Tag Archive for: Ohio

Bird's eye view of an injection well (oil and gas waste disposal)

A Disturbing Tale of Diminishing Returns in Ohio

Utica oil and gas production, Class II injection well volumes, and lateral length trends from 2010-2018

The US Energy Information Administration (EIA) recently announced that Ohio’s recoverable shale gas reserves have magically increased by 11,076 billion cubic feet (BCF). This increase ranks the Buckeye State in the top 5 for changes in recoverable shale natural gas reserves between 2016 and 2017 (pages 31- 32 here). After reading the predictable and superficial media coverage, we thought it was time to revisit the data to ask a pertinent question: What is the fracking industry costing Ohio?

Recent Shale Gas Trends in Ohio

According to the EIA’s report, Ohio currently sits at #7 on their list of proven reserves. It is estimated there are 27,021 BCF of shale gas beneath the state (Figure 1).

Graph of natural gas reserves in different states 2016-2017

Figure 1. Proven and change in proven natural gas reserves from 2016 to 2017 for the top 11 states and the Gulf of Mexico (calculated from EIA’s “U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2017”).

There are a few variations in the way the oil and gas industry defines proven reserves:

…an estimated quantity of all hydrocarbons statistically defined as crude oil or natural gas, which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions. Reservoirs are considered proven if economic producibility is supported by either actual production or conclusive formation testing. – The Organization of Petroleum Exporting Countries

… the quantity of natural resources that a company reasonably expects to extract from a given formation… Proven reserves are classified as having a 90% or greater likelihood of being present and economically viable for extraction in current conditions… Proven reserves also take into account the current technology being used for extraction, regional regulations and market conditions as part of the estimation process. For this reason, proven reserves can seemingly take unexpected leaps and drops. Depending on the regional disclosure regulations, extraction companies might only disclose proven reserves even though they will have estimates for probable and possible reserves. – Investopedia

What’s missing from this picture?

Neither of the definitions above address the large volume of water or wastewater infrastructure required to tap into “proven reserves.” While compiling data for unconventional wells and injection wells, we noticed that the high-volume hydraulic fracturing (HVHF) industry is at a concerning crossroads. In terms of “energy return on energy invested,” HVHF is requiring more and more resources to stay afloat.

OH quarterly Utica oil & gas production along with quarterly Class II injection well volumes:

The map below shows oil and gas production from Utica wells (the primary form of shale gas drilling in Ohio). It also shows the volume of wastewater disposed in Class II salt water disposal injection wells.


 View map fullscreen | How FracTracker maps work

Publications like the aforementioned EIA article and language out of Columbus highlight the nominal increases in fracking productivity. They greatly diminish, or more often than not ignore, how resource demand and waste production are also increasing. The data speak to a story of diminishing returns – an industry requiring more resources to keep up gross production while simultaneously driving net production off a cliff (Figure 2).

Graph of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September, 2010 to December, 2018

Figure 2. Number of Utica permits in Ohio on a cumulative and monthly basis along with the average price of West Texas Intermediate (WTI) and Brent Crude oil per barrel from September 2010 to December 2018

The Great Decoupling of New Year’s 2013

In the following analysis, we look at the declining efficiency of the HVHF industry throughout Ohio. The data spans the end of 2010 to middle of 2018. We worked with Columbus-area volunteer Gary Allison to conduct this analysis; without Gary’s help this work and resulting map, would not have been possible.

A little more than five years ago today, a significant shift took place in Ohio, as the number of producing gas wells increased while oil well numbers leveled off. The industry’s permitting high-water mark came in June of 2014 with 101 Utica permits that month (a level the industry hasn’t come close to since). The current six-month permitting average is 25 per month.

As the ball dropped in Times Square ringing in 2014, in Ohio, a decoupling between oil and gas wells was underway and continues to this day. The number of wells coming online annually increased by 229 oil wells and 414 gas wells.

Graph showing Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 3. Number of producing oil and gas wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Graph of Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 4. Producing oil and gas wells as a percentage of permitted wells in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Permits

The ringing in of 2014 also saw an increase in the number of producing wells as a percentage of those permitted. In 2014, the general philosophy was that the HVHF industry needed to permit roughly 5.5 oil wells or 7 gas wells to generate one producing well. Since 2014, however, this ratio has dropped to 2.2 for oil and 1.4 for gas well permits.

Put another way, the industry’s ability to avoid dry wells has increased by 13% for oil and 18% for gas per year. As of Q2-2018, viable oil wells stood at 44% of permitted wells while viable gas wells amounted to 71% of the permitted inventory (Figure 4).

Production declines

from the top-left to the bottom-right

To understand how quickly production is declining in Ohio, we compiled annual (2011-2012) and quarterly (Q1-2013 to Q2-2018) production data from 2,064 unconventional laterals.

First, we present average data for the nine oldest wells with respect to oil and gas production on a per day basis (Note: Two of the nine wells we examined, the Geatches MAH 3H and Hosey POR 6H-X laterals, only produced in 2011-2012 when data was collected on an annual basis preventing their incorporation into Figures 6 and 7 belwo). From an oil perspective, these nine wells exhibited 44% declines from year 1 to years 2-3 and 91% declines by 2018 (Figure 5). With respect to natural gas, these nine wells exhibited 34% declines from year 1 to years 2-3 and 79% declines by 2018 (Figure 5).

Figure 5. Average daily oil and gas production decline curves for the above seven hydraulically fractured laterals in Ohio’s Utica Shale Basin, 2011 to Q2-2018

Four of the nine wells demonstrated 71% declines by the second and third years and nearly 98% declines by by Q2-2018 (Figure 6). These declines lend credence to recent headlines like Fracking’s Secret Problem—Oil Wells Aren’t Producing as Much as Forecast in the January 2nd issue of The Wall Street Journal. Four of the nine wells demonstrated 49% declines by the second and third years and nearly 81% declines by Q2-2018 (Figure 7).

Figure 6. Oil production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Figure 7. Natural gas production decline curves for seven hydraulically fractured laterals in Ohio’s Utica Shale Basin from 2011 to Q2-2018

Fracking waste, lateral length, and water demand

from bottom-left to the top-right

An analysis of fracking’s environmental and economic impact is incomplete if it ignores waste production and disposal. In Ohio, there are 226 active Class II Salt Water Disposal (SWD) wells. Why so many?

  1. Ohio’s Class II well inventory serves as the primary receptacle for HVHF liquid waste for Pennsylvania, West Virginia, and Ohio.
  2. The Class II network is situated in a crescent shape around the state’s unconventional wells. This expands the geographic impact of HVHF to counties like Ashtabula, Trumbull, and Portage to the northeast and Washington, Athens, and Muskingum to the south (Figure 8).
Map of Ohio showing cumulative production of unconventional wells and waste disposal volume of injection wells

Figure 8. Ohio’s unconventional gas laterals and Class II salt water disposal injection wells. Weighted by cumulative production and waste disposal volumes to Q3-2018.

Disposal Rates

We graphed average per well (barrels) and cumulative (million barrels) disposal rates from Q3-2010 to Q3-2018 for these wells. The data shows an average increase of 24,822 barrels (+1.05 million gallons) per well, each year.

That’s a 51% per year increase (Figure 9).

A deeper dive into the data reveals that the top 20 most active Class II wells are accepting more waste than ever before: an astounding annual per well increase of 728,811 barrels (+30.61 million gallons) or a 230% per year increase (Figure 10). This divergence resulted in the top 20 wells disposing of 4.95 times the statewide average between Q3-2010 and Q2-2013. They disposed 13.82 times the statewide average as recently as Q3-2018 (Figure 11).

All of this means that we are putting an increasing amount of pressure on fewer and fewer wells. The trickle out, down, and up of this dynamic will foist a myriad of environmental and economic costs to areas surrounding wells. As an example, the images below are injection wells currently under construction in Brookfield, Ohio, outside Warren and minutes from the Pennsylvania border.

More concerning is the fact that areas of Ohio that are injection well hotspots, like Warren, are proposing new fracking-friendly legislation. These disturbing bills would lubricate the wheels for continued expansion of fracking waste disposal and permitting. House bills 578 and 393 and Senate Bill 165 monetize and/or commodify fracking waste by giving townships a share of the revenue. Such bills “…would only incentivize communities to encourage more waste to come into their existing inventory of Class II… wells, creating yet another race to the bottom.” Co-sponsors of the bills include Democratic Reps. Michael O’Brien, Glenn Holms, John Patterson, and Craig Riefel.

Lateral Lengths

The above trends reflect an equally disturbing trend in lateral length. Ohio’s unconventional laterals are growing at a rate of 9.1 to 15.6%, depending on whether you buy that this trend is linear or exponential (Figure 12). This author believes the trend is exponential for the foreseeable future. Furthermore, it’s likely that “super laterals” in excess of 3-3.5 miles will have a profound impact on the trend. (See The Freshwater and Liquid Waste Impact of Unconventional Oil and Gas in Ohio and West Virginia.)

This lateral length increase substantially increases water demand per lateral. It also impacts Class II well disposal rates. The increase accounts for 76% of the former and 88% of the latter when graphed against each other (Figure 13).

Figure 12. Ohio Utica unconventional lateral length from Q3-2010 to Q4-2018

Figure 13. Ohio Utica unconventional water demand and Class II SWD injection well disposal volumes vs lateral length from Q3-2010 to Q4-2018.

Conclusion

This relationship between production, resource demand, and waste disposal rates should disturb policymakers, citizens, and the industry. One way to this problem is to more holistically price resource utilization (or stop oil and gas development entirely).

Unfortunately, states like Ohio are practically giving water away to the industry.

Politicians are constructing legislation that would unleash injection well expansion. This would allow disposal to proceed at rates that don’t address supply-side concerns. It’s startling that an industry and political landscape that puts such a premium on “market forces” is unwilling to address these trends with market mechanisms.

We will continue to monitor these trends and hope to spread these insights to states like Oklahoma and Texas in the future.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance – with invaluable data compilation assistance from Gary Allison


Data Downloads

FracTracker is a proponent of data transparency, and so we often share the data we use to construct our maps analyses. Click on the links below to download the data associated with the present analysis:

  • OH Utica laterals

    Ohio’s Utica HVHF laterals as of December 2018 in length (feet) (zip file)
  • Wastewater disposal volumes

    Inventory of volumes disposed on a quarterly basis from 2010 to Q3-2018 for all 223 active Class II Salt Water Disposal (SWD) Injection wells in Ohio (zip file)
Appalachia storage hub prospects map by FracTracker

Storing Natural Gas Liquids in Appalachia

Last month, the Department of Energy (DOE) submitted a report titled Ethane Storage and Distribution Hub in the United States to Congress. The report sums up several other recent geologic studies and economic analyses that evaluate the potential to create a large petrochemical hub in southwest Pennsylvania, Ohio, West Virginia, and northeastern Kentucky.

Most people call this region Appalachia because of the mountains, or the Ohio River Valley because of the namesake river. The petrochemical industry looks deeper: they’ve branded it Shale Crescent USA, after the shale gas thousands of feet underground. This article summarizes recent developments on storing natural gas liquids, including ethane, in this region – whatever you prefer to call it.

Background

The United States currently produces more natural gas than any other country in the world, with much of the fracked gas coming from the Marcellus and Utica shales in Appalachia. The DOE report predicts that production in this region will continue growing from an estimated at 8.19 trillion cubic feet (Tcf) in 2017, to 13.55 Tcf in 2025 and 19.5 Tcf in 2050.

Natural Gas Production Estimates:

8.19 Tcf in 2017
13.55 Tcf in 2025
19.5 Tcf in 2050

In addition to oil and gas, fracking produces natural gas liquids (NGLs), such as ethane, propane, and butane. NGLs are a key component of the petrochemical industry, which takes these resources and converts them into plastics and resins. As industry extracts more natural gas, it will also be left with more NGLs to manage.

Hoping to profit off NGLs, the oil and gas industry is investing in petrochemical production. In the Appalachian basin, the DOE predicts that production of ethylene from ethane will reach 640,000 barrels a day by 2025 (this is 20 times the amount the region produced in 2013). The Gulf Coast of the U.S., as well as countries in Asia and the Middle East, are also growing their production capacities. Globally, ethylene production is projected to grow 31% from 2017 to 2025.

The rise of the petrochemical industry comes at a point when there’s an increasing global awareness of the disaster that is plastic pollution. As much as 12.7 million tons of plastic waste goes into the ocean each year, affecting over 700 species of marine animals. On land, plastic waste is often shipped to less developed nations, where it ends up polluting poor communities and contaminating their drinking water and air.

Nevertheless, politicians in PA, OH, and WV are working hard to attract petrochemical build-out in Appalachia. The region already houses much of the infrastructure needed for a petrochemical hub, such as fracked wells that pump out NGLs and processing plants to separate these liquids from the rest of the natural gas stream. One thing it’s missing, however, is significant capacity to store natural gas liquids – particularly ethane.

Why does industry need storage?

Ethane storage offers several benefits to the petrochemical industry. For one, it would serve as a steady supply of ethane for plants like ethane crackers, which “crack” ethane into ethylene to make polyethylene plastic. With this constant supply (transported to crackers via pipeline), plants can operate 24 hours a day, year round, and avoid using energy to shutdown and restart. Storage also allows industry to adapt to fluctuations in demand and price.

Another argument for expanding petrochemical activity in Appalachia is to diversify the industry’s geography. The current petrochemical hub in Texas and Louisiana (where over 95% of the country’s ethylene production takes place) is subject to extreme weather events. In 2017, Hurricane Harvey caused over half of the nation’s polyethylene production capacity to shut down. The report mentions “extreme weather events” multiple times as justification for building a petrochemical hub in Appalachia. This stance strongly suggests that the DOE is preparing for increased hurricanes and flooding from climate change, although this is never explicitly stated. Unsurprisingly, the industry’s role in causing climate change is left out from the report as well.

What does storage look like?

While the term ‘natural gas liquid’ may seem like an oxymoron, it refers to the different forms the substances take depending on temperature and pressure. At normal conditions, NGLs are a gas, but when pressurized or exposed to extremely cold temperatures,  they act as a liquid. NGLs occupy significantly less space as a liquid, and are therefore moved and stored as a pressurized or refrigerated liquid.

Storage can be in above ground tanks, but is often underground in gas fields or underground caverns. NGLs are highly volatile, and storing them above ground puts workers and surrounding communities at risk. For example – last week, an above ground storage tank exploded at a natural gas processing plant in Washington County, PA, sending four people to the hospital. While underground storage is perceived as “safer,” it still poses significant risks, particularly in a geography like Appalachia full of wells, coal mines, and pipelines. This underground infrastructure can cause NGLs to leak during storage or the land above them to collapse.

A study out of West Virginia University, titled “A Geologic Study to Determine the Potential to Create an Appalachian Storage Hub For Natural Gas Liquids,” identified three different types of storage opportunities along the Ohio and Kanawha river valleys:

Underground storage options

  1. Mined-rock cavern: Companies can mine caverns in formations of limestone, dolomite, or sandstone. The formation must be at least 40 feet thick to hold NGLs. This study focused on formations of the Greenbrier Limestone, which occurs throughout southwestern Pennsylvania, West Virginia, and Kentucky.
  2. Salt cavern: Developing salt caverns involves injecting water underground to create a void, and then pumping NGLs into the cavern. Suitable salt caverns have “walls” at least 100 feet thick above and below the cavern. The study recommended salt caverns 1,500 to 3,000 feet deep, but considered those as deep as 6,700 feet.
  3. Gas field: NGLs can also be stored in natural gas fields or depleted gas fields in underground sandstone reservoirs. Suitable gas fields are 2,000 feet deep or more according to the WVU study.

Where could storage sites be located?

The West Virginia University study identified and ranked thousands of gas fields, several salt caverns, and many regions in the Greenbrier Limestone that could serve as NGL storage. Most of the top-ranked opportunities are in West Virginia, near the state’s borders with Ohio and Pennsylvania, and several cross beneath the Ohio or Kanawha rivers. The researchers conclude with three “prospects,” which are circled in Figure 1.

A map of storing natural gas liquids opportunities in the Ohio River Valley

Figure 1. NGL storage opportunities identified by the Appalachian Oil and Natural Gas Consortium at West Virginia University

The table below lists the specific storage opportunities in each prospect, as well as the available data on depth, thickness, and acreage of the formations. Also listed are the counties that the storage facility would cross into.

Name Type Depth (feet) Thickness (feet) Counties Land Size (acres)
Salina F4 Salt cavern Salt cavern >100 to 150 Primarily Columbiana, OH, also Hancock, WV & Beaver, PA 83,775
Salina F4 salt cavern Salt cavern 100 to 150 Primarily Jefferson, OH, also Brooke & Hancock WV, & Washington, PA 129,017
Ravenna-Best Consolidated Field Depleted gas field 4,107 to 6,497 25 to 156 Mahoning, OH 69,000
No specific field was ranked Gas field in Oriskany sandstone 3,000 to 7,000 0 to 70+ Throughout the prospect

Existing NGL Storage

Storage in the United States

The U.S. has two major NGL storage hubs (both in salt caverns): One is in Mont Belvieu, Texas and the other in Conway, Kansas. These facilities are strategically located near the petrochemical industry’s hub along the Gulf Coast. There is also underground storage in Sarnia, Ontario.

Industry in Appalachia is connected to these storage facilities via pipelines, including Sunoco’s Mariner West that transports ethane to Sarnia, and the Appalachia-Texas-Express (ATEX) pipeline that takes ethane to Mont Belvieu. However, as suggested above, NGL storage in Appalachia is also under development.

Appalachia Storage & Trading Hub

Appalachia Development Group LLC is heading the development of the Appalachia Storage & Trading Hub initiative. The company has not announced the specific location for underground storage, but has been working hard to secure the funds  for this development.

In September of 2017, Appalachia Development Group submitted part 1 of a 2-part application for a $1.9 billion loan to the US DOE Loan Program Office. The DOE approved the application the following January, inviting the company to submit the second part, which is currently pending. This second part goes through the DOE’s Title XVII innovative clean energy projects loan program.

According to the DOE, this program “provides loan guarantees to accelerate the deployment of innovative clean energy technology.” Paradoxically, this means the DOE may give clean energy funds to the petrochemical industry, which is fueled by fossil fuels and does not provide energy but rather plastic and resins.

Steven Hedrick, the CEO of Appalachia Development Group, was part of a West Virginia trade delegation that traveled to China in 2017 to meet with China’s largest energy company. This meeting, which included President Trump and China’s President Xi Jinping, resulted in China Energy agreeing to invest $83.7 billion to support natural gas and petrochemical development in West Virginia. (Of note: This agreement has faced uncertainty following Trump’s tariffs on Chinese goods). West Virginia Governor Jim Justice later criticized Hedrick’s involvement in the meeting, where he promoted the interests of his private company.

Mountaineer NGL Storage Project

Another company, Energy Storage Ventures LLC, has plans to construct NGL storage near Clarington, Ohio. This facility would be on land formerly belonging to Quarto Mining Company’s Powhatan Mine No. 4. Called “Mountaineer NGL Storage,” the project would develop salt caverns to store propane, ethane, and butane. Each cavern could store 500,000 barrels (21 million gallons) of NGLs.

The video below, made by the Energy Storage Ventures, describes the process of developing salt caverns for storage.

The Mountaineer NGL Storage Project location is about 12 miles south of the PTTGC ethane cracker (if built), in Dilles Bottom Ohio. It’s also roughly 60 miles south of the Shell ethane cracker (under construction) in Potter Township, PA. If developed, the project could supply these plants with ethane and allow them to continuously operate. According to Energy Storage Ventures President, David Hooker, the project would also trigger $500 million in new pipelines in the region and $1 billion in fractionation facilities to separate NGLs.

Energy Storage Ventures wants to build three pipelines beneath the Ohio River. Two pipelines (one for ethane and one for propane and butane) would deliver NGLs to the storage site from Blue Racer Natrium, a fractionation plant that separates dry natural gas from NGLs. A third pipeline would take salt brine water from the caverns to the Marshall County chlorine plant (currently owned by Westlake Chemical Corp). These facilities, as well as the locations of the two ethane crackers storage could serve, are in the map below. This map also includes the potential storage opportunities the researchers at West Virginia University identified.

View map full screen | How FracTracker maps work

Referring to concerns about building pipelines and caverns near the Ohio River, a drinking water source for 5 million people, the company’s president David Hooker stated, “This is not rocket science. These things have operated safely for years… Salt, at depth, is impermeable. You won’t see any migration out of the salt.”

This video is a rendering of what the 200-acre site will look like, including the salt water impoundment structure (capable of holding 3.25 million barrels), and the infrastructure needed to deliver products and equipment by rail and truck:

The company has stated that it owns both the land and mineral rights it needs to develop the caverns, but the project has also faced delays.

Where is this plastic going?

One common argument for a petrochemical hub in Appalachia is the region’s proximity to the downstream sector of petrochemical industry. Manufacturers such as PPG Industries, Dow Chemical Inc., and BASF are all based in the area and could make use of the feedstock from an Appalachian hub.

However, the report doesn’t make it clear where the plastic and resin end products will land. It does state that the demand in the United States isn’t enough to swallow up two major petrochemical hubs worth of plastic.

Export markets

The DOE report states that, “the development of new petrochemical capacity in Appalachia is not necessarily in conflict with Gulf Coast expansion.” Since the Gulf Coast already has the infrastructure for export, it could focus on international markets while Appalachia meets domestic demand. Alternatively, the Appalachian hub could serve European destinations while the Gulf Coast hub delivers to Pacific Basin and South American destinations. Plastic consumption is highly correlated with population, so countries with large, growing populations such as India and China are likely markets.

It’s important to note that the U.S. isn’t the only country increasing its production of petrochemical derivatives, and as the report notes, exports from the US “may face a challenge from global capacity surplus.” Figure 2 shows that global production of ethylene is expected to surpass global consumption, shown in Figure 3. The graph of consumption likely ignores the impact of plastic-reducing policies that hundreds of countries and cities are implementing. As such, it may be an over-estimation.

Historical and Projected Ethylene Production Capacity by Global Area

Figure 2. Historical and future ethylene production by global region. Source

Graph of ethylene consumption by global area.

Figure 3. Ethylene consumption by global region. Source

In the end, it appears that the industry’s plan is to build first, and worry about markets later, hoping that a growing supply of affordable plastic will increase consumption.

Perhaps the reason industry is so eager to forge a market is because oil and gas is struggling with a lot of debt. A study out of the Sightline Institute found that as of the first half of 2018, “US fracking-focused oil and gas companies continued their eight-year cash flow losing streak.”  The Center for International Environmental Law found that petrochemicals generally have a larger profit margin than oil and gas: “In 2015, ExxonMobil’s Chemicals segment accounted for roughly 10% of its revenues but more than 25% of its overall profits.”

Plastic is one way to subsidize this dying industry…

Beyond Storing Natural Gas Liquids

The motive behind developing storage is to catalyze and support a major industry. The DOE report states that the new infrastructure required “would include gathering lines, processing plants, fractionation facilities, NGLs storage facilities, ethane crackers, and then…plants for polyethylene, ethylene dichloride, ethylene oxide, and other infrastructure.” A hub would require more fracking and wastewater injection wells, cause even more heavy truck traffic that adds stress to roadways, and require additional power plant capacity to serve its electricity demand.

In other words, an Appalachian petrochemical hub would profoundly impact the region. The report contains an in-depth analysis of the economic impacts, but fails to mention any environmental concerns, social impacts on communities, or health effects. The other major studies on this buildout,  mentioned above, follow a similar pattern.

A quick look at industry along the Gulf Coast tells you that environmental, social, and health concerns are very real and produce their own economic debts. The petrochemical industry has created a “cancer alley” in Texas and Louisiana, disproportionately impacting low-income and minority communities. Yet, industry is preparing another hub without a single comprehensive environmental impact assessment or health assessment for the region. As each pipeline, fracked well, and plant is permitted separately, we can’t properly assess the cumulative negative impacts this development will have on our waterways, forests, soil, or air quality. Therefore, we also won’t know how it will affect our health.

Looking into the future

The report analyzes the industry through 2050. It states that NGL output in Appalachia:

… will continue to grow throughout the forecast period. As natural gas production gradually migrates away from liquids-rich gas areas, which are expected to slowly deplete, to dryer areas, the rate of growth in NGPL production will slow relative to the rate of natural gas production growth.

In 31 years, the kids growing up in Appalachia right now could be left with brownfields, dried-up wells, and abandoned ethane crackers. But it doesn’t have to be this way. Last year, the DOE reported that there are more jobs in clean energy, energy efficiency, and alternative vehicles than in fossil fuels. By using funds such as the DOE’s Title XVII innovative clean energy loan – for actual clean energy – we can bring economic development to the region that will be relevant past 2050 and that won’t sacrifice our health and natural resources for short-term private gains.

By Erica Jackson, Community Outreach and Communications Specialist

PTTGC’s Ethane Cracker Project - Map by FracTracker Alliance

PTTGC’s Ethane Cracker Project: Risks of Bringing Plastic Manufacturing to Ohio

In 2012, a battle between Ohio, West Virginia, and Pennsylvania was underway. Politicians and businesses from each state were eagerly campaigning for the opportunity to host Royal Dutch Shell’s “world-class” petrochemical facility. The facility in question was an ethane cracker, the first of its kind to be built outside of the Gulf Coast in 20 years. In the end, Pennsylvania’s record-breaking tax incentive package won Shell over, and construction on the ethane cracker plant began in 2017.

Once completed, the ethane cracker will convert ethane from fracked wells into 1.6 million tons of polyethylene plastic pellets per year.

Shell Ethane Cracker

Shell’s ethane cracker, under construction in Beaver County, PA. Image by Ted Auch, FracTracker.
Aerial support provided by LightHawk.

Ohio and West Virginia, however, have not been left out of the petrochemical game. In addition to the NGL pipelines, cryogenic plants, and fractionation facilities in these states, plans for ethane cracker projects are also in the works.

In 2017, PTT Global Chemical (PTTGC) put Ohio in second place in the “race to build an ethane cracker,” when it decided to build a plant in Belmont County, Ohio.

But first, why is the petrochemical industry expanding in the Ohio River Valley?

Fracking has opened up huge volumes of natural gas in the Marcellus and Utica shales in Pennsylvania, Ohio, and West Virginia. Fracked wells in these states extract methane, which is then transported in pipelines and used as a residential, industrial, or commercial energy source. The gas in this region, however, contains more than just methane. Classified as “wet gas,” the natural gas stream from regional wells also contains natural gas liquids (NGLs). These NGLs include propane, ethane, and butane, and industry is eager to create a market for them.

Investing in plastic is one way for the industry to subsidize the natural gas production, an increasingly unprofitable enterprise. 

An image of plastic pellets

Plastic pellets, also called “nurdles,” the end product of ethane crackers.

Major processing facilities, such as cryogenic and fractionation plants, receive natural gas streams and separate the NGLs, such as ethane, from the methane. After ethane is separated, it can be “cracked” into ethylene, and converted to polyethylene, the most common type of plastic. The plastic is shipped in pellet form to manufacturers in the U.S. and abroad, where it is made into a variety of plastic products.

By building ethane crackers in the Ohio River Valley, industry is taking advantage of the region’s vast underground resources.

PTTGC ethane cracker: The facts

PTTGC’s website states that the company “is Thailand’s largest and Asia’s leading integrated petrochemical and refining company.” While this ethane cracker has been years in the making, the company states that “a final investment decision has not been made.” The image below shows land that PTTGC has purchased for the plant, totaling roughly 500 acres, in Dilles Bottom, Mead Township.

According to the Ohio EPA, the plant will turn ethylene into:Recycling "2" symbol for HDPE plastic

  • 700,000 tons of high density polyethylene (HDPE) per year
  • 900,000 tons Linear low-density polyethylene (LLDPE)

HDPE is a common type of plastic, used in many products such as bags, bottles, or crates. Look for it on containers with a “2” in the recycling triangle. LLDPE is another common type of plastic that’s weaker and more flexible; it’s marked with a “4.”

The ethane cracker complex will contain:

  • An ethylene plant
  • Four ethylene-based derivatives plants.
  • Six 552 MMBtu/hour cracking furnaces fueled by natural gas and tail gas with ethane backup
  • Three 400 MMBTU/hr steam boilers fueled by natural gas and ethane
  • A primary and backup 6.2 MMBtu/hour thermal oxidizer
  • A high pressure ground flare (1.8 MMBtu/hour)
  • A low pressure ground flare (0.78 MMBtu/hour)
  • Wastewater treatment systems
  • Equipment to capture fugitive emissions
  • Railcars for pygas (liquid product) and HDPE and LLDPE pellets
  • Emergency firewater pumps
  • Emergency diesel-fired generator engines
  • A cooling tower

Impacts on air quality

The plant received water permits last year, and air permits are currently under review. On November 29, 2018, the Ohio EPA held an information session and hearing for a draft air permit (the permit can be viewed here, by entering permit number P0124972).

FracTracker has previously reported on the air quality impacts, risks, and fragmented permitting process associated with the Shell ethane cracker in Pennsylvania. How does the PTTGC plant stack up?

The plant will be built in the community of Dilles Bottom, on the former property of FirstEnergy’s R.E. Burger Power Station, a coal power plant that shut down in 2011. The site was demolished in 2016 in preparation for PTTGC’s ethane cracker. In 2018, PTTGC also purchased property from Ohio-West Virginia Excavating Company. In total, the ethane cracker will occupy 500 acres.

R.E. Burger Power Station

R.E. Burger Power Station, which has been demolished for the PTTGC Ethane Cracker. Image Source

Table 1, below, is a comparison of the previous major source of air pollution source, the R.E. Burger Power Station, and predictions of the future emissions from the PTTGC ethane cracker. The far right column shows what percent of the former emissions the ethane cracker will release.

Table 1: Former and Future Air Emissions in Dilles Bottom, Ohio

Pollutant R.E.Burger Power Station
(2010 emissions, tons per year)

PTTGC Ethane Cracker
(predicted emissions, tons per year)

Percent of former emissions

CO (carbon monoxide) 143.33 544 379.5%
NOx (nitrogen oxides) 1861.2 164 8.81%
SO2 (sulfur dioxide) 12719 23 0.18%
PM10 (particulate matter, 10) 179.25 89 49.65%
PM2.5 (particulate matter, 2.5) 77.62 86 110.8%
VOCs (volatile organic compounds) 0.15 396 264000%

As you can see, the ethane cracker will emit substantially less sulfur dioxide and nitrogen dioxides compared with the R.E. Burger site. This makes sense, as these two pollutants are associated with burning coal. On the flip side, the ethane cracker will emit almost four times as much carbon monoxide and 263,900% more volatile organic compounds (percentages bolded in Table 1, above).

In addition to these pollutants, the ethane cracker will emit 38 tons per year of Hazardous Air Pollutants (HAPS), a group of pollutants that includes benzene, chlorine, and ethyl chloride. These pollutants are characterized by the EPA as being “known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects.”

Finally, the ethane cracker is predicted to emit 1,785,043 tons per year of greenhouse gasses. In the wake of recent warnings on the urgent need to limit greenhouse gas emissions from the Intergovernmental Panel on Climate Change and National Climate Assessment, this prediction is highly concerning.

While these emission numbers seem high, they still meet federal requirements and nearly all state guidelines. If the ethane cracker becomes operational, pollutant monitoring will be important to ensure the plant is in compliance and how emissions impact air quality. The plant will also attract more development to an already heavily industrialized area; brine trucks, trains, pipelines, fracked wells, compressor stations, cryogenic facilities, and natural gas liquid storage are all part of the ethane-to-plastic manufacturing process. The plastics coming from the plant will travel to facilities in the U.S. and abroad to create different plastic products. These facilities are an additional source of emissions.

Air permitting does not consider the full life cycle of the plant, from construction of the plant to its demolition, or the development associated with it.

As such, this plant will be major step back for local air quality, erasing recent improvements in the Wheeling metropolitan area, historically listed as one of the most polluted metropolitan areas in the country. Furthermore, the pollutants that will be increasing the most are associated with serious health effects. Over short term exposure, high levels of VOCs are associated with headaches and respiratory symptoms, and over long term exposure, cancer, liver and kidney damage.

Emergency preparedness

In addition to air quality impacts, ethane cracker plants also pose risks from fires, explosions, and other types of unplanned accidents. In 2013, a ruptured boiler at an ethane cracker in Louisiana caused an explosion that sent 30,000 lbs. of flammable hydrocarbons into the air. Three hundred workers evacuated, but sadly there were 167 suffered injuries and 2 deaths.

While researching Shell’s ethane cracker in Beaver County, FracTracker worked with the Emergency Operations Center (EOC) in St. Charles Parish, Louisiana, to learn about emergency planning around the petrochemical industry. Emergency planners map out two and five mile zones around facilities, called emergency planning zones, and identify vulnerabilities and emergency responders within them.

With this in mind, the map below shows a two and five-mile radius around PTTGC’s property, as reported by Belmont County Auditor. Within these emergency planning zones are the locations of schools, day cares, hospitals, fire stations, emergency medical services, hospitals, and local law enforcement offices, reported by Homeland Infrastructure Foundation Level Data.

The map also includes census data from the EPA that identifies potential environmental justice concerns. By clicking on the census block groups, you will see demographic information, such as income status, age, and education level. These data are important in recognizing populations that may already be disproportionately burdened by or more vulnerable to environmental hazards.

Finally, the map displays environmental data, also from the EPA, including a visualization of particulate matter along the Ohio River Valley, where massive petrochemical development is occurring. By clicking on a census block and then the arrow at the top, you will find a number of other statistics on local environmental concerns.

View map full screen  |  How FracTracker maps work

Emergency planning zones for Shell’s ethane cracker are available here.

Within the 5 mile emergency planning zone, there are:

  • 9 fire or EMS stations
  • 17 schools and/or day cares
  • 1 hospital
  • 6 local law enforcement offices

Within the 2 mile emergency planning zone, there are:

  • 3 fire or EMS stations
  • 7 schools and/or day cares
  • No hospitals
  • 3 local law enforcement offices

Sites of capacity, such as the fire and EMS stations, could provide emergency support in the case of an accident. Sites of vulnerability, such as the many schools and day cares, should be aware of and prepared to respond to the various physical and chemical risks associated with ethane crackers.

The census block where the ethane cracker is planned has a population of 1,252. Of this population, 359 are 65 years or older. That is well above national average and important to note; air pollutants released from the plant are associated with health effects such as cardiovascular and respiratory disease, to which older populations are more vulnerable.

Conclusion

PTTGC’s ethane cracker, if built, will drastically alter the air quality of Belmont County, OH, and the adjacent Marshall County, WV. Everyday, the thousands of people in the surrounding region, including the students of over a dozen schools, will breathe in its emissions.

This population is also vulnerable to unpredictable accidents and explosions that are a risk when manufacturing products from ethane, a highly flammable liquid. Many of these concerns were recently voiced by local residents at the air permit hearing.

Despite these concerns and pushback, PTTGC’s website for this ethane cracker, pttgcbelmontcountyoh.com, does not address emergency plans for the area. It also fails to acknowledge the potential for any adverse environmental impacts associated with the plant or the pipelines, fracked wells, and train and truck traffic it will attract to the region.

With this in mind, we call upon PTTGC to acknowledge the risks of its facility to Belmont County and provide the public with emergency preparedness plans, before the permitting process continues.

If you have thoughts or concerns regarding PTTGC’s ethane cracker and its impact on air quality, the Ohio EPA is accepting written comments through December 11, 2018. We encourage you to look through the data on this map or conduct your own investigations and submit comments on air permit #P0124972.

Written comments should be sent to:

Ohio EPA SEDO-DAPC, Attn: Kimbra Reinbold
2195 Front St
Logan, OH 43138
Kimbra.reinbold@epa.ohio.gov

(Include permit #P0124972 within your comment)

By Erica Jackson, Community Outreach and Communications Specialist

Documenting Fracking Impacts: A Yearlong Tour from a Bird’s-Eye-View

“The aeroplane has unveiled for us the true face of the earth.” by French writer and aviator Antoine de Saint-Exupéry author of Le Petit Prince (The Little Prince)

I always tell people that you can’t really understand or appreciate the enormity, heterogeneity, and complexity of the unconventional oil and gas industry’s impact unless you look at the landscape from the cockpit of a Cessna 172. This bird’s-eye-view allows you to see the grandeur and nuance of all things beautiful and humbling. Conversely, and unfortunately more to the point of what I’ve seen in the last year, a Cessna allows one to really absorb the extent, degree, and intensity of all things destructive.

I’ve had the opportunity to hop on board the planes of some amazing pilots like Dave Warner, a forester formerly of Shanks, West Virginia (Note: More on our harrowing West Virginia flight with Dave later!!), Tim Jacobson Esq. out of La Crosse, Wisconsin, northern Illinois retired commodity and tree farmer Doug Harford, and Target corporate jet pilot Fred Muskol out of the Twin Cities area of Minnesota.

Since joining FracTracker I’ve been fortunate to have completed nearly a dozen of these “morning flights” as I like to call them, and five of those have taken place since August 2017. I’m going to take the next few paragraphs to share what I’ve found in my own words and by way of some of the photos I think really capture how hydraulic fracturing, and all of its tentacles, has impacted the landscape.

The following is by no means an empirical illustration. I’m increasingly aware, however, that often times tables, charts, and graphs fail to capture much of the scale and scope of fossil fuel’s impact. Photos, if properly georeferenced and curated, are as robust a source of data as a spreadsheet or shapefile, both of which are the traditional coins of the realm here at FracTracker.

West Central Wisconsin Frac Sand Mines

August 2, 2017

Figure 1. Wisconsin and Winona, Minnesota silica sand mines, processing facilities, and related operations

It was nearly a year ago today that I met Bloomer, Wisconsin dairy farmer Ken Schmitt at the Chippewa Valley Regional Airport (KEAU) and soon thereafter jumped into Tim Jacobson’s Cessna 172 to get a bird’s-eye-view of the region’s many frac sand mines and their impacts (Figure 1). These sites are spread out over a 12-county region known as West Central Wisconsin (WCW). Ken hadn’t been up to see these mines since October of 2016 and was eager to see how they had “progressed,” knowing what he did about their impact on his neck of the woods in northern Chippewa County.

Ken is one of the smartest guys I’ve ever met, and – befitting a dairy farmer – he is also one of the most conservative and analytical folks I’ve ever met. However, that morning it was clear that his patience with county administrators and the frac sand mining industry had long since run out. He was tired of broken promises, their clear and ubiquitous bullying tactics, and a general sense that his livelihood and the farm he was hoping to leave his kids were at risk due to sand mining’s complete capture of WCW’s residents and administrators.

Meanwhile Mr. Jacobson Esq. was intimately familiar with some of the legal tools residents were using to fight the spread of sand mining in the WCW. This is something he referred to as “anticipatory nuisance” lawsuits, which he and his colleagues were pursuing on behalf of several landowners against OmniTrax’s (f/k/a Terracor) “sand mine, wet and dry processing, a conveyor system to a rail load out with manifest yard” proposal in Jackson County, Wisconsin. I, too, have worked with Tim to inform some of his legal work with respect to the nuisance stories and incidents I’ve documented in my travels, as well as research into the effects of sand mining across Michigan, Illinois, Minnesota, and Wisconsin.

Explore details from our sand mining tour by clicking on the images below:

Our flight lasted nearly 2.5 hours and stretched out over 4,522 square miles. It included nearly 20 sand mines – and related infrastructure – in the counties of Jackson, Wood, Clark, Eau Claire, Monroe, Trempealeau, and Buffalo. What we saw was a sizeable expansion of the mining complex in the region since the last time I flew the area – nearly four years earlier on October 8, 2013. The number and size of mines that had popped up since that trip were far greater than any of us had expected.

This expansion paralleled the relative – and total –increase in demand for “proppant” from the High Volume Hydraulic Fracturing (HVHF) all across the country (Figure 2).

Figure 1. A map of the likely destination for Wisconsin’s frac sand mines silica sand based on an analysis of Superior Silica Sand’s 2015 SEC 10Ks.

Figure 2. A map of the likely destination for Wisconsin’s frac sand mines silica sand based on an analysis of Superior Silica Sand’s 2015 SEC 10Ks.

West Virginia Panhandle & Southeastern Ohio

January 26, 2018

On the morning of January 26th, I woke up on the west side of Cleveland thinking there was very little chance we were going to get up in the air for our flight with SouthWings’ pilot Dave Warner due to inclement weather. There was a part of me that was optimistic, however, so I decided to make the three hour drive down to the Marshall County Airport (KMPG) in Moundsville, West Virginia from Cleveland in the hopes that the “cold rain and snow” we’d been receiving was purely lake effect stuff and the West Virginia panhandle had not been in the path of the same cold front.

Marshall County, West Virginia Airport (KMPG) staff clearing the runway for our flight with SouthWings pilot Dave Warner, 1/26/2018

Unfortunately, when I arrived at the Moundsville airport I was wrong, and the runway was pretty slick around 8:00 a.m. However, the airport’s staff worked diligently to de-ice and plow the runway and by the time Dave Warner arrived from southern West Virginia conditions were ideal. The goal of this flight was two-fold:

  1. Photograph some of the large-scale high-volume hydraulic fracturing (HVHF) infrastructure in the West Virginia counties of Doddridge, Wetzel, and Marshall owned and operated by MarkWest, and
  2. Allegheny Front’s Julie Grant was doing a story on natural gas gathering pipeline’s impact on waterways, and more specifically the Hellbender Salamander (Cryptobranchus alleganiensis). She was looking to see the impacted landscape from the air.

Both of these goals were achieved efficiently and safely, with the resulting Allegheny Front piece receiving significant interest across multiple public radio and television platforms including PRI’s Living On Earth.

Explore details from our WV / OH tour by clicking on the images below:

On my return drive home that afternoon the one new thing that really resonated with me was the fact that hydraulic fracturing or fracking has come to be defined by 4-5 acre well pads across Appalachian, Texas, Oklahoma, and North Dakota. This is a myth, however, expertly perpetuated by the oil and gas industry and their talking shops. Fracking’s extreme volatility and quick declines in rates of return necessitate that this latest fossil fuel iteration install large pieces of infrastructure like compressor stations and cracking facilities. This all is to ensure timely movement of product from supply to demand and to optimize the “value added” products the global markets demand and plastics industry uses as their primary feedstocks. This large infrastructure was never mentioned at the outset of the shale revolution, and I would imagine if it had been there would be far more resistance.

The one old thing the trip reinforced was the omnipresence and sinuosity of natural gas gathering lines across extremely steep and forested Appalachian geographies. How these pipelines will hold up and what their hasty construction is doing to terrestrial and aquatic wildlife, not to mention humanity, is anyone’s guess; the data is just so darn bad.

Southeastern Ohio

March 5, 2018 – aka, The XTO Powhatan Point Well Pad Explosion Flight

FAA’s Temporary Flight Restriction (TFR) notification

Around 9 a.m. on Thursday, February 15, 2018, an explosion occurred at XTO’s Schnegg frack pad “as the company worked to frack a fourth well” in Powhatan Point, Belmont County, Ohio. Shortly thereafter, a two-mile Temporary Flight Restriction (TFR) was enacted by the Federal Aviation Administration (FAA) around the incident’s location. The TFR was supposed to lapse during the afternoon of March 5, however, due to complications at the site the TFR was extended to the evening of March 8.

We were antsy to see what we could see, so we caught an emergency flight with Dave Warner, only this time under the LightHawk umbrella. We left on the morning of March 5th out of the all too familiar[1] Carroll County-Tolson Airport (KTSO). Although we couldn’t get close to the site, there was a holler valley to the northwest of the pad that allowed us to capture a photo of the ongoing releases. Additionally, within several weeks we obtained by FOIA the raw Ohio State Trooper monitoring footage from their helicopter and posted this footage to our YouTube channel, where it has received 4,787 views since March 19, 2018. This type of web traffic is atypical for anything that doesn’t include kittens, the Kardashians, or the Kardashians’ kittens.

Explore details from our Southeastern Ohio tour by clicking on the images below:

Much like our flight in January the most salient points I got out of Dave’s plane thinking about were:

  • Astonishment regarding the number of gas gathering lines and the fact that they seem to have been installed with very little-to-no reclamation forethought. They are also installed during a time of year when – even if hydroseed is applied – it won’t grow, leaving plenty of chances for predictable spring rains to cause major problems for streams and creeks, and
  • Amazement over the growing inventory of large processing infrastructure required by the HVHF industry. This insfrastructure includes the large Mark West and Blue Racer Midstream processing plants in Cadiz and Lewisville, Ohio, respectively, as well as Texas-based Momentum Midstream’s natural gas liquids-separating complex in Scio along the Carroll and Harrison County borders. That complex is affectionately referred to by the company’s own spokesman as The Beast because of its sheer size.

It is a big plant, a very big plant and far bigger than other plants around here… What’s really amazing that we got it up and running in six months. No one believed that we could do that. – Momentum Midstream spokesman Eric Mize discussing their natural gas liquids-separating complex in Scio, Ohio.

LaSalle County, Illinois

May 24 & 26, 2018

 Frac Sand Mines and The Nature Conservancy’s Nachusa Grasslands Buffalo Herd, Franklin Grove, Illinois

It was during the week of June 20, 2016 that I first visited the frac sand mine capital of the United States: LaSalle County, Illinois. Here is the land of giant silica sand mines owned by even larger multinationals like U.S. Silica, Unimin, and Fairmount Santrol.

Fast forward to the week of May 21st of this year, and I was back in the frac sand capital to interview several folks that live near these mines or have been advocating for a more responsible industry. I conducted a “morning flight” with several journalists and county officials from neighboring Ottawa County.

LaSalle County is an extremely interesting case study for anyone even remotely interested in the food, energy, and water (FEW) conversation that has begun to receive significant attention in the age of the “Shale Revolution.” (Such focus is largely thanks to the extreme amounts of water required during the fracking process.) While LaSalle County has never experienced even a single HVHF permit, it is home to much of the prized silica or “proppant” the HVHF industry prizes. La Salle receives this recognition due to its location above one of the finest sources of silica sand: the St. Peter Sandstone formation. This situation has prompted a significant expansion in the permitting of new silica sand mines and expansion of existing mines throughout the county – from small townships like North Utica and Oglesby to Troy Grove 7 miles north on East 8th Road.

Meanwhile, LaSalle County is home to some of the most productive soils in the United States, due largely to the carbon sequestration capabilities of the tallgrass prairies that once dominated the region. In any given year, the county ranks in the top 5 nationally based on the amount of soybean and corn produced on a per-acre basis. According to an analysis of the most recent USDA agricultural census, total agricultural value in LaSalle County exceeds $175 million or seven times the national average by county of roughly $23 million.

Needless to say, the short-term extraction of silica sands in the name of “energy independence” stands to have a profound impact on long-term “food security” in the U.S. and worldwide. Sadly, this conflict is similar to the one facing the aforementioned West Central Wisconsin, home to similarly productive soils. The cows that feed on the forage those soils produce some of the highest quality dairy anywhere. (As an aside: both regions are facing the realities of their disproportionate support for Donald Trump and the effects his trade war will have on their economies.)

LaSalle County is also home to the 2,630-acre Starved Rock State Park along the south bank of the Illinois River. Much of the park’s infrastructure was built by the Civilian Conservation Core (CCC) back in the early 1900s. Starved Rock is home to 18 canyons featuring:

… vertical walls of moss-covered stone formed by glacial meltwater that slice dramatically through tree-covered sandstone bluffs. More than 13 miles of trails allow access to waterfalls, fed season runoff or natural springs, sandstone overhangs, and spectacular overlooks. Lush vegetation supports abundant wildlife, while oak, cedar and pine grow on drier, sandy bluff tops. – IL DNR

Starved Rock receives more than 2.5 million visitors annually, which is the most of any Illinois state park. However, it is completely surrounded by existing or proposed frac sand mines, including US Silica’s Covel Creek mine. US Silica even recently pitched an expansion to the doorstep of Starved Rock and future plans to nearly engulf the park’s perimeter. What such an expansion would do to the attractiveness of the park and its trickle down economic impact is debatable, but LaSalle County residents Paul Wheeler and photographer Michelle McCray took a stab at illustrating the value of the state park to residents for our audience back in August, 2016:


Our flight with LightHawk pilot and neighboring Mazon, Illinois retired farmer Doug Harford lifted off from Illinois Valley Regional Airport (KVYS) at around 9:00 a.m. local time on the morning of May 24th. We had perfect conditions for taking photos, with no clouds and a comfortable 70-75°F for the duration of a two-hour flight. We covered nearly 200 square miles and ten existing, abandoned, or permitted frac sand mines.

Explore details from our Illinois tour by clicking on the images below:

All passengers were struck by how large these mines were and how much several of the mines had expanded since the last time we all flew over them in June of 2016. The mines that had experienced the greatest rates of expansion were US Silica’s LaSalle Voss mine along Interstate 80 and the aforementioned Illinois River mine along with Fairmount Mineral’s major expansion, both in terms of infrastructure and actual mine footprint, in Wedron along the Fox River.

Figure 2. A map of the LaSalle County frac sand mines and associated St. Peter sandstone formation along with the city of Chicago for some geographic perspective.

Figure 3. A map of the LaSalle County frac sand mines and associated St. Peter sandstone formation, along with the city of Chicago for some geographic perspective.

Most of this expansion is due to three critical distinguishing characteristics about the industry in LaSalle County:

  • The processing and export infrastructure (i.e., east-west rail) is in place and allows for mining to take place at times when other sand mining regions are mothballed,
  • Due to the large aggregation of parcels for farming purposes, companies can lease or outright purchase large amounts of land from relatively few landowners, and
  • Only the largest firms are active in the region, and with economies of scale they are not subject to the same types of shocks that smaller firms are when the price of oil collapses (like it did between June 2015 and February 2016). This means that the conflict will only be amplified in the coming months and years as the frac sand mining industry looks to supersede agriculture as LaSalle County’s primary economic driver.

However, all is not lost in North Central Illinois. This hope was stoked during our sojourn – and my subsequent trip in person – up to see The Nature Conservancy’s 3,600 acre preserve in Franklin Grove on the border of Lee and Ogle counties. As someone who is working hard to establish a small plot of prairie grasses and associated wildflowers at my home outside Cleveland, I was hoping to see what an established prairie looks like from the air. My primary goal, however, was to see what a healthy herd of native bison looks like.[2] The Nachusa bison are unique in that they came:

… from Wind Cave National Park in South Dakota and…Unlike most other American bison, animals from the Wind Cave herd have no history of cross-breeding with cattle. Bison from Wind Cave are the species’ most genetically pure and diverse specimens.

We were fortunate during our flight to have spotted the heard at the western edge of the preserve in what volunteer naturalist, Betty Higby, later told me the staff calls Oak Island. While I am not a person of faith, seeing these behemoths roaming freely and doing what 20-30 million of their ancestors used to do across much of North America moved me in a way I was not prepared for. I was immediately overwhelmed with a sense of awe and humility. How was I going to explain this beast’s former ubiquity and current novelty to my 5-year-old son, who shares a love of the North American Bison with me and would most certainly ask me what happened to this majestic creature?

Medina & Stark counties, Ohio NEXUS Pipeline flight

June 25, 2018

Ohio is currently home to 2,840 fracking permits, with 2,370 of these laterals having been drilled since September 2010. The growing concern around the fracking and petrochemicals conversation across much of the Midwest is the increasing number of FERC-permitted natural gas pipeline “proposals”[3] the industry is demanding it needs to maximize potential. Most residents in the path of these pipelines have strong objections to such development, citing the fact that imminent domain should not be invoked for corporate gain.

Much like all of the other patterns and processes we’ve documented and/or photographed at FracTracker, we felt that a flight over the latest FERC-approved pipeline – The NEXUS pipeline – would give us a better understanding of how this critical piece of infrastructure has altered the landscapes of Medina and Stark counties. Given the population density of these two northeastern Ohio counties, we also wanted to document the pipeline’s pathway with respect to urban and suburban centers.

Our flight on June 25th was delayed due to low clouds and last minute changes to the flight plan, but once we took off from Wadsworth Municipal Airport (3G3) with a local flight instructor it was clear that NEXUS is a pipeline that navigates a sinuous path in cities and townships like Green, Medina, Rittman, and Seville – coming dangerously close to thousands of homes and farms, as well as many schools and medical facilities.

Explore details from our NEXUS Pipeline tour by clicking on the images below:

Will this be the last FERC-approved pipeline to transverse Ohio in the name of “energy independence”? Will this pipeline and its brethren with names like the Utopia and ET Rover be monitored in real-time? If not, why? It is unfortunate, to say the least, that we so flippantly assume these pipelines are innocuous given their proximity to so many Ohioans. And, as if to add insult to injury, imminent domain is invoked. All this for a piece of oil and gas infrastructure that will profit companies on the global market, with only a fraction of the revenue returning to affected communities.

What’s Next?

I don’t know of a better way to understand the magnitude of these pipelines than flying over them at 1,000-1,500 feet, and I will continue to monitor and photograph oil and gas developments from the air with the assistance of amazing pilots like those affiliated with LightHawk and SouthWings.

To this end, I will be returning to West Central Wisconsin for yet another “morning flight” with the aforementioned La Crosse-area pilot and lawyer Tim Jacobson and frequent collaborator University of Wisconsin-Stout professor Tom Pearson.[4] Our flight plan will return us to the northern Wisconsin frac sand counties of Chippewa, Barron, Dunn, Eau Claire, and if we have time we’ll revisit the mines we photographed in August of last year. We’ve been told by Susan Bence, an environmental reporter out of Milwaukee Public Radio, that she is trying to convince the powers that be at NPR in Washington, DC that this is a story the entire country should hear about. Wish us luck!


By Ted Auch, Great Lakes Program Coordinator

Bird’s-Eye-View Endnotes

  1. The first of my morning fracking flights was out of this airport back in June, 2012 along with the other passenger on this flight Paul Feezel of Carroll Concerned Citizens and David Beach of the Cleveland Museum of Natural History’s Green City Blue Lakes program.
  2. The Conservancy initially brought at least 30 bison of different ages and genders to Nachusa. The bison graze on approximately 1,500 acres of the prairie and the site currently supports more than 120 bison according to site volunteer naturalist Betty Higby.
  3. I put quotes around this word because in my travels across Ohio interviewing those in the path of these transmission pipelines it is clear that this is not the correct word because ‘proposals’ implies that these pipelines might not happen or are up for debate. Yet, neither could be further from the truth with most folks indicating that it was very clear very early in their interactions with FERC and the pipeline companies that there was never a chance that these pipelines were not going to happen with “imminent domain for private gain” being the common thread throughout my conversations.
  4. Tom is the author of a recently published book on the topic “When the Hills Are Gone.”

Supporting Documentation

Upper Appalachian Gas Storage Wells

New map available showing Upper Appalachian gas storage wells

FracTracker has received numerous requests to compile a regional map of natural gas storage wells. In response, we have built the dynamic map below covering storage wells in Pennsylvania, Ohio, and West Virginia:

Upper Appalachian Gas Storage Wells Map

View map fullscreen | How FracTracker maps work 

Using Our Map

The colored areas on the map above  (pink, blue, and yellow) correspond to gas storage wells in one of the three states. When you first view the map in fullscreen mode you will notice that these wells have been “generalized” into one large layer. That feature allows the map to load more quickly in your browser.

Zoom in further to where the generalized layers change to individual points in order to explore the wells more in depth, as shown in the screenshot below:

Screenshot of the Upper Appalachian Gas Storage Wells map, zoomed in


Map Metadata: Upper Appalachian Gas Storage Wells

This map shows gas storage wells in Ohio, Pennsylvania, and West Virginia.  Due to the large amount of data, generalized layers were created to show the location of the storage fields at statewide zoom levels.  To access well data, viewers must zoom in beyond the scale of 1:500,000, or about the size of a large county.  Each state’s data includes slightly different data fields.

Data Layers include:

Name: OH Storage Wells
Date: January 2018
Source: Ohio DNR
Notes: Gas storage wells in Ohio. Storage wells selected from a broader dataset by FracTracker Alliance.

Name: PA Storage Wells
Date:  January 2018
Source:  Pennsylvania DEP
Notes:  Gas storage wells in Pennsylvania. Storage wells selected from a broader dataset by FracTracker Alliance.

Name:  WV Storage Wells
Date:  January 2018
Source:  West Virginia DEP
Notes:  Gas storage wells in West Virginia. Storage wells selected from a broader dataset by FracTracker Alliance.

Name: State Boundaries
Date:  2018
Source:  USDA Geospatial Data Gateway
Notes:  State boundaries of states with gas storage wells on this map.

Shell Pipeline - Not Quite the Good Neighbor

Shell Pipeline: Not Quite the “Good Neighbor”

In August 2016, Shell Pipeline announced plans to develop the Falcon Ethane Pipeline System, a 97-mile pipeline network that will carry more than 107,000 barrels of ethane per day through Pennsylvania, West Virginia, and Ohio, to feed Shell Appalachia’s petrochemical facility currently under construction in Beaver County, PA.

FracTracker has covered the proposed Falcon pipeline extensively in recent months. Our Falcon Public EIA Project explored the project in great detail, revealing the many steps involved in risk assessments and a range of potential impacts to public and environmental health.

This work has helped communities better understand the implications of the Falcon, such as in highlighting how the pipeline threatens drinking water supplies and encroaches on densely populated neighborhoods. Growing public concern has since convinced the DEP to extend public comments on the Falcon until April 15th, as well as to host three public meetings scheduled for early April.

Shell’s response to these events has invariably focused on their intent to build and operate a pipeline that exceeds safety standards, as well as their commitments to being a good neighbor. In this article, we investigate these claims by looking at federal data on safety incidents related to Shell Pipeline.

Contrary to claims, records show that Shell’s safety record is one of the worst in the nation.

The “Good Neighbor” Narrative

Maintaining a reputation as a “good neighbor” is paramount to pipeline companies. Negotiating with landowners, working with regulators, and getting support from implicated communities can hinge on the perception that the pipeline will be built and operated in a responsible manner. This is evident in cases where Shell Pipeline has sold the Falcon in press releases as an example of the company’s commitment to safety in public comments.

Figure 1. Shell flyer

A recent flyer distributed to communities in the path of the Falcon, seen in Figure 1, also emphasizes safety, such as in claims that “Shell Pipeline has a proven track record of operating safely and responsibility and remains committed to engaging with local communities regarding impacts that may arise from its operations.”

Shell reinforced their “good neighbor” policy on several occasions at a recent Shell-sponsored information meeting held in Beaver County, stating that, everywhere they do business, Shell was committed to the reliable delivery of their product. According to project managers speaking at the event, this is achieved through “planning and training with first responders, preventative maintenance for the right-of-way and valves, and through inspections—all in the name of maintaining pipeline integrity.”

Shell Pipeline also recently created an informational website dedicated to the Falcon pipeline to provide details on the project and emphasize its minimal impact. Although, curiously, Shell’s answer to the question “Is the pipeline safe?” is blank.

U.S. Pipeline Incident Data

Every few years FracTracker revisits data on pipeline safety incidents that is maintained by the Pipeline and Hazardous Materials Safety Administration (PHMSA). In our last national analysis we found that there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion.

These numbers were based on U.S. data from 2010-2016 for natural gas transmission and gathering pipelines, natural gas distribution pipelines, and hazardous liquids pipelines. It is also worth noting that incident data are heavily dependent on voluntary reporting. They also do not account for incidents that were only investigated at the state level.

Shell Pipeline has only a few assets related to transmission, gathering, and distribution lines. Almost all of their pipeline miles transport highly-volatile liquids such as crude oil, refined petroleum products, and hazardous liquids such as ethane. Therefore, to get a more accurate picture of how Shell Pipeline’s safety record stacks up to comparable operators, our analysis focuses exclusively on PHMSA’s hazardous liquids pipeline data. We also expanded our analysis to look at incidents dating back to 2002.

Shell’s Incident Record

In total, PHMSA data show that Shell was responsible for 194 pipeline incidents since 2002. These incidents spilled 59,290 barrels of petrochemical products totaling some $183-million in damages. The below map locates where most of these incidents occurred. Unfortunately, 34 incidents have no location data and so are not visible on the map. The map also shows the location of Shell’s many refineries, transport terminals, and off-shore drilling platforms.

Open the map fullscreen to see more details and tools for exploring the data.


View Map Fullscreen | How FracTracker Maps Work

Incidents Relative to Other Operators

PHMSA’s hazardous liquid pipeline data account for more than 350 known pipeline operators. Some operators are fairly small, only maintaining a few miles of pipeline. Others are hard to track subsidiaries of larger companies. However, the big players stand out from the pack — some 20 operators account for more than 60% of all pipeline miles in the U.S., and Shell Pipeline is one of these 20.

Comparing Shell Pipeline to other major operators carrying HVLs, we found that Shell ranks 2nd in the nation in the most incidents-per-mile of maintained pipeline, seen in table 1 below. These numbers are based on the total incidents since 2002 divided by the number of miles maintained by each operator as of 2016 miles. Table 2 breaks Shell’s incidents down by year and number of miles maintained for each of those years.

Table 1: U.S. Pipeline operators ranked by incidents-per-mile

Operator HVL Incidents HVL Pipeline Miles Incidents Per Mile (2016)
Kinder Morgan 387 3,370 0.115
Shell Pipeline 194 3,490 0.056
Chevron 124 2,380 0.051
Sunoco Pipeline 352 6,459 0.049
ExxonMobile 240 5,090 0.048
Colonial Pipeline 244 5,600 0.044
Enbride 258 6,490 0.04
Buckeye Pipeline 231 7,542 0.031
Magellan Pipeline 376 12,928 0.03
Marathan Pipeline 162 5,755 0.029

Table 2: Shell incidents and maintained pipeline miles by year

Year Incidents Pipeline Miles Total Damage Notes
2002 15 no PHMSA data $2,173,704
2003 20 no PHMSA data $3,233,530
2004 25 5,189 $40,344,002 Hurricane Ivan
2005 22 4,830 $62,528,595 Hurricane Katrina & Rita
2006 10 4,967 $11,561,936
2007 5 4,889 $2,217,354
2008 12 5,076 $1,543,288
2009 15 5,063 $11,349,052
2010 9 4,888 $3,401,975
2011 6 4,904 $2,754,750
2012 12 4,503 $17,268,235
2013 4 3,838 $10,058,625
2014 11 3,774 $3,852,006
2015 12 3,630 $4,061,340
2016 6 3,490 $6,875,000
2017 9 no PHMSA data $242,800
2018 1 no PHMSA data $47,000 As of 3/1/18

Cause & Location of Failure

What were the causes of Shell’s pipeline incidents? At Shell’s public informational session, it was said that “in the industry, we know that the biggest issue with pipeline accidents is third party problems – when someone, not us, hits the pipeline.” However, PHMSA data reveal that most of Shell’s incidents issues should have been under the company’s control. For instance, 66% (128) of incidents were due to equipment failure, corrosion, welding failure, structural issues, or incorrect operations (Table 3).

Table 3. Shell Pipeline incidents by cause of failure

Cause Incidents
Equipment Failure 51
Corrosion 37
Natural Forces 35
Incorrect Operation 25
Other 20
Material and/or Weld Failure 15
Excavation Damage 11
Total 194

However, not all of these incidents occurred at one of Shell’s petrochemical facilities. As Table 4 below illustrates, at least 57 incidents occurred somewhere along the pipeline’s right-of-way through public areas or migrated off Shell’s property to impact public spaces. These numbers may be higher as 47 incidents have no mention of the property where incidents occurred.

Table 4. Shell Pipeline incidents by location of failure

Location Incidents
Contained on Operator Property 88
Pipeline Right-of-Way 54
Unknwon 47
Originated on Operator Property, Migrated off Property 3
Contained on Operator-Controlled Right-of-Way 2
Total 194

On several occasions, Shell has claimed that the Falcon will be safely “unseen and out of mind” beneath at least 4ft of ground cover. However, even when this standard is exceeded, PHMSA data revealed that at least a third of Shell’s incidents occurred beneath 4ft or more of soil.

Many of the aboveground incidents occurred at sites like pumping stations and shut-off valves. For instance, a 2016 ethylene spill in Louisiana was caused by lightning striking a pumping station, leading to pump failure and an eventual fire. In numerous incidents, valves failed due to water seeping into systems from frozen pipes, or large rain events overflowing facility sump pumps. Table 5 below breaks these incidents down by the kind of commodity involved in each case.

Table 5. Shell Pipeline incidents by commodity spill volumes

Commodity Barrels
Crude Oil 51,743
Highly Volatile Liquids 6,066
Gas/Diesel/Fuel 1,156
Petroleum Products 325
Total 59,290

Impacts & Costs

None of Shell’s incidents resulted in fatalities, injuries, or major explosions. However, there is evidence of significant environmental and community impacts. Of 150 incidents that included such data, 76 resulted in soil contamination and 38 resulted in water contamination issues. Furthermore, 78 incidents occurred in high consequence areas (HCAs)—locations along the pipeline that were identified during construction as having sensitive environmental habitats, drinking water resources, or densely populated areas.

Table 6 below shows the costs of the 194 incidents. These numbers are somewhat deceiving as the “Public (other)” category includes such things as inspections, environmental cleanup, and disposal of contaminated soil. Thus, the costs incurred by private citizens and public services totaled more than $80-million.

Table 6. Costs of damage from Shell Pipeline incidents

Private Property Emergency Response Environmental Cleanup Public (other) Damage to Operator Total Cost
$266,575 $62,134,861 $11,024,900 $7,308,000 $102,778,856 $183,513,192

A number of significant incidents are worth mention. For instance, in 2013, a Shell pipeline rupture led to as much as 30,000 gallons of crude oil spilling into a waterway near Houston, Texas, that connects to the Gulf of Mexico. Shell’s initial position was that no rupture or spill had occurred, but this was later found not to be the case after investigations by the U.S. Coast Guard. The image at the top of this page depicts Shell’s cleanup efforts in the waterway.

Another incident found that a Shell crude oil pipeline ruptured twice in less than a year in the San Joaquin Valley, CA. Investigations found that the ruptures were due to “fatigue cracks” that led to 60,000 gallons of oil spilling into grasslands, resulting in more than $6 million in environmental damage and emergency response costs. Concerns raised by the State Fire Marshal’s Pipeline Safety Division following the second spill in 2016 forced Shell to replace a 12-mile stretch of the problematic pipeline, as seen in the image above.

Conclusion

These findings suggest that while Shell is obligated to stress safety to sell the Falcon pipeline to the public, people should take Shell’s “good neighbor” narrative with a degree of skepticism. The numbers presented by PHMSA’s pipeline incident data significantly undermine Shell’s claim of having a proven track record as a safe and responsible operator. In fact, Shell ranks near the top of all US operators for incidents per HVL pipeline mile maintained, as well as damage totals.

There are inherent gaps in our analysis based on data inadequacies worth noting. Incidents dealt with at the state level may not make their way into PHMSA’s data, nor would problems that are not voluntary reported by pipeline operators. Issues similar to what the state of Pennsylvania has experienced with Sunoco Pipeline’s Mariner East 2, where horizontal drilling mishaps have contaminated dozens of streams and private drinking water wells, would likely not be reflected in PHMSA’s data unless those incidents resulted in federal interventions.

Based on the available data, however, most of Shell’s pipelines support one of the company’s many refining and storage facilities, primarily located in California and the Gulf states of Texas and Louisiana. Unsurprisingly, these areas are also where we see dense clusters of pipeline incidents attributed to Shell. In addition, many of Shell’s incidents appear to be the result of inadequate maintenance and improper operations, and less so due to factors beyond their control.

As Shell’s footprint in the Appalachian region expands, their safety history suggests we could see the same proliferation of pipeline incidents in this area over time, as well.

NOTE: This article was amended on 4/9/18 to include table 2.

Header image credit: AFP Photo / Joe Raedle

By Kirk Jalbert, FracTracker Alliance

Waiting on Answers - XTO incident image two weeks later

Waiting on Answers Weeks after a Well Explosion in Belmont County Ohio

Mar 7 Update: The well has finally been capped.

On February 15, 2018, officials evacuated residents after XTO Energy’s Schnegg gas well near Captina Creek exploded in the Powhatan Point area of Belmont County, Ohio. More than two weeks later, the well’s subsequent blowout has yet to be capped, and people want to know why. Here is what we know based on various reports, our Ohio oil and gas map, and our own fly-by on March 5th.

March 19th Update: This is footage of the Powhatan Point XTO Well Pad Explosion Footage from Ohio State Highway Patrol’s helicopter camera the day after the incident:


Powhatan Point XTO well pad explosion footage from Ohio State Highway Patrol

Cause of the Explosion

The well pad hosts three wells, one large Utica formation well, and two smaller ones. XTO’s representative stated that the large Utica well was being brought into production when the explosion occurred. The shut-off valves for the other two wells were immediately triggered, but the explosion caused a crane to fall on one of those wells. The representative claims that no gas escaped that well or the unaffected well.

Observers reported hearing a natural gas hiss and rumbling, as well as seeing smoke. The Powhatan Point Fire Chief reported that originally there was no fire, but that one later developed on the well pad. To make matters worse, reports later indicated that responders are/were dealing with emergency flooding on site, as well.

As of today, the Utica well that initially exploded is still releasing raw gas.

Site of the Feb 15th explosion on the XTO pad

Map of drilling operations in southeast Ohio, with the Feb 15, 2018 explosion on XTO Energy’s Schnegg gas well pad marked with a star. View dynamic map

Public Health and Safety

No injuries were reported after the incident. First responders from all over the country are said to have been called in, though the mitigation team is not allowed to work at night for safety reasons.

The evacuation zone is for any non-responders within a 1-mile radius of the site, which is located on Cat’s Run Road near State Route 148. Thirty (30) homes were originally evacuated within the 1-mile zone according to news reports, but recently residents within the outer half-mile of the zone were cleared to return – though some have elected to stay away until the issue is resolved completely. As of March 1, four homes within ½ mile of the well pad remain off limits.

The EPA conducted a number of site assessments right after the incident, including air and water monitoring. See here and here for their initial reports from February 17th and 20th, respectively. (Many thanks to the Ohio Environmental Council for sharing those documents.)

Much of the site’s damaged equipment has been removed. Access roads to the pad have been reinforced. A bridge was recently delivered to be installed over Cats Run Creek, so as to create an additional entrance and exit from the site, speaking to the challenges faced in drilling in rural areas. A portion of the crane that fell on the adjacent wellhead has been removed, and workers are continuing their efforts in removing the rest of the crane.


The above video by Earthworks is optical gas imaging that makes visible what is normally invisible pollution from XTO’s Powhatan Point well disaster. The video was taken on March 3, 2018, almost 3 weeks after the accident that started the uncontrolled release. Learn more about Earthworks’ video and what FLIR videos show.

An early estimate for the rate of raw gas being released from this well is 100 million cubic feet/day – more than the daily rate of the infamous Aliso Canyon natural gas leak in 2015/16. Unfortunately, little public information has been provided about why the well has yet to be capped or how much gas has been released to date.

Bird’s Eye View

On February 26, a two-mile Temporary Flight Restriction (TFR) was enacted around the incident’s location. The TFR was supposed to lapse during the afternoon of March 5, however, due to complications at the site the TFR was extended to the evening of March 8. On March 5, we did a flyover outside of the temporary flight restriction zone, where we managed to capture a photo of the ongoing release through a valley cut. Many thanks to LightHawk and pilot Dave Warner for the lift.

Photo of the XTO Energy well site and its current emissions after the explosion two weeks ago. Many are still waiting on answers as to why the well has yet to be capped.

XTO Energy well site and ongoing emissions after the explosion over two weeks ago. Many are still waiting on answers as to why the well has yet to be capped. Photo by Ted Auch, FracTracker Alliance, March 5, 2018. Aerial support provided by LightHawk

Additional resources

Per the Wheeling Intelligencer – Any local residents who may have been impacted by this incident are encouraged to call XTO’s claims phone number at 855-351-6573 or visit XTO’s community response command center at the Powhatan Point Volunteer Fire Department, located at 104 Mellott St. or call the fire department at 740-312-5058.

Sources:

Aerial image of fracking activity in Marshall County, WV, next to the Ohio River on January 26th, 2018 from approximately 1,000 to 1,200 feet, courtesy of a partnership with SouthWings and pilot Dave Warner. The camera we used was a Nikon D5300. Photo by Ted Auch, FracTracker Alliance, January 2018

Fracking’s Freshwater Supply and Demand in Eastern Ohio

Mapping Hydraulic Fracturing Freshwater Supply and Demand in Ohio

Below is a map of annual and cumulative water withdrawal volumes by the hydraulic fracturing industry across Ohio between 2010 and 2016. It displays 312 unique sites, as well as water usage per lateral. The digital map, which can be expanded fullscreen for more features, includes data up until May 2017 for 1,480 Ohio laterals (vertical wells can host more than one lateral well).


View map fullscreen | How FracTracker maps work

The primary take-home message from this analysis and the resulting map is that we can only account for approximately 73% of the industry’s more than 13-billion-gallon freshwater demand by considering withdrawals alone. Another source or sources must be supplying water for these hydraulic fracturing operations.

Hydraulic fracturing rig on the banks of the Ohio River in Marshall County, West Virginia, Winter 2018 (Flight provided by SouthWings)

When Leatra Harper at Freshwater Accountability Project and Thriving Earth Exchange and I brought up this issue with Ohio Division of Water Resources Water Inventory and Planning Program Manager, Michael Hallfrisch, the following correspondence took place on January 24, 2018:

Mr. Hallfrisch: “Where did the water usage per lateral data come from?  Does the water usage include reused/recycled water?  I know that many of the larger operators reuse a significant amount of their flow back because of the high cost of disposal in class II injection wells.”

FracTracker: “[We’]ve been looking at Class II disposal economics in several states and frankly the costs here in Ohio are quite cheap and many of the same players in Ohio operate in the other states [We]’ve looked at.  Granted they usually own their own Class II wells in those other states (i.e., OK, or CO) but the fact that they are “vertically integrated” still doesn’t excuse the fact that the cost of disposing of waste in Ohio is dirt cheap.  As for recycling that % was always a rounding error and last [we] checked the data it was going down by about 0.25-0.35% per year from an average of about 5.5-8.0%.  [We respectfully] doubt the recycling % would fill this 25% gap in where water is coming from.  This gap lends credence to what Lea and [FracTracker] hear time and again in counties like Belmont, Monroe, Noble etc with people telling us about frequent trenches being dug in 1st and 2nd order streams with operators topping off their demands in undocumented ways/means.  Apologies for coming down hard on this thing but we’ve been looking/mapping this thing since 2012 and increasingly frustrated with the gap in our basic understanding of flows/stocks of freshwater and waste cycling within Ohio and coming into the state from PA and WV.”

Broader Implications

The fracking industry in Ohio uses roughly 10-14 million gallons per well, up from 4-5 million gallon demands in 2010, which means that freshwater demand for this industry is increasing 15% per year (Figures 1 and 2). (This rate is more than double the volumes cited in a recent publication by the American Chemical Society, by the way.) If such exponential growth in hydraulic fracturing’s freshwater demand in Appalachia continues, by 2022 each well in Ohio and West Virginia will likely require[1*] at least 43 million gallons of freshwater (Table 1).

Table 1. Projected annual average freshwater demand per well (gallons) for the hydraulic fracturing industry in Ohio and West Virginia based on a 15% increase per year.

Year Water Use Per Well (gallons)
Ohio West Virginia
2019 19,370,077 19,717,522
2020 23,658,666 23,938,971
2021 28,896,760 29,064,215
2022 35,294,582 35,286,756
2023 43,108,900 42,841,519

Water quantity and associated watershed security issues are both acute and chronic concerns at the local level, where fracking’s freshwater demands equal 14% of residential demands across Ohio. These quantities actually exceed 85% of residential demand in several Ohio counties (e.g., Carroll and Harrison), as well as West Virginia (e.g., Doddridge, Marshall, and Wetzel). Interestingly the dramatic uptick in Ohio freshwater demand that began at the end of 2013 coincides with a 50% decline in the price of oil and gas (Figure 3).  The implication here is that as the price of gas and oil drops and/or unproductive wells are drilled at an unacceptable rate, the industry uses more freshwater and sand to ensure acceptable financial returns on investments.

Figures 1-3

Note: Data from U.S. Energy Information Administration (EIA) Petroleum & Other Liquids Overview

Total Water Used

To date, the fracking industry has taken on average 90 million gallons of freshwater per county out of Ohio’s underlying watersheds, resulting in the production of 9.6 million gallons of brine waste that cannot be reintroduced into waterways. This massive waste stream is destined for one of Ohio’s Class II Injection wells, but the industry spends less than 1.25% of available capital on water demand(s) and waste disposal. All of this means that the current incentive (cost) to become more efficient is too low. Sellers of water to the industry like the Muskingum Watershed Conservancy District, which we’ve chronicled frequently in the past[2], have actually dropped their price for every 1,000 gallons of water – from roughly $9 to now just $4-6 – for the fracking industry in recent years.

Hydraulic fracturing’s demand is becoming an increasingly larger component of total water withdrawals in Ohio, as other industries, agriculture, and mining become more efficient. Oil and gas wells drilled at the perimeter of the Utica Shale are utilizing 1.25 to 2.5 times more water than those that are staged in the shale “Sweet Spots.” Furthermore, the rise in permitting of so called “Super Laterals” would render all of our water utilization projections null and void. Laterals are the horizontal wells that extend out underground from the vertical well. Most well pads are home to multiple laterals in the range of 4-7 laterals per pad across Ohio and West Virginia.

These laterals, which can reach up to 21,000 feet or almost 4 miles, demand as much as 87 million gallons of freshwater each.

Even accounting for the fact that the super laterals are 17-21,000 feet in length – vs. an average of 7,452 feet – such water demand would dwarf current demands and their associated pressures on watershed security and/or resilience; typically, Ohio’s hydraulically fractured laterals require 970-1,080 gallons of freshwater per lateral foot (GPLF), but super laterals would need an astounding 4,470 GLPF.

Conclusions and Next Steps

The map above illustrates the acute pressures being put upon watersheds and public water supplies in the name of “energy independence.” Yet, Ohio regulators and county officials aren’t putting any pressure on the high volume hydraulic fracturing (HVHF) industry to use less water and produce less waste. We can’t determine exactly how water demand will change in the future. The problem is not going away, however, especially as climate change results in more volatile year-to-year fluctuations in temperature and precipitation. This means that freshwater that was/is viewed as a surplus “commodity” will become more valuable and hopefully priced accordingly.

Furthermore, the Appalachian Ohio landscape is undergoing dramatic transformations at the hands of the coal and more recently the HVHF industry with strip-mines, cracking plants, cryogenic facilities, compressor stations, gas gathering lines – and more – becoming ubiquitous.

We are seeing significant acreage of deciduous forests, cropland, or pasture that once covered the region replaced with the types of impervious surfaces and/or “clean fill” soil that has come to dominate HVHF landscapes in other states like North Dakota, Texas, and Oklahoma.

This landscape change in concert with climate change will mean that the region will not be able to receive, processes, and store water as effectively as it has in the past.

It is too late to accurately and/or more holistically price the HVHF’s current and past water demand in Ohio, however, such holistic pricing would do wonders for how the industry uses freshwater in the future. After all, for an industry that believes so devotedly in the laws of supply and demand, one would think they could get on board with applying such laws to their #1 resource demand in Appalachia. The water the HVHF industry uses is permanently removed from the hydrological cycle. Now is the time to act to prevent long term impacts on Ohio’s freshwater quantity and quality.


Relevant Data

  • Ohio hydraulic fracturing lateral freshwater demand by individual well between 2010 and the end of 2016. Download
  • Ohio hydraulic fracturing lateral freshwater withdrawals by site between 2010 and the end of 2016. Download

Endnotes

  1. *Certainty, with respect to this change in freshwater demand, is in the range of 86-90% assuming the exponential functions we fit to the Ohio and West Virginia data persist for the foreseeable future. Downing, Bob, 2014, “Ohio Drillers’ Growing Use of Fresh Water Concerns Environmental Activists”, March 19th, Akron, Ohio
  2. Downing, Bob, 2014, “Group Reacts to Muskingum Watershed Leasing Deal with Antero”, April 22nd, Akron, Ohio

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Appalachian Ohio: Where Coal Mining, Fracking, and National Politics Converge

The head of Murray Energy Corporation, Robert Murray, is very close to the highest office in the land. Such an association demands a close look at the landscape from which this corporation and its founder arouse.

Belmont County, Ohio’s most famous tycoon Robert Murray has established a close relationship with the Trump administration. This connection dates back to his $300,000 contribution to Trump’s inauguration. The intimacy of this relationship has been given new weight recently when it was revealed that a hug between Mr. Murray and the Department of Energy’s Secretary Rick Perry preceded a meeting where Mr. Murray presented the administration with a memo outlining a 16-point plan for removing some of the burdensome regulations put in place by Mr. Murray’s least favorite person former President Barack Obama.

Among the few consistent themes from this most inconsistent of presidents has been a fondness for coal and steel, where brawny men do essential work and are threatened not by shifting economics, but by greenies and weenies who want to shut them down. Mr Trump and Mr Murray both want environmental rules rolled back—Mr Murray because it would be good for his bottom line, and Mr Trump because a second consistent aim of his presidency is to reverse anything done by Barack Obama. It is doubtful whether policy shifts alone could revive coal mining, but the attempt to do so says much about how vested interests operate in this administration… Mr Trump played a hard-nosed businessman on TV, but Mr Murray is the real thing. – The Economist, 2018

Not only has Mr. Murray succeeded in capturing the hearts and minds of the Trump administration, he has demanded that his $300,000 contribution get his longtime Oklahoman lawyer, and former aide to the senate’s chief climate skeptic James M. Inhofe of Oklahoma, the #2 spot behind Scott Pruitt at the EPA. Mr. Murray is so powerful that he managed to get Perry & Co. to fire the photographer that took the photo of the tender moment between Messrs. Perry and Murray.

Awkwardness aside, these situations could reasonably lead one to conclude that Perry and Pruitt are competing for Murray’s favor in the event they choose to run for higher office and need a patron with deep pockets. Mr. Murray would be in a real pickle if they both chose to run for the highest office in the land, with two fawning candidates potentially offering to one-up the other in terms of incentives and/or regulatory carve outs for Mr. Murray’s beloved King Coal.

Belmont County

Once the heart of Ohio Coal Country, Belmont Co. is now a major player on the hydraulic fracturing landscape, as well.

Given the growing influence of Mr. Murray and the coal industry writ large we thought it was time to do a deep dive into how Mr. Murray’s Appalachian Ohio home county of Belmont and surrounding counties have been altered by coal mining. We were also interested in how the coal industry has come to interact with the hydraulic fracturing industry, which has drilled 542 Utica wells in Belmont County alone since March 2012. These wells amount to 20% of all fracked wells in Ohio as of January 2018. The rate at which Utica wells are being permitted in Belmont County is actually increasing by about 1.5 to 2 permits per month or 5.5 to 7.8 times the statewide average (Figure 1).

Belmont County also happens to be the “all-time leader in coal production in Ohio” having produced 825 million tons since 1816 (ODNR, 2005). All of this means that the Ohio county that produces the most coal is also now The Buckeye State’s most actively drilled county.

Utica Wells Permits in Belmont County, Ohio Q1-2012 to Q1-2018

Figure 1. Monthly and cumulative hydraulically fractured wells in Belmont County, Ohio between Q1-2012 and Q1-2018

Photos of coal mining operations in Belmont County, OH. Flyovers courtesy of SouthWings:

An End to Coal

However, the days of coal’s dominance – and easily mineable coal – in Ohio appear to be coming to an end.

Per mine, Ohio’s mines produce about 30% of the national average and 43% of the state averages (Figure 2). Ohio’s mines only produce about 10% of what the mega Western mines produce on a per-mine basis, and much less than states like New Mexico and Texas, as well.

Even with automation, the barriers to a return of coal in Appalachia are formidable given that most of the easily recoverable coal has already been mined. Additionally, the landscape is more formidable and not as conducive to the large strip-mine and dragline operations of  the Powder River Basin, which produce roughly 8.5 million tons of coal per mine, compared to an average of 330,000 tons per mine in Appalachia. (Figure 2).

Coal Production by State (Thousand Tons, 2016)

Figure 2. Total coal produced across the twenty-five coal producing states, the Appalachian region, Western Basins (2016, tons, Data Courtesy of Energy Information Administration (EIA) State Profile and Energy Estimates)

Mapping Coal and Fracking

The below map depicts parcels owned by coal mining companies in the Ohio counties of Belmont, Noble, Guernsey, and Muskingum, as well as previously mined and/or potential parcels based on owner and proximity to existing mines.

We also incorporated production data (2001 to 2016) for 116 surface and strip coal mines in these and surrounding counties, natural gas pipelines, hydraulically fractured laterals, and Class II Salt Water Disposal (SWD) injection wells as of January 2018.

There are few areas in the United States where underground coal mining and fracking are taking place simultaneously and on top of each other. What could possibly go wrong when injecting massive amounts of fracking waste at high pressures into the geology below, while simultaneously pumping billions of gallons of water into hydraulically fractured laterals and mining coal at similar depths?

In the coming months and years we will be monitoring Belmont County, Ohio as an unfortunate case-study in determining the answer to such a unique question.

At the present time:

  • Murray Energy, its subsidiaries, and other coal companies own approximately 15% of Belmont County.
  • Coal companies and their associated real-estate firms and subsidiaries have mined or own approximately 5,615 square miles across the Noble, Belmont, Guernsey, and Muskingum counties.
  • The 116 mines in this map have mined an average of 3.22 million tons of coal since 2001 and more than 373 million tons in total. Mr. Murray’s mines account for 50% of this amount, producing nearly 15 times more coal per mine than the other 112 mines.

Collectively, these mines have contributed 1.09 billion tons of CO2 and CH4+N2O in CO2 equivalents to atmospheric climate change, or 68 million tons per year (MTPY). This volume is equivalent to the annual emissions of nearly 60 million Americans or 19% of the population.

Murray’s mines alone have contributed enough greenhouse gases (CO2+CH4+N2O) to account for the emissions of 9.2% of the US population since 2001. Each Murray mine is belching out 8.41 million tons of greenhouse gases per year or roughly equivalent to the emissions of 463,489 Americans.


View map fullscreen | How FracTracker maps work

Relevant data for this map can be found at the end of this article.

Broader Implications

Robert Murray’s influence and mining impacts extend well beyond Appalachian Ohio.

Mr. Murray’s is the primary owner of 157 mines and associated facilities1 across eleven states – and five of the six major Lower 48 coal provinces – from Utah and North Dakota to Alabama, Georgia, and Florida (Figure 3). Mr. Murray likes to highlight his sage purchases of prime medium and high volatility bituminous coal real-estate over the years on his company’s website. However, nowhere in his corporate overview does he mention his most notorious mine: the abandoned and sealed underground Crandal Canyon Mine, Emery County, Utah. It was at this mine on August 6, 2007 that a collapse trapped six miners and resulted in their deaths, along with the deaths of three rescue workers. Mr. Murray told the BBC that he had had an emotional breakdown and hadn’t deserted anyone living in a little trailer adjacent to the mine’s entrance every day following the collapse. Furthermore, Mr. Murray blames such events on subsidiaries like Grenwal Resources Inc., which happens to be the owner of record for the Crandal Canyon Mine and is one of thirty-three unique subsidiaries owned by Mr. Murray (data download).

US Coal Mines and Mines Owned by Robert Murray

Figure 3. US Coal Mines by type and Mines Owned by Robert Murray highlighted in turquoise

Table 1. Robert Murray coal mine ownership by mine status

Status Number of Mines
Abandoned 68
Abandoned and Sealed 62
Active 12
Non-Producing 10
Temporarily Idled 5
Total 157

The Politics of Energy

Robert Murray and his fellow fossil fuel energy brethren’s bet on Trump paid off, with Trump winning 99% of the vote in congressional districts where coal mines exist (Figure 4). Such a performance bested the previous GOP candidates of McCain and Romney even though they had achieved an impressive 96% of the vote. Interestingly, Trump did nearly as well in congressional districts dominated by wind farms and ethanol refineries where more than 87% of the electorate was white.

Percent of Energy Infrastructure in Congressional Districts that went for GOP Presidential Candidates in 2016, 2012, and 2008

Figure 4. Presidential election results for GOP candidates in voting districts where various forms of energy are produced and/or processed, 2016, 2012, and 2008

Trump & Co. promised these districts that his administration would breathe life into the fossil fuel industry. True, Trump, Pruitt, Perry, and Interior Secretary Ryan Zinke are greasing the skids for the industry’s revival. In terms of annual production, however, it is far from certain that such moves will translate into the types of boost in employment promised by Trump during the 2016 campaign. Even if production does return, executives like Murray admit that the advent of efficiencies and extraction technologies means that the industry is mining more coal per miner than ever before:

“Trump has consistently pledged to restore mining jobs, but many of those jobs were lost to technology rather than regulation and to competition from natural gas and renewables, which makes it unlikely that he can do much to significantly grow the number of jobs in the industry,” said Murray. “I suggested that he temper his expectations. Those are my exact words,” said Murray. “He can’t bring them back.” – The Guardian, March 27, 2017

Conclusions and Next Steps

It remains to be seen how the coal mining and fracking industry’s battle for supremacy will play out from a socioeconomic, health, environmental, and regulatory perspective. While many people understand that coal jobs aren’t coming back, we shouldn’t doubt the will of the Trump administration and friends like Robert Murray to make sure that profits can still be extracted from Appalachia.

Will the fracking industry and coal barons agree to get along, or will they wage a war on multiple fronts to marginalize the other side? Will this be another natural resource conflagration? If so, how will the people – and species like the “near-threatened” Hellbender Salamander (Cryptobranchus alleganiensis) or the region’s recovering Bald Eagle (Haliaeetus leucocephalus) population that live in the disputed Appalachian communities respond? How will their already stressed day-to-day existence be affected? To this point, the fossil fuel industry has managed to blame everyone but itself for the tepid to non-existent job growth in their sectors.

The Appalachian landscape has been deeply scarred and fragmented by coal mining, and now it is experiencing a new colonizing force in the form of the hydraulic fracturing industry. When Appalachia realizes that automation, globalization, and natural gas, are the key drivers to the downfall of coal, will they bring fire, brimstone, and pitchforks to the doorstep of Murray Energy of the fracking companies? Or is Appalachia’s future merely that of an extraction colony?

Oh Say, did you see him; it was early this morning.
He passed by your houses on his way to the coal.
He was tall, he was slender, and his dark eyes so tender
His occupation was mining, West Virginia his home
It was just before noon, I was feeding the children,
Ben Moseley came running to give us the news.
Number eight was all flooded, many men were in danger
And we don’t know their number, but we fear they’re all doomed.
– “West Virginia Mine Disaster” © Jean Ritchie, Geordie Music Publishing


By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Endnote

  1. Murray is listed as the owner of 45 coal mining facilities, 35 surface mines, and 77 underground mines according to data compiled from the Department of Labor

Download Relevant Data (Zip Files)

Falcon Public EIA Project feature image

Wingspan of the Falcon Pipeline

A Public EIA of Shell’s Ethane Cracker Pipeline

Pittsburgh, Pennsylvania – Jan. 29 – FracTracker Alliance has released a detailed environmental impact assessment (EIA), including digital maps, of the Falcon Ethane Pipeline being built to feed Shell Appalachia’s ethylene cracker plant in Beaver County, PA.

FracTracker’s Falcon Public EIA Project offers a rich series of interactive maps and articles detailing the Falcon’s proposed route through PA, WV, and OH, likely impacts to waterways, potential blast zones, ecological footprint, proximity to hazardous industrial areas, and more.

Given the issues associated with Mariner East 2 – a PA-based natural gas liquids pipeline whose history has been fraught with citations, public scrutiny is a crucial facet of pipeline construction. The Falcon Public EIA Project represents the first time that public stakeholders have been given such a significant amount of time and detail to investigate a proposed pipeline, including access to specific location information. Public comments are being accepted by the PA Department of Environmental Protection on the Falcon’s permit until February 20th.

“Companies are generally not required to publicly disclose GIS data when applying for permits,” remarked Kirk Jalbert, project lead and Manager of Community Based Research and Engagement at FracTracker. “While concerned citizens can stitch together paper maps provided by companies in their applications, that process can be complex and very labor intensive.”

With FracTracker’s project, however, digital maps and figures are front and center.

Early access to what is being proposed for the Falcon pipeline will enable nearby communities to better understand how its construction and the associated ethane cracker facility, which will produce 1 million tons of ethylene annually for making plastics, will affect their lives. Upon analyzing the data, FracTracker uncovered a number of particularly noteworthy statistics, for example:

  • There are 97.5 miles of pipeline proposed to be built through 22 townships in 3 states.
  • 2,000 properties have been surveyed; 765 easements executed.
  • Falcon will intersect 319 streams and 174 wetlands, with hundreds more proximate to work areas.
  • 550 family residences, 20 businesses, 240 groundwater wells, 12 public parks, 5 schools, 6 daycare centers, and 16 emergency response centers are within potential risk areas.
  • Learn more

“Extreme levels of risk and injustice are commonplace in petrochemical pipeline siting, as well as in where their contents come from and how they get used. This project provides context for the importance of reducing these impacts, both for curtailing environmentally unfriendly plastics as well as for moving away from fossil fuel dependencies,” said Brook Lenker, Executive Director of FracTracker.

The Falcon Public EIA Project is meant to expand public dialogue about what should be included in EIAs and how they should apply to petrochemical pipelines. The project also serves as a model for how regulatory agencies can be more transparent with data when engaging the public. This is especially important in the case of the Falcon pipeline, which will be exempt from Federal Energy Regulatory Commission (FERC) scrutiny and, therefore, not be subject to a full environmental impact assessment.

Explore the Falcon Public EIA Project