The Falcon: Methods, Mapping, & Analysis

Part of the Falcon Public EIA Project

FracTracker began monitoring Falcon’s construction plans in December 2016, when we discovered a significant cache of publicly visible GIS data related to the pipeline. At that time, FracTracker was looking at ways to get involved in the public discussion about Shell’s ethane cracker and felt we could contribute our expertise with mapping pipelines. Below we describe the methods we used to access and worked with this project’s data.

Finding the Data

Finding GIS data for pipeline projects is notoriously difficult but, as most research goes these days, we started with a simple Google search to see what was out there, using basic keywords, such as “Falcon” (the name of the pipeline), “ethane” (the substance being transported), “pipeline” (the topic under discussion), and “ArcGIS” (a commonly used mapping software).

In addition to news stories on the pipeline’s development, Google returned search results that included links to GIS data that included “Shell” and “Falcon” in their names. The data was located in folders labeled “HOUGEO,” presumably the project code name, as seen in the screenshot below. All of these links were accessed via Google and did not require a password or any other authentication to view their contents.

Shell’s data on the Falcon remained publicly available at this link up to the time of the Falcon Public EIA Project‘s release. However, this data is now password protected by AECOM.

Google search results related to Falcon pipeline data

Viewing the Data

The HOUGEO folder is part of a larger database maintained by AECOM, an engineering firm presumably contracted to prepare the Falcon pipeline construction plan. Data on a few other projects were also visible, such as maps of the Honolulu highway system and a sewer works in Greenville, NC. While these projects were not of interest to us, our assessment is that this publicly accessible server is used to share GIS projects with entities outside the company.

Within the HOUGEO folder is a set of 28 ArcGIS map folders, under which are hundreds of different GIS data layers pertaining to the Falcon pipeline. These maps could all be opened simply by clicking on the “ArcGIS Online map viewer” link at the top of each page. Alternatively, one can click on the “View in: Google Earth” link to view the data in Google Earth or click on the “View in: ArcMap” link to view the data in the desktop version of the ArcGIS software application. No passwords or credentials are required to access any of these folders or files.

As seen in the screenshot below, the maps were organized topically, roughly corresponding to the various components that would need to be addressed in an EIA. The “Pipeline” folder showed the route of the Falcon, its pumping stations, and work areas. “Environmental” contained data on things like water crossings and species of concern. “ClassLocations” maps the locations of building structures in proximity to the Falcon.

The HOUGEO GIS folders organized by topic

 

Archiving the Data

After viewing the Falcon GIS files and assessing them for relevancy, FracTracker went about archiving the data we felt was most useful for our assessing the project. The HOUGEO maps are hosted on a web server meant for viewing GIS maps and their data, either on ArcOnline, Google Earth, or ArcMap. The GIS data could not be edited in these formats. However, viewing the data allowed us to manually recreate most of the data.

For lines (e.g. the pipeline route and access roads), points (e.g. shutoff valves and shut-off valves), and certain polygons (e.g. areas of landslide risk and construction workspaces), we archived the data by manually recreating new maps. Using ArcGIS Desktop software, we created a new blank layer and manually inputted the relevant data points from the Falcon maps. This new layer was then saved locally so we could do more analysis and make our own independent maps incorporating the Falcon data. In some cases, we also archived layers by manually extracting data from data tables underlying the map features. These tables are made visible on the HOUGEO maps simply by clicking the “data table” link provided with each map layer.

Other layers were archived using screen captures of the data tables visible in the HOEGEO ArcOnline maps. For instance, the table below shows which parcels along the route had executed easements. We filtered the table in ArcGIS Online to only show the parcel ID, survey status, and easement status. Screen captures of these tables were saved as PDFs on our desktop, then converted to text using optical character recognition (OCR), and the data brought into Microsoft Excel. We then recreated the map layer by matching the parcel IDs in our newly archived spreadsheet to parcel IDs obtained from property GIS shapefiles that FracTracker purchased from county deeds offices.

Transparency & Caveats

FracTracker strives to maintain transparency in all of its work so the public understands how we obtain, analyze, and map data. A good deal of the data found in the HOUGEO folders are available through other sources, such as the U.S. Geological Survey, the Department of Transportation, and the U.S. Census, as well as numerous state and county level agencies. When possible, we opted to go to these original sources in order to minimize our reliance on the HOUGEO data. We also felt it was important to ensure that the data we used was as accurate and up-to-date as possible.

For instance, instead of manually retracing all the boundaries for properties with executed easements for the Falcon’s right-of-way, we simply purchased parcel shapefiles from county deeds and records offices and manually identified properties of interest. To read more on how each data layer was made, open any of our Falcon maps in full-screen mode and click the “Details” tab in the top left corner of the page.

Finally, some caveats. While we attempted to be as accurate as possible in our methods, there are aspects of our maps where a line, point, or polygon may deviate slightly in shape or location from the HOUGEO maps. This is the inherent downside of having to manually recreate GIS data. In other cases, we spent many hours correcting errors found in the HOUGEO datasets (such as incorrect parcel IDs) in order to get different datasets to properly match up.

FracTracker also obtained copies of Shell’s permit applications in January by conducting a file review at the PA DEP offices. While these applications — consisting of thousands of pages — only pertain to the areas in Pennsylvania where the Falcon will be built, we were surprised by the accuracy of our analysis when compared with these documents. However, it is important to note that the maps and analysis presented in the Falcon Public EIA Project should be viewed with potential errors in mind.

* * *

Related Articles

Falcon Public EIA Project feature image

The Falcon Public EIA Project

Map of the Standing Rock protest - Oil is flowing through the DAPL, but the Standing Rock Lakota Sioux Tribe have challenged the permit and are petitioning for the release of Chase Iron Eyes

An Ongoing Fight at Standing Rock

We live in a complex environment of local, regional, national, and international issues. We are constantly bombarded with a news cycle that regenerates at increasingly dizzying speeds. How can we possibly know what is truly important when hyped up twitter controversies clog up our news feeds?

In this quantity-over-quality culture, many of the most important issues and fights for civil rights and energy justice become casualties of a regression to ignorance.

At FracTracker, we disagree with this tactic – especially as it relates to the protests at Standing Rock. FracTracker has previously written about these demonstrations (shown in the map above), and has also analyzed and mapped data on oil spills from pipelines in North Dakota. We will continue FracTracker’s coverage of Standing Rock and the Water Protectors who fought – and continue to fight – the Dakota Access Pipeline (DAPL), known as the Black Snake.

Following the Fight

For those unaware, the fight against the Dakota Access Pipeline operated by Energy Transfer Partners, continues. While the project was green-lighted by the Trump Administration and Bakken oil began flowing in June of 2017, the court has returned the permits to the U.S. Army Corps of Engineers. A U.S. District Court judge ruled that the initial approval of the pipeline did not undergo adequate study of its environmental consequences. The finding stated that the Army Corps provided a flawed model, inadequate for predicting the full impacts of a leak under Lake Oahe. The model does not consider what would happen in the event of a leak under the lake. It models only benzene — one of many toxic chemicals present in crude oil — and models its movement in an unrealistic manner. Energy Transfer Partners claims the model is conservative, but it massively underestimates the potential impacts on human health and wildlife. The Army Corps provides no plan to contain an underground leak or clean contaminated soil and groundwater under Lake Oahe.

On a related note, DAPL’s parent company, Energy Transfer Partners, said in a recent annual report that it may not have sufficient liquid assets to finance a major cleanup project and would likely pass those costs onto local landowners and federal taxpayers. Energy Transfer Partners has since filed a racketeering lawsuit seeking $300 million in damages from the Red Warrior Camp at Standing Rock.

Upon finding the Army Corps’s model inadequate, the court returned the permits for further review. According to EarthJustice attorney Jan Hassleman:

… the agency could simply revise or update its environmental review and again conclude that no EIS (environmental impact statement) is required. If that happens, additional legal challenges are likely. The Tribe believes this court decision should trigger a full EIS, including consideration of route alternatives, just as the Obama administration proposed in December.

Normally, when a permit is issued in violation of the National Environmental Protection Act (NEPA), operations are suspended, which would have forced the DAPL to shut down while the review is conducted. Contrary to the usual protocol, on October 11, 2017 a federal judge ruled that the pipeline will remain operational pending the environmental review by the Army Corps. Standing Rock Sioux Chairman Dave Archambault II has said in a statement, however, “Just because the oil is flowing now doesn’t mean that it can’t be stopped.”

More Information and Resources

The Lakota People’s Law Project (LPLP) has been a resource to Lakota country – an area comprised of nine Indian reservation in North and South Dakota – since 2004.  The LPLP supports a number of campaigns including divestment and energy justice, and has published several reports:

Special thanks to the Lakota People’s Law Project and Rachel Hallett-Ralston for the information provided.

In January of 2017, 76 Water Protectors including Chase Iron Eyes were arrested on land granted to the Standing Rock Lakota Sioux Tribe under the 1851 Treaty of Fort Laramie. Chase Iron Eyes, Lead Counsel of the Lakota People’s Law Project, has been charged with felony incitement to riot and misdemeanor criminal trespass. In the interview above, Chase Iron Eyes discusses his involvement with Standing Rock and the political pressures to make an example out of him. Read the Lakota People’s Law Project petition here.


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

The feature image is a snapshot of our Standing Rock Protest Map, created last year.

Sandhill Crane

Giving Voice to the Sandhill Cranes: Place-based Arguments against Keystone XL

By Wrexie Bardaglio, guest commentator

When we hear his call, we hear no mere bird. We hear the trumpet in the orchestra of evolution. He is the symbol of our untamable past, of that incredible sweep of millennia which underlies and conditions the daily affairs of birds and men…” ~ Aldo Leopold, on the Sandhill Crane, in “Marshland Elegy”

Dilbit – or diluted bitumen – is refined from the naturally-occurring tar sands deposits in Alberta, Canada. In March 2017, I applied to the Nebraska Public Service Commission for standing as an intervenor in the Commission’s consideration of TransCanada’s request for a permit to construct a pipeline transporting dilbit – a project referred to as the Keystone XL pipeline. Below are my reflections on the battle against the permitting process, and how FracTracker’s maps ensured the Sandhill Crane’s voice made it into public record.

A Pipeline’s History

The Keystone 1 pipeline carries the dilbit from Alberta, to Steele City, Nebraska, and ultimately to Port Arthur, Texas and export refineries along the Gulf Coast. The state of Montana had already approved the Keystone XL project, as had the state of South Dakota. The decision of the South Dakota Public Utilities Commission was appealed, however, and has now worked its way to the South Dakota Supreme Court, where it is pending.

Resistance to TransCanada’s oil and gas infrastructure projects is not new. Beginning in 2010, some Nebraska farmers and ranchers joined forces with tribal nations in the Dakotas, who were also fighting TransCanada’s lack of proper tribal consultation regarding access through traditional treaty territory. The indigenous nations held certain retained rights as agreed in the 1868 Fort Laramie Treaty between the United States government and the nine tribes of the Great Sioux Nation. The tribes were also protesting TransCanada’s flaunting of the National Historic Preservation Act’s protections of Native American sacred sites and burial grounds. Further, although TransCanada was largely successful in securing the easements needed in Nebraska to construct the pipeline, there were local holdouts refusing to negotiate with the company. TransCanada’s subsequent attempts to exercise eminent domain resulted in a number of lawsuits.

In January of 2015, then-President Barack Obama denied the international permit TransCanada needed. While that denial was celebrated by many, everyone also understood that a new president could well restore the international permit. Indeed, as one of his first actions in January 2017, the new Republican president signed an executive order granting the permit, and the struggle in Nebraska was reignited.

“What Waters Run Through My Veins…”

While I am a long-time resident of New York, I grew up in the Platte River Valley of South Central Nebraska, in a town where my family had and continues to have roots – even before Nebraska became a state. There was never a question in my mind that in this particular permitting process I would request status as an intervenor; for me, the matter of the Keystone XL Pipeline went far beyond the legal and political and energy policy questions that were raised and were about to be considered. It was about who I am, how I was raised, what I was taught, what waters run through my veins as surely as blood, and who my own spirit animals are, the Sandhill Cranes.

wrexie_3yrs

Bardaglio (age 3) and her father, along the banks of the Platte River

When we were growing up, our father told us over and over and over about why Nebraska was so green. The Ogallala Aquifer, he said, was deep and vast, and while eight states partially sat atop this ancient natural cistern, nearly all of Nebraska floated on this body. Nebraska was green, its fields stretching to the horizon, because, as our father explained, the snow runoff from the Rockies that flowed into our state and was used eleven times over was cleansed in water-bearing sand and gravel on its way to the Missouri on our eastern boundary, thence to the Mississippi, and finally to the Gulf.

I grew up understanding that the Ogallala Aquifer was a unique treasure, the largest freshwater aquifer in the world, the lifeblood for Nebraska’s agriculture and U.S. agriculture generally, and worthy of protection. I thought about the peril to the aquifer because of TransCanada’s plans, should there be a spill, and the additional threats an accident would potentially pose to Nebraska’s rivers, waterways and private wells.

2000px-ogallala_saturated_thickness_1997-sattk97-v2-svg

The Ogallala Aquifer

Knowing that climate change is real, terrifying, and accelerating, I recognized that a warming world would increasingly depend on this aquifer in the nation’s midsection for life itself.

Migration of the Sandhill Cranes

As I thought about how I would fight the KXL, another narrative took shape rising out of my concern for the aquifer. Growing up in the South Central Platte River Valley, I – and I daresay most everyone who lives there – have been captivated by the annual migration of the Sandhill Cranes, plying the skies known as the Central Flyway. As sure as early spring comes, so do the birds. It may still be bitterly cold, but these birds know that it is time to fly. And so they do – the forward scouts appearing in winter grey skies, soon followed by some 500,000 – 600,000 thousand of them, darkening the skies, their cries deafening and their gorgeous archaeopteryx silhouettes coming in wave after wave like flying Roman Legions.

branch-bird-sky-sunrise-sunset-morning-dawn-flock-dusk-birds-cranes-water-bird-bird-migration-migratory-birds-atmospheric-phenomenon-animal-migration-crane-like-bird-529634

To this day, no matter where I am, the first thing in my sinews and bones when winter begins to give way is the certainty that the birds are coming, I feel them; they are back. They are roosting on the sandbars in the braided river that is the Platte and gleaning in the stubbled fields abutting it… they are home.

According to The Nature Conservancy:

Scientists estimate that at least one-third of the entire North American population of Sandhill Cranes breed in the boreal forest of Canada and Alaska…

Scientists estimate that approximately 80 percent of all Sandhill Cranes in North America use a 75-mile stretch of Nebraska’s Platte River during spring migration. From March to April, more than 500,000 birds spend time in the area preparing for the long journey north to their breeding grounds in Canada and Alaska. During migration, the birds may fly as much as 400 miles in one day.

Sandhill Cranes rely on open freshwater wetlands for most of their lifecycle. Degradation of these kinds of wetland habitats is among the most pressing threats to the survival of Sandhill Cranes. (Emphasis added)

Giving Sandhill Cranes a Voice

But how could I make the point about the threat TransCanada posed to the migratory habitat of the Sandhill Cranes (and endangered Whooping Cranes, pelicans, and hummingbirds among the other thermal riders who also migrate with them)? Books, scientific papers, lectures – all the words in the world – cannot describe this ancient rite, this mysterious primal navigation of the unique pathway focusing on this slim stretch of river, when viewed from a global perspective a fragile skein in a fragile web in a biosphere in peril.

In my head I called it a river of birds in the grassland of sky. And I am so grateful to my friend, Karen Edelstein at FracTracker Alliance, for her willingness to help map and illustrate the magnificence of the migration flyway in the context of the three proposed options for the KXL pipeline.

flyway_map

Karen prepared two maps for me, but my favorite is the one above.

It shows an ancient, near-primordial, near-mystical event. Guided by rudders and instinct we can barely comprehend, in concert with earth’s intrinsic and exquisitely-designed balance, and as certain as a sunrise, a sunset or a moon rise, these oldest of crane species find their ways through the heavens. They hew to certainties that eclipse the greed of multinational corporations like TransCanada, who barely even pay lip service to the integrity of anything over which they can’t exert dominion. To say they don’t respect the inherent rights of species other than our own, or to ecological communities that don’t directly include us, is an understatement, and a damning comment on their values.

I was prepared for pushback on these maps from TransCanada. And in truth, the company was successful in an in limine motion to have certain exhibits and parts of my testimony stricken from the official record of the proceedings.

But not the maps.

In fact, too many other intervenors to count, as well as several of the lawyers involved in the proceedings commented to me on the beauty and accuracy of the maps. And not only are they now a part of the permanent record of the Nebraska Public Service Commission, should there be an appeal (which all of us expect), on both sides of the issue, there is a very good possibility they will be incorporated into the formal testimonies by the lawyers as the matter moves through the appeals process.

Taking Action, Speaking Out

Ordinary citizens must figure out how to confront the near-impenetrable stranglehold of multi-national corporations whose wealth is predicated on the continuance of fossil fuels as the primary sources of energy. We have had to become more educated, more activist, and more determined to fight the destruction that is now assured if we fail to slow down the impacts of climate change and shift the aggregate will of nations towards renewable energy.

Many activists do not realize that they can formally intervene at the state level in pipeline and infrastructure permitting processes. In doing so, the voice of the educated citizen is amplified and becomes a threat to these corporations whose business models didn’t account for systematic and informed resistance in public agencies’ heretofore pro forma proceedings. The publicly-available documents and filings from corporations can be important tools for “speaking truth to power” when paired with the creative tools born of necessity by the environmental movement.

Technology is value-neutral, but as I learned – as did many others in the Keystone XL Pipeline fight – in skilled hands it becomes a weapon in the struggle for the greater good.

I will be forever grateful for FracTracker, and will be interested to see how others use this tool in the fights that are sure to come.

EXCELSIOR!

For more background on the natural history of Sandhill Cranes, please view this video produced by The Crane Trust.


Wrexie Bardaglio is a Nebraska native living in Covert, New York. She worked for ten years for a member of Congress as a legislative assistant with a focus on Indian affairs and for a DC law firm as legislative specialist in Indian affairs. She left politics to open a bookstore in suburban Baltimore. She has been active in the Keystone XL fights in Nebraska and South Dakota and in fracking and gas infrastructure fights in New York.

This article’s feature image of a Sandhill Crane is the work of a U.S. Fish and Wildlife Service employee, taken or made as part of that person’s official duties. As a work of the U.S. federal government, the image is in the public domain.

FracTracker Alliance makes hundreds of maps, analyses, and photos available for free to frontline communities, grassroots groups, NGO’s, and many other organizations concerned about the industry to use in their oil and gas campaigns. To address an issue, you need to be able to see it.

However, we rely on funders and donations – and couldn’t do all of this without your help!

JOSHUA DOUBEK / WIKIMEDIA COMMONS

Groundwater risks in Colorado due to Safe Drinking Water Act exemptions

Oil and gas operators are polluting groundwater in Colorado, and the state and U.S. EPA are granting them permission with exemptions from the Safe Drinking Water Act.

FracTracker Alliance’s newest analysis attempts to identify groundwater risks in Colorado groundwater from the injection of oil and gas waste. Specifically, we look at groundwater monitoring data near Class II underground injection control (UIC) disposal wells and in areas that have been granted aquifer exemptions from the underground source of drinking water rules of the Safe Drinking Water Act (SDWA). Momentum to remove amend the SDWA and remove these exemption.

Learn more about Class II injection wells.

Aquifer exemptions are granted to allow corporations to inject hazardous wastewater into groundwater aquifers. The majority, two-thirds, of these injection wells are Class II, specifically for oil and gas wastes.

What exactly are aquifer exemptions?

The results of this assessment provide insight into high-risk issues with aquifer exemptions and Class II UIC well permitting standards in Colorado. We identify areas where aquifer exemptions have been granted in high quality groundwater formations, and where deep underground aquifers are at risk or have become contaminated from Class II disposal wells that may have failed.

Of note: On March 23, 2016, NRDC submitted a formal petition urging the EPA to repeal or amend the aquifer exemption rules to protect drinking water sources and uphold the Safe Drinking Water Act. Learn more

Research shows injection wells do fail

co_classiiwellexplosion

Class II injection well in Colorado explodes and catches fire. Photo by Kelsey Brunner for the Greeley Tribune.

Disposal of oil and gas wastewater by underground injection has not yet been specifically researched as a source of systemic groundwater contamination nationally or on a state level. Regardless, this issue is particularly pertinent to Colorado, since there are about 3,300 aquifer exemptions in the US (view map), and the majority of these are located in Montana, Wyoming, and Colorado. There is both a physical risk of danger as well as the risk of groundwater contamination. The picture to the right shows an explosion of a Class II injection well in Greeley, CO, for example.

Applicable and existing research on injection wells shows that a risk of groundwater contamination of – not wastewater – but migrated methane due to a leak from an injection well was estimated to be between 0.12 percent of all the water wells in the Colorado region, and was measured at 4.5 percent of the water wells that were tested in the study.

A recent article by ProPublica quoted Mario Salazar, an engineer who worked for 25 years as a technical expert with the EPA’s underground injection program in Washington:

In 10 to 100 years we are going to find out that most of our groundwater is polluted … A lot of people are going to get sick, and a lot of people may die.

Also in the ProPublic article was a study by Abrahm Lustgarten, wherein he reviewed well records and data from more than 220,000 oil and gas well inspections, and found:

  1. Structural failures inside injection wells are routine.
  2. Between 2007-2010, one in six injection wells received a well integrity violation.
  3. More than 7,000 production and injection wells showed signs of well casing failures and leakage.

This means disposal wells can and do fail regularly, putting groundwater at risk. According to Chester Rail, noted groundwater contamination textbook author:

…groundwater contamination problems related to the subsurface disposal of liquid wastes by deep-well injection have been reviewed in the literature since 1950 (Morganwalp, 1993) and groundwater contamination accordingly is a serious problem.

According to his textbook, a 1974 U.S. EPA report specifically warns of the risk of corrosion by oil and gas waste brines on handling equipment and within the wells. The potential effects of injection wells on groundwater can even be reviewed in the U.S. EPA publications (1976, 1996, 1997).

As early as 1969, researchers Evans and Bradford, who reported on the dangers that could occur from earthquakes on injection wells near Denver in 1966, had warned that deep well injection techniques offered temporary and not long-term safety from the permanent toxic wastes injected.

Will existing Class II wells fail?

For those that might consider data and literature on wells from the 1960’s as being unrepresentative of activities occurring today, of the 587 wells reported by the Colorado’s oil and gas regulatory body, COGCC, as “injecting,” 161 of those wells were drilled prior to 1980. And 104 were drilled prior to 1960!

Wells drilled prior to 1980 are most likely to use engineering standards that result in “single-point-of-failure” well casings. As outlined in the recent report from researchers at Harvard on underground natural gas storage wells, these single-point-of-failure wells are at a higher risk of leaking.

It is also important to note that the U.S. EPA reports only 569 injection wells for Colorado, 373 of which may be disposal wells. This is a discrepancy from the number of injection wells reported by the COGCC.

Aquifer Exemptions in Colorado

According to COGCC, prior to granting a permit for a Class II injection well, an aquifer exemption is required if the aquifer’s groundwater test shows total dissolved solids (TDS) is between 3,000 and 10,000 milligrams per liter (mg/l). For those aquifer exemptions that are simply deeper than the majority of current groundwater wells, the right conditions, such as drought, or the needs of the future may require drilling deeper or treating high TDS waters for drinking and irrigation. How the state of Colorado or the U.S. EPA accounts for economic viability is therefore ill-conceived.

Data Note: The data for the following analysis came by way of FOIA request by Clean Water Action focused on the aquifer exemption permitting process. The FOIA returned additional data not reported by the US EPA in the public dataset. That dataset contained target formation sampling data that included TDS values. The FOIA documents were attached to the EPA dataset using GIS techniques. These GIS files can be found for download in the link at the bottom of this page.

Map 1. Aquifer exemptions in Colorado


View map fullscreen | How FracTracker maps work

Map 1 above shows the locations of aquifer exemptions in Colorado, as well as the locations of Class II injection wells. These sites are overlaid on a spatial assessment of groundwater quality (a map of the groundwater’s quality), which was generated for the entire state. The changing colors on the map’s background show spatial trends of TDS values, a general indicator of overall groundwater quality.

In Map 1 above, we see that the majority of Class II injection wells and aquifer exemptions are located in regions with higher quality water. This is a common trend across the state, and needs to be addressed.

Our review of aquifer exemption data in Colorado shows that aquifer exemption applications were granted for areas reporting TDS values less than 3,000 mg/l, which contradicts the information reported by the COGCC as permitting guidelines. Additionally, of the 175 granted aquifer exemptions for which the FOIA returned data, 141 were formations with groundwater samples reported at less than 10,000 mg/l TDS. This is half of the total number (283) of aquifer exemptions in the state of Colorado.

When we mapped where class II injection wells are permitted, a total of 587 class II wells were identified in Colorado, outside of an aquifer exemption area. Of the UIC-approved injection wells identified specifically as disposal wells, at least 21 were permitted outside aquifer exemptions and were drilled into formations that were not hydrocarbon producing. Why these injection wells are allowed to operate outside of an aquifer exemption is unknown – a question for regulators.

You can see in the map that most of the aquifer exemptions and injection wells in Colorado are located in areas with lower TDS values. We then used GIS to conduct a spatial analysis that selected groundwater wells within five miles of the 21 that were permitted outside aquifer exemptions. Results show that groundwater wells near these sites had consistently low-TDS values, meaning good water quality. In Colorado, where groundwater is an important commodity for a booming agricultural industry and growing cities that need to prioritize municipal sources, permitting a Class II disposal well in areas with high quality groundwater is irresponsible.

Groundwater Monitoring Data Maps

Map 2. Water quality and depths of groundwater wells in Colorado
Groundwater risks in Colorado - Map 2
View live map | How FracTracker maps work

In Map 2, above, the locations of groundwater wells in Colorado are shown. The colors of the dots represent the concentration of TDS on the right and well depth on the left side of the screen. By sliding the bar on the map, users can visualize both. This feature allows people to explore where deep wells also are characterized by high levels of TDS. Users can also see that areas with high quality low TDS groundwater are the same areas that are the most developed with oil and gas production wells and Class II injection wells, shown in gradients of purple.

Statistical analysis of this spatial data gives a clearer picture of which regions are of particular concern; see below in Map 3.

Map 3. Spatial “hot-spot” analysis of groundwater quality and depth of groundwater wells in Colorado
Groundwater risks in Colorado - Map 3
View live map | How FracTracker maps work

In Map 3, above, the data visualized in Map 2 were input into a hot-spots analysis, highlighting where high and low values of TDS and depth differ significantly from the rest of the data. The region of the Front Range near Denver has significantly deeper wells, as a result of population density and the need to drill municipal groundwater wells.

The Front Range is, therefore, a high-risk region for the development of oil and gas, particularly from Class II injection wells that are necessary to support development.

Methods Notes: The COGCC publishes groundwater monitoring data for the state of Colorado, and groundwater data is also compiled nationally by the Advisory Committee on Water Information (ACWI). (Data from the National Groundwater Monitoring Network is sponsored by the ACWI Subcommittee on Ground Water.) These datasets were cleaned, combined, revised, and queried to develop FracTracker’s dataset of Colorado groundwater wells. We cleaned the data by removing sites without coordinates. Duplicates in the data set were removed by selecting for the deepest well sample. Our dataset of water wells consisted of 5,620 wells. Depth data was reported for 3,925 wells. We combined this dataset with groundwater data exported from ACWI. Final count for total wells with TDS data was 11,754 wells. Depth data was reported for 7,984 wells. The GIS files can be downloaded in the compressed folder at the bottom of this page.

Site Assessments – Exploring Specific Regions

Particular regions were further investigated for impacts to groundwater, and to identify areas that may be at a high risk of contamination. There are numerous ways that groundwater wells can be contaminated from other underground activity, such as hydrocarbon exploration and production or waste injection and disposal. Contamination could be from hydraulic fracturing fluids, methane, other hydrocarbons, or from formation brines.

From the literature, brines and methane are the most common contaminants. This analysis focuses on potential contamination events from brines, which can be detected by measuring TDS, a general measure for the mixture of minerals, salts, metals and other ions dissolved in waters. Brines from hydrocarbon-producing formations may include heavy metals, radionuclides, and small amounts of organic matter.

Wells with high or increasing levels of TDS are a red flag for potential contamination events.

Methods

Groundwater wells at deep depths with high TDS readings are, therefore, the focus of this assessment. Using GIS methods we screened our dataset of groundwater wells to only identify those located within a buffer zone of five miles from Class II injection wells. This distance was chosen based on a conservative model for groundwater contamination events, as well as the number of returned sample groundwater wells and the time and resources necessary for analysis. We then filtered the groundwater wells dataset for high TDS values and deep well depths to assess for potential impacts that already exist. We, of course, explored the data as we explored the spatial relationships. We prioritized areas that suggested trends in high TDS readings, and then identified individual wells in these areas. The data initially visualized were the most recent sampling events. For the wells prioritized, prior sampling events were pulled from the data. The results were graphed to see how the groundwater quality has changed over time.

Case of Increasing TDS Readings

If you zoom to the southwest section of Colorado in Map 2, you can see that groundwater wells located near the injection well 1 Fasset SWD (EPA) (05-067-08397) by Operator Elm Ridge Exploration Company LLC were disproportionately high (common). Groundwater wells located near this injection well were selected for, and longitudinal TDS readings were plotted to look for trends in time. (Figure 1.)

The graphs in Figure 1, below, show a consistent increase of TDS values in wells near the injection activity. While the trends are apparent, the data is limited by low numbers of repeated samples at each well, and the majority of these groundwater wells have not been sampled in the last 10 years. With the increased use of well stimulation and enhanced oil recovery techniques over the course of the last 10 years, the volumes of injected wastewater has also increased. The impacts may, therefore, be greater than documented here.

This area deserves additional sampling and monitoring to assess whether contamination has occurred.


Figures 1a and 1b. The graphs above show increasing TDS values in samples from groundwater wells in close proximity to the 1 Fassett SWD wellsite, between the years 2004-2015. Each well is labeled with a different color. The data for the USGS well in the graph on the right was not included with the other groundwater wells due to the difference in magnitude of TDS values (it would have been off the chart).

Groundwater Contamination Case in 2007

We also uncovered a situation where a disposal well caused groundwater contamination. Well records for Class II injection wells in the southeast corner of Colorado were reviewed in response to significantly high readings of TDS values in groundwater wells surrounding the Mckinley #1-20-WD disposal well.

When the disposal well was first permitted, farmers and ranchers neighboring the well site petitioned to block the permit. Language in the grant application is shown below in Figure 2. The petitioners identified the target formation as their source of water for drinking, watering livestock, and irrigation. Regardless of this petition, the injection well was approved. Figure 3 shows the language used by the operator Energy Alliance Company (EAC) for the permit approval, which directly contradicts the information provided by the community surrounding the wellsite. Nevertheless, the Class II disposal well was approved, and failed and leaked in 2007, leading to the high TDS readings in the groundwater in this region.

co_classiipetition

Figure 2. Petition by local landowners opposing the use of their drinking water source formation for the site of a Class II injection disposal well.

 

co_eac_uicpermit

Figure 3. The oil and gas operation EAC claims the Glorietta formation is not a viable fresh water source, directly contradicting the neighboring farmers and ranchers who rely on it.

co_fieldinspectionreport_leak

Figure 4. The COGCC well log report shows a casing failure, and as a result a leak that contaminated groundwater in the region.

Areas where lack of data restricted analyses

In other areas of Colorado, the lack of recent sampling data and longitudinal sampling schemes made it even more difficult to track potential contamination events. For these regions, FracTracker recommends more thorough sampling by the regulatory agencies COGCC and USGS. This includes much of the state, as described below.

Southeastern Colorado

Our review of the groundwater data in southeastern Colorado showed a risk of contamination considering the overlap of injection well depths with the depths of drinking water wells. Oil and gas extraction and Class II injections are permitted where the aquifers include the Raton formation, Vermejo Formation, Poison Canyon Formation and Trinidad Sandstone. Groundwater samples were taken at depths up to 2,200 ft with a TDS value of 385 mg/l. At shallower depths, TDS values in these formations reached as high as 6,000 mg/l, and 15 disposal wells are permitted in aquifer exemptions in this region. Injections in this area start at around 4,200 ft.

In Southwestern Colorado, groundwater wells in the San Jose Formation are drilled to documented depths of up to 6,000 feet with TDS values near 2,000 mg/l. Injection wells in this region begin at 565 feet, and those used specifically for disposal begin at below 5,000 feet in areas with aquifer exemptions. There are also four disposal wells outside of aquifer exemptions injecting at 5,844 feet, two of which are not injecting into active production zones at depths of 7,600 and 9,100 feet.

Western Colorado

In western Colorado well Number 1-32D VANETA (05-057-06467) by Operator Sandridge Exploration and Production LLC’s North Park Horizontal Niobara Field in the Dakota-Lokota Formation has an aquifer exemption. The sampling data from two groundwater wells to the southeast, near Coalmont, CO, were reviewed, but we can’t get a good picture due to the lack of repeat sampling.

Northwestern Colorado

http://digital.denverlibrary.org/cdm/ref/collection/p16079coll32/id/346073

A crew from Bonanza Creek repairs an existing well in the McCallum oil field. Photo by Ken Papaleo / Rocky Mountain News

In Northwestern Colorado near Walden, CO and the McCallum oil field, two groundwater wells with TDS above 10,000 ppm were selected for review. There are 21 injection wells in the McCallum field to the northwest. Beyond the McCallum field is the Battleship field with two wastewater disposal wells with an aquifer exemption. West of Grover, Colorado, there are several wells with high TDS values reported for shallow wells. Similar trends can be seen near Vernon. The data on these wells and wells from along the northern section of the Front Range, which includes the communities of Fort Collins, Greeley, and Longmont, suffered from the same issue. Lack of deep groundwater well data coupled with the lack of repeat samples, as well as recent sampling inhibited the ability to thoroughly investigate the threat of contamination.

Trends and Future Development

Current trends in exploration and development of unconventional resources show the industry branching southwest of Weld County towards Fort Collins, Longmont, Broomfield and Boulder, CO.

These regions are more densely populated than the Front Range county of Weld, and as can be seen in the maps, the drinking water wells that access groundwaters in these regions are some of the deepest in the state.

This analysis shows where Class II injection has already contaminated groundwater resources in Colorado. The region where the contamination has occurred is not unique; the drinking water wells are not particularly deep, and the density of Class II wells is far from the highest in the state.

Well casing failures and other injection issues are not exactly predictable due to the variety of conditions that can lead to a well casing failure or blow-out scenario, but they are systemic. The result is a hazardous scenario where it is currently difficult to mitigate risk after the injection wells are drilled.

Allowing Class II wells to expand into Front Range communities that rely on deep wells for municipal supplies is irresponsible and dangerous.

The encroachment of extraction into these regions, coupled with the support of Class II injection wells to handle the wastewater, would put these groundwater wells at particular risk of contamination. Based on this analysis, we recommend that regulators take extra care to avoid permitting Class II wells in these regions as the oil and gas industry expands into new areas of the Front Range, particularly in areas with dense populations.


Feature Image: Joshua Doubek / WIKIMEDIA COMMONS

Article by: Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

 

October 31, 2017 Edit: This post originally cited the Clean Water Act instead of the Safe Drinking Water Act as the source that EPA uses to grant aquifer exemptions.

ME2 pipeline and spills map by Kirk Jalbert

Mariner East 2 Drilling Fluid Spills – Updated Map and Analysis

Updated 8/2/17: An analysis by FracTracker and the Clean Air Council finds that approximately 202,000 gallons of drilling fluids have been accidentally released in 90 different spill events while constructing the Mariner East 2 pipeline in Pennsylvania. In a more recent update, FracTracker estimates these occurred at 42 distinct locations. Explore the map of these incidents below, which we have updated to reflect this growing total.

Last week, a judge with the PA Environmental Hearing Board granted a two week halt to horizontal directional drilling (HDD) operations pertaining to the construction of Sunoco Logistics’ Mariner East 2 (ME2) pipeline. The temporary injunction responds to a petition from the Clean Air Council, Mountain Watershed Association, and the Delaware Riverkeeper Network. It remains in effect until a full hearing on the petition occurs on August 7-9, 2017.

ME2 is a 350-mile long pipeline that, when complete, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.

The petition relates to a complaint filed by the three groups detailing as many as 90 “inadvertent returns” (IRs) of drilling fluids and other drilling related spills along ME2’s construction route. IRs refer to incidents that occur during HDD operations in which drilling fluids consisting of water, bentonite clay, and some chemical mixtures used to lubricate the drill bit, come to the surface in unintended places. This can occur due to misdirected drilling, unanticipated underground fissures, or equipment failure.

What is Horizontal Directional Drilling?

An illustration of an “ideal” horizontal directional drilling boring operation is seen in the first graphic below (image source). The second image shows what happens when HDDs go wrong (image source).

hdd_crossing_example

hdd_ir

Mapping Inadvertent Returns

me2_ir_legendThe Pennsylvania Department of Environmental Protection (DEP) posted information on potential regulatory violations associated with these IRs on the PA Pipeline Portal website on July 24, 2017. This original file listed 49 spill locations. Our original map was based on those locations. As part of their legal filing, volunteer at the Clean Air Council (CAC) have parsed through DEP documents to discover 90 unique spills at these and other locations. On July 31, 2017, the DEP posted a new file that now lists 61 spills, which account for some of these discrepancies but not all.

Working with the CAC, we have created a map, seen below, of the 90 known IRs listed in the DEP documents and from CAC’s findings. Also on the map are the locations of all of ME2’s HDD boring locations, pumping stations, and workspaces, as well as all the streams, ponds, and wetlands listed in Sunoco’s permits as implicated in the project’s construction (see our prior article on ME2’s watershed implications here). Open the map full-screen to see many of these features and their more detailed information.


View map fullscreen | How FracTracker maps work

Analysis Results for ME2

From our analysis, we find that, conservatively, more than 202,000 gallons of drilling fluids have been accidentally released while constructing the Mariner East 2 pipeline in Pennsylvania since the first documented incident on May 3rd. We say conservatively because a number of incidents are still under investigation. In a few instances we may never know the full volume of the spills as only a fraction of the total drilling muds lost were recovered.

We analyzed where these 90 spills occurred relative to known HDD sites and estimate that there are 38 HDDs implicated in these accidents. An additional 11 spills were found at sites where the DEP’s data shows no HDDs, so we calculate the total number of “spill locations” at 42. A full breakdown by county and known gallons spilled at these locations is seen below.

County Number of IRs/Spills Gallons Spilled
Allegheny 4 2,050
Berks 3 540
Blair 3 2,400
Chester 4 205
Cumberland 32 162,330
Delaware 8 2,380
Huntingdon 1 300
Lancaster 7 5945
Lebanon 1 300
Washington 9 4,255
Westmoreland 17 21,532
York 1 25
Total 90 202,262

 

A few important notes on our methods and the available data we have to work with:

  1. CAC obtained spills from DEP incident reports, inadvertent return reports, and other documents describing spills of drilling fluid that have occurred during Mariner East 2 construction.  Those documents reflected incidents occurring between April 25, 2017 and June 17, 2017. In reviewing these documents, volunteers identified 61 discrete spills of drilling fluid, many of which happened at  similar locations. Unfortunately, separate coordinates and volumes were not provided for each spill.
  2. When coordinates were not provided, approximate locations of spills were assigned where appropriate, based on descriptions in the documentation. Two IRs have no known location information whatsoever. As such, they are not represented on the map.
  3. Spill volumes were reported as ranges when there was inconsistency in documentation regarding the same spill. The map circles represent the high-end estimates within these ranges. Of the 90 known spills, 29 have no volume data. These are represented on the map, but with a volume estimate of zero until more information is available.
  4. All documentation available to CAC regarding these spills was filed with the Environmental Hearing Board on July 19, 2017. DEP subsequently posted a table of inadvertent returns on its website on July 24, 2017.  Some of those spills were the same as ones already identified in documents CAC had reviewed, but 29 of the spills described on the DEP website were ones for which CCAC had never received documentation, although a subset of these are now listed in brief in the DEP spreadsheet posted on July 31, 2017. In total then, the documentation provided to CAC from DEP and spreadsheets on the DEP website describe at least 90 spills.

HDD Implications

The DEP’s press release assures the public that the drilling fluids are non-toxic and the IRs are “not expected to have any lasting effects on impacted waters of the commonwealth.” But this is not entirely the case. While the fluids themselves are not necessarily a public health threat, the release of drilling fluids into aquifers and drinking wells can make water unusable. This occurred in June in Chester County, for example.

More commonly, drilling fluid sediment in waterways can kill aquatic life due to the fine particulates associated with bentonite clay. Given that HDD is primarily used to lay pipe under streams, rivers, and ponds (as well as roads, parks, and other sensitive areas), this latter risk is a real concern. Such incidents have occurred in many of the instances cited in the DEP documents, including a release of drilling muds into a creek in Delaware County in May.

We hope the above map and summaries provide insights into the current risks associated with the project and levels of appropriate regulatory oversight, as well as for understanding the impacts associated with HDD, as it is often considered a benign aspect of pipeline construction.


By Kirk Jalbert, Manager of Community Based Research and Engagement, FracTracker Alliance

If you have any questions about the map on this page or the data used to create it, please contact Kirk Jalbert at jalbert@fractracker.org.

Heavy equipment moves debris from the site of a house explosion April 17 in Firestone, Colo., which killed two people. (David Kelly / For The Times)

Risks from Colorado’s Natural Gas Storage and Transmission Systems

Given recent concerns about underground natural gas storage wells (UGS), FracTracker mapped UGS wells and fields in Colorado, as well as midstream transmission pipelines of natural gas that transport the gas from well sites to facilities for processing. Results show that 6,673 Colorado residents in 2,607 households live within a 2.5 mile evacuation radius of a UGS well. Additionally, the UGS fields with the largest number of “single-point-of-failure” high-risk storage wells are also the two fields in Colorado nearest communities.

Worst Case Scenario

A house exploding from a natural gas leak sounds straight out of a 19th century period drama, but this tragedy just recently occurred in Firestone, Colorado. How could this happen in 2017? We have seen pictures and read reports of blowouts and explosions at well sites, and know of the fight against big oil and natural gas pipelines across the country. At the same time we take for granted the natural gas range that heats our food to feed our families. The risk of harm is seemingly far removed from our stove tops, although it may be much closer to home than we think – There are documented occupational hazards and compartmentalized risks in moving natural gas off site.

Natural gas is an explosive substance, yet the collection of the gas from well sites remains largely industry-regulated. Unfortunately, it has become clear that production states like Colorado are not able to provide oversight, much less know where small pipelines are even located. This is particularly dangerous, since the natural gas in its native state is ordorless, colorless, and tasteless. Flowing in the pipelines between well sites and processing stations, natural gas does not contain the mercaptan that gives commercial natural gas its tell-tale odor. In fact, much of the natural gas or “product” is merely lost to the atmosphere, or much worse, can collect in closed spaces and reach explosive levels. This means that high, potentially explosive levels of methane may go undetected until far too late.

Mapping Flow Lines

As a result of the house explosion in Firestone on April 17th CO regulators are now requiring oil and gas operators to report the location of their collection flow pipelines, as shown in Figure 1.

Figure 1. Map of Gathering Pipeline “Flowlines”


View map fullscreen

The locations of the collection of pipeline “flowlines”, like the uncapped pipeline that caused the house explosion in Firestone, have been mapped by FracTracker Alliance (above). The dataset is not complete, as not all operators complied with the reporting deadline set by the COGCC. For residents living in the midst of Colorado’s oil and gas production zones, addresses can be typed into the search bar in the upper left corner of the map. Users can see if their homes are located near or on top of these pipelines. The original mapping was done by Inside Energy’s Jordan Wirfs-Brock.

Underground Storage

When natural gas is mixed with mercaptan and ready for market, operators and utility companies store the product in UGS fields. (EDIT – Research shows that in most cases natural gas in UGS fields is not yet mixed with mercaptan. Therefore leaks may go undetected more easily. Aliso Canyon was a unique case where the gas was being stored AFTER being mixed with mercaptan. Odorization is not legally required until gas moves across state lines in an interstate pipeline or is piped into transmission lines for commercial distribution.) In August 2016, a natural gas storage well at the SoCal Gas Aliso Canyon natural gas storage field failed causing the largest methane leak in U.S. history. The Porter Ranch community experienced health impacts including nosebleeds, migraines, respiratory and other such symptoms. Thousands of residents were evacuated. While Aliso Canyon was the largest leak, it was by no means a unique case.

FracTracker has mapped the underground natural gas storage facilities in Colorado, and the wells that service the facilities. As can be seen below, there are 10 storage fields in Colorado, and an 11th one is planned. All the fields used for storage in Colorado are previously depleted oil and gas production fields. The majority of storage wells used to be production wells. All sites are shown in the map below (Figure 2).

Figure 2. Map of Natural Gas Underground Storage Facilities


View map fullscreen | How FracTracker maps work

Impacted Populations

Our analysis of Colorado natural gas storage facilities shows that 6,673 Colorado residents living in 2,607 households live within a 2.5 mile evacuation radius of a UGS well. The majority of those Coloradans (5,422) live in Morgan County, with 2,438 in or near the city of Fort Morgan. The city of Fort Morgan is surrounded by the Young Gas Storage Facility with a working capacity of 5,790,049 MCF and Colorado Interstate Gas Company with a working capacity of 8,496,000 MCF.

By comparison, the failure in Aliso Canyon leaked up to 5,659,000 MCF. A leak at either of these facilities could, therefore, result in a similar or larger release.

UGS Well Risk Assessment

A FracTracker co-founder and colleague at Harvard University recently completed a risk assessment of underground natural gas storage wells across the U.S. The analysis identified the storage wells shown in the map above (Figure 1) and defined a number of “design deficiencies” in wells, including “single-point-of-failure” designs that make the wells vulnerable to leaks and failures. Results showed that 2,715 of the total 14,138 active UGS wells across the country were constructed using similar techniques as the Aliso Canyon failed well.

Applying this assessment to the wells in Colorado, FracTracker finds the following:

  • There are a total of 357 UGS wells in Colorado.
  • 220 of which are currently active.
  • Of those 220 UGS wells, they were all drilled between 1949 and 1970.
  • 43 of the UGS wells are repurposed production wells.
  • 40 of those repurposed wells are the highest risk single barrier wells.

Specifically focusing on the UGS fields surrounding the city of Fort Morgan:

  • 21 single barrier wells are located in the Flank field 2.5 miles North of the city.
  • 13 single barrier wells are located in the Fort Morgan field 2.5 miles South of the city.

We originally asked how something as terrible as Firestone could have occurred. Collectively we all want to believe this was an isolated incident. Sadly, the data suggest the risk is higher than originally thought: The fields with the largest number of “single-point-of-failure” high-risk UGS wells are also the two fields in Colorado nearest communities. While the incident in Firestone is certainly heartbreaking, we hope regulators and operators can use the information in this analysis to avoid future catastrophes.


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Feature Image: Heavy equipment moves debris from the site of a house explosion April 17, 2017 in Firestone, Colorado, which killed two people. (David Kelly / For The Times)

Piecing together the ethane cracker - Graphic by Sophie Riedel

Piecing Together an Ethane Cracker

How fragmented approvals and infrastructure favor petrochemical development

By Leann Leiter and Lisa Graves-Marcucci

Let’s think back to 2009, when oil and gas companies like Range Resources began drilling the northeast shale plays in earnest. Picture the various stages involved in drilling – such as leasing of land, clearing of trees, boring of wells, siting of compressor stations, and construction of pipelines to gather the gas. Envision the geographic scope of the gas infrastructure, with thousands of wells in Pennsylvania alone, and thousands of miles of pipelines stretching as far as Louisiana.

Figure 1. A pipeline right-of-way snakes behind a residential property in Washington County, PA. Photo credit: Leann Leiter.

Figure 1. A pipeline right-of-way snakes behind a residential property in Washington County, PA. Photo credit: Leann Leiter

Now, picture the present, where a homeowner looks out over her yard and wonders how a lease she signed with Shell several years prior made it possible for the company to run an ethane pipeline across her property and between her house and her garage.

Think forward in time, to 2022, the year when a world-scale ethane cracker is set to go online in Beaver County, Pennsylvania, to begin churning through natural gas liquids from wells in PA and others, producing a variety of disposable plastic products.

At each of these moments in gas development, which of the many stakeholders – industry leaders, local governments, state regulatory agencies, or landowners and residents – were granted a view of the full picture?

The proposed Shell ethane cracker in Beaver County is an illustration of the fragmented nature of gas development. From the extensive web of drilling infrastructure required to supply this massive facility, to several years of construction, this project is a case-study in piecemeal permitting. Such fragmentation creates a serious barrier to transparency and to the informed decision-making that relies upon it.

In the first two articles in this series on the petrochemical development in Beaver County, we focused on ethane cracker emergency scenarios and how the area might prepare. In this article, we draw the lens back to take in the larger picture of this region-altering project and highlight the effects of limited transparency.

The “Piecemeal” Nature of Gas Development

All across the Pennsylvania, proposed industrial development – even coal operations – have historically provided to the public, elected officials, and regulatory agencies the extent or footprint of their planned operations. Nonetheless, the oil and gas industry has in several instances undertaken a practice of developing its extensive infrastructure piece-by-piece. Operators of these facilities first acquire a GP-5 General Permit, which is only available to certain oil and gas operations with “minor” emissions and which allows them to avoid having the permit undergo public notice or comment. These operators then add emissions sources and increases through a series of minor amendments. While they are required to obtain a “major” source permit once their modifications result in major emissions, they avoid the scrutiny required for a major source by this fragmented process.

Unlike most other industrial permitting, the gas industry has enjoyed a much less transparent process. Instead of presenting their entire planned operation at the time of initial permit application, gas operators having been seeking – and receiving – incremental permits in a piecemeal fashion. This process puts local decision makers and the women, men, and children who live, work, and go to school near gas development at a severe disadvantage in the following ways:

  • Without full disclosure of the entirety of the planned project, neither regulatory bodies nor the public can conduct a full and factual assessment of land use impacts;
  • Incremental approvals allow for ever-expanding operations, including issuance of permits without additional public notification and participation;
  • Piecemeal approvals allow operations to continuously alter a community and its landscape;
  • The fragmented approval process prevents consideration of cumulative impacts; and
  • Without full transparency of key components of the proposed operations, emergency planning is hampered or non-existent.

From the Well to the Ethane Cracker

In the fragmented approval process of gas development, the proposed ethane cracker in Beaver County represents a pertinent example. Developers of this massive, multi-year, and many-stage project have only revealed the size and scope in a piecemeal fashion, quietly making inroads on the project (like securing land leases along the route of the pipeline required for the cracker, years in advance of permit approvals for the facility itself). By rolling out each piece over several years, the entirety of the petrochemical project only becomes clear in retrospect.

A World-Scale Petrochemical Hub

While Shell is still pursuing key approval from the PA Department of Environmental Protection, industry leaders treat the ethane cracker as a foregone conclusion, promising that this facility is but one step in turning the area into a “petrochemical hub.”

The cracker facility, alone, will push existing air pollution levels further beyond their already health-threatening state. Abundant vacant parcels around Shell’s cracker site are attractive sites for additional spin-off petrochemical facilities in the coming “new industry cluster.” These facilities would add their own risks to the equation, including yet-unknown chemical outputs emitted into the air and their resulting cumulative impacts. Likewise, disaster risks associated with the ethane cracker remain unclear, because in the piecemeal permitting process, the industry is not required to submit Preparedness, Prevention, and Contingency (PPC) Plans until after receiving approval to build.

Figure 2: Visualization shows a portion of the extensive US natural gas interstate pipeline system stretching from the petrochemical hubs in the bayous of the Gulf Coast Basin to Pittsburgh's Appalachian Basin. However, petrochemical development in the northeast may reverse or otherwise change that flow. Visualization created by Sophie Riedel, Carnegie Mellon University, School of Architecture. Data on interstate natural gas supply sourced from Energy Information Administration, Form EIA176 "Annual Report of Natural Gas and Supplemental Gas Supply and Disposition," 2007.

Figure 2. A portion of the extensive US natural gas interstate pipeline system stretching from the petrochemical hubs in the bayous of the Gulf Coast Basin to Pittsburgh’s Appalachian Basin. However, petrochemical development in the northeast may reverse or otherwise change that flow. Visualization created by Sophie Riedel, Carnegie Mellon University, School of Architecture. Data on interstate natural gas supply sourced from Energy Information Administration, Form EIA176 “Annual Report of Natural Gas and Supplemental Gas Supply and Disposition,” 2007.

92.3 Miles of Explosive Pipeline

More than just a major local expansion, communities downriver and downwind will be susceptible to the impacts, including major land disturbance, emissions, and the potential for “incidents,” including explosion. The pipeline required to feed the cracker with highly flammable, explosive ethane would tie the tri-state region into the equation, expanding the zone of risk into Ohio and crossing through West Virginia.

Figure 3: The Falcon Pipeline, which would be used to transport ethane to the cracker in Beaver County. At 92.3 miles long, it consists of two “legs,” starting from Scio and Cadiz, Ohio and Houston, PA, respectively, and extending up to the site of Shell’s ethane cracker. Credit: Shell Pipeline Company LP.

Figure 3. The Falcon Pipeline, which would be used to transport ethane to the cracker in Beaver County. At 92.3 miles long, it consists of two “legs,” starting from Scio and Cadiz, Ohio and Houston, PA, respectively, and extending up to the site of Shell’s ethane cracker. Credit: Shell Pipeline Company LP

Renewed Demand at the Wellhead

No one piece of the gas infrastructure stands alone; all work in tandem. According to the  Energy Information Administration (EIA), the new US ethane crackers will drive consumption of ethane up by a 26% by the end of 2018. Gas wells in the northeast already supply ethane; new ethane crackers in the region introduce a way to profit from this by-product of harvesting methane without piping it to the Gulf Coast. How this renewed demand for ethane will play out at fracked wells will be the result of complex variables, but it will undoubtedly continue to drive demand at Pennsylvania’s 10,000 existing unconventional oil and gas wells and those of other states, and may promote bringing new ones online.

quote-from-petchem-report

Figure 4. Excerpt from Executive Summary of IHS Markit Report, “Prospects to Enhance Pennsylvania’s Opportunities in Petrochemical Manufacturing.”

Along with drilling comes a growing network of gathering and transmission lines, which add to the existing 88,000 miles of natural gas pipeline in Pennsylvania alone, fragment wildlife habitat, and put people at risk from leaks and explosions. Facilities along the supply stream that add their own pollution and risks include pump stations along the route and the three cryogenic facilities at the starting points of the Falcon Pipeline (see Fig. 6).

Figure 4: Several yards of the 88,000 miles of gas pipelines cutting through Pennsylvania. Finleyville, PA. Credit: Leann Leiter.

Figure 5. Several yards of the 88,000 miles of gas pipelines cutting through Pennsylvania. Finleyville, PA. Credit: Leann Leiter

The infrastructure investment required for ethane crackers in this region could reach $3.7 billion in processing facilities, pipelines for transmitting natural gas liquids including ethane, and storage facilities. A report commissioned by Team Pennsylvania and the PA Department of Community and Economic Development asserts that “the significant feedstock and transportation infrastructure required” will “exceed what is typically required for a similar facility” in the Gulf Coast petrochemical hub, indicating a scale of petrochemical development that rivals that of the southern states. This begs the question of how the health impacts in Pennsylvania will compare to those in the Gulf Coast’s “Cancer Alley.”

Figure 6. Houston, PA Cryogenic and Fractionation Plant, one of three such facilities supplying feedstock to the proposed Shell ethane cracker. Credit: Garth Lenz, iLCP.

Figure 6. Houston, PA Cryogenic and Fractionation Plant, one of three such facilities supplying feedstock to the proposed Shell ethane cracker. Credit: Garth Lenz, iLCP

Water Impacts, from the Ohio River to the Arctic Ocean

Shell’s facility is only one of the ethane crackers proposed for the region that, once operational, would be permitted to discharge waste into the already-beleaguered Ohio River. This waterway, which traverses six separate states, supplies the drinking water for over 3 million people. Extending the potential water impact even further, the primary product of the Shell facility is plastics, whose inevitable disposal would unnecessarily add to the glut of plastic waste entering our oceans. Plastic is accumulating at the alarming rate of 3,500 pieces a day on one island in the South Pacific and as far away as the waters of the Arctic.

Figure 7: View of the Ohio River, downriver from the site of Shell’s proposed ethane cracker. Existing sources of industrial pollution to the river include the American Electric power plants, coal loading docks, barges, coal ash lagoons, and dry coal ash beds shown in this picture, and at least two fracking operations within the coal plant areas. Credit: Vivian Stockman/ohvec.org; flyover courtesy SouthWings.org.

Figure 7. View of the Ohio River, downriver from the site of Shell’s proposed ethane cracker. Existing sources of industrial pollution to the river include the American Electric power plants, coal loading docks, barges, coal ash lagoons, and dry coal ash beds shown in this picture, and at least two fracking operations within the coal plant areas. Credit: Vivian Stockman/ohvec.org; flyover courtesy SouthWings.org.

How does fragmentation favor industry?

The gas and petrochemical industry would likely defend the logistical flexibility the piecemeal process affords them, allowing them to tackle projects, make investments, and involve new players as needed overtime. But in what other ways do the incredibly fragmented approval processes, and the limited requirements on transparency, favor companies like Shell and their region-changing petrochemical projects? And what effect does the absence of full transparency have on local communities like those in Beaver County? We conclude that it:

  • “Divides and conquers” the region. The piecemeal approach to gas development, and major projects like the Shell ethane cracker, deny any sense of solidarity between the people along the pipeline route resisting these potentially explosive channels cutting through their yards, and residents of Beaver County who fear the cracker’s emissions that will surround their homes.
  • Makes the project seem a foregone conclusion, putting pressure on others to approve. For example, before Shell formally announced its intention to build the facility in Potter Township, it rerouted a state-owned road to facilitate construction and increased traffic flow. Likewise, though a key permit is still outstanding with the PA DEP, first responders, including local volunteer firefighters, have already begun dedicating their uncompensated time to training with Shell. While this is a positive step from a preparedness standpoint, it is one of many displays of confidence by Shell that the cracker is a done deal.
  • Puts major decisions in the hands of those with limited resources to carry them out and who do not represent the region to be affected. In the case of the Shell ethane cracker, three township supervisors in Potter Township granted approvals for the project. The impacts, however, extend well beyond Potter or even Beaver county and include major air impacts for Allegheny County and the Pittsburgh area. Effects will also be felt by landowners and residents in numerous counties and two states along the pipeline route, those near cryogenic facilities in Ohio and Pennsylvania, plus those living on the Marcellus and Utica shale plays who will see gas well production continue and potentially increase.


Figures 8a and 8b. Potter Township Supervisors give the go-ahead to draft approval of Shell’s proposed ethane cracker at a January meeting, while confronted with public concern about deficiencies in Shell’s permit applications. Photos courtesy of the Air Quality Collaborative.

Fragmented Transparency, Compromised Decision-making

The piecemeal, incremental, and fragmented approval processes for the ethane cracker – and other gas-related facilities in the making – create one major problem. They make it nearly impossible for locals, elected officials, and regulatory agencies to see the whole picture as they make decisions. The bit-by-bit approach to gas development amounts to far-reaching development with irreversible impacts to environmental and human health.

We ask readers, as they contemplate the impacts closest to them – be it a fracked well, a hazardous cryogenic facility, the heavily polluted Ohio River, a swath of land taken up for the pipeline’s right-of-way, or Shell’s ethane cracker itself – to insist that they, their elected officials, and regulators have access to the whole picture before approvals are granted. It’s hard to do with a project so enormous and far-reaching, but essential because the picture includes so many of us.

Sincere Appreciation

To The International League of Conservation Photographers, The Ohio Environmental Council, and The Air Quality Collaborative for sharing photographs.

To Sophie Riedel for sharing her visualizations of natural gas interstate pipelines.

To Lisa Hallowell at the Environmental Integrity Project, and Samantha Rubright and Kirk Jalbert at FracTracker, for their review of and and invaluable contributions to this series.

SCOTT STOCKDILL/NORTH DAKOTA DEPARTMENT OF HEALTH VIA AP - for oil spills in North Dakota piece

Oil Spills in North Dakota: What does DAPL mean for North Dakota’s future?

By Kate van Munster, Data & GIS Intern, and
Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Pipelines are hailed as the “safest” way to transport crude oil and other refinery products, but federal and state data show that pipeline incidents are common and present major environmental and human health hazards. In light of current events that have green-lighted multiple new pipeline projects, including several that had been previously denied because of the environmental risk they pose, FracTracker Alliance is continuing to focus on pipeline issues.

In this article we look at the record of oil spills, particularly those resulting from pipeline incidents that have occurred in North Dakota, in order to determine the risk presented by the soon-to-be completed Dakota Access Pipeline.

Standing Rock & the DAPL Protest

To give readers a little history on this pipeline, demonstrators in North Dakota, as well as across the country, have been protesting a section of the Dakota Access Pipeline (DAPL) near the Standing Rock Sioux Tribe’s lands since April 2016. The tribe’s momentum has shifted the focus from protests at the build site to legal battles and a march on Washington DC. The pipeline section they are protesting has at this point been largely finished, and is slated to begin pumping oil by April 2017. This final section of pipe crosses under Lake Oahe, a large reservoir created on the Missouri River, just 1.5 miles north of the Standing Rock Sioux Tribal Lands. The tribe has condemned the pipeline because it cuts through sacred land and threatens their environmental and economic well-being by putting their only source for drinking water in jeopardy.

Pipelines

… supposedly safest form of transporting fossil fuels, but …

Pipeline proponents claim that pipelines are the safest method of transporting oil over long distances, whereas transporting oil with trucks has a higher accident and spill rate, and transporting with trains presents a major explosive hazards.

However, what makes one form of land transport safer than the others is dependent on which factor is being taken into account. When considering the costs of human death and property destruction, pipelines are indeed the safest form of land transportation. However, for the amount of oil spilled, pipelines are second-worst, beaten only by trucks. Now, when it comes to environmental impact, pipelines are the worst.

What is not debatable is the fact that pipelines are dangerous, regardless of factor. Between 2010 and October 2016 there was an average of 1.7 pipeline incidents per day across the U.S. according to data from the Pipeline and Hazardous Materials Safety Administration (PHMSA). These incidents have resulted in 100 reported fatalities, 470 injuries, and over $3.4 billion in property damage. More than half of these incidents were caused by equipment failure and corrosion (See Figures 1 and 2).

incidentcounts

Figure 1. Impacts of pipeline incidents in the US. Data collected from PHMSA on November 4th, 2016 (data through September 2016). Original Analysis

pipeline incidents causes

Figure 2. Cause of pipeline incidents for all reports received from January 1, 2010 through November 4, 2016. Original Analysis

Recent Spills in North Dakota

To dig into the risks posed in North Dakota more specifically, let’s take a look at some spill data in the state.

Map 1. Locations of Spills in North Dakota, with volume represented by size of markers


View map fullscreen | How FracTracker maps work

In North Dakota alone there have been 774 oil spill incidents between 2010 and September 2016, spilling an average of 5,131 gallons of oil per incident. The largest spill in North Dakota in recent history, and one of the largest onshore oil spills in the U.S., took place in September 2013. Over 865,000 gallons of crude oil spilled into a wheat field and contaminated about 13 acres. The spill was discovered several days later by the farmer who owns the field, and was not detected by remote monitors. The state claims that no water sources were contaminated and no wildlife were hurt. However, over three years of constant work later, only about one third of the spill has been recovered.

This spill in 2013 may never be fully cleaned up. Cleanup attempts have even included burning away the oil where the spill contaminated wetlands.

More recently, a pipeline spilled 176,000 gallons of crude oil into a North Dakota stream about 150 miles away from the DAPL protest camps. Electronic monitoring equipment, which is part of a pipeline’s safety precautions, did not detect the leak. Luckily, a landowner discovered the leak on December 5, 2016 before it got worse, and it was quickly contained. However, the spill migrated nearly 6 miles down the Ash Coulee Creek and fouled a number of private and U.S. Forest lands. It has also been difficult to clean up due to snow and sub-zero temperatures.

Even if a spill isn’t as large, it can still have a major effect. In July 2016, 66,000 gallons of heavy oil, mixed with some natural gas, spilled into the North Saskatchewan River in Canada. North Battleford and the city of Prince Albert had to shut off their drinking water intake from the river and were forced to get water from alternate sources. In September, 2 months later, the affected communities were finally able to draw water from the river again.

Toxicology of Oil

Hydrocarbons and other hazardous chemicals

Crude oil is a mixture of various hydrocarbons. Hydrocarbons are compounds that are made primarily of carbon and hydrogen. The most common forms of hydrocarbons in crude oil are paraffins. Crude oil also contains naphthenes and aromatics such as benzene, and many other less common molecules. Crude oil can also contain naturally occurring radioactive materials and trace metals. Many of these compounds are toxic and carcinogenic.

hydrocarbons

Figure 3. Four common hydrocarbon molecules containing hydrogen (H) and carbon (C). Image from Britannica

Crude oil spills can contaminate surface and groundwater, air, and soil. When a spill is fresh, volatile organic compounds (VOCs), such as benzene, quickly evaporate into the air. Other components of crude oil, such as polycyclic aromatic hydrocarbons (PAHs) can remain in the environment for years and leach into water.

Plants, animals, and people can sustain serious negative physical and biochemical effects when they come in contact with oil spills. People can be exposed to crude oil through skin contact, ingestion, or inhalation. Expsure can irritate the eyes, skin, and respiratory system, and could cause “dizziness, rapid heart rate, headaches, confusion, and anemia.” VOCs can be inhaled and are highly toxic and carcinogenic. PAHs can also be carcinogenic and have been shown to damage fish embryos. When animals are exposed to crude oil, it can damage their liver, blood, and other tissue cells. It can also cause infertility and cancer. Crops exposed to crude oil become less nutritious and are contaminated with carcinogens, radioactive materials, and trace metals. Physically, crude oil can completely cover plants and animals, smothering them and making it hard for animals to stay warm, swim, or fly.

An Analysis of Spills in ND

Below we have analyzed available spill data for North Dakota, including the location and quantity of such incidents.

North Dakota saw an average of 111 crude oil spills per year, or a total of 774 spills from 2010 to October 2016. The greatest number of spills occurred in 2014 with a total of 163. But 2013 had the largest spill with 865,200 gallons and also the highest total volume of oil spilled in one year of 1.3 million gallons. (Table 1)

Table 1. Data on all spills from 2010 through October 2016. Data taken from PHMSA and North Dakota.

  2010 2011 2012 2013 2014 2015 Jan-Oct 2016
Number of Spills 55 80 77 126 163 117 156
Total Volume (gallons) 332,443 467,544 424,168 1,316,910 642,521 615,695 171,888
Ave. Volume/Spill (gallons) 6,044 5,844 5,509 10,452 3,942 5,262 1,102
Largest Spill (gallons) 158,928 106,050 58,758 865,200 33,600 105,000 64,863

The total volume of oil spilled from 2010 to October 2016 was nearly 4 million gallons, about 2.4 million of which was not contained. Most spills took place at wellheads, but the largest spills occurred along pipelines. (Table 2)

Table 2. Spills by Source. Data taken from PHMSA and North Dakota.

  Wellhead Vehicle Accident Storage Pipeline Equipment Uncontained All Spills
Number of Spills 694 1 12 54 13 364 774
Total Volume (gallons) 2,603,652 84 17,010 1,281,798 68,623 2,394,591 3,971,169
Ave. Volume/Spill (gallons) 3,752 84 1,418 23,737 5,279 6,579 5,131
Largest Spill (gallons) 106,050 84 10,416 865,200 64,863 865,200 865,200

A. Sensitive Areas Impacted

Spills that were not contained could potentially affect sensitive lands and waterways in North Dakota. Sensitive areas include Native American Reservations, waterways, drinking water aquifers, parks and wildlife habitat, and cities. Uncontained spill areas overlapped, and potentially contaminated, 5,875 square miles of land and water, and 408 miles of streams.

Drinking Water Aquifers – 2,482.3 total square miles:

  • Non-Community Aquifer – 0.3 square miles
  • Community Aquifer – 36 square miles of hydrologically connected aquifer
  • Surficial Aquifer – 2,446 square miles of hydrologically connected aquifer

A large area of potential drinking water (surficial aquifers) are at risk of contamination. Of the aquifers that are in use, aquifers for community use have larger areas that are potentially contaminated than those for non-community use.

Native American Tribal Reservation

  • Fort Berthold, an area of 1,569 square miles

Cities – 67 total square miles

  • Berthold
  • Dickinson
  • Flaxton
  • Harwood
  • Minot
  • Petersburg
  • Spring Brook
  • Stanley
  • West Fargo

Map 2. Areas where Oil Spills Present Public Health Threats


View map fullscreen | How FracTracker maps work

B. Waterways Where Spills Have Occurred

  • Floodplains – 73 square miles of interconnected floodplains
  • Streams – 408 miles of interconnected streams
  • Of the 364 oil spills that have occurred since 2010, 229 (63%) were within 1/4 mile of a waterway
  • Of the 61 Uncontained Brine Spills that have occurred since 2001, 38 (63%) were within 1/4 mile of a waterway.

If a spill occurs in a floodplain during or before a flood and is uncontained, the flood waters could disperse the oil over a much larger area. Similarly, contaminated streams can carry oil into larger rivers and lakes. Explore Map 3 for more detail.

Map 3. Oil Spills in North Dakota Waterways


View map fullscreen | How FracTracker maps work

C. Parks & Wildlife Habitat Impacts

1,684 total square miles

Habitat affected

  • National Grasslands – on 1,010 square miles of interconnected areas
  • United States Wildlife Refuges – 84 square miles of interconnected areas
  • North Dakota Wildlife Management Areas – 24 square miles of interconnected areas
  • Critical Habitat for Endangered Species – 566 square miles of interconnected areas

The endangered species most affected by spills in North Dakota is the Piping Plover. Explore Map 4 for more detail.

Map 4. Wildlife Areas Impacted by Oil Spills


View map fullscreen | How FracTracker maps work

Methods

Using ArcGIS software, uncontained spill locations were overlaid on spatial datasets of floodplains, stream beds, groundwater regions, sensitive habitats, and other sensitive regions.

The average extent (distance) spilled oil traveled from uncontained spill sites was calculated to 400 meters. This distance was used as a buffer to approximate contact of waterways, floodplains, drinking water resources, habitat, etc. with uncontained oil spills.

Oil Spills in North Dakota Analysis References:


Cover Photo: The site of a December 2016 pipeline spill in North Dakota. Credit: Scott Stockdill/North Dakota Department of Health via AP

Northern Access Project - pipeline map

Northern Access Project: Exporting PA’s Marcellus Gas Northward

In March 2015, the National Fuel Gas Supply Corporation and Empire Pipeline Company filed a joint application with the Federal Energy Resource Commission (FERC) to construct a new natural gas pipeline and related infrastructure, known collectively as the Northern Access Project (NAPL). The pricetag on the project is $455 million, and is funded through international, as well as local, financial institutions. The Public Accountability Initiative recently produced a report detailing the funding for this pipeline project, entitled “The Power Behind the Pipeline“.

The proposed Northern Access Project consists of a 97-mile-long, 24” pipe that would carry Marcellus Shale gas from Sergeant Township (McKean County), PA, to the Porterville Compressor Station in the Town of Elma (Erie County), NY. Nearly 69% of the proposed main pipeline will be co-located in existing pipeline and power line rights-of-way, according to FERC. The agency says this will streamline the project and reduce the need to rely on eminent domain to most efficiently route the project.

A $42 million, 15,400 horsepower Hinsdale Compressor Station along the proposed pipeline route was completed in 2015. In addition to the pipeline itself, the proposed project includes:

  • Additional 5,350 HP compression at the existing Porterville Compressor Station, a ten-fold increase of the capacity of that station
  • A new 22,214 HP compressor station in Pendleton (Niagara County), NY
  • Two miles of pipeline in Pendleton (Niagara County), NY
  • A new natural gas dehydration facility in Wheatfield (Niagara County), NY
  • An interconnection with the Tennessee Gas Pipeline in Wales (Erie County), NY, as well as tie-ins in McKean, Allegany, and Cattaraugus counties
  • A metering, regulation and delivery station in Erie County
  • Mainline block valves in McKean, Allegany, Cattaraugus and Erie counties; and
  • Access roads and contractor/staging yards in McKean, Allegany, Cattaraugus and Erie counties

Map of Proposed Northern Access Project


View map fullscreen | How FracTracker maps work

The above map shows the proposed pipeline (green) and related infrastructure (bright pink). The pale yellow and pink lines on the map are the existing pipelines that the Northern Access Project would tie into. Click here to explore the map fullscreen.

Project Purpose

National Fuel maintains that the goal of the proposed project would be to supply multiple markets in Western New York State and the Midwest. The project would also supply gas for export to Canada via the Empire Pipeline system, and New York and New England through the Tennessee Gas Pipeline 200 Line. The company anticipates that the project would be completed by late 2017 or early 2018. Proponents are hoping that NAPL will keep fuel prices low, raise tax revenues, and create jobs.

Push-back against this project has been widespread from citizens and environmental groups, including Sierra Club and RiverKeeper. This is despite an environmental assessment ruling in July 2016 that FERC saw no negative environmental impacts of the project. FERC granted a stamp of approval for the project on February 4, 2017.

Concerns about the Proposed Pipeline

The Bufffalo-Niagara Riverkeeper, asserts that the project presents multiple threats to environmental health of the Upper Lake Erie and Niagara River Watersheds. In their letter to FERC, they disagreed with the Commission’s negative declaration that the project would result in “no significant impact to the environment.” The pipeline construction will require crossings of 77 intermittent and 60 perennial streams, 19 of which are classified by the New York State Department of Environmental Conservation (NYS DEC) as protected trout streams. Twenty-eight of the intermittent streams impacted also flow into these protected streams. Resulting water quality deterioration associated with bank destabilization, increased turbidity, erosion, thermal destabilization of streams, and habitat loss is likely to impact sensitive native brook trout and salamanders. Riverkeeper found that National Fuel’s plan on how to minimize impacts to hundreds of wetlands surround the project area was insufficient. FERC’s Environmental Assessment of the project indicated that approximately 1,800 acres of vegetation would affected by the project.

Several groups have also taken issue with the proposed project’s plan to use the “dry crossing” method of traversing waterways. Only three crossings will be accomplished using horizontal directional drilling under the stream bed — a method that would largely protect the pipes from dynamic movement of the stream during floods. The rest will be “trenched” less than 5 feet below the stream bed. Opponents of the project point out that NYSDEC, federal guidelines, and even industry itself discourage pipe trenching, because during times of high stream flow, stream scour may expose the pipes to rocks, trees, and other objects. This may lead to the pipes leaking, or even rupturing, impacting both the natural environment, and, potentially, the drinking water supply.

A December 2016 editorial to The Buffalo News addressed the impacts that the proposed Northern Access Project could have to the Cattaraugus Creek Basin Aquifer, the sole source of drinking water for 20,000 residents in surrounding Cattaraugus, Erie, and Wyoming counties in New York. In particular, because the aquifer is shallow, and even at the surface in some locations, it is particularly vulnerable to contamination. The editorial took issue with the absence of measures in the Environmental Assessment that could have explored how to protect the aquifer.

Other concerns include light and noise pollution, in addition to well-documented impacts on climate change, created by fugitive methane leakage from pipelines and compressors.

NYSDEC has held three public hearings about the project already: February 7th at Saint Bonaventure University (Allegany, NY), February 8th at Iroquois High School (Elma, NY), February 9th at Niagara County Community College (Sanborn, NY). The hearing at Saint Bonaventure was attended by nearly 250 people.

While FERC approved the project on February 4, 2017, the project still requires approvals from NYSDEC – including a Section 401 Water Quality Certification. These decisions have recently been pushed back from March 1 to April 7.

Proponents for the project – particularly the pipefitting industry – have emphasized that it would create up to 1,700 jobs during the construction period, and suggested that because of the experience level of the construction workforce, there would be no negative impacts on the streams. Other speakers emphasized National Fuel’s commitment to safety and environmental compliance.

Seneca Nation President Todd Gates expressed his concerns about the gas pipeline’s impacts on Cattaraugus Creek, which flows through Seneca Nation land (Cattaraugus Indian Reservation), and is downstream from several tributaries traversed by the proposed pipeline. In addition, closer to the southern border of New York State, the proposed pipeline cuts across tributaries to the Allegheny River, which flows through the Allegany Indian Reservation. One of New York State’s primary aquifers lies beneath the reservation. The closest that the proposed pipeline itself would pass about 12 miles from Seneca Nation Territory, so National Fuel was not required contact the residents there.

Concerns about Wheatfield dehydration facility & Pendleton compressor station

According to The Buffalo News, National Fuel has purchased 20 acres of land from the Tonawanda Sportsmen’s Club. The company is building two compressors on this property, totaling 22,000 HP, to move gas through two miles of pipeline that are also part of the proposed project, but 23 miles north of the primary stretch of newly constructed pipeline. Less than six miles east of the Pendleton compressor stations, a dehydration facility is also proposed. The purpose of this facility is to remove water vapor from the natural gas, in accordance with Canadian low-moisture standards. According to some reports from a National Fuel representative, the dehydration facility would run only a few days a year, but this claim, has not been officially confirmed.

Residents of both Pendleton and Wheatfield have rallied to express their concerns about both components of the project, citing potential impacts on public health, safety, and the environment relating to air and water quality.

Northern Access Project Next Steps

The deadline for public comment submission is 5 pm on February 24, 2017 — less than two weeks away. To file a comment, you can either email NYS DEC directly To Michael Higgins at NFGNA2016Project@dec.ny.gov, or send comments by mail to NYS DEC, Attn. Michael Higgins, Project Manager, 625 Broadway, 4th Floor, Albany, NY 12233.

 

Note: this article originally stated that the Porterville Compressor Station would double its capacity as a result of the NAPL project. In fact, the capacity increase would be ten-fold, from 600 hp to about 6000 hp. We regret this error.


by Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance