, and we will review the full situation in the White House and make an appropriate determination at that time.”

Energy Transfer Partners LP CEO Kelcy Warren donated $103,000 to the Trump campaign and the President-elect has investments in Energy Transfer Partners LP totaling up to $1 million according to campaign financial disclosures. President-elect Trump has made it clear that pipeline projects, specifically the Keystone Access Pipeline rejected by President Obama, will be allowed to move forward along with additional fossil fuel extraction projects.

If the construction company, Dakota Access LLC, continues building the pipeline they are liable to be fined. It is not yet clear whether Dakota Access LLC will “eat” the fine to continue building and drilling, or whether the Army Corps will forcefully stop DAPL. Analysts say the expense of changing the route, such as to the south of the tribal lands, would make the economics of the pipeline a total loss. It is cheaper for Dakota Access LLC to continue to fight the protest despite overwhelming disapproval of the project.

Meanwhile, protestors have refused to leave Standing Rock in fear that the Army Corp will reverse its decision and allow DAPL to proceed, despite requests by the chairman of the Sioux Tribe that demonstrators go home. Many are hopeful that, by stalling the project past January 1st—the deadline by which Energy Transfer Partners LP promised oil companies it would complete construction—the possibility exists that contracts will expire and DAPL loses support from investors.

Other Mapping Resources

This web map shows the current construction progress of the pipeline.

The New York Times website is hosting a map focusing on the many water crossings of the pipeline route.

The Guardian has a static map on their website similar to our interactive map.

Header photograph by Joe Brusky/flickr/cc

Mariner East 2: At-Risk Schools and Populations

by Kirk Jalbert, Manager of Community-Based Research & Engagement
with technical assistance from Seth Kovnant

 

In September, the Pennsylvania Department of Environmental Protection (DEP) rejected a number of permits for wetland crossings and sedimentation control that were required for Sunoco Pipeline’s proposed “Mariner East 2” pipeline. According to Sunoco, the proposed Mariner East 2 is a $2.5 billion, 350-mile-long pipeline that would be one of the largest pipeline construction projects in Pennsylvania’s history.

If built, Mariner East 2 could transport up to 450,000 barrels (18,900,000 gallons) per day of propane, ethane, butane, and other liquefied hydrocarbons from the shale fields of western Pennsylvania to export terminals in Marcus Hook, located just outside Philadelphia. A second proposed pipeline, if constructed, could carry an additional 250,000 barrels (10,500,000 gallons) per day of these same materials. Sunoco submitted revised permit applications to PADEP on Tuesday, December 6th.

The industry often refers to ethane, propane and butane collectively as “natural gas liquids.” They are classified by the federal government as “hazardous, highly volatile liquids,” but that terminology is also misleading. These materials, which have not been transported through densely populated southeast Pennsylvania previously, are liquid only at very high pressure or extremely cold temperatures. At the normal atmospheric conditions experienced outside the pipeline, these materials volatilize into gas which is colorless; odorless; an asphyxiation hazard; heavier than air; and extremely flammable of explosive. This gas can travel downhill and downwind for long distances while remaining combustible. It can collect (and remain for long periods of time) in low-lying areas; and things as ordinary as a cell phone, a doorbell or a light switch are capable of providing an ignition source.

Many who have followed the proposed Mariner East 2 project note that, while much has been written about the likely environmental impacts, insufficient investigation has been conducted into safety risks to those who live, work and attend schools in the proposed pipeline’s path. We address these risks in this article, and, in doing so, emphasize the importance of regulatory agencies allowing public comments on the project’s resubmitted permit applications.

The Inherent Risks of Artificially Liquified Gas

Resident of Pennsylvania do not need to look far for examples of how pipeline accidents pose serious risk. For instance, the 2015 explosion of the Enterprise ATEX (Appalachia to Texas) pipeline near Follansbee, WV, provides a depiction of what a Mariner East 2 pipeline failure could look like. This 20-inch diameter pipeline carrying liquid ethane is similar in many ways to the proposed Mariner East 2. When it ruptured in rural West Virginia, close to the Pennsylvania border, it caused damage in an area that extended 2,000 feet—about ½ square mile—from the place where the pipeline failed.

In another recent instance, the Spectra Energy Texas Eastern methane natural gas pipeline ruptured in Salem, PA, this April as a result of corroded welding. The explosion, seen above (photo by PA NPR State Impact), completely destroyed a house 200ft. away. Another house, 800ft. away, sustained major damage and its owner received 3rd degree burns. These incidents are not unique. FracTracker’s recent analysis found that there have been 4,215 pipeline incidents nation-wide since 2010, resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion (“incident” is an industry term meaning “a pipeline failure or inadvertent release of its contents.” It does not necessarily connote “a minor event”).

Calculating Immediate Ignition Impact Zones

It is difficult to predict the blast radius for materials like ethane, propane and butane. Methane, while highly flammable or explosive, is lighter than air and so tends to disperse upon release into the atmosphere. Highly volatile liquids like ethane, propane and butane, on the other hand, tend to concentrate close to the ground and to spread laterally downwind. A large, dispersed vapor cloud of these materials may quickly spread great distances, even under very light wind conditions. A worst-case scenario would by highly variable since gas migration and dispersion is dependent on topography, leak characteristics, and atmospheric conditions. In this scenario, unignited gas would be allowed to migrate as an unignited vapor cloud for a couple miles before finding an ignition source that causes an explosion that encompasses the entire covered area tracing back to the leak source. Ordinary devices like light switches or cell phones can serve as an ignition source for the entire vapor cloud. One subject matter expert recently testified before a Municipal Zoning Hearing board that damage could be expected at a distance of three miles from the source of a large scale release.

The federal government’s “potential impact radius” (PIR) formula, used for natural gas (methane) isn’t directly applicable because of differences in the characteristics of the material. It may however be possible to quantify an Immediate Ignition Impact Zone. This represents the explosion radius that could occur if ignition occurs BEFORE the gas is able to migrate.

The Pipeline and Hazardous Materials Safety Administration (PHMSA) provides instructions for calculating the PIR of a methane natural gas pipeline. The PIR estimates the range within which a potential failure could have significant impact on people or property. The PIR is established using the combustion energy and pipeline-specific fuel mass of methane to determine a blast radius: PIR = 0.69*sqrt(p*d^2). Where: PIR = Potential Impact Radius (in feet), p = maximum allowable operating pressure (in pounds per square inch), d = nominal pipeline diameter (in inches), and 0.69 is a constant applicable to natural gas

The Texas Eastern pipeline can use the PIR equation as-is since it carries methane natural gas. However, since Mariner East 2 is primarily carrying ethane, propane, and butane NGLs, the equation must be altered. Ethane, propane, butane, and methane have very similar combustion energies (about 50-55 MJ/kg). Therefore, the PIR equation can be updated for each NGL based on the mass density of the flow material as follows: PIR = 0.69*sqrt(r*p*d^2). Where: r = the density ratio of hydrocarbons with similar combustion energy to methane natural gas. At 1,440 psi, methane remains a gas with a mass density 5 times less than liquid ethane at the same pressure:

ME2 PIR table 1

The methane density relationships for ethane, propane, and butane can be used to calculate an immediate-ignition blast radius for each hydrocarbon product. The below table shows the results assuming a Mariner East 2-sized 20-inch diameter pipe operating at Mariner East 2’s 1,440psi maximum operating pressure:

ME2 PIR table 2

Using these assumptions, the blast radius can be derived as a function of pressure for each hydrocarbon for the same 20in. diameter pipe:

ME2 Immediate Ignition Blast Radius

ME2 Immediate Ignition Blast Radius

Note the sharp increase in blast radius for each natural gas liquid product. The pressure at which this sharp increase occurs corresponds with the critical pressure where each product transitions to a liquid state and becomes significantly denser, and in turn, contains more explosive power. These products will always be operated above their respective critical pressures when in transport, meaning their blast radius will be relatively constant, regardless of operating pressure.

Averaging the “Immediate Ignition Blast Radius” for ethane, propane, and butane gives us a 1,300 ft (about 0.25 mile) potential impact radius. However, we must recognize that this buffer represents a best case scenario in the event of a major pipeline accident.

Additional information on these calculations can be found in the Delaware County-based Middletown Coalition for Community Safety’s written testimony to the Pennsylvania Legistlature.

Living near the Mariner East 2

FracTracker has created a new map of the Mariner East 2 pipeline using a highly-detailed GIS shapefile recently supplied by the DEP. On this map, we identify a 0.5 mile radius “buffer” from Mariner East 2’s proposed route. We then located all public and private schools, environmental justice census tracts, and estimated number of people who live within this buffer in order to get a clearer picture of the pipeline’s hidden risks.

Proposed Mariner East 2  and At-Risk Schools and Populations

View map fullscreenHow FracTracker maps work

 

Populations at Risk

In order to estimate the number of people who live within this 0.5 mile radius, we first identified census blocks that intersect the hazardous buffer. Second, we calculated the percentage of that census block’s area that lies within the buffer. Finally, we used the ratio to determine the percentage of the block’s population that lies within the buffer. In total, there are an estimated 105,419 people living within the proposed Mariner East 2’s 0.5 mile radius impact zone. The totals for each of the 17 counties in Mariner East 2’s trajectory can be found in the interactive map. The top five counties with the greatest number of at-risk residents are:

  1. Chester County (31,632 residents in zone)
  2. Delaware County (17,791 residents in zone)
  3. Westmoreland County (11,183 residents in zone)
  4. Cumberland County (10,498 residents in zone)
  5. Berks County (7,644 residents in zone)

Environmental Justice Areas

Environmental justice designations are defined by the DEP as any census tract where 20% or more of the population lives in poverty and/or 30% or more of the population identifies as a minority. These numbers are based on data from the U.S. Census Bureau, last updated in 2010, and by the federal poverty guidelines. Mariner East 2 crosses through four environmental justice areas:

  • Census Tract 4064.02, Delaware County
  • Census Tract 125, Cambria County
  • Census Tract 8026, Westmoreland County
  • Census Tract 8028, Westmoreland County

DEP policies promise enhanced public participation opportunities in environmental justice communities during permitting processes for large development projects. No additional public participation opportunities were provided to these communities. Furthermore, no public hearings were held whatsoever in Cambria County and Delaware County. The hearing held in Westmoreland County took place in Youngwood, nine miles away from Jeanette. Pipelines are not specified on the “trigger list” that determines what permits receive additional scrutiny, however the policy does allow for “opt-in permits” if the DEP believes they warrant special consideration. One would assume that a proposed pipeline project with the potential to affect the safety of tens of thousands of Pennsylvanians qualifies for additional attention.

At-Risk Schools

One of the most concerning aspects of our findings is the astounding number of schools in the path of Mariner East 2. Based on data obtained from the U.S. Department of Education on the locations of schools in Pennsylvania, a shocking 23 public (common core) schools and 17 private schools were found within Mariner East 2’s 0.5 mile impact zone. In one instance, a school was discovered to be only 7 feet away from the pipeline’s intended path. Students and staff at these schools have virtually no chance to exercise their only possible response to a large scale release of highly volatile liquids, which is immediate on-foot evacuation.

me2-middletown-high

Middletown High School in Dauphin County in close proximity to ME2

One reason for the high number of at-risk schools is that Mariner East 2 is proposed to roughly follow the same right of way as an older pipeline built in the 1930s (now marketed by Sunoco as “Mariner East 1.”). A great deal of development has occurred since that time, including many new neighborhoods, businesses and public buildings. It is worth noting that the U.S. Department of Education’s data represents the center point of schools. In many cases, we found playgrounds and other school facilities were much closer to Mariner East 2, as can be seen in the above photograph. Also of note is the high percentage of students who qualify for free or reduced lunch programs at these schools, suggesting that many are located in disproportionately poorer communities.

 

Conclusion

Now that PADEP has received revised permit applications from Sunoco, presumably addressing September’s long list of technical deficiencies, the agency will soon make a decision as to whether or not additional public participation is required before approving the project. Given the findings in our analysis, it should be clear that the public must have an extended opportunity to review and comment on the proposed Mariner East 2. In fact, public participation was extremely helpful to DEP in the initial review process, providing technical and contextual information.

It is, furthermore, imperative that investigations into the potential impacts of Mariner East 2 extend to assess the safety of nearby residents and students, particularly in marginalized communities. Thus far, no indication has been made by the DEP that this will be the case. However, the Pennsylvania Sierra Club has established a petition for residents to voice their desire for a public comment period and additional hearings.

Seth Kovnat is the chief structural engineer for an aerospace engineering firm in Southeastern PA, and regularly consults with regard to the proposed Mariner East 2 pipeline. In November, Seth’s expertise in structural engineering and his extensive knowledge of piping and hazardous materials under pressure were instrumental in providing testimony at a Pennsylvania Senate and House Veterans Affairs and Emergency Preparedness Committee discussion during the Pennsylvania Pipeline Infrastructure Citizens Panel. Seth serves on the board of Middletown Coalition for Community Safety and is a member of the Mariner East 2 Safety Advisory Committee for Middletown Township, PA. He is committed to demonstrating diligence in gathering, truth sourcing, and evaluating technical information in pipeline safety matters in order to provide data driven information-sharing on a community level.

NOTE: This article was modified on 12/9/16 at 4pm to provide additional clarification on how the 1,300ft PIR was calculated, and the map was modified on 11/4/2021 to add the 1,300 ft Thermal Impact Zone Buffer, which was previously mislabeled as the half-mile Buffer

Sabal Pipeline Map

The Sabal Trail Pipeline: A Sinking Feeling

Construction is underway for a $3.2 billion, 515-mile-long interstate gas pipeline, running from central Alabama, through southwestern Georgia, and deep into Central Florida. The Sabal Trail Pipeline is a project of Duke Energy, NextEra Energy, and Spectra Energy. Spectra is the fossil fuel corporation responsible for other controversial pipelines also under construction – notably the Algonquin Incremental Market (AIM) Project. AIM, the target of ongoing protests in the Hudson Valley (NY) and elsewhere, would run from central New Jersey to ports in the Boston, MA area, passing within a few hundred feet of Indian Point Nuclear Power Plant on the Hudson River.

The Sabal Trail project is touted by Spectra to be crucial to aiding economic development along its route, and fueling gas-fired power generators in the Southeast United States. Environmentalists, however, view the project quite differently. Such development plans rarely come without a cost to communities, and to the environment.

A Unique Geology

Reflecting its geological origins as part of a shallow ancient ocean, the southeastern United States is underlain by porous limestone bedrock, known as karst. Water running through the karst bedrock flows not only through small pores, but often through extensive underground caves. When under under pressure, water can bubble up to the surface in a multitude of freshwater springs throughout the region. It’s not hard to imagine how contamination to the limestone aquifer in one area can spread rapidly and widely.

The karst bedrock, due to the sometimes large voids in its structure, is also prone to the formation of sinkholes, some of which are small; others are large enough to swallow whole buildings. Recognizing these risks, opponents of the Sabal Trail pipeline frequently cite the inherent danger of pipelines bending and rupturing should the ground beneath them give way, leading to potentially dangerous gas leakages or explosions.

One piece of recent research from the University of Georgia maps the prevalence of sinkholes in Doughterty County, GA, one of the many counties the Sabal Trail pipeline would pass through.  For reference, FracTracker has added the path of the pipeline to the Dougherty County map, above.

In the interactive map below, we show the full proposed pipeline route and associated compressor stations. Karst geology, documented sinkholes, and springs near the route of the pipeline are also shown. The double-arrows in the upper right corner of the map will launch a full-screen view of the map, including a map legend. Use the “Layers” dropdown along the top bar of that map to turn on locations of nearby schools and hospitals that could be impacted by a nearby pipeline emergency. In addition, a “Bookmarks” dropdown menu along the same top bar that will allow zooming to locations along the pipeline mentioned in this article.

Map of the proposed Sabal Trail pipeline route, karst geology, and known sinkholes

View map full screen | How FracTracker maps work

Growing Opposition

In October 2015, the United States Environmental Protection Agency (EPA) issued a scathing letter detailing the impacts that the proposed pipeline would have on the Floridan Aquifer, water quality, and ecology in this region of sensitive karst geology. Two months later, however, in mid-December, the EPA suddenly reversed its position. While reasons included an endorsement of industry’s choices to avoid “many of the most sensitive areas” that could be impacted, ABC News has suggested that political favoritism could have played a role, as well.  This video, published on November 24, 2016 by ABC/FirstCoast News, describes that situation, and also includes excellent footage of construction impacts.

Currently, the construction is proceeding. Federal Energy Regulatory Commission (FERC) has granted eminent domain to industry to build the project through seized private property. Although all federal permits for the pipeline construction are in place, a joint lawsuit filed by the Sierra Club, the Gulf Restoration Network, and Flint Riverkeeper has challenged that permitting process. There is opposition to the pipeline in Alabama, Georgia, and Florida–the three states in which construction is occurring.

The video clips below documents the noise associated with the pipeline’s construction, as well as views of the sinkhole terrain along its route.

Sabal Trail gas pipeline noise pollution at the Santa Fe River (Nov. 25, 2016).
Credit: Merrillee on Vimeo.

Sabal Trail gas transmission, at O’Brien (Hildreth) Compressor Station in Northern Florida.
Credit: Merrillee on Vimeo.

Water Protectors

As winter descends on the northern Plains, thousands of indigenous people representing hundreds of tribes, as well as non-Native allies, have gathered in camps near the Sioux Standing Rock Reservation to pray and protest the Dakota Access Pipeline (DAPL), which would drill an oil pipeline through sacred Native lands and under the Missouri River. Participants in this movement are united by the words “Water Is Life” (Mni Wiconi), in recognition of the threats that an oil spill would present to their homeland and the source of drinking water for the tribe. Hundreds of arrests of peaceful protesters have been made there in recent months, many resulting in serious injuries to the protesters as water cannons, rubber bullets, concussion grenades, and attack dogs have been used in efforts to intimidate the activists.

Coordination among First Nations groups against other fossil fuel infrastructure is happening elsewhere, too. For example, in September 2016, at least fifty US and Canadian aboriginal groups signed a treaty, saying they will work together to fight proposals that would bring crude oil from the Alberta tar sands via pipeline, tanker, and rail.

The protests against the Sabal Trail Project are similarly themed to those at Standing Rock, but have not resulted in violence towards protesters thus far. Along the Suwanee River in Florida, peaceful protesters have assembled at the Sacred Waters encampment and, on November 12, 2016, faced off with authorities in an effort to stop pipeline drilling under the Santa Fe River between Branford and Fort White, Florida.  14 people were arrested in that protest. Demonstrations at the site continue, with a dawn march and demonstration that began just after sunrise on November 26th. No arrests were made on that day. Another protest encampment, the Crystal Waters Camp, is also in place near Fort Drum, Florida, where observers noted hydrocarbon releases from the pipeline construction into Fort Drum Creek and destruction of wildlife by a pipeline crew. Still other protests about the potential environmental risks posed by the Sabal Trail have taken place recently in both Orlando and Live Oak, Florida.

Even in the phases of construction, environmentalists in Georgia discovered that the Sabal Trail pipeline had started leaking drilling mud from a pilot hole into the Withlacooche River in late October, and continued to ooze turbid mud for at least three weeks. Environmental advocates from the WWALS (the Withlacoochee, Alapaha, Little, and Upper Suwannee River) Watershed Coalition raised concerns that if a pilot hole could cause such a leakage, what could happen once full-scale directional drilling was occurring?

By Karen Edelstein, Eastern Program Coordinator

Updated Pipeline Incident Analysis

By Matt Kelso, Manager of Data & Technology

As massive new pipeline projects continue to generate news, the existing midstream infrastructure that’s hidden beneath our feet continues to be problematic on a daily basis. Since 2010, there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion.

Chart 1: Cumulative impacts pipeline incidents in the US. Data collected from PHMSA on November 4th, 2016. Operators are required to submit incident reports within 30 days.

Figure 1: Cumulative impacts pipeline incidents in the US. Data collected from PHMSA on November 4th, 2016. Operators are required to submit incident reports within 30 days.

In our previous analyses, pipeline incidents occurred at a rate of 1.6 per day nationwide, according to data from the Pipeline and Hazardous Materials Safety Administration (PHMSA). Rates exceeding 1.9 incidents per day in 2014 and 2015 have brought the average rate up to 1.7 incidents per day. Incidents have been a bit less frequent in 2016, coming in at a rate of 1.43 incidents per day, or 1.59 if we roll results back to October 4th in order to capture all incidents that are reported within the mandatory 30 day window.

Chart 1: Pipeline incidents per day for years between 2010 and 2016. Incidents after October 4, 2016 may not be included in these figures.

Figure 2: Pipeline incidents per day for years between 2010 and 2016. Incidents after October 4, 2016 may not be included in these figures.

These figures are the aggregation of three reports, namely natural gas transmission and gathering pipelines (828 incidents since 2010), natural gas distribution (736 incidents), and hazardous liquids (2,651 incidents). Not all of the hazardous liquids are petroleum related, but the vast majority are. 1,321 of the releases involved crude oil, and an additional 896 involved other liquid petroleum products, accounting for 84% of hazardous liquid incidents. The number could be higher, depending on the specific substances involved in the 399 highly volatile liquid (HVL) related incidents. The HVL category includes propane, butane, liquefied petroleum gases, ethylene, and propylene, as well as other volatile liquids that become gaseous at ambient conditions.

What is causing all of these pipeline incidents?

Figure 3: Cause of pipeline incidents for all reports received from January 1, 2010 through November 4, 2016.

Nonprofits, academics, and concerned citizens looking for accurate pipeline data will find that it is restricted, with the argument that releasing accurate pipeline data constitutes a threat to national security.  This makes little sense for several reasons. First, with over 2.4 million miles of pipelines, they are nearly omnipresent. Additionally, similar data access restrictions only apply to midstream infrastructure such as pipelines and compressor stations, whereas the locations for wells, refineries, and power plants are all publicly available, despite the presence of the same volatile hydrocarbons at these facilities. Additionally, pipelines are purposefully marked with surface placards to help prevent unintentionally impacting the infrastructure.

In fact, a quick look at the causes of pipeline incidents reveal that it it much more dangerous to not know where the pipelines are located. In the “Other Incident Cause” category (Figure 3) there are 152 incidents that were caused by unsuspecting motor vehicles. When this is combined with incidents resulting from excavation damage, we have 558 cases where “not knowing” about the pipeline’s location likely contributed to the failure. On the other hand, there are 14 incidents (only .003%) where the cause is identified as intentional. While even one case of tampering with pipeline infrastructure is unacceptable, PHMSA incident data indicate that obfuscated pipelines are 40 times more likely to cause a problem when compared to sabotage. Equipment failures and corrosion account for more than half of all incidents.

Where do these incidents occur?

PHMSA is not allowed to make accurate pipeline location data available for download, but such rules apparently do not apply to pipeline incidents. The following map shows the 4,215 pipeline releases since 2010, highlighting those that have resulted in injuries and fatalities.

Pipeline incidents in the US. Please zoom in to access specific incident data.  To see the legend and other tools, Please click here.

 

Pipeline Incidents by State for reports received 1/1/2010 through 11/4/2016.

Figure 4: Pipeline incidents by state for reports received 1/1/2010 through 11/4/2016.

While operators are required to submit the incident’s location as a part of their report to PHMSA, data entry errors are common in the dataset. The FracTracker Alliance has been able to identify and correct a few of the higher profile errors, such as the February 9, 2011 explosion in Allentown, PA, the report for which had mangled the latitude and longitude values so badly that the incident was rendered in Greenland. Other errors persist in the dataset, however. Since 2010, pipeline incidents have occurred in Washington, DC, Puerto Rico, and 49 states (the exception being Vermont). Ten states have at least 100 incidents apiece during the past six years (see Figure 4), and more than a quarter of all pipeline incidents in that time frame have occurred in Texas.

Which operators are responsible?

Figure 5: This table shows the ten operators with the most reported incidents, along with the length of their pipeline network.

Figure 5: This table shows the ten operators with the most reported incidents, along with the length of their pipeline network.

Altogether, there are 521 pipeline operators with reported releases, although many of these are affiliated with one another in some fashion. For example, the top two results in Figure 5 are almost certainly both subsidiaries of Enterprise Products Partners, L.P.

The real outlier in Figure 5, in terms of incidents per 100 miles, is Kinder Morgan Liquid Terminals; LLC. However, this is one of ten or more companies that share the Kinder Morgan name when reporting pipeline inventories. When taken in aggregate, companies with the Kinder Morgan name accounted for 142 incidents over a reported 7,939 miles, for a rate of 1.8 incidents per 100 miles. It should be noted that this, along with all of the statistics in Figure 5, are entirely based on matching the operator name between the incident and inventory reports.  Kinder Morgan’s webpage boasts of 84,000 miles of pipelines in the US — there are numerous possible explanations for the discrepancy in pipeline length, including additional Kinder Morgan subsidiaries, as well as whether gathering lines that aren’t considered to be mains are on both lists.

The operators responsible for the most deaths from pipeline incidents since 2010 include Pacific Gas &amp; Electric (15), Washington Gas Light (9), and Consolidated Edison Co. of New York (8). Of course, the greatest variable in whether or not a pipeline explosion kills people or not is whether or not the incident happens in a populated location. In the course of this analysis, there were 230 explosions and 635 fires over 2,500 days, meaning that there is pipeline explosion somewhere in the United States every 11 days, on average, and a fire every fourth day. The fact that only 65 of the incidents resulted in fatalities indicates that we have been rather lucky with incidents in the midstream sector.

Pipeline build out - Photo by Sierra Shamer - Oil and gas pipeline

Pipeline Construction: Step by Step